2019年全国各地中考数学试题分类汇编第一期专题8二次根式
2019年全国中考数学试卷分类汇编:分式与分式方程【含解析】
![2019年全国中考数学试卷分类汇编:分式与分式方程【含解析】](https://img.taocdn.com/s3/m/012e4221a8114431b90dd85b.png)
数学精品复习资料分式与分式方程一、选择题1. (2014•四川巴中,第4题3分)要使式子有意义,则m 的取值范围是( ) A .m >﹣1B . m ≥﹣1C . m >﹣1且m ≠1D . m ≥﹣1且m ≠1考点:二次根式及分式的意义.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 解答:根据题意得:,解得:m ≥﹣1且m ≠1.故选D .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 2. (2014•山东潍坊,第5题3分)若代数式2)3(1-+x x 有意义,则实数x 的取值范围是( ) A.x ≥一1 B .x ≥一1且x ≠3 C .x >-l D .x >-1且x ≠3 考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.解答:根据题意得:⎩⎨⎧≠-≥+0301x x 解得x ≥-1且x ≠3.故选B .点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数. 3.(2014山东济南,第7题,3分)化简211mm m m -÷- 的结果是 A .m B .m 1 C .1-m D .11-m 【解析】m m m m m m m m m =-⨯-=-÷-111122,故选 A .4. (2014•浙江杭州,第7题,3分)若(+)•w=1,则w=( )W==0÷(﹣÷•,==C==由题意得,=.分)分式)))【分析】二、填空题1. (2014•上海,第8题4分)函数y=的定义域是x≠1.2. (2014•四川巴中,第12题3分)若分式方程﹣=2有增根,则这个增根是.考点:分式方程的增根.分析:分式方程变形后,去分母转化为整式方程,根据分式方程有增根,得到x﹣1=0,求出x的值,代入整式方程即可求出m的值.解答:根据分式方程有增根,得到x﹣1=0,即x=1,则方程的增根为x=1.故答案为:x=1 点评:此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.3. (2014•山东烟台,第14题3分)在函数中,自变量x的取值范围是.考点:二次根式及分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.4.(2014•湖南怀化,第12题,3分)分式方程=的解为x=1.5. (2014山东济南,第19题,3分)若代数式21-x 和123+x 的值相等,则=x . 【解析】解方程12321+=-x x ,的7=x ,应填7. 6.(2014•遵义13.(4分))计算:+的结果是 ﹣1 .==.7. (2014•年山东东营,第15题4分)如果实数x ,y 满足方程组,那么代数式(+2)÷的值为 1 .考点: 分式的化简求值;解二元一次方程组. 专题: 计算题.分析: 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x 与y 的值,代入计算即可求出值. 解答: 解:原式=•(x+y )=xy+2x+2y ,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1. 故答案为:1点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.8. (2014•江苏盐城,第13题3分)化简:﹣= 1 .9.(2014•四川宜宾,第10题,3分)分式方程﹣=1的解是x=﹣1.5 .10.(2014•四川南充,第11题,3分)分式方程=0的解是.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x+1+2=0,解得:x=﹣3经检验x=﹣3是分式方程的解.故答案为:x=﹣3点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.11.(2014•四川凉山州,第25题,5分)关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1 .解:=12.(2014•四川内江,第22题,6分)已知+=3,则代数式的值为﹣.=3+13.(2014•甘肃白银、临夏,第12题4分)化简:=.+﹣14.(2014•广州,第13题3分)代数式有意义时,应满足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即,则【答案】三、解答题1. (2014•上海,第20题10分)解方程:﹣=.2. (2014•四川巴中,第23题5分)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.考点:分式的化简,一元二次的解法,分式的意义.分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.解答:原式=÷=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.点评:本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式的值有意义.3. (2014•山东威海,第21题9分)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子由题意得,+=260则买甲粽子为:个,乙粽子为:4. (2014•山东枣庄,第19题4分)(2)化简:(﹣)÷.•(. 5. (2014•山东烟台,第19题6分)先化简,再求值:÷(x ﹣),其中x 为数据0,﹣1,﹣3,1,2的极差.考点:分式的化简,极差.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出数据的极差确定出x ,代入计算即可求出值. 解答:原式=÷=•=,当x =2﹣(﹣3)=5时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.6. (2014•山东烟台,第23题8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A 型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 型车每辆售价多少元?(用列方程的方法解答)(2)该车计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多? A ,B考点:分式方程的应用,一次函数的应用.分析: (1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A 行车a 辆,则B 型车(60﹣x )辆,获利y 元,由条件表示出y 与a 之间的关系式,由a 的取值范围就可以求出y 的最大值. 解答:(1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +400)元,由题意,得,解得:x =1600.经检验,x =1600是元方程的根.答:今年A 型车每辆售价1600元;(2)设今年新进A行车a辆,则B型车(60﹣x)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.点评:本题考查了列分式方程解实际问题的运,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.7.(2014•湖南张家界,第18题,6分)先化简,再求值:(1﹣)+,其中a=.÷•,时,原式.8.(2014•湖南张家界,第22题,8分)国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?×,9. (2014•江西抚州,第16题,5分)先化简:34211x xxx x---÷--(),再任选一个你喜欢的数x代入求值.解析:原式=x x x xx x x⎛⎫----⎪---⎝⎭2341112=x x xx x-+-⋅--244112=()xx--222=x-2取x=10代入,原式=8(注:x不能取1和2)10.(2014•山东聊城,第18题,7分)解分式方程:+=﹣1.11. (2014年贵州黔东南18.(8分))先化简,再求值:÷﹣,其中x=﹣4.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•﹣=﹣=,当x=﹣4时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.(2014•十堰17.(6分))化简:(x2﹣2x)÷.•完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?+=114.(2014•娄底21.(8分))先化简÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.=÷=•=15.(2014•娄底24.(8分))娄底到长沙的距离约为180km ,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答) (2)当小刘出发时,求小张离长沙还有多远? ﹣=116. (2014年湖北咸宁17.(8分))(1)计算:(﹣2)2+4×2﹣1﹣|﹣8|; (2)化简:﹣.考点: 实数的运算;分式的加减法;负整数指数幂.分析: (1)本题涉及负整指数幂、乘方、绝对值化简三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据分式的性质,可化成同分母的分式,根据分式的加减,可得答案. 解答: 解:(1)原式=4+2﹣8=﹣2;(2)原式=.点评: 本题考查了实数的运算,本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.17. ( ( 2014年河南) 16.8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中x -1解:原式=()()()2x 1x 12x x 1x x 1x+-++÷-…………………4分 =()2x 1xx x 1++ =1x 1+…………………………………………………………………6分当x -1时,原式=2……………………………8分18.(2014•江苏苏州,第21题5分)先化简,再求值:,其中.统一为乘法运算,注意化简后,将解:÷()÷×,=19.(2014•江苏苏州,第22题6分)解分式方程:+=3.20. (2014•山东淄博,第18题5分)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.21. (2014•江苏徐州,第24题8分)几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.考点:分式方程的应用.分析:设票价为x元,根据图中所给的信息可得小伙伴的人数为:,根据小伙伴的人数不变,列方程求解.解答:解:设票价为x元,由题意得,=+2,解得:x=60,则小伙伴的人数为:=8.答:小伙伴们的人数为8人.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.22. (2014•江苏盐城,第19题4分)(2)解方程:=.23. (2014•年山东东营,第23题8分)为顺利通过“国家文明城市”验收,东营市政府拟对称取部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.考点:一次函数的应用;分式方程的应用.分析:(1)如果设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.解答:解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得=解得:x=15,经检验,x=15是原分式方程的解,2x=30答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.(2)方案一:由甲工程队单独完成需要4.5×15=67.5万元;方案二:由乙工程队单独完成需要2.5×30=75万元;方案三:由甲乙两队合作完成4.5×10+2.5×10=70万元.所以选择甲工程队,既能按时完工,又能使工程费用最少.点评:本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.24. (2014•江苏徐州,第19题5分)(2)计算:(a+)÷(1+).考点:分式的混合运算.专题:计算题.分析:(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(2)原式=÷=•=a﹣1.点评:此题考查了分式的混合运算,熟练掌握运算法则解本题的关键.25.(2014•四川遂宁,第18题,7分)先化简,再求值:(+)÷,其中x=﹣1.•=•,﹣.26.(2014•四川宜宾,第17题,10分)(1)计算:|﹣2|﹣(﹣)0+()﹣1(2)化简:(﹣)•.•••27.(2014•四川凉山州,第19题,6分)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.÷•= 28.(2014•四川泸州,第18题,6分)计算(﹣)÷.﹣•﹣)•,.普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?30、(2014•广州,第22题12分)从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】行程问题的应用【分析】路程=速度×时间,分式方程的实际应用考察【解析】(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)(2)设普通列车的平均速度为千米/时,则高铁平均速度为千米/时.依题意有:可得:答:高铁平均速度为2.5×120=300千米/时.31.(2014•广东梅州,第20题8分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?﹣×0.25≤8。
二次根式中考汇编(经典考题)真题训练,综合测试卷(带答案)
![二次根式中考汇编(经典考题)真题训练,综合测试卷(带答案)](https://img.taocdn.com/s3/m/fad88779f242336c1eb95efe.png)
故选A.
点评:本题考查了二次根式有意义的条件.关键是明确二次根式有意义时,被开方数为非负数.
4.(2011四川凉山,5,4分)已知 ,则 的值为()
A. B. C. D.
考点:二次根式有意义的条件.
分析:首先根据分式有意义的条件求出x的值,然后根据题干式子求出y的值,最后求出2xy的值.
【专题解读】涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解.
例1当x取何值时, 的值最小?最小值是多少?
分析由二次根式的非负性可知 的最小值为0,因为3是常数,所以 的最小值为3.
解:∵
∴ ,
∴当9x+1=0,即 时, 有最小值,最小值为3.
例18函数y= 中,自变量x的取值范围是.
分析本题比较容易,主要考查函数自变量的取值范围的求法,本题中 是二次根式,所以被开方数2x-4≥0,所以x≥2.故填x≥2.
例19如图21-9所示的是一个简单的数值运算程序,若输入x的值为 ,则输出的数值为.
图21-9
分析本题比较容易,根据程序给定的运算顺序将问题化为二次根式求值问题,易知图中所表示的代数式为 ,代入可知( )2-1=2.故填2.
【解题策略】本题中所求字母x的取值必须使原代数式有意义.
例5化简
【解题策略】本题应根据条件直接进行化简,主要应用性质
例6已知实数,a,b,c在数轴上的位置如图21-8所示,化简
解:由a,b,c在数轴上的位置可知:
【解题策略】利用间接给出的或隐含的条件进行化简时,要充分挖掘题目中的隐含条件,再进行化简.
(3)二次根式具有非负性. (a≥0)是一个非负数.
全国各地2019年中考数学真题分类解析汇编 08二次根式
![全国各地2019年中考数学真题分类解析汇编 08二次根式](https://img.taocdn.com/s3/m/0ac18311f111f18583d05a9b.png)
二次根式一、选择题1.(2018•武汉,第2题3分)若在实数范围内有意义,则x的取值范围是()2.(2018•邵阳,第1题3分)介于()解:∵3.(2018•孝感,第3题3分)下列二次根式中,不能与合并的是()合并;,故合并;,故合并;,故合并;4. ( 2018•安徽省,第6题4分)设n 为正整数,且n <<n+1,则n 的值为( ) A .5 B .6 C .7 D . 8考点: 估算无理数的大小. 分析: 首先得出<<,进而求出的取值范围,即可得出n 的值. 解答: 解:∵<<,∴8<<9,∵n <<n+1, ∴n=8,故选;D .点评: 此题主要考查了估算无理数,得出<<是解题关键. 5.(2018·台湾,第1题3分)算式(6+10×15)×3之值为何?( )A .242B .12 5C .1213D .18 2 分析:先算乘法,再合并同类二次根式,最后算乘法即可.解:原式=(6+56)× 3=66× 3=182,故选D .点评:本题考查了二次根式的混合运算的应用,主要考查学生的计算能力,题目比较好,难度适中.6.(2018·云南昆明,第4题3分)下列运算正确的是( )A. 532)(a a =B. 222)(b a b a -=-C. 3553=-D. 3273-=-A .x <1B . x ≤1C . x >1D . x ≥1分析:根据被开方数大于等于0列式计算即可得解.解:由题意得,x ﹣1≥0,解得x ≥1.故选D . 点评:本题考查的知识点为:二次根式的被开方数是非负数.8.(2018·浙江金华,第5题4分)在式子11,,x 2x 3-- x 可以取2和3的是【 】A .1x 2-B .1x 3- C 【答案】C .【解析】试题分析:根据二次根式被开方数必须是非负数和分式分母不为0的条件,在式子11,x 2x 3-- ,9. (2018•湘潭,第2题,3分)下列计算正确的是( ) =2题考查了二次根式的意义和性质.概念:式子(11. (2018•株洲,第2题,3分)x取下列各数中的哪个数时,二次根式有意义()查了二次根式的意义和性质.概念:式子12.(2018•呼和浩特,第8题3分)下列运算正确的是()•==a3+÷(﹣=•=3•,故本选项正确;13.(2018•济宁,第7题3分)如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()=•=÷=÷÷==二.填空题1. ( 2018•福建泉州,第16题4分)已知:m、n为两个连续的整数,且m<<n,则m+n= 7 .估算出的取值范围,得出∴3<题考查的是估算无理数的大小,先根据题意算出的取值范围是解答此题的关2.(2019年云南省,第9题3分)计算:﹣= .考点:二次根式的加减法.分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式=2﹣=.故答案为:.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.3.(2019年广东汕尾,第11题5分)4的平方根是.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4. (2019年江苏南京,第9题,2分)使式子1+有意义的x的取值范围是.考点:二次根式分析:根据被开方数大于等于0列式即可.解答:由题意得,x≥0.故答案为:x≥0.点评:本题考查的知识点为:二次根式的被开方数是非负数.5.(2018•德州,第14题4分)若y=﹣2,则(x+y)y= ..故答案为:.三.解答题1.(2018•襄阳,第18题5分)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.,,)),))2=7+42.( 2018•福建泉州,第19题9分)先化简,再求值:(a+2)2+a(a﹣4),其中a=.a=原式=2×(。
2019-中考数学试题分类汇编(150套)二次根式专题
![2019-中考数学试题分类汇编(150套)二次根式专题](https://img.taocdn.com/s3/m/5c6017b3be1e650e53ea9950.png)
2019-2020 年中考数学试题分类汇编( 150 套) 二次根式专题一、选择题1.( 2011 浙江嘉兴) 设 a 0 、 b 0,则以下运算中错误 的是( ▲)..( A ) aba b( B ) a ba b( C ) ( a )2aa a( D )bb【答案】 B2.( 2011 福建德化) 以下计算正确的选项是()A 、 20 =2 10B 、2 36 C 、422D 、 ( 3)23【答案】 B3.( 2011 湖南长沙) 4 的平方根是( ).A 、 2B 、 2C 、 2D 、2【答案】 C.4.( 2011 福建福州)若二次根式x -1有意义,则 x 的取值范围为 ( )A . x ≠1 B.x ≥ 1C . x < l D.全体实数 【答案】 B5.( 2011 江苏无锡)9 的值等于()A . 3B . 3C . 3D . 3【答案】 A6.( 2011 江苏无锡) 使 3x1 有意义的 x 的取值范围是()A . x1B . x11133C . xD . x33【答案】 C7.( 2011 广东广州, 9, 3 分)若 a < 1,化简 (a 1)2 1 =()A . a ﹣2B . 2﹣ aC . aD .﹣ a【答案】 D8.( 2011 江苏南京 )如图,以下各数中,数轴上点A 表示的可能是A.4 的算术平方根B.4 的立方根 的算术平方根的立方根【答案】 C9.( 2011 江苏南通)9 的算术平方根是A . 3B .-3C . 81D .- 81【答案】A10.( 2011 江苏南通)若 3 x6 在实数范围内有意义,则x 的取值范围是A . x ≥2B .x2C . x ≥ 2D .x 2【答案】 Ca + 2 11.( 2011 安徽芜湖 )要使式子有意义, a 的取值范围是()aA . a ≠0B . a >- 2 且 a ≠ 0C . a >- 2 或 a ≠ 0 D. a ≥- 2 且a ≠0 【答案】 D12.( 2011 江苏盐城) 使 x 2 有意义的 x 的取值范围是 ▲ .【答案】 x ≥ 213.( 2011 山东济宁) 4 的算术平方根是A. 2B.- 2C.± 2D. 4【答案】 A14.( 2011 四川眉山) 计算( 3)2 的结果是A . 3B . 3C . 3D . 9【答案】 A15.( 2011 台湾) 计算1 94 25 之值为何? (A) 25 (B) 3 5 (C) 4 7 (D)16361212125 7。
最新九年级数学必考要点分类汇编精华版 中考要点二次根式
![最新九年级数学必考要点分类汇编精华版 中考要点二次根式](https://img.taocdn.com/s3/m/37bdbb15227916888486d774.png)
最新九年级数学必考要点分类汇编精华版二次根式知识梳理1.二次根式:式子(a≥0)叫做二次根式。
2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。
如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5 ,都是最简二次根式。
3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
如, , 就是同类二次根式,因为=2 ,=3 ,它们与的被开方数均为2。
4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
如与,a+ 与a- ,- 与+ ,互为有理化因式。
二次根式的性质:1. (a≥0)是一个非负数, 即≥0;2.非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ²(a ≥0,b≥0)。
5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=(a≥0,b>0)。
二次根式的乘除1. 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数;(2)(≥0,≥0)可以推广为(≥0,≥0);(≥0,≥0,≥0,≥0)。
(3)等式(≥0,≥0)也可以倒过来使用,即(≥0,≥0)。
也称“积的算术平方根”。
它与二次根式的乘法结合,可以对一些二次根式进行化简。
2. 二次根式的除法两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0;(2)(≥0,>0)可以推广为(≥0,>0,≠0);(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。
2019年中考数学试题汇编 二元一次方程组解答题部分(解析版)
![2019年中考数学试题汇编 二元一次方程组解答题部分(解析版)](https://img.taocdn.com/s3/m/22f6a8bdb8f67c1cfad6b876.png)
1.(2019年山东省烟台市)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【分析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,根据志愿者人数=36×调配36座客车的数量+2及志愿者人数=22×调配22座客车的数量﹣2,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设需调配36座客车m辆,22座客车n辆,根据志愿者人数=36×调配36座客车的数量+22×调配22座客车的数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数即可求出结论.【解答】解:(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.2.(2019年福建省)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=9,即x=3,把x=3代入①得:y=﹣2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.(2019年海南省)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【解答】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.4.(2019年吉林省)问题解决糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?反思归纳现有a根竹签,b个山楂.若每根竹签串c个山楂,还剩余d个山楂,则下列等式成立的是(2)(填写序号).(1)bc+d=a;(2)ac+d=b;(3)ac﹣d=b.【分析】问题解决设竹签有x根,山楂有y个,由题意得出方程组:,解方程组即可;反思归纳由每根竹签串c个山楂,还剩余d个山楂,得出ac+d=b即可.【解答】问题解决解:设竹签有x根,山楂有y个,由题意得:,解得:,答:竹签有20根,山楂有104个;反思归纳解:∵每根竹签串c个山楂,还剩余d个山楂,则ac+d=b,故答案为:(2).【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.5.【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,求解即可;【解答】解:设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得,∴,∴每节火车车皮装物资50吨,每辆汽车装物资6吨;【点评】本题考查二元一次方程组的应用;能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.6.(2019年山西省)解方程组:【分析】(1)先根据二次根式的性质,特殊角的三角函数,0次幂进行计算,再合并同类二次根式;(2)用加减法进行解答便可.【解答】解:(2)①+②得,4x=﹣8,∴x=﹣2,把x=﹣2代入①得,﹣6﹣2y=﹣8,∴y=1,∴.【点评】本题是解答题的基本计算题,主要考查了实数的计算,解二元一次方程组,是基础题,要求100%得分,不能有失误.7.(2019年广西河池市)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?【分析】(1)设跳绳的单价为x元/条,毽子的单件为y元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.【解答】解:(1)设跳绳的单价为x元/条,毽子的单件为y元/个,可得:,解得:,答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x折销售,可得:(100×16+100×4)×=1800,解得:x=9,答:该店的商品按原价的9折销售.【点评】本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.8.(2019年广东省广州市)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(2019年湖南省益阳市)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.求去年每千克小龙虾的养殖成本与售价;【分析】设今年稻谷的亩产量为z千克,由题意列出不等式,就不等式即可.【解答】解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;【点评】本题考查了二元一次方程组的应用;根据题意列出方程组或不等式是解题的关键.10(2019年山东省淄博市)“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A,B两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润【分析】设A,B两种产品的销售件数分别为x件、y件;由题意列出方程组,解方程组即可.【解答】解:设A,B两种产品的销售件数分别为x件、y件;由题意得:,解得:;答:A,B两种产品的销售件数分别为160件、180件.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.11(2019年浙江省丽水市)解方程组【分析】根据二元一次方程组的解法,先将式子①化简,再用加减消元法(或代入消元法)求解;【解答】解:,将①化简得:﹣x+8y=5 ③,②+③,得y=1,将y=1代入②,得x=3,∴;【点评】本题考查二元一次方程组的解法;熟练掌握加减消元法或代入消元法解方程组是解题的关键.12(2019年江苏省盐城市)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?【分析】(1)直接利用1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克得出方程求出答案;(2)利用分类讨论得出方程的解即可.【解答】解:(1)设每只A型球、B型球的质量分别是x千克、y千克,根据题意可得:,解得:,答:每只A型球的质量是3千克、B型球的质量是4千克;(2)∵现有A型球、B型球的质量共17千克,∴设A型球1个,设B型球a个,则3+4a=17,解得:a=(不合题意舍去),设A型球2个,设B型球b个,则6+4b=17,解得:b=(不合题意舍去),设A型球3个,设B型球c个,则9+4c=17,解得:c=2,设A型球4个,设B型球d个,则12+4d=17,解得:d=(不合题意舍去),设A型球5个,设B型球e个,则15+4e=17,解得:a=(不合题意舍去),综上所述:A型球、B型球各有3只、2只.【点评】此题主要考查了二元一次方程组的应用,正确分类讨论是解题关键.13(2019年湖南省怀化市)解二元一次方组:【分析】直接利用加减消元法进而解方程组即可.【解答】解:,①+②得:2x=8,解得:x=4,则4﹣3y=1,解得:y=1,故方程组的解为:.【点评】此题主要考查了解二元一次方程组,正确掌握解题方法是解题关键.14(2019年山东省潍坊市)己知关于x,y的二元一次方程组的解满足x>y,求k的取值范围.【分析】先用加减法求得x﹣y的值(用含k的式子表示),然后再列不等式求解即可.【解答】解:①﹣②得:x﹣y=5﹣k,∵x>y,∴x﹣y>0.∴5﹣k>0.解得:k<5.【点评】本题主要考查的是二元一次方程组的解,求得x﹣y的值(用含k的式子表示)是解题的关键.15(2019年浙江省温州市)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【分析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.【解答】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.16(2019年甘肃省武威市、陇南市)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?【分析】根据对话分别利用总钱数得出等式求出答案.【解答】解:设中性笔和笔记本的单价分别是x元、y元,根据题意可得:,解得:,答:中性笔和笔记本的单价分别是2元、6元.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.17(2019年山东省枣庄市)对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x⊗(﹣y)=2,(2y)⊗x=﹣1,求x+y的值.【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,计算即可求出所求.【解答】解:(1)根据题中的新定义得:原式=8﹣3=5;(2)根据题中的新定义化简得:,①+②得:3x+3y=﹣3,则x+y=﹣1.【点评】此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.。
二次根式-中考数学一轮复习考点专题复习大全(全国通用)
![二次根式-中考数学一轮复习考点专题复习大全(全国通用)](https://img.taocdn.com/s3/m/ab23694bf4335a8102d276a20029bd64783e6268.png)
考向08 二次根式【考点梳理】1、二次根式:一般地,形如a (a ≥0)的代数式叫做二次根式。
当a >0时,a 表示a 的算术平方根,其中0=02、 理解并掌握下列结论:(1))0(≥a a 是非负数(双重非负性); (2))0()2≥=a a a (; (3)⎩⎨⎧≤->=⎩⎨⎧<-≥=⎪⎩⎪⎨⎧<-=>==)0()0()0()0()0()0(0)0(2a a a a a a a a a a a a a a a ;口诀:平方再开方,出来带“框框” 3、二次根式的乘法:)0,0(≥≥=•b a ab b a ,反之亦成立4、二次根式的除法:)0,0(>≥=b a b a ba ,反之亦成立5、满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数不含分母,(2)被开方数不含开得尽方的因数或因式。
6、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。
【题型探究】题型一:二次根式的概念和性质1.(2022·湖北黄石·统考中考真题)函数11y x =+-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠2.(2022·广东广州·广东番禺中学校考三模)若3y =,则2022()x y +等于( ) A .1B .5C .5-D .1-3.(2022·湖北黄石·校联考模拟预测)函数y 中,自变量x 的取值范围是( ) A .5x >B .35x ≤<C .5x <D .35x ≤≤题型二:二次函数的化简4.(2022·河北·统考中考真题)下列正确的是( )A 23+B 23=⨯C D 0.75.(2023·河北·b a 的值是( ) A .6B .9C .12D .276.(2022·四川绵阳·统考三模)已知y =,则xy =( )A .3B .-6C .±6D .±3题型三:二次根式的乘除7.(2022·广东广州· )A B C D .8.(2022·天津南开·二模)计算3)的结果等于______.9.(2022·河北唐山·=a =______;b =__.题型四:二次根式的加减10.(2022·黑龙江哈尔滨·=_____. 11.(2022·黑龙江绥化·统考中考真题)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.12.(2022·黑龙江哈尔滨·______.题型五:分母的有理化13.(2022·河北保定·统考一模)已知x =2y = (1)22x y +=________; (2)2()x y xy --=________.14.(2022·广东中山·统考二模)小明喜欢构建几何图形,利用“数形结合”的思想解决代数问题.在计算tan 22.5︒时,如图,在Rt ACB 中,9045C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,所以tan 22.51AC CD ︒===,类比小明的方法,计算tan15︒的值为________.15.(2020·四川成都·四川省成都列五中学校考三模)3的整数部分是m ,小数部分是n ,则mn+3=_____.题型六:二次根式的比较大小16.(2021·四川成都·766517.(2020·陕西西安·西安市铁一中学校考二模)比较大小:1013-(填“>”、“=”、“<”)18.(2021·陕西宝鸡·17﹣5(填“>”或“<”)题型七:二次根式的化简求值问题19.(2023·江西·九年级专题练习)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中53x =. 20.(2022·四川广元·统考一模)先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中32a =+32b = 21.(2022·辽宁抚顺·模拟预测)先化简,再求值:22124()(1)442x x x x x x x-+-÷--+-,其中x =2+tan30°.【必刷基础】一、单选题22.(2023·广西玉林·一模)下列运算正确的是( ) A 257B .22525=+C 532=D .233323.(2022·福建泉州·校考三模)在函数32y x =+中,自变量x 的取值范围是( ) A .23x ≠-B .23x >-C .23x -D .23x -24.(2022·上海松江·校考三模)下列式子属于同类二次根式的是( ) A .2与22B .3与24C .5与25D .6与1225.(2022春·河北保定·九年级保定市第十七中学校考期中)如图,把一张矩形纸片ABCD 按如图所示方法进行两次折叠后,BEF △恰好是等腰直角三角形,若2BE =,则CD 的长度为( )A .22B .22+C .222+D .224+26.(2021·广西百色·统考二模)将一组数2,2,6,22,10,…,210,按下列方式进行排列: 2,2,6,22,10; 23,14,4,32,25;…若2的位置记为()1,2,23的位置记为()2,1,则36这个数的位置记为( )A .()54,B .()44,C .()43,D .()35,27.(2022·山东青岛·统考中考真题)计算1(2712)3-⨯的结果是( ) A .33B .1C .5D .328.(2022·河北廊坊·统考二模)一次函数()32y k x k =++-的图象如图所示,则使式子()011k k ++-有意义的k 的值可能为( )A .-3B .-1C .-2D .229.(2021·北京·统考中考真题)若7x -在实数范围内有意义,则实数x 的取值范围是_______________. 30.(2018·江苏苏州·校联考中考模拟)若x 满足|2017-x|+-2018x =x , 则x-20172=________31.(2021·辽宁鞍山·统考中考真题)先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中62a =+. 32.(2022春·福建泉州·九年级福建省安溪第一中学校考阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.【必刷培优】一、单选题33.(2021·广东·统考中考真题)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是( ) A .6B .210C .12D .91034.(2021·湖南娄底·统考中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .435.(2021·内蒙古·统考中考真题)若21x =+,则代数式222x x -+的值为( ) A .7 B .4C .3D .322-36.(2020·河北·统考中考真题)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题37.(2019·广西柳州·中考模拟)如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.38.(2021·四川眉山·统考中考真题)观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++==+⨯; 3221113111341234x =++==+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.39.(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______. 40.(2021·河南信阳·河南省淮滨县第一中学校考三模)已知625x =-为一元二次方程20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.41.(2019·江苏·校考中考模拟)若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____. 42.(2022·四川遂宁·统考中考真题)实数a ,b 在数轴上的位置如图所示,化简()()2211a b a b +--+-=______.三、解答题43.(2021·四川成都·统考中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .44.(2022·安徽·统考二模)阅读下列解题过程: 21+21(21)(21)-+-2-1; 32+32(32)(32)-+-32; 43+434343-+-()()433 …解答下列各题: (1109+= ;(2= .(3)利用这一规律计算:)×).45.(2019·福建泉州·统考中考模拟)先化简,再求值:2443(1)11m m m m m -+÷----,其中2m .46.(2013·贵州黔西·中考真题)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+(,善于思考的小明进行了以下探索:设(2a m ++(其中a 、b 、m 、n 均为整数),则有2222a m n +++∴2222a m n b mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空: + =( +2;(3)若(2a m ++,且a 、b 、m 、n 均为正整数,求a 的值.参考答案:1.B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,3010 xx+>⎧⎨-≠⎩∴3x>-且1x≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.2.A【分析】直接利用二次根式中被开方数是非负数,得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20 420xx-≥⎧⎨-≥⎩,解得:x=2,故y=-3,∴20222022()(213)=x y+=-.故选:A.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.3.C【分析】根据二次根式、立方根、分式的性质分析,即可得到答案.【详解】根据题意,得50x->∴5x<故选:C.【点睛】本题考查了二次根式、立方根、分式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解.4.B【分析】根据二次根式的性质判断即可.【详解】解:23+,故错误;23=⨯,故正确;=≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.D【分析】由二次根式的性质、二次根式的减法运算法则进行计算,即可得到答案.∴3a =,3b =, ∴3327=, 故选:D【点睛】本题考查了二次根式的性质、二次根式的减法运算,解题的关键是掌握运算法则,正确的进行解题. 6.B【分析】利用二次根式的被开方数具有非负性求出x 的值后,再求出y 的值,即可求解. 【详解】解:∵229090x x -+≥-≥,, ∴29x =, 又∵30x +≠, ∴3x =, ∴0012233y --==-+,∴()326xy =⨯-=-, 故选:B .【点睛】本题考查了二次根式有意义的条件以及性质,解题关键是求出x 的值与y 的值. 7.A【分析】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.=== 故选:A .【点睛】)0,0a b ≥≥)0,0a b ≥>,熟练掌握相关运算法则是解题的关键. 8.4【分析】根据平方差公式计算即可.【详解】解:3)=223-=13-9 =4,故答案为:4.【点睛】本题考查二次式的混合运算,熟练掌握平方差公式是解题的关键. 9. 2 6化为最简二次根式,再利用二次根式的乘法法则解题.=2,6a b ∴==故答案为:2,6.【点睛】本题考查利用二次根式的性质化简计算,涉及最简二次根式、二次根式的乘法等知识,是基础考点,掌握相关知识是解题关键.10.-【分析】先把各二次根式化为最简二次根式,然后合并即可.【详解】解:原式==-故答案为:-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 11.20【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++=△=9-4=5>0,∴13x =-23x =-,∴()212x x -=((223320-==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 12【分析】根据二次根式的性质和二次根式的减法法则,即可求解.3==【点睛】本题主要考查二次根式的化简,掌握二次根式的性质和运算法则,是解题的关键. 13. 14 11【分析】根据分母有理化得到2x =x 和y 分别代入(1)(2)中根据二次根式的混合运算法则计算求解.【详解】解:∵123x =+, ∴()()12323232323x ===+-+--, ∴(1)22x y +()()222323=-++ 44334433=-++++14=,故答案为:14;(2)()2x y xy -- ()()()223232323⎡⎤=--+--+⎣⎦()()22343=---121=-11=,故答案为:11.【点睛】本题主要考查了分母有理化、二次根式的混合运算法则,理解相关知识是解答关键.14.23-【分析】仿照题意构造含15度角的直角三角形进行求解即可.【详解】解:如图,在Rt ACB 中,9030C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,∴∠BAD =∠D ,2AB BD AC ==,∴cos =3BC AC ABC AC =⋅∠,∴()23CD BC BD AC =+=+,∵∠ABC =∠BAD +∠D ,∴=15D ︒∠,∴1tan =tan15===2323AC D CD ︒-+∠, 故答案为:23-.【点睛】本题主要考查了解直角三角形,三角形外角的性质,等腰三角形的性质,正确理解题意构造出含15度角的直角三角形是解题的关键.15.2m 的值,小数部分n m ,把m 、n 代入分式m n+3中,应用分母有理化的方法进行化简,即可得到答案.【详解】解:∵12,∴m =1,n 1, ∴=n+3m=2.故答案为:2.【点睛】本题主要考查二次根式的分母有理化,熟练掌握分母有理化的方法是解题的关键.16.<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.==<故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.17.> 【分析】先将这两个数分别平方,通过比较两个数的平方的大小即可得解.【详解】解:∵21(10=,211()39-=且11109<,1<,∴13>- 故答案为:>【点睛】此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.18.>【分析】首先利用二次根式的性质可得【详解】解:∵∴>﹣故答案为:>.【点睛】本题主要考查了二次根式的大小比较,准确计算是解题的关键.19.13x x -+【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ ()()()23221111x x x x x x ++-+=÷++- ()()()211313x x x x x +-+=⨯++13x x -=+.当3x =时,原式=. 【点睛】此题主要考查了分式的化简以及二次根式混合运算,正确化简分式是解题关键.20.ab ;7【分析】根据分式的混合运算法则化简,再代入3a =3b = 【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--.当3a =3b =原式(33927==-=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式、二次根式及乘法公式的运用.21.()212x -;3【分析】先根据异分母分式的加减化简括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据特殊角的三角函数值求得x 的值,代入化简结果进行计算即可. 【详解】解:22124()(1)442x x x x x x x -+-÷--+- ()()()()()22122422x x x x x x x x x x ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()2224=42x x x x x x x --+⨯-- ()241=42x x x -⋅-- ()212x =-2tan 302x =+︒=∴原式21322==⎛⎫ ⎪⎝⎭【点睛】本题考查了分式的化简求值,特殊角的三角函数值,实数的混合运算,二次根式的混合运算,正确的计算是解题的关键.22.D【分析】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:AB、= CD、=故选:D .【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.23.C【分析】根据被开方数大于等于0,列式求解即可.【详解】解:根据题意得:320x +,解得23x -.【点睛】本题主要考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.24.A【分析】根据同类二次根式的概念判断即可.【详解】解:A 、2与22是同类二次根式,符合题意;B 、3与26不是同类二次根式,不符合题意;C 、5与5不是同类二次根式,不符合题意;D 、6与23不是同类二次根式,不符合题意;故选A .【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.25.D【分析】根据翻折过程补全图形,然后根据矩形的性质和勾股定理即可解决问题.【详解】解:由折叠补全图形如图所示,四边形ABCD 是矩形,'90ADA B C A ∴∠=∠=∠=∠=︒,AD BC =,CD AB =,由第一次折叠得:'90DA E A ∠=∠=︒,1452ADE ADC ∠=∠=︒, 45AED ADE ∴∠=∠=︒,AE AD ∴=,在Rt ADE △中,根据勾股定理得,2DE AD =,由第二次折叠知,CD DE AB ==,222DE AE ∴=,2222()2(2)CD AB BE CD ∴=-=-,422CD ∴=+【点睛】本题考查了翻折变换,矩形的性质,等腰直角三角形,解决本题的关键是掌握翻折的性质.26.C∵36218÷=,18533÷=4行,第3个数字.故选:C .【点睛】此题考查的是数字的变化规律以及二次根式的化简,找出其中的规律是解题的关键.27.B再合并即可.【详解】解:94321 故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.28.B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠ ∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底29.7x ≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x -≥,解得:7x ≥;故答案:为7x ≥.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.30.2018【分析】根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题.【详解】解:由条件知,x-2018≥0, 所以x≥2018,|2017-x|=x-2017.所以x-2017+ =x ,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018.【点睛】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.31.2a a -,1+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值. 【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭ ()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+-- 2a a =-.当2a 时,原式1==== 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 32.a b -【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.33.Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.34.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+, 解得:37x ,374m m -+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.35.C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.36.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大正方形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,222A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512 C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.37.2【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】解:由数轴可得:0<a <2,则a=a =a +(2﹣a )=2.故答案为:2.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a 的取值范围.38.12021-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可.11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021=12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 39.2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.40. 2; 4-;【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:∵x ====1∴20x ax b ++=∴))2110a b ++= ∴60a b --+=60a b -++=)()260a b a -+-+=∵a ,b 为有理数,∴2a -,6b a -+也为有理数,∴2a =,4b =-,故答案是:2,4-;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.41.4【分析】直接利用二次根式有意义的条件得出a 的值,进而利用负指数幂的性质得出答案.【详解】解:∵b 2,∴120210a a -≥⎧⎨-≥⎩∴1-2a=0,解得:a=12,则b=-2, 故ab=(12)-2=4. 故答案为4.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a 的值是解题关键. 42.2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.43.13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式= 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.44.(13;(2(3)2020【分析】(1,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】(133;(2==(3)×)1+)×)1)×) =20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.45.22m m-+ 1. 【详解】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m 2时,原式===﹣=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 46.(1)223m n +,2mn ;(2)13,4,2,1(答案不唯一);(3)7或13.【分析】根据题意进行探索即可.【详解】(1)∵2(a m +=+,∴2232a m n +=++∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.【点睛】本题考查二次根式的运算.根据题意找出规律是解决本题的关键.。
中考数学专题练习 二次根式及一元二次方程(含解析)-人教版初中九年级全册数学试题
![中考数学专题练习 二次根式及一元二次方程(含解析)-人教版初中九年级全册数学试题](https://img.taocdn.com/s3/m/0cf91bb02b160b4e777fcfa1.png)
《二次根式及一元二次方程》一、选择题1.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤33.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.某某市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)26.下列各式计算正确的是()A.B.(a<1)C.D.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.20169.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=010.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题13.化简=.14.计算的结果是.15.计算: +=.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值X围是.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.19.请你写出一个有一根为1的一元二次方程:.(答案不唯一)20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=.22.将根号外面的因式移进根号后等于.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC 的面积为1,则k的值为;点E的坐标为.三、解答题24.计算:.25.用配方法解方程:2x2+1=3x.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的X围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值X围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.《二次根式及一元二次方程》参考答案与试题解析一、选择题1.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间【考点】估算无理数的大小.【专题】应用题.【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断的X围,再估算的X围即可.【解答】解:∵5<<6∴3<<4故选C.【点评】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算的整数部分和小数部分.2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义,把x=﹣a代入方程,即可求解.【解答】解:∵方程x2+bx+a=0有一个根是﹣a(a≠0),∴(﹣a)2+b(﹣a)+a=0,又∵a≠0,∴等式的两边同除以a,得a﹣b+1=0,故a﹣b=﹣1.故本题选D.【点评】本题考查的重点是方程根的定义,分析问题的方向比较明确,就是由已知入手推导、发现新的结论.4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式;三角形三边关系.【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.能够根据三角形的三边关系,得到关于a,b,c的式子的符号.【解答】解:∵△=(2c)2﹣4(a+b)2=4[c2﹣(a+b)2]=4(a+b+c)(c﹣a﹣b),根据三角形三边关系,得c﹣a﹣b<0,a+b+c>0.∴△<0.∴该方程没有实数根.故选A.【点评】本题是方程与几何的综合题.主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对(2c)2﹣4(a+b)(a+b)进行因式分解.5.某某市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),然后用平均增长率和实际增长率分别求出今年的国内生产总值,由此可得到一个方程,即x%满足的关系式.【解答】解:若设2015年的国内生产总值为y,则根据实际增长率和平均增长率分别得到2010年和今年的国内生产总值分别为:2016年国内生产总值:y(1+x%)或y(1+12%),所以1+x%=1+12%,今年的国内生产总值:y(1+x%)2或y(1+12%)(1+7%),所以(1+x%)2=(1+12%)(1+7%).故选D.【点评】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程.6.下列各式计算正确的是()A.B.(a<1)C.D.【考点】二次根式的混合运算;立方根.【分析】A、根据二次根式的乘法运算法则的逆运算直接计算就可以;B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;C、先将被开方数进行乘方运算再合并最后化简就可以了;D、先进行分母有理化,再进行合并同类二次根式就可以了.【解答】解:A、≠,本答案错误;B、(a<1),本答案正确;C、,本答案错误;D、==4≠2,本答案错误.故选B.【点评】本题考查了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值X围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值X围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.2016【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.【解答】解:∵a是方程x2+x﹣2016=0的根,∴a2+a=2016;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=(a2+a)+(a+b)=2016﹣1=2015.故选:C.【点评】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.9.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=0【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.【分析】此题可以采用因式分解法,此题的公因式为(x﹣3),提公因式,降次即可求得.【解答】解:∵(x﹣3)(x+1)=x﹣3∴(x﹣3)(x+1)﹣(x﹣3)=0∴(x﹣3)(x+1﹣1)=0∴x1=0,x2=3.故选D.【点评】此题考查了学生的计算能力,注意把x﹣3当作一个整体,直接提公因式较简单,选择简单正确的解题方法可以达到事半功倍的效果.10.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.【点评】本题考查了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.二、填空题13.化简= 0 .【考点】二次根式有意义的条件.【分析】由1﹣x≥0,x﹣1≥0,得出x﹣1=0,从而得出结果.【解答】解:∵1﹣x≥0,x﹣1≥0,∴x﹣1=0,∴=0.【点评】二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.计算的结果是 4 .【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.【解答】解: ==4.故答案为:4.【点评】此题主要考查了算术平方根的定义,本题易错点在于符号的处理.15.计算: += 3.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.【解答】解:原式=2+=3.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值X围是a<1且a≠0 .【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出不等式组,解之得a<1且a≠0.故答案为:a<1且a≠0.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为7 .【考点】根与系数的关系.【分析】根据根与系数的关系,可求出x1+x2以及x1x2的值,然后根据x12+3x1x2+x22=(x1+x2)2+x1x2进一步代值求解.【解答】解:由题意,得:x1+x2=3,x1x2=﹣2;原式=(x1+x2)2+x1x2=9﹣2=7.故答案为:7.【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为 1 .【考点】一元二次方程的解;完全平方公式.【分析】首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=(m+n)2=(﹣1)2=1.故答案为:1.【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.19.请你写出一个有一根为1的一元二次方程:x2=1 .(答案不唯一)【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.【解答】解:根据题意x=1得方程式x2=1.故本题答案不唯一,如x2=1等.【点评】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如(y﹣1)(y+2)=0,后化为一般形式为y2+y﹣2=0.20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是13 .【考点】根与系数的关系;根的判别式.【分析】首先根据根与系数的关系,得出x1+x2和x1x2的值,然后根据x12+x22的值求出m(需注意m 的值应符合此方程的根的判别式);然后再代值求解.【解答】解:由题意,得:x1+x2=m,x1x2=2m﹣1;则:(x1+x2)2=x12+x22+2x1x2,即m2=7+2(2m﹣1),解得m=﹣1,m=5;当m=5时,△=m2﹣4(2m﹣1)=25﹣4×9<0,不合题意;故m=﹣1,x1+x2=﹣1,x1x2=﹣3;∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=1+12=13.【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.本题需注意的是在求出m值后,一定要用根的判别式来判断所求的m是否符合题意,以免造成多解、错解.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k= ﹣3 .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.22.将根号外面的因式移进根号后等于.【考点】二次根式的性质与化简.【专题】计算题.【分析】先根据二次根式定义得到a<0,然后根据二次根式的性质把﹣a转化为,再利用乘法公式运算即可.【解答】解:∵﹣≥0,∴a<0,∴原式=﹣(﹣a)•=﹣=﹣.故答案为﹣.【点评】本题考查了二次根式的性质与化简:(a≥0)为二次根式; =|a|; =•(a≥0,b≥0)等.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为 1 ;点E的坐标为(+,﹣).【考点】反比例函数系数k的几何意义.【分析】(1)根据正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC 的边长为1,得出B点坐标,即可得出反比例函数的解析式;(2)由于D点在反比例函数图象上,用a和正方形OABC的边长表示出来E点坐标,代入y=(x >0)求得a的值,即可得出D点坐标.【解答】解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:( +,﹣).【点评】本题考查了反比例函数与正方形性质结合的综合应用,考查了数形结合的思想,利用xy=k 得出是解题关键.三、解答题24.计算:.【考点】二次根式的混合运算;负整数指数幂.【分析】本题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】原式=3+4﹣2﹣2+=5﹣2+2﹣2=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.25.用配方法解方程:2x2+1=3x.【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】首先把方程的二次项系数变成1,然后等式的两边同时加上一次项系数的一半,则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得,配方,,由此可得,∴x1=1,.【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0(a ≠0)的形式,然后再配方求解.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.【分析】(1)根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.【解答】解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2,∵b+c=2k+1>0即k>﹣.bc=4k﹣3>0即k>,∴k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.【点评】本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明(1),再根据勾股定理和根与系数的关系列出方程组进行解答.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的X围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的X围;(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.【解答】解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.【点评】本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值X围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,可求出m的取值X围;(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值X围,即可求出y的最小值及对应的m值.【解答】解:(1)将原方程整理为x2+2(m﹣1)x+m2=0;∵原方程有两个实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,得m≤;(2)∵x1,x2为一元二次方程x2=2(1﹣m)x﹣m2,即x2+2(m﹣1)x+m2=0的两根,∴y=x1+x2=﹣2m+2,且m≤;因而y随m的增大而减小,故当m=时,取得最小值1.【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答(2)题的关键.。
中考数学试题分类解析汇编:代数式和因式分解
![中考数学试题分类解析汇编:代数式和因式分解](https://img.taocdn.com/s3/m/392e103ab9d528ea80c77921.png)
A.选择题
1.(3分)在下列各组根式中,是同类二次根式的是【】
(A) 和 ;(B) 和 ;
(C) 和 ;(D) 和 .
【答案】B,C。.
【考点】同类二次根式。
【分析】首先把各选项中不是最简二次根式的式子化成最简二次根式,然后根据同类二次根式的定义判断:
A、 和 被开方数不同,不是同类二次根式;
【考点】分式的混合运算。
【分析】首先把分式分子分母能分解因式的先分解因式,进行乘法运算,约分后进行减法运算。
2.(7分)已知 ,将下式先简化,再求值: .
【答案】解:
当 时,原式= 。
【考点】整式的混合运算(化简求值)。
【分析】首先将所求代数式化简,然后将x2-2x的值整体代入,从而求得代数式的值。
(A) ;(B) ;(C) ;(D) .
【答案】B。
【考点】最简二次根式。
【分析】∵ , , ,∴ , , 都不是最简二次根式。故选B。
7.(4分)在下列代数式中,次数为3的单项式是( )
A.xy2B.x3+y3C..x3yD..3xy
【答案】A。
【考点】单项式。
【分析】解:根据单项式的次数定义可知:
13.(4分)计算: ▲.
【答案】 。
【考点】平方差公式。
【分析】根据平方差公式计算即可: 。
14.(4分)分解因式: =▲.
【答案】 。
【考点】提公因式法因式分解。
【分析】直接提取公因式 即可: 。
15.(4分)计算: ▲.
【答案】a5
【考点】同底幂乘法运算法则。
【分析】根据底数不变,指数相加的同底幂乘法运算法则,得 。
A、xy2的次数为3,符合题意;
2019年全国各地中考数学试题分类汇编(第一期) 专题36 规律探索(含解析)
![2019年全国各地中考数学试题分类汇编(第一期) 专题36 规律探索(含解析)](https://img.taocdn.com/s3/m/b8491917640e52ea551810a6f524ccbff121ca42.png)
规律探索一.选择题1. (2019•山东省济宁市 •3分)已知有理数a ≠1,我们把称为a 的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数……依此类推,那么a 1+a 2+…+a 100的值是( ) A .﹣7.5B .7.5C .5.5D .﹣5.5【考点】数字的变化【分析】求出数列的前4个数,从而得出这个数列以﹣2,,依次循环,且﹣2++=﹣,再求出这100个数中有多少个周期,从而得出答案. 【解答】解:∵a 1=﹣2, ∴a 2==,a 3==,a 4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣, ∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(﹣)﹣2=﹣=﹣7.5,故选:A .【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况. 2. (2019•广东深圳•3分)定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅khh k xdx 222,若⎰-=--m522mdx x ,则m =( )A. -2B. 52-C. 2D.52【答案】B 【解析】⎰-=-=-=----m51122511)5(mmm m m dx x ,则m =52-,故选B.3.(2019,山东枣庄,3分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是( )A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:D.【点评】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.4. (2019•湖北十堰•3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=()A.50 B.60 C.62 D.71【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为时n的值,本题得意解决.【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…,∴分母为11开头到分母为1的数有11个,分别为,∴第n个数为,则n=1+2+3+4+…+10+5=60,故选:B.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.5. (2019•湖北武汉•3分)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251.252.…、299.2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2 C.2a2﹣a D.2a2+a【分析】由等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2,得出规律:2+22+23+…+2n=2n+1﹣2,那么250+251+252+…+299+2100=(2+22+23+…+2100)﹣(2+22+23+…+249),将规律代入计算即可.【解答】解:∵2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…∴2+22+23+…+2n=2n+1﹣2,∴250+251+252+…+299+2100=(2+22+23+...+2100)﹣(2+22+23+ (249)=(2101﹣2)﹣(250﹣2)=2101﹣250,∵250=a,∴2101=(250)2•2=2a2,∴原式=2a2﹣a.故选:C.【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n=2n+1﹣2.二.填空题1. (2019•江苏连云港•3分)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1.2.3.4.5.6.7.8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为(2,4,2).【分析】根据点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3)得到经过点的三条直线对应着等边三角形三边上的三个数,依次为左、右,下,即为该点的坐标,于是得到结论.【解答】解:根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2).【点评】本题考查了规律型:点的坐标,等边三角形的性质,找出题中的规律是解题的关键.2.(2019•浙江衢州•4分)如图,由两个长为2,宽为1的长方形组成“7”字图形。
2019年中考数学试题分类汇编之知识点03 实数的运算(含二次根式 三角函数特殊值的运算)
![2019年中考数学试题分类汇编之知识点03 实数的运算(含二次根式 三角函数特殊值的运算)](https://img.taocdn.com/s3/m/a61ee4b08bd63186bdebbc54.png)
知识点03 实数的运算(含二次根式 特殊角的三角函数)一、选择题 1.(2019·温州)计算:(-3)×5的结果是 ( )A .-15B .15C .-2D .25.(2019·嘉兴) 如图是一个2×2的方阵,其中每行、每列的两数和相等,则a 可以是( )A .tan60°B .﹣1C .0D .120191.(2019·杭州)计算下列各式,值最小的是( )A .2×0+1-9B .2+0×1-9C .2+0-1×9D .2+0+1-91.(2019·烟台)8-的立方根是( ).A .2B .2-C .2±D .- 8. (2019·威海)3)0-1-⎛ ⎝⎭的结果是( )A .1+B . 1+ D .1+ 3.(2019·盐城)若有意义,则x 的取值范围是( ) A .x≥2 B.x≥-2 C.x>2 D.x>-2 4.(2019·山西)下列二次根式是最简二次根式的是( )2. (2019·广元)函数y 的自变量x 的取值范围是( )A.x>1B.x<1C.x ≤1D.x ≥14.(2019·德州)下列运算正确的是() A .(-2a )2=-4a 2 B .(a +b )2=a 2+b 2C .(a 5)2=a 7D .(-a +2)(-a -2)=a 2-4 2.(2019·滨州)下列计算正确的是( ) A .x 2+x 3=x 5B .x 2·x 3=x 6C .x 3÷x 2=xD .(2x 2)3=6x 62. (2019·遂宁)下列等式成立的是( )B.23246)a b a b =( C.(2a 2 +a)+a=2a D. 5x 2y-2x 2y=3 3. (2019·广元)下列运算正确的是( ) A.5510a a a +=B.76a aa ?C.326a aa ?D.()236aa -=-8.(2019·常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…根据其中的规律可二、填空题7.(2019·泰州) 计算:(π-1)0=______.13.(2019·绍兴 )我国的《洛书》中记载着世界上最古老的一个幻方:将1~9这九个数字填入3×3的方格内,使三行、三列、两对角线上的三个数之和都相等.如图的幻方中,字母m 所表示的数是 .13.(2019·烟台)16245--⨯︒= .9.(2019·青岛) 计算-︒= . 13.(2019·德州)|x ﹣3|=3﹣x ,则x 的取值范围是 .13.(2019·滨州)计算:(-12)-2-=____________.9.(2019·黄冈)2+1的结果是 . 11.(2019·安徽) 计算18÷2的结果是 .1. (2019·滨州)计算:(-12)-2--2|+=____________.2. (2019·重庆B 卷)计算:()⎪⎭⎫ ⎝⎛-+-211013=3. (2019·重庆A 卷)计算:=+1-0213-)()(π . 三、解答题17.(2019浙江省温州市,17,10分)(本题满分10分)计算:(1)06(1(3)---;(1)计算:12)21()2(60sin 42----+︒-π17.(2019·盐城) 计算:|2|+(sin 360-12)tan 45013.(2019江西省,13,6分) (1)计算:0)22019(|2|)1(-+-+--;16.(2019·山西)(1)计算(2013tan 602π-⎛⎫--+ ⎪⎝⎭16.(2019·遂宁)计算()12-230cos 4-14.32-1-02-2019+︒-++π)()(19.(2019·娄底) 计算:)1112sin 602-⎛⎫-+-︒ ⎪⎝⎭。
2019年全国中考数学真题《二次根式》分类汇编解析
![2019年全国中考数学真题《二次根式》分类汇编解析](https://img.taocdn.com/s3/m/62750247bf1e650e52ea551810a6f524ccbfcb2f.png)
2019 年全国中考数学真题《二次根式》分类汇编分析二次根式考点一、二次根式(初中数学基础,分值很大)1、二次根式式子 a (a 0) 叫做二次根式,二次根式一定知足:含有二次根号“”;被开方数 a 一定是非负数。
2、最简二次根式若二次根式知足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
化二次根式为最简二次根式的方法和步骤:(1)假如被开方数是分数(包含小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,而后利用分母有理化进行化简。
(2)假如被开方数是整数或整式,先将他们分解因数或因式,而后把能开得尽方的因数或因式开出来。
3、同类二次根式几个二次根式化成最简二次根式此后,假如被开方数同样,这几个二次根式叫做同类二次根式。
4、二次根式的性质(1)( a )2a(a 0)a(a 0)(2) a 2aa(a0)(3)ab a ? b (a 0, b0)(4)aa (a 0,b 0)b b5、二次根式混淆运算二次根式的混淆运算与实数中的运算次序同样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
一、选择题1. (2017·福建龙岩·4分)与是同类二次根式的是()A.B.C.D.2. 计算 3﹣2的结果是()A.B.2C.3D.6 3.( 2017 河南 3 分)以下计算正确的选项是()A.﹣=B.(﹣3)2=6C.3a4﹣2a2=a2 D.(﹣a3)2=a54.(2017·重庆市B卷· 4 分)若二次根式存心义,则a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠2 5.(2017·四川内江)在函数y=x 3 中,自变量x的取值范围是( )x 4A.x>3B.x≥3C.x>4D.x≥3且 x≠46.(2017·四川南充)以下计算正确的选项是()A.=2B.=C.=x D.=x7.(2017·黑龙江齐齐哈尔·3分)以下算式①=± 3;②632=9;③2÷2=4;④=2017;⑤a+a=a.运算结果正确的概率是()A.B.C.D.8.( 2017·湖北荆门·3分)要使式子存心义,则x的取值范围是()A.>1B.>﹣ 1C.≥1D.≥﹣x x x x19. (2017·内蒙古包头·3分)以下计算结果正确的选项是()A.2+=2B.=2C.(﹣2a2)3=﹣6a6 D.(a+1)2=a2+110.(2017·山东潍坊·3分)实数a,b在数轴上对应点的地点如下图,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b 11. (2017·四川眉山·3分)以下等式必定建立的是()2510B.3412D.A.a×a =a C.(﹣a)=a二、填空题1.(2017·广西桂林·3分)若式子x 1在实数范围内存心义,则x的取值范围是.2.(2017·贵州安顺·4分)在函数y 1 x中,自变量 x 的取值范围是.x 23.(2017·黑龙江哈尔滨·3分)计算212 -18 的结果是.4.( 2017 广西南宁 3 分)若二次根式存心义,则 x 的取值范围是.5.(2017·吉林·3分)化简:﹣=.6.(2017·内蒙古包头·3分)计算: 6﹣(+1)2=.7.(2017·青海西宁·2分)使式子存心义的 x 取值范围是.8.(2017·山东潍坊·3 分)计算:(+)=.三、解答题1.(2017·四川攀枝花)计算;+20170﹣|﹣2|+1.2.(2017·四川南充)计算:+(π+1)0﹣sin45°+|﹣2| 3.(2017·四川泸州)计算:(﹣1)0﹣× sin60°+(﹣2)2.4.(2017·四川内江) (7 分) 计算: | -3| +3·tan30°-38-( 2017-π) 0+( 12)-1.﹣ 220175. (2017·四 川宜宾)( 1)计算;( ) ﹣( ﹣ 1) ﹣ +( π ﹣6. (2017·广西桂林·8 分)已知随意三角形的三边长,怎样求三角形面积 古希腊的几何学家海伦解决了这个问题,在他的著作《胸怀论》一书中给出了计算公式﹣﹣海伦公式 s p( p a)( p b)( p c) (此中 a ,b ,c 是三角形的三边 长, p 2c ,S 为三角形的面积),并给出了证明 a b比如:在△ ABC 中, a =3,b =4,c =5,那么它的面积能够这样计算:∵a =3,b =4,c =5∴p ==6∴S ===6事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋期间数学家秦九韶提出的秦九韶公式等方法解决.如图,在△ ABC 中, BC =5,AC = 6,AB =9(1)用海伦公式求△ ABC 的面积;(2)求△ ABC 的内切圆半径 r .答案二次根式一、选择题1. (2017·福建龙岩·4分)与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【剖析】依据化成最简二次根式后,被开方数同样的二次根式叫做同类二次根式.【解答】解: A、与﹣的被开方数不一样,故 A 错误;B、与﹣的被开方数不一样,故B 错误;C、与﹣的被开方数同样,故C正确;D、与﹣的被开方数不一样,故D错误;应选: C2. 计算 3﹣2的结果是()A.B.2C.3D.6【考点】二次根式的加减法.【剖析】直接利用二次根式的加减运算法例求出答案.【解答】解:原式=( 3﹣2)=.应选: A.3.( 2017 河南 3 分)以下计算正确的选项是()A.﹣=B.(﹣3)2=6C.3a4﹣2a2=a2 D.(﹣a3)2=a5【考点】二次根式的加减法;有理数的乘方;归并同类项;幂的乘方与积的乘方.【剖析】分别利用有理数的乘方运算法例以及积的乘方运算法例、二次根式的加减运算法例化简求出答案.【解答】解: A、﹣=2﹣=,故此选项正确;B、(﹣3)2=9,故此选项错误;C、3a4﹣2a2,没法计算,故此选项错误;D、(﹣ a3)2=a6,故此选项错误;应选: A.【评论】本题主要考察了有理数的乘方运算以及积的乘方运算、二次根式的加减运算等知识,正确化简各式是解题重点.4.(2017·重庆市B卷· 4 分)若二次根式存心义,则a的取值范围是()A.a≥2B.a≤2C.a>2D.a≠2【考点】二次根式存心义的条件.【专题】计算题;实数.【剖析】依据负数没有平方根列出对于 a 的不等式,求出不等式的解集确立出 a 的范围即可.【解答】解:∵二次根式存心义,∴a﹣2≥0,即 a≥2,则 a 的范围是 a≥2,应选 A【评论】本题考察了二次根式存心义的条件,二次根式性质为:二次根式中的被开方数一定是非负数,不然二次根式无心义.5.(2017·四川内江)在函数y=x 3 中,自变量x的取值范围是( )x 4A.x>3B.x≥3C.x>4D.x≥3且 x≠4[答案]D[ 考点 ] 二次根式与分式的意义。
中考数学专题03二次根式-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)
![中考数学专题03二次根式-三年(2019-2021)中考真题数学分项汇编(全国通用)(解析版)](https://img.taocdn.com/s3/m/a0abcc4f9a6648d7c1c708a1284ac850ad0204f7.png)
专题03.二次根式一、单选题1.(2021·取1.442 )A .-100B .-144.2C .144.2D .-0.01442【答案】B【分析】类比二次根式的计算,提取公因数,代入求值即可.【详解】33 1.442= 33333(13-=--=-144.2=- 故选B .【点睛】本题考查了根式的加减运算,类比二次根式的计算,提取系数,正确的计算是解题的关键.2.(2021· ).A .321-+B .321+-C .321++D .321--【答案】A【分析】根据有理数运算和二次根式的性质计算,即可得到答案.2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0故选:A .【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.3.(2021·湖北恩施土家族苗族自治州·,,这三个实数中任选两数相乘,所有积中小于2的有( )个.A .0B .1C .2D .3 【答案】C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解.【详解】解:由题意得:(2,==-=∴所有积中小于2的有2-两个;故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.4.(2021·湖南常德市·中考真题)计算:11122⎛⎫+-⋅= ⎪⎝⎭( )A .0B .1C .2D 【答案】B 【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:11122⎛⎫-⋅ ⎪ ⎪⎝⎭=1122⋅=415-=1.故选:B . 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则以及乘法公式是解答此题的关键. 5.(2021·湖南衡阳市·中考真题)下列计算正确的是( )A 4=±B .()021-=C =D 3=【答案】B【分析】利用算术平方根,零指数幂,同类二次根式,立方根逐项判断即可选择.4=,故A 选项错误,不符合题意;0(2)1-=,故B 选项正确,符合题意;C 选项错误,不符合题意;D 选项错误,不符合题意;故选B .【点睛】本题考查算术平方根,零指数幂,同类二次根式,立方根.掌握各知识点和运算法则是解答本题的关键.6.(2021·浙江杭州市·中考真题)下列计算正确的是( )A 2=B 2=-C 2=±D 2=± 【答案】A 【分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2,故B 、D 错误;故选:A . 【点睛】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.7.(2021·上海中考真题)下列实数中,有理数是( )A B C D 【答案】C【分析】先化简二次根式,再根据有理数的定义选择即可【详解】A 2;B 3C 12为有理数;D 故选:C 【点睛】本题考查二次根式的化简、无理数的定义、有理数的定义、熟练掌握有理数的定义是关键8.(2021·江苏苏州市·中考真题)计算2的结果是( )A B .3 C .D .9【答案】B【分析】直接根据二次根式的性质求解即可.【详解】解:2=3,故选B .【点睛】此题主要考查了二次根式的性质,熟练掌握2(0)a a =≥是解答此题的关键.9.(2021·甘肃武威市·中考真题)下列运算正确的是( )A 3=B .4=C =D 4=【答案】C【分析】直接根据二次根式的运算法则计算即可得到答案.=A 错;=B 错;=C 2=,故D 错.故选:C .【点睛】此题考查的是二次根式的运算和化简,掌握其运算法则是解决此题关键.10.(2021· )A.7 B .C .D .【答案】B【分析】根据二次根式的运算法则,先算乘法再算减法即可得到答案;===B .【点睛】本题主要考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.11.(2021·浙江嘉兴市·中考真题)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是()A .1x =B .1x =C .x =D .x =【答案】C【分析】根据反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【详解】解:A 、)221=3x =-B 、)221x =C 、(22=18x =,是有理数,符合题意;D 、22=5x =-,是无理数,不符合题意;故选:C .【点睛】本题考查了无理数的概念以及二次根式的运算,熟练掌握运算法则和定义是解题的关键. 12.(2021·重庆中考真题)下列计算中,正确的是( )A .21=B .2=C =D 3=【答案】C【分析】根据二次根式运算法则逐项进行计算即可.【详解】解:A. =,原选项错误,不符合题意;B. 2不是同类二次根式,不能合并,原选项错误,不符合题意;C. =D. =C .【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则,进行准确计算.13.(2020·是同类二次根式的是( )AB C D 【答案】C【分析】先把每个二次根式进行化简,化成最简二次根式,后比较被开方数即可.【详解】的被开方数不相同,故不是同类二次根式;3==被开方数相同,故是同类二次根式;=被开方数不同,故不是同类二次根式.故选:C .【点睛】本题考查了二次根式的化简,同类二次根式,熟练掌握根式化简的基本方法,灵活运用同类二次根式的定义判断解题是求解的关键.14.(2020·内蒙古赤峰市·中考真题)估计( ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 【答案】A 【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】(,∵4<6<9,∵<3,∴<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.15.(2020·辽宁朝阳市· )A .0B C .D .12【答案】B 【分析】根据二次根式的性质化简第一项,根据二次根式的乘法化简第二项,然后合并即可.【详解】解:原式= =B . 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.16.(2020·辽宁丹东市·中考真题)在函数y =x 的取值范围是( ) A .3x ≤B .3x <C .3x ≥D .3x > 【答案】A【分析】根据二次根式有意义,列不等式9-3x≥0,求出x 的取值范围即可.【详解】解:根据二次根式有意义,所以,9-3x≥0,解得,x≤3.故选:A .【点睛】本题主要考查函数自变量的取值范围的知识点,二次根式中的被开方数必须是非负数,否则二次根式无意义.17.(2020·湖北宜昌市·其运算结果能成为有理数的是( ).A .BC .3D .0【答案】D 【分析】分别计算出各选项的结果再进行判断即可.【详解】A .B =C .3D .00=,是有理数,正确.故选:D .【点睛】此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.18.(2020·山东菏泽市·中考真题)函数5y x =-的自变量x 的取值范围是( ) A .5x ≠B .2x >且5x ≠C .2x ≥D .2x ≥且5x ≠【答案】D【分析】由分式与二次根式有意义的条件得函数自变量的取值范围. 【详解】解:由题意得:20,50x x -≥⎧⎨-≠⎩解得:2x ≥且 5.x ≠ 故选D . 【点睛】本题考查的是函数自变量的取值范围,掌握分式与二次根式有意义的条件是解题的关键. 19.(2020·黑龙江绥化市·中考真题)下列等式成立的是( )A 4=±B 2=C .-=D .8=- 【答案】D【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断.【详解】解:A. 4=,本选项不成立;B. 2=-,本选项不成立;C. a a a-=-= D. 8=-,本选项成立.故选:D. 【点睛】本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.20.(2020·山东济宁市·中考真题)下列各式是最简二次根式的是( )A B C D 【答案】A 【分析】根据最简二次根式的定义即可求出答案.【详解】解:A B =C a =,不是最简二次根式,故选项错误;D = A. 【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型. 21.(2020·江苏泰州市·中考真题)下列等式成立的是( )A .3+=B =C= D 3= 【答案】D【分析】根据二次根式的运算法则即可逐一判断.【详解】解:A 、3和不能合并,故A 错误;B =B 错误;C===,故C 错误;D 3=,正确;故选:D . 【点睛】本题考查了二次根式的运算,解题的关键是掌握基本的运算法则.22.(2019·湖北恩施土家族苗族自治州·中考真题)函数11=-+y x 中,自变量x 的取值范围是( ) A .23x ≤ B .23x ≥ C .23x <且1x ≠- D .23x ≤且1x ≠- 【答案】D【分析】根据分式及二次根式有意义的条件解答即可.【详解】∵11=+y x x+1≠0,2-3x≥0,解得:23x ≤且1x ≠-,故选D. 【点睛】本题考查分式及二次根式有意义的条件,要使分式有意义,分母不为0;要使二次根式有意义,被开方数大于等于0.23.(2019·湖北宜昌市·中考真题)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b c p ++=,那么三角形的面积为S =ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .B .C .18D .192【答案】A 【分析】利用阅读材料,先计算出p 的值,然后根据海伦公式计算ABC ∆的面积;【详解】7a =,5b =,6c =.∴56792p ++==,∴ABC ∆的面积S ==A .【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.24.(2019·湖北中考真题)“分母有理化”是我们常用的一种化简的方法,如:7==+除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:设x =,>,故0x >,由22332x ==+=,解得x =,即=)A .5+B .5C .5D .5-【答案】D进行化简,然后再进行合并即可.【详解】设x =<0x <,∴266x =-+,∴212236x =-⨯=,∴x =5=-,∴原式5=--5=-D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.25.(2019·山东聊城市·中考真题)下列各式不成立的是( )A= B =C 5== D = 【答案】C【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.33-==,A 选项成立,不符合题意;==B 选项成立,不符合题意;==,C 选项不成立,符合题意;==D 选项成立,不符合题意; 故选C . 【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.26.(2019·江苏常州市·中考真题)下列各数中与2+ )A .2+B .2CD .2 【答案】D【分析】利用平方差公式可知与2+2;【详解】(22431=-=;故选D .【点睛】本题考查分母有理化;熟练掌握利用平方差公式求无理数的无理化因子是解题的关键.27.(2021· )A .4B .4±C .D .±【答案】C()0,0,a b a b=≥≥直接化简即可得到答案.==故选:.C【点睛】本题考查的是二次根式的化简,掌握积的算术平方根的含义是解题的关键.28.(2020·重庆中考真题)下列计算中,正确的是()A=B.2+=C=D.2【答案】C【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:AB.2C==D.2不是同类二次根式,不能合并,此选项错误;故选:C.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.29.(2020·山东聊城市·).A.1B.53C.5D.9【答案】A【分析】利用二次根式的乘除法则计算即可得到结果.=÷=1=,故选:A.【点睛】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键.30.(2020·内蒙古鄂尔多斯市·中考真题)中,x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围. 【详解】解:根据题意得3+x ≥0,解得:x ≥﹣3, 故x 的取值范围在数轴上表示正确的是.故选D .【点睛】本题考查了二次根式的性质,二次根式中的被开方数必须是非负数,否则二次根式无意义. 二、填空题目31.(2021·天津中考真题)计算1)的结果等于_____. 【答案】9【分析】根据二次根式的混合运算法则结合平方差公式计算即可.【详解】21)19=-=.故答案为9.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解答本题你的关键.32.(2021·湖北武汉市·_______________________.【答案】5【分析】根据二次根式的性质进行求解即可.5=5,故答案为5.【点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.33.(2021·浙江丽水市·有意义,则x 可取的一个数是__________. 【答案】如4等(答案不唯一,3x ≥)【分析】根据二次根式的开方数是非负数求解即可.有意义,∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.34.(2021·四川广安市·中考真题)在函数y =x 的取值范围是___.【答案】1x 2≥【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负12x 10x 2-≥⇒≥.35.(2021·湖北黄冈市·这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =12b +=,则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b=+++.则1210S S S +++=____.【答案】10【分析】先根据1ab =求出1111n n nS a b=+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得.【详解】解:1ab =,111111()1nn n n n n n a S a b a a b ∴=+=+++++(n 为正整数), 11()n n n n a a a ab =+++,111nnna a a =+++,1=, 12101S S S ===∴=,则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键.36.(2021·湖南岳阳市·中考真题)已知1x x +=,则代数式1x x+=______. 【答案】0【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值.【详解】10x x+==故答案为:0. 【点睛】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.37.(2021·四川眉山市·中考真题)观察下列等式:1311212x ===+⨯;2711623x ===+⨯;313111234x ===+⨯;…… 根据以上规律,计算12320202021x x x x ++++-=______.【答案】12021-【解答】解:13111212x =+==+⨯;2711623x ==+⨯;313111234x ===+⨯; ⋯12320201111111111112021111120212020120211223342020202122334202020212021x x x x ∴+++⋯+-=++++++⋯++-=+-+-+-+⋯+--=-⨯⨯⨯⨯, 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.38.(2021·x 的取值范围是________. 【答案】0x >【分析】根据分式及二次根式有意义的条件可直接进行求解. 【详解】解:由题意得:0x ≠且20x≥,∴0x >;故答案为0x >. 【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.39.(2020·山东青岛市·中考真题)计算:-⨯=______. 【答案】4【分析】根据二次根式的混合法则运算计算即可.【详解】解:原式3⎫⎛=⎪ ⎪⎝⎭3=⨯4=,故答案为:4. 【点睛】本题考查二次根式的混合运算,熟练掌握运算顺序和运算法则是解题关键.40.(2020·山西中考真题)计算:2-=_____________.【答案】5【分析】先利用完全平方公式、二次根式的性质进行化简,然后合并同类项,即可得到答案.【详解】解:223=+-5=;故答案为:5.【点睛】本题考查了二次根式的性质,完全平方公式,解题的关键是熟练掌握运算法则进行化简.41.(2020·江苏南通市·中考真题)若m <<m +1,且m 为整数,则m =_____. 【答案】5【分析】利用二次根式的估值方法进行计算即可.【详解】解:=<<5<6,又∵m <m +1,∴m =5,故答案为:5.【点睛】本题考查了二次根式的估值求参数值的问题,熟练掌握二次根式的估值计算是解题的关键.42.(2020·湖南益阳市·中考真题)m 的结果为正整数,则无理数m 的值可以是__________.(写出一个符合条件的即可)【分析】根据2为12,即可得到一个无理数m 的值.【详解】解:∵212=,∴12m 时m (答案不唯一).【点睛】本题考查了二次根式,注意2a =是解题的关键.43.(2020·内蒙古中考真题)计算:2+=______.【分析】先将乘方展开,然后用平方差公式计算即可.【详解】解:2-==22⎡⎤-⎢⎥⎣⎦-.【点睛】本题考查了二次根式的混合运算以及平方差公式的应用,掌握二次根式混合运算的运算法则和平方差公式是解答本题的关键.44.(2020·湖南邵阳市·中考真题)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为________.【答案】【分析】先将表格中最上一行的3个数相乘得到,然后中间一行的三个数相乘以及最后一行的三个数相等都是【详解】解:由题意可知,第一行三个数的乘积为:2=设第二行中间数为x ,则16⨯⨯=x x =设第三行第一个数为y ,则3⨯=y y =∴2个空格的实数之积为xy ==.【点睛】本题考查了二次根数的乘法运算法则,熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.45.(2020·==,则ab =_________. 【答案】6【分析】根据二次根式的运算法则即可求解.【详解】∵-==∴a=3,b=2∴ab =6故答案为:6.【点睛】此题主要考查二次根式的运算,解题的关键是熟知其运算法则.46.(2020·甘肃金昌市·中考真题)已知5y x =+,当分别取1,2,3,……,2020时,所对应y 值的总和是__________.【答案】2032【分析】先化简二次根式求出y 的表达式,再将x 的取值依次代入,然后求和即可得.【详解】545y x x x =+=--+当4x <时,4592y x x x =--+=- 当4x ≥时,451y x x =--+= 则所求的总和为(921)(922)(923)111-⨯+-⨯+-⨯++++75312017=+++⨯2032=故答案为:2032.【点睛】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.47.(2020·江苏南京市·的结果是__________.【答案】1 3【分析】先化成最简二次根式,再根据二次根式的加减法法则计算出分母,最后约分即可.==13=,故答案为:13.【点睛】本题考查了二次根式的混合运算,掌握二次根式的加减法法则是解题的关键.48.(2020·黑龙江绥化市·中考真题)在函数15yx=+-中,自变量x的取值范围是_________.【答案】3x≥且5x≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【详解】根据题意得:301050xxx-≥⎧⎪+>⎨⎪-≠⎩,解得:3x≥且5x≠.故答案为:3x≥且5x≠.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.49.(2020·青海中考真题)对于任意不相等的两个实数a,b(a > b )定义一种新运算a※,如3※,那么12※4=______【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可.【详解】解:12※4==【点睛】此题考查二次根式的化简求值,理解规定的运算顺序与计算方法是解决问题的关键.50.(2019·四川绵阳市·中考真题)单项式1ax y--与2是同类项,则b a=______.【答案】1【分析】先根据同类项的定义列出方程,再结合二次根式的性质求出a ,b 的值,然后代入代数式计算即可.【详解】解:由题意知1a --=,即1a -, ∴10,10a b ,1a =,1b =,则()111b a ==,故答案为1.【点睛】此题考查了同类项的定义和二次根式的性质,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.51.(2019·辽宁营口市·中考真题)和则这个长方形的面积为________.【答案】【分析】长方形的面积计算公式为长乘以宽,和按照二次根式乘法的运算法则计算,并化简成最简单二次根式即可.和==【点睛】本题考查了二次根式在长方形面积计算中的应用,明确二次根式乘法运算法则及如何化为最简二次根式是解题的关键.52.(2019·四川内江市·中考真题)若1001a a -=,则21001a -=_____. 【答案】1002.【分析】根据绝对值的性质和二次根式的性质,即可解答【详解】∵10020a -≥,∴1002a ≥.由1001a a -=,得1001a a -++=,1001=,∴210021001a -=.∴210011002a -=.故答案是:1002. 【点睛】此题考查绝对值的非负性,二次根式的性质,解题关键在于掌握运算法则 53.(2019·山东枣庄市·中考真题)观察下列各式:11111122⎛⎫=+=+- ⎪⨯⎝⎭,111112323⎛⎫=+=+- ⎪⨯⎝⎭,111113434⎛⎫=+=+- ⎪⨯⎝⎭,请利用你发现的规律,计算:____. 【答案】201820182019. 【分析】根据题意找出规律,根据二次根式的性质计算即可.12018++11111111122320182019⎛⎫⎛⎫⎛⎫=+-++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111201812233420182019=+-+-+-++-201820182019=,故答案为201820182019. 【点睛】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题 的关键.54.(2019·山东菏泽市·中考真题)已知x =,那么2x -的值是_____.【答案】4【分析】将所给等式变形为x -=【详解】∵x =,∴x =(22x =,∴226x -+=,∴24x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.55.(2019·湖南益阳市·中考真题)观察下列等式:①3﹣=﹣1)2,②5﹣=)2,③7﹣=﹣2,…请你根据以上规律,写出第6个等式____________.【答案】213-=【分析】第n 个等式左边的第1个数为2n+1,根号下的数为n(n+1),利用完全平方公式得到第n 个等式右边的式子为)2(n≥1的整数).【详解】∵①3﹣﹣1)2,②5﹣=)2,③7﹣=2,…,∴第n 个等式为:(2n+1)-)2,∴第6个等式为:213-=,故答案为213-=.【点睛】本题考查了规律题,涉及了二次根式的混合运算,通过所给等式发现等式左边与右边的变化规律是解题的关键.56.(2019·山东滨州市·中考真题)计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.【答案】2+【分析】根据根式的计算法则计算即可.【详解】解:原式422=-=+2+.【点睛】本题主要考查根式的计算,注意绝对值的计算,这是同学们往往容易计算错误的,应当引起重视.57.(2019·山东青岛市·0-=___________.【答案】1【分析】根据二次根式混合运算的法则计算即可.0211=-=.故答案为. 【点睛】本题考查了二次根式的混合运算,熟记法则是解题的关键.58.(2020·辽宁营口市·中考真题)()()=_____. 【答案】12【分析】直接利用平方差公式计算得出答案.【详解】解:原式=()2)2=18﹣6=12.故答案为:12. 【点睛】本题考查了二次根式的混合运算,正确运用乘法公式是解题关键. 三、解答题59.(2021·湖南长沙市·中考真题)计算:(02sin 451-++°【答案】5.【分析】先化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法,再计算实数的混合运算即可得.【详解】解:原式212=⨯+14=+5=. 【点睛】本题考查了化简绝对值、特殊角的正弦值、零指数幂、二次根式的乘法等知识点,熟练掌握各运算法则是解题关键.60.(2021·山东临沂市·中考真题)计算221122⎫⎫+-⎪⎪⎭⎭.【答案】【分析】化简绝对值,同时利用平方差公式计算,最后合并.【详解】解:221122⎫⎫+-⎪⎪⎭⎭11112222⎡⎤⎡⎤⎫⎫⎫⎫+-⎪⎪⎪⎪⎢⎥⎢⎥⎭⎭⎭⎭⎣⎦⎣⎦【点睛】本题考查了二次根式的混合运算,解题的关键是合理运用平方差公式进行计算.61.(2021·四川遂宁市·中考真题)计算:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可.【详解】解:()101tan 60232-⎛⎫-+︒-+- ⎪⎝⎭π(=2-=221--=3-【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.62.(2020·广西玉林市·()23.141π--+【答案】10.【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】原式211)3=-+19=++10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.63.(2020·上海中考真题)计算:1327(12)﹣2+|3. 【答案】0.【分析】利用分数的指数幂的意义,分母有理化,负指数幂的意义,绝对值的性质计算后合并即可.【详解】原式=133(3)+ 2﹣4+32﹣4+3.【点睛】本题考查了分数指数幂的运算,负指数幂的运算,绝对值的意义以及分母有理化运算,熟练掌握实数的运算法则是解题的关键.64.(2019·2318- 【答案】-3.【分析】首先进行二次根式的化简、去绝对值符号以及二次根式的乘法,然后再合并同类二次根式即可.2318-124-+=-3. 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.65.(2019·辽宁大连市·中考真题)计算:22)+【答案】7【分析】直接利用完全平方公式以及结合二次根式的性质化简进而得出答案.【详解】解:原式346=+-34=+-7=. 【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.祝你考试成功!祝你考试成功!。
山东各2019年中考数学分类解析-专项8:平面几何基础
![山东各2019年中考数学分类解析-专项8:平面几何基础](https://img.taocdn.com/s3/m/33c5f79358f5f61fb7366686.png)
山东各2019年中考数学分类解析-专项8:平面几何基础专题8:平面几何基础一、选择题1. 〔2018山东滨州3分〕借助一副三角尺,你能画出下面哪个度数的角【】A、65°B、75°C、85°D、95°【答案】B。
【考点】角的计算。
【分析】利用一副三角板可以画出75°角,用45°和30°的组合即可。
应选B。
2. 〔2018山东滨州3分〕一个三角形三个内角的度数之比为2:3:7,这个三角形一定是【】A、等腰三角形B、直角三角形C、锐角三角形D、钝角三角形【答案】D。
【考点】三角形内角和定理,比例的计算。
【分析】按比例计算出各角的度数即可作出判断:三角形的三个角依次为180°×22+3+7=30°,180°×32+3+7=45°,180°×72+3+7=105°,所以这个三角形是钝角三角形。
应选D。
3. 〔2018山东德州3分〕不一定在三角形内部的线段是【】A、三角形的角平分线B、三角形的中线C、三角形的高D、三角形的中位线【答案】C。
【考点】三角形的角平分线、中线、高和中位线。
【分析】因为在三角形中,它的中线、角平分线和中位线一定在三角形的内部,而钝角三角形的高在三角形的外部。
应选C。
4. 〔2018山东东营3分〕以下图形中,是中心对称图形的是【】A、 B、 C、 D、【答案】B。
【考点】中心称对形。
【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕圆心旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形。
2019年全国中考数学真题180套分类汇编:二次根式【含解析】
![2019年全国中考数学真题180套分类汇编:二次根式【含解析】](https://img.taocdn.com/s3/m/e8a6cf851a37f111f0855b02.png)
。
【考点】二次根式中被开方数的非负性,一元一次不等式的解法
.
【解析】根据被开方数非负,得到关于
x 的不等式, x-2 ≥ 0 求解即可 .
【答案】 x≥2
【点评】本题主要考查二次根式中被开方数的取值范围,根据被开方数具有非负性解答本题
.
5、( 2018 衡阳,第 14 题 3 分)化简: 2 8 2
C. 的化简结果是
D. a, b, c 均为实数,若 a> b, b> c,则 a> c
考点: 二次根式有意义的条件;实数大小比较;分母有理化;解一元二次方程
- 因式分解法.
分析: 根据二次根式有意义,被开方数大于等于
0,因式分解法解一元二次方程,分母有理化以及实数的大小
比较对各选项分析判断利用排除法求解.
是基础题,熟记各概念以及解法是解题的关键.
5. (2019 年广西南宁,第 4 题 3 分)要使二次根式
在实数范围内有意义,则实数 x 的取值范围是(
)
A. x> 2
B. x≥2
C. x>﹣ 2
D. x≥﹣ 2
考点: 二次根式有意义的条件. .
分析: 直接利用二次根式的概念.形如
(a≥0)的式子叫做二次根式,进而得出答案.
解答: 解: A、 x< 1,则 x﹣1< 0,
无意义,故本选项错误;
2
B、方程 x +x﹣ 2=0 的根是 x 1=1, x 2=﹣ 2,故本选项错误;
C、 的化简结果是 ,故本选项错误;
D、 a,b, c 均为实数,若 a> b,b> c,则 a> c 正确,故本选项正确.
故选 D.
点评: 本题考查了二次根式有意义的条件,实数的大小比较,分母有理化,以及因式分解法解一元二次方程,
2019年各地中考解析版数学试卷精选汇编:二次根式
![2019年各地中考解析版数学试卷精选汇编:二次根式](https://img.taocdn.com/s3/m/ba3b8dd26c85ec3a87c2c5ef.png)
二次根式一•选择题1. (2019?山东省济宁市?3分)下列计算正确的是()A. —3B.C.哎?3= ± 6D.—丨;.:『=—0.6【考点】二次根式的性质【分析】直接利用二次根式的性质以及立方根的性质分析得出答案.【解答】解:A. = 3,故此选项错误;B. —=- ,故此选项错误;C. = 6,故此选项错误;D. -.:(.鳥=-0.6,正确.故选:D.【点评】此题主要考查了二次根式的性质以及立方根的性质,正确掌握相关性质是解题关键.2 (2019?广东?3分)化简、42的结果是A. - 4B. 4C. ± 4D. 2【答案】B【解析】公式、;a2= a .【考点】二次根式3 (2019?甘肃?3分)使得式子一有意义的x的取值范围是()A. x> 4B. x>4C. x W4D. x v 4【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:使得式子"有意义,则:4 - x>0,V 4-z解得:x v 4,即x的取值范围是:x v4.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.(2019,山西,3分)下列二次根式是最简二次根式的是(C.【解析】A.J22,本选项不合题意;21 2 21B. ,. 7二—7 —,本选项不合题意;C.8 = 2 2不合题意;D. . 3是最简二次根式,符合题意,故选D5. ( 2019甘肃省兰州市)(4分)计算:12 —、3 = ()A. 3 .B. 2 3.C. 3 .D. 4 . 3 【答案】A.【考点】平方根的运算•【考察能力】运算求解能力【难度】简单【解析「12 - 3 = < 3 - 3 =6 (2019?山东省聊城市?3分)下列各式不成立的是()A.八::B. 二2 ?C. ■+ ■-5D. 1二匚2【考点】二次根式的运算【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.= W =二,C选项不成立,符合题意;2 2 2一-——= ------------- 二^ ------------ =「- _, D选项成立,不符合题意;V3+V2 (V3+V2)(V3W2)故选:c.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.7.下列整数中,与10-寸心最接近的是()A. 4B. 5C. 6D. 7【分析】由于9v 13v 16,可判断迢与4最接近,从而可判断与10-寸心最接近的整数为6.【解答】解:I 9v 13v 16,••• 3 “lx 4,二与心.i.二最接近的是4,•••与10 - pim最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.8 (2019?湖南株洲?3 分)堺j=()A. 4B. 4 C D. 2 ■:【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:| ,i= 4.故选:B.【点评】此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.9. (2019?江苏连云港?3分)要使有意义,则实数x的取值范围是()A. x> 1B. x> 0C. x>- 1D. x w 0【分析】根据二次根式的性质可以得到x- 1是非负数,由此即可求解.【解答】解:依题意得X- 1 > 0,• x> 1 .故选:A.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.10. (2019?湖北武汉?3分)式子在实数范围内有意义,则x的取值范围是()A. x>0B. x>- 1C. x> 1D. x w 1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x- 1 > 0,解得x> 1,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式组是解题关键.11. (2019?湖北孝感?3分)下列计算正确的是()A7.52 r / 2、2 4A. x F x = xB. (xy )= xyC. x2?x5= x10D. ( i+ )( 1 -^ I-J)= b -a【分析】根据同底数幕的除法法则判断A;根据积的乘方法则判断B;根据同底数幕的乘法法则判断C;根据平方差公式以及二次根式的性质判断 D.【解答】解:A.x7* x5= x2,故本选项正确;B. (xy2)2= x2y4,故本选项错误;C. ?x5= x7,故本选项错误;D. (寸人+寸k)(- ) = a - b,故本选项错误;故选:A.【点评】本题考查了二次根式的运算,整式的运算,掌握同底数幕的乘除法法则、积的乘方法则、平方差公式以及二次根式的性质是解题的关键.12. (2019?湖南湘西州?4分)下列运算中,正确的是()6 3 2A. 2a+3a= 5aB. a * a = aC. (a - b)2= a2- b2D. + =【分析】直接利用合并同类项法则以及完全平方公式、同底数幕的乘除运算法则分别化简得出答案.【解答】解:A.2a+3a = 5a,故此选项正确;B. a6* a3= a3,故此选项错误;C. (a - b)2= a2- 2ab+b2,故此选项错误;D. +浓二不等于故此选项错误.故选:A.【点评】此题主要考查了合并同类项以及完全平方公式、同底数幕的乘除运算,正确掌握相关运算法则是解题关键.13. (2019?广西河池?3分)下列式子中,为最简二次根式的是()A. B. C. D.【分析】利用最简二次根式定义判断即可.【解答】解:A•原式=丄,不符合题意;2B•是最简二次根式,符合题意;C原式=2,不符合题意;D. 原式=2 ,不符合题意;故选:B.【点评】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.14. (2019?湖北黄石?3分)若式子丄弓-在实数范围内有意义,则x的取值范围是()A. x> 1 且X M 2B. x w 1C. x> 1 且X M 2D. x v 1【分析】分式有意义,分母不等于零;二次根式的被开方数是非负数.【解答】解:依题意,得X- 1 >0 且X-200,解得X> 1且X M2.故选:A.【点评】本题考查了二次根式有意义的条件,分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1 )当函数表达式是整式时,自变量可取全体实数;(2 )当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.故从第②步开始出现错误. 故选:B .【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键. 二.填空题1. (2019?山东省滨州市 ?5分)计算:(- J -2- 1少一宁—=土匚_【考点】二次根式混合计算15. ( 2019甘肃省兰州市) (4分)化简:a 2 1 2 a 1 a 1A. a — 1 . C.B. a+1 .1 D.a 1【答案】A. 【考点】分式计算【考察能力】运算求解能力 【难度】简单【解析】a 2 12a 1 a 1a 2 1 -2 a 1(a+1)(a-1) = a _ 1故选A.16. (2019甘肃省陇南市x y x(x+y)X-y x+y _ (x-y)(x+y) | (3分)下面的计算过程中,从哪一步开始出现错误( 貞x —y]_ axy-xy-y : _ x :_ (x-y)(x+y) ~ (x-y :«(x-ny) ~ (x-y)(x+y)A .①B .② C.③ D .④【分析】 直接利用分式的加减运算法则计算得出答案. 【解答】 解:亠— ——x-y x+y(x+y)_ y(x-y) G-y) (x+y) (x-y) (x+y)2 2 Cx-y) (x+y)【分析】根据二次根式的混合计算解答即可.【解答】解:原式=八- —.-丨■:,故答案为:2+4二.【点评】此题考查二次根式的混合计算,关键是根据二次根式的混合计算解答.2. (2019?湖北武汉?3分)计算的结果是4 .【分析】根据二次根式的性质求出即可.【解答】解: =4,故答案为:4.【点评】本题考查了二次根式的性质和化简,能熟练地运用二次根式的性质进行化简是解此题的关键.3 (2019?湖南湘西州?4分)要使二次根式4 £有意义,则x的取值范围为X》8 .【分析】直接利用二次根式的定义得出答案.【解答】解:要使二次根式「1有意义,贝U x - 8> 0,解得:x> &故答案为:x> &【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.5 (2019?南京?2分)计算二- 的结果是0 .v7【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=2打-2打=0.故答案为0.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可. 在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6 (2019?江苏苏州?3分)若J x-6在实数范围内有意义,则x的取值范围为【解答】x _6 7(2019?湖南湘西州?4分)下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为•(用科学计算器计算或笔算)【分析】当输入x的值为16时,=4, 4-2= 2, 2+1 = 3.【解答】解:解:由题图可得代数式为~ :::: i当x = 16 时,原式= -2+1 = 4- 2+1 = 2+1 = 3.故答案为:3【点评】此题考查了代数式求值,此类题要能正确表示出代数式,然后代值计算,解答本题的关键就是弄清楚题目给出的计算程序.8. (2019?湖南衡阳?3分) - =__品【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=3頁-血=2屈.故答案为:2 .【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.9 (2019安徽)(5分)计算十的结果是3 .【分析】根据二次根式的性质把-JTT:化简,再根据二次根式的性质计算即可.【解答】解:二:二二:二;故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.三解答题1. (2019?湖北天门?12 分)(1)计算:(-2)2- | - 3|+ X + (-6)第9页(共9页)(2)解分式方程: -= :—x-1 X 2-1【分析】(1)先计算乘方、取绝对值符号、计算二次根式的乘法及零指数幕,再计算加 减可得;(2 )去分母化分式方程为整式方程,解之求得x 的值,再检验即可得.【解答】 解:(1)原式=4 - 3+4+1 = 6; (2)两边都乘以(x+1) (x - 1),得:2 (x+1 )= 5,解得:x =, 2检验:当 x ^—时,(x+1) ( x - 1)=—丰 0,2 4 原分式方程的解为 x^ — 2【点评】本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次 根式的乘法法则及解分式方程的步骤.【答案】 解:原式=A1^x -2 x - 4x -1、/ x 2 x-2x -2 x x -1【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算2. (2019?广东?6分)先化简,再求值:x 1 x 2-x x-2 x-2 x 2-4当x — 2原式= 2 2 2 2 2 、2 = 2 =1+ 2。
2019年全国各地中考数学试题分类汇编(第一期) 专题5 二元一次方程(组)及其应用(含解析)
![2019年全国各地中考数学试题分类汇编(第一期) 专题5 二元一次方程(组)及其应用(含解析)](https://img.taocdn.com/s3/m/1ca04302376baf1ffc4fada2.png)
二元一次方程(组)及其应用一.选择题1. (2019•山东省德州市•4分)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为( )A.B.C.D.【考点】二元一次方程组【分析】本题的等量关系是:绳长①木长=4.5;木长①绳长=1,据此可列方程组求解.【解答】解:设绳长x尺,长木为y尺,依题意得,故选:B.【点评】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.2(2019•湖南长沙•3分)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.B.C.D.【分析】根据题意可以列出相应的方程组,本题得以解决.【解答】解:由题意可得,,故选:A .【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.3.(2019•浙江嘉兴•3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( ) A . B . C .D .【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为:.故选:D .【点评】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.4. ( 2019甘肃省兰州市) (4分)≪九章算术≫是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤;雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x 斤,一只燕的重量为y 斤,则可列方程为 ( ) A. B.⎩⎨⎧-=-=+x y y x y x 65165⎩⎨⎧+=+=+x y y x y x 65156 C.D.⎩⎨⎧+=+=+x y y x y x 54165⎩⎨⎧-=-=+x y y x y x 54156【答案】C .【考点】利用方程求解实际问题. 【考察能力】抽象概括能力. 【难度】中等【解析】根据题目条件找出等量关系并列出方程:(1)五只雀和六只燕共重一斤,列出方程:5x +6y =1(2) 互换其中一只,恰好一样重,即四只雀和一只燕的重量等于五只燕一只雀的重量,列出方程:4x +y =5y +x , 故选C. 5.(2019•浙江宁波•4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( ) A .31元 B .30元 C .25元 D .19元 【分析】设每支玫瑰x 元,每支百合y 元,根据总价=单价×数量结合小慧带的钱数不变,可得出关于x,y的二元一次方程,整理后可得出y=x+7,再将其代入5x+3y+10①8x中即可求出结论.【解答】解:设每支玫瑰x元,每支百合y元,依题意,得:5x+3y+10=3x+5y①4,∴y=x+7,∴5x+3y+10①8x=5x+3(x+7)+10①8x=31.故选:A.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6. (2019•湖南邵阳•3分)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是( )A.B.C.D.【分析】根据津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元可列方程组.【解答】解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.【点评】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意,找到题目蕴含的相等关系.7(2019•湖北天门•3分)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有( )A.3种B.4种C.5种D.9种【分析】可列二元一次方程解决这个问题.【解答】解:设2m的钢管b根,根据题意得:a+2b=9,∵A.b均为整数,∴,,,.故选:B.【点评】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.8. (2019•湖北孝感•3分)已知二元一次方程组,则的值是( )A.﹣5 B.5 C.﹣6 D.6【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+y=1,解得,∴=.故选:C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(2019•浙江衢州•4分)已知实数m,n满足,则代数式m2-n2的值为________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式一.选择题1.(2019•山东省济宁市•3分)下列计算正确的是()A.=﹣3B.=C.=±6D.﹣=﹣0.6【考点】二次根式的性质【分析】直接利用二次根式的性质以及立方根的性质分析得出答案.【解答】解:A.=3,故此选项错误;B. C.D.﹣=﹣,故此选项错误;=6,故此选项错误;=﹣0.6,正确.故选:D.【点评】此题主要考查了二次根式的性质以及立方根的性质,正确掌握相关性质是解题关键.2(2019•广东•3分)化简42的结果是A.﹣4B.4C.±4D.2【答案】B【解析】公式a2a.【考点】二次根式3(2019•甘肃•3分)使得式子A.x≥4B.x>4有意义的x的取值范围是()C.x≤4D.x<4【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:使得式子有意义,则:4﹣x>0,解得:x<4,即x的取值范围是:x<4.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.(2019,山西,3分)下列二次根式是最简二次根式的是()A.12,本选项不合题意;B. 7 7 ,本选项不合题意;12 B.C. 8D. 327【解析】A. 1 2 21 2 21= = 2C. 8 = 2 2 不合题意;D. 3 是最简二次根式,符合题意,故选 D5. ( 2019 甘肃省兰州市) (4 分)计算: 12 - 3 =( )A.3 . B. 2 3 . C. 3 . D.4 3 .【答案】A .【考点】平方根的运算.【考察能力】运算求解能力【难度】简单【解析】 12 - 3 =2 3 - 3 = 3 .6(2019•山东省聊城市•3 分)下列各式不成立的是()A .C .﹣ == + =5B .D .=2= ﹣【考点】二次根式的运算【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.【解答】解:﹣ =3 ﹣ = ,A 选项成立,不符合题意;====2 ,B 选项成立,不符合题意;= ,C 选项不成立,符合题意;= ﹣ ,D 选项成立,不符合题意;故选:C .【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.7.下列整数中,与10﹣A.4最接近的是()B.5C.6D.7【分析】由于9<13<16,可判断数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.与4最接近,从而可判断与10﹣最接近的整故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.8(2019•湖南株洲•3分)×=()A.4B.4C.D.2【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:×==4.故选:B.【点评】此题主要考查了二次根式的乘法运算,正确掌握运算法则是解题关键.9.(2019•江苏连云港•3分)要使A.x≥1B.x≥0有意义,则实数x的取值范围是()C.x≥﹣1D.x≤0【分析】根据二次根式的性质可以得到x﹣1是非负数,由此即可求解.【解答】解:依题意得x﹣1≥0,∴x≥1.故选:A.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.10.(2019•湖北武汉•3分)式子A.x>0B.x≥﹣1在实数范围内有意义,则x的取值范围是()C.x≥1D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式组是解题关键.11.(2019•湖北孝感•3分)下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(+)(﹣)=b﹣a【分析】根据同底数幂的除法法则判断A;根据积的乘方法则判断B;根据同底数幂的乘法法则判断C;根据平方差公式以及二次根式的性质判断D.【解答】解:A.x7÷x5=x2,故本选项正确;B.(xy2)2=x2y4,故本选项错误;C.x2•x5=x7,故本选项错误;D.(+)(﹣)=a﹣b,故本选项错误;故选:A.【点评】本题考查了二次根式的运算,整式的运算,掌握同底数幂的乘除法法则、积的乘方法则、平方差公式以及二次根式的性质是解题的关键.12.(2019•湖南湘西州•4分)下列运算中,正确的是()A.2a+3a=5a C.(a﹣b)2=a2﹣b2B.a6÷a3=a2 D.+=【分析】直接利用合并同类项法则以及完全平方公式、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A.2a+3a=5a,故此选项正确;B.a6÷a3=a3,故此选项错误;C.(a﹣b)2=a2﹣2ab+b2,故此选项错误;D.+,故此选项错误.故选:A.【点评】此题主要考查了合并同类项以及完全平方公式、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.13.(2019▪广西河池▪3分)下列式子中,为最简二次根式的是()A.B.C.D.15.(2019甘肃省兰州市)(4分)化简:a2+1C.a-1D.1【分析】利用最简二次根式定义判断即可.【解答】解:A.原式=,不符合题意;B.是最简二次根式,符合题意;C.原式=2,不符合题意;D.原式=2,不符合题意;故选:B.【点评】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.14.(2019▪湖北黄石▪3分)若式子在实数范围内有意义,则x的取值范围是(A.x≥1且x≠2B.x≤1C.x>1且x≠2D.x<1【分析】分式有意义,分母不等于零;二次根式的被开方数是非负数.【解答】解:依题意,得x﹣1≥0且x﹣200,解得x≥1且x≠2.故选:A.【点评】本题考查了二次根式有意义的条件,分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.)A.a-1.B.a+1.a+1.a+1.【答案】A.【考点】分式计算.【考察能力】运算求解能力.【难度】简单a+1-2a+1=()- 2a 2 + 1 2 a 2 + 1 - 2 (a + 1)(a - 1)【解析】 = = =a -1 .a + 1 a + 1 a + 1 a + 1故选 A.16.(2019 甘肃省陇南市)(3 分)下面的计算过程中,从哪一步开始出现错误()A .①B .②C .③D .④【分析】直接利用分式的加减运算法则计算得出答案.【解答】解:=﹣﹣==.故从第②步开始出现错误.故选:B .【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.二.填空题1. (2019•山东省滨州市 •5 分)计算:(﹣ )﹣﹣|【考点】二次根式混合计算【分析】根据二次根式的混合计算解答即可.﹣2|+ ÷ = 2+4 .【解答】解:原式=,故答案为:2+4.【点评】此题考查二次根式的混合计算,关键是根据二次根式的混合计算解答.2. (2019•湖北武汉•3 分)计算的结果是 4 .【分析】根据二次根式的性质求出即可.【解答】解:=4,故答案为:4.【点评】本题考查了二次根式的性质和化简,能熟练地运用二次根式的性质进行化简是解此题的关键.3(2019•湖南湘西州•4分)要使二次根式有意义,则x的取值范围为x≥8.【分析】直接利用二次根式的定义得出答案.【解答】解:要使二次根式有意义,则x﹣8≥0,解得:x≥8.故答案为:x≥8.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.5(2019•南京•2分)计算﹣的结果是0.【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=2﹣2=0.故答案为0.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6(2019•江苏苏州•3分)若x-6在实数范围内有意义,则x的取值范围为_________________【解答】x≥67(2019•湖南湘西州•4分)下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为3.(用科学计算器计算或笔算).【分析】当输入x的值为16时,=4,4÷2=2,2+1=3.【解答】解:解:由题图可得代数式为.当x=16时,原式=÷2+1=4÷2+1=2+1=3.故答案为:3【点评】此题考查了代数式求值,此类题要能正确表示出代数式,然后代值计算,解答本题的关键就是弄清楚题目给出的计算程序.8.(2019,山东枣庄,4分)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为2018.【分析】根据题意找出规律,根据二次根式的性质计算即可.【解答】解:+++…+=1+(1﹣)+1+(﹣)+…+1+(﹣)﹣=2018+1﹣+﹣+﹣+…+=2018,故答案为:2018.【点评】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题的关键.8.(2019•湖南衡阳•3分)﹣=.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=3﹣=2.故答案为:2.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.9(2019安徽)(5分)计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.【解答】解:.故答案为:3【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键.10.(2019甘肃省天水市)(4分)分式方程-=0的解是______.【答案】x=2【解析】解:原式通分得:=0去分母得:x-2(x-1)=0去括号解得,x=2经检验,x=2为原分式方程的解故答案为x=2先通分再去分母,再求解,最后进行检验即可本题主要考查解分式方程,解分式方程主要将方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.三解答题1.(2019•湖北天门•12分)(1)计算:(﹣2)2﹣|﹣3|+×+(﹣6)0;(2)解分式方程:=.【分析】(1)先计算乘方、取绝对值符号、计算二次根式的乘法及零指数幂,再计算加减可得;(2)去分母化分式方程为整式方程,解之求得x的值,再检验即可得.【解答】解:(1)原式=4﹣3+4+1=6;(2)两边都乘以(x+1)(x﹣1),得:2(x+1)=5,解得:x=,检验:当x=时,(x+1)(x﹣1)=≠0,⎛ x1 ⎫ x2 - x x当 x= 2 ,原式= 2 + 2 = =1+ 2 .∴原分式方程的解为 x = .【点评】本题主要考查二次根式的混合运算与解分式方程,解题的关键是熟练掌握二次根式的乘法法则及解分式方程的步骤.【答案】25. (2019•广东•6 分)先化简,再求值: - ⎪÷⎝ x -2 x -2 ⎭ x 2 - 4,其中 x= 2 .解:原式= x -1 x 2 - x÷ x-2 x 2 - 4= x -1 x-2 (x + 2)( - 2)×x (x -1)= x + 2x22【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算。