概率统计试卷

合集下载

线性代数与概率统计试卷与答案

线性代数与概率统计试卷与答案

一、单选( 每题参考分值2.5分)1、设随机变量的分布函数为,则()A.B.C.D.正确答案:【B】2、设总体为参数的动态分布,今测得的样本观测值为0.1,0.2,0.3,0.4,则参数的矩估计值为()A.0.2B.0.25C.1D.4正确答案:【B】3、A.B.C.D.正确答案:【B】4、设均为阶方阵,,且恒成立,当()时,A.秩秩B.C.D.且正确答案:【D】5、设是方程组的基础解系,则下列向量组中也可作为的基础解系的是()A.B.C.D.正确答案:【D】6、盒中放有红、白两种球各若干个,从中任取3个,设事件,,则事件()A.B.C.D.正确答案:【A】7、已知方阵相似于对角阵,则常数()A.B.C.D.正确答案:【A】8、掷一枚骰子,设,则下列说法正确的是()A.B.C.D.正确答案:【B】9、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】10、袋中有5个球(3新2旧),每次取1个,无放回的抽取2次,则第2次取到新球的概率为()A.B.C.D.正确答案:【A】11、A.B.C.D.正确答案:【D】12、设和是阶矩阵,则下列命题成立的是()A.和等价则和相似B.和相似则和等价C.和等价则和合同D.和相似则和合同正确答案:【B】13、二次型是()A.正定的B.半正定的C.负定的D.不定的正确答案:【A】14、矩阵与的关系是()A.合同但不相似B.合同且相似C.相似但不合同D.不合同也不相似正确答案:【B】15、随机变量X在下面区间上取值,使函数成为它的概率密度的是()A.B.C.D.正确答案:【A】16、A.全不非负B.不全为零C.全不为零D.全大于零正确答案:【C】17、随机变量的概率密度则常数()A.1B.2C.D.正确答案:【B】18、设二维随机变量的概率密度函数为,则()A.B.C.D.正确答案:【B】19、设随机变量的方差,利用切比雪夫不等式估计的值为()A.B.C.D.正确答案:【B】20、A.每一向量不B.每一向量C.存在一个向量D.仅有一个向量正确答案:【C】21、A.B.C.D.正确答案:【C】22、设,则()A.B.C.D.正确答案:【B】23、设随机变量的数学期望,方差,则由切比雪夫不等式有()A.B.C.D.正确答案:【B】24、以下结论中不正确的是()A.若存在可逆矩阵,使,则是正定矩阵B.二次型是正定二次型C.元实二次型正定的充分必要条件是的正惯性指数为D.阶实对称矩阵正定的充分必要条件是的特征值全为正数正确答案:【B】25、设总体服从两点分布:为其样本,则样本均值的期望()A.B.C.D.正确答案:【A】26、设是二阶矩阵的两个特征,那么它的特征方程是()A.B.C.D.正确答案:【D】27、已知,则()A.必有一特征值B.必有一特征值C.必有一特征值D.必有一特征值正确答案:【D】28、设是来自总体的样本,其中已知,但未知,则下面的随机变量中,不是统计量的是()A.B.C.D.正确答案:【D】29、矩阵的秩为,则()A.的任意一个阶子式都不等于零B.的任意一个阶子式都不等于零C.的任意个列向量必线性无关对于任一维列向量,矩阵的秩都为正确答案:【D】30、设向量组;向量组,则()A.相关相关B.无关无关C.无关无关D.无关相关正确答案:【B】31、A.交换2、3两行的变换B.交换1、2两行的变换C.交换2、3两列的变换D.交换1、2两列的变换正确答案:【A】32、设是矩阵,则下列()正确A.若,则中5阶子式均为0B.若中5阶子式均为0,则C.若,则中4阶子式均非0D.若中有非零的4阶子式,则正确答案:【A】33、分别是二维随机变量的分布函数和边缘分布函数,分别是的联合密度和边缘密度,则()A.B.C.和独立时,D.正确答案:【C】34、A.B.C.D.正确答案:【D】35、设随机变量的概率密度为,则()A.B.C.D.正确答案:【B】36、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】37、某学习小组有10名同学,其中7名男生,3名女生,从中任选3人参加社会活动,则3人全为男生的概率为()A.B.C.D.正确答案:【A】38、从0、1、2、…、9十个数字中随机地有放回的接连抽取四个数字,则“8”至少出现一次的概率为()A.0.1B.0.3439C.0.4D.0.6561正确答案:【B】39、A.B.C.正确答案:【D】40、设矩阵其中均为4维列向量,且已知行列式,则行列式()A.25B.40C.41D.50正确答案:【B】41、若都存在,则下面命题中正确答案的是()A.B.C.D.正确答案:【D】42、与矩阵相似的矩阵是()A.B.C.D.正确答案:【B】43、A.B.C.D.正确答案:【B】44、某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该动物已经活了20年,它能活到25年的概率是()A.0.48B.0.6C.0.8D.0.75正确答案:【D】45、设4维向量组中的线性相关,则()A.可由线性表出B.是的线性组合C.线性相关D.线性无关正确答案:【C】46、设为阶方阵,且(为正数),则()A.B.的特征值全部为零C.的特征值全部为零D.存在个线性无关的特征向量正确答案:【C】47、若连续型随机变量的分布函数,则常数的取值为()A.B.C.D.正确答案:【B】48、A.B.C.D.正确答案:【C】49、设,则~()A.B.C.D.正确答案:【B】50、设是未知参数的一个估计量,若,则是的()A.极大似然估计B.矩估计C.有效估计D.有偏估计正确答案:【D】一、单选(共计100分,每题2.5分)1、A.B.C.D.正确答案:【D】2、已知线性无关则()A.必线性无关B.若为奇数,则必有线性无关C.若为偶数,则线性无关D.以上都不对正确答案:【C】3、A.B.C.D.正确答案:【D】4、A.B.C.D.正确答案:【D】5、矩阵()是二次型的矩阵A.B.C.D.正确答案:【C】6、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】7、设是参数的两个相互独立的无偏估计量,且若也是的无偏估计量,则下面四个估计量中方差最小的是()A.B.C.D.正确答案:【A】8、设二维随机变量,则()A.B.3C.18D.36正确答案:【B】9、已知是非齐次方程组的两个不同解,是的基础解系,为任意常数,则的通解为()A.B.C.D.正确答案:【B】10、下列矩阵中,不是二次型矩阵的是()A.B.C.D.正确答案:【D】11、若总体为正态分布,方差未知,检验,对抽取样本,则拒绝域仅与()有关A.样本值,显著水平B.样本值,显著水平,样本容量C.样本值,样本容量D.显著水平,样本容量正确答案:【D】12、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()A.B.C.D.正确答案:【B】13、A.B.C.D.正确答案:【C】14、已知4阶行列式中第1行元依次是-4,0,1,3, 第3行元的余子式依次为-2,5,1,x ,则X=A.0B.3C. -3D.2正确答案:【B】15、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】16、设总体服从泊松分布:,其中为未知参数,为样本,记,则下面几种说法正确答案的是()A.是的无偏估计B.是的矩估计C.是的矩估计D.是的矩估计正确答案:【D】17、下列函数中可以作为某个二维随机变量的分布函数的是()A.B.C.D.正确答案:【D】18、A.B.C.D.正确答案:【A】19、若都存在,则下面命题正确答案的是()与独立时,B.与独立时,C.与独立时,D.正确答案:【C】20、设是从正态总体中抽取的一个样本,记则服从()分布A.B.C.D.正确答案:【C】21、设随机变量,则()A.B.C.D.正确答案:【A】22、已知向量,若可由线性表出那么()A.,B.,C.,D.,正确答案:【A】23、设,则()A.A和B不相容B.A和B相互独立C.或D.正确答案:【A】24、设总体,为样本均值,为样本方差,样本容量为,则以下各式服从标准正态分布的是()A.B.C.D.正确答案:【A】25、为三阶矩阵,为其特征值,当()时,A.B.C.D.正确答案:【C】26、某种商品进行有奖销售,每购买一件有的中奖概率。

概率统计试卷复习资料

概率统计试卷复习资料

总复习一、填空题(每题3分)1、已知事件A 与B 独立,且5.0)(=A P ,7.0)(=B P ,则=)(AUB P2、设X 服从正态分布)3.2(2N ,且21C) X (=≤P ,则=C 3、设每次试验中成功的概率为P )1(<<P o ,则在二次重复独立试验中,至少失败一次的概率为 。

4、评价估计量优劣的三条标准是无偏性,一致性和 性。

5、已知随机变量X 服从),(2σμN ,则X 的概率密度函数为6、设X 1,…,X n 是总体X 的一个样本,且X 的期望μ=EX 和方差2σ=DX 均未知,则2σ的无偏估计是=∧2σ7、设X 服从二项分布),(p n B ,则)(X E =8、若X 与Y 独立,且6)(=X D ,3)(=Y D ,则)2(Y X D -=9、设X 服从),(2σμN ,则≤≥-)3(σμX P10、一口袋中装有8只球,在这6只球上分别标有-1,1,1,1,1,3,,3,3这样的数字,现从这只口袋中任取一球,用随机变量X 表示取得的球上标明的数字,求:(1)X 的概率分布律;(2)X 的概率分布函数;(3))34(-X E .11.袋中有4个乒乓球, 其中3个是黄球, 1个是白球. 今有两人依次随机地从袋中各取一球, 取后不放回, 则第2个人取得黄球的概率是 . 12、对事件,A B 和C ,已知1()()()5P A P B P C ,()()0P AB P BC ,1()8P AC ,则,A B ,C 中至少有一个发生的概率是_________.13、已知随机变量X 在区间[ 5,15 ]上服从均匀分布,则EX= .14、中心极限定理告诉我们,若随机变量X 服从参数为1000,0.06的二项分布,则X 也近似服从参数为___ __和______的正态分布.15、设(X 1,X 2,...,X n )是取自正态总体N (μ,σ2)的简单随机样本,统计量∑==n i i X n T 121,则T 的数学期望ET=16、设X 表示独立射击目标10次所击中目标的次数,每次击中的概率为0.3,则X 2的数学期望E(X 2)= .17、设随机变量X 服从正态分布N(2,0.22),已知标准正态分布函数值 Φ(2.5)=0.9938,则P{2<X<2.5}=___ .18、设随机变量X 和Y 满足DX =25, DY =9, ρXY =0.4, 则D (X-Y) =19 、设总体X 的概率密度为,,020)(⎩⎨⎧<<=其它x Ax x f 则A=20、若随机变量X 服从参数为1=λ的分布,则大数定律告诉我们:∑=ni i X n 11依概率收敛于21 ,设总体X 服从),(2σμN 分布,X 1,…,X n 是X 的一个样本,则统计量n / X σμ- 服从分布;)(1_1222X XS nni i-=∑=οο 服从 分布;212)(1μο-∑=ni iX服从 分布二,单选1 .若随机变量X 具有性质)()(X D X E =,则X 服从 分布 a 、正态 b 、二项 c 、泊松 d 、均匀2、若)()(1)(B P A P B A P -=+,则A 与B a 、互不相容 b 、独立c 、为对立事件d 、为任意事件3、设随机变量X 服从)2,1(2N ,12-=X Y ,则Y 服从 分布 a 、)4,2(2N b 、)4,1(2N c 、)4,1(N d 、)4,2(N4、设A 与B 为两个随机事件,若0)(=AB P ,则下列命题正确的是 a 、A 、B 互不相容 b 、AB 未必是不可能事件 c 、A ,B 独立 d 、0)(=A P 或0)(=B P5、从总体X 中抽取样本X ,X 2,若X 服从)1,(θN 分布,则θ的估计量中,最有效的是a 、217671X X + b 、212121X X + c 、215451X X + d 、216561X X +6、“A 、B 、C 三事件恰有一个发生”可表为 a 、C U B U A b 、C B Ac 、ABCd 、C B A C B A C B U U A7、5.0)(=A P ,8.0)(=B P ,9.0)(=AUB P ,则B A 与的关系是 a 、互不相容 b 、独立 c 、B A ⊃ d 、A B ⊃8、设随机变量X 服从分布, 则2)] X [E() X (=D a 、均匀 b 、标准正态 c 、二项 d 、泊松9、设),(y x F 是随机变量Y), X (的分布函数,则下列式子 成立。

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

概率与统计试卷一二、三

概率与统计试卷一二、三

试卷二班级 学号 姓名 成绩一、单项选择题(每小题3分,共18分)1、设B A ,为任意事件,下列命题正确的是 ( ) (A )若B A ,互不相容,则B A ,互不相容(B )若B A ,相容,则B A ,互不相容 (C )若B A ,相互独立,则B A ,相互独立(D )2、设B A ,为随机事件,且A B ⊂,则下列结论中肯定正确的是 ( ) (A ))()()(A P B P A B P -=- (B ))()(A P B A P =+ (C ))()(A P AB P = (D ))()|(B P A B P =3、设),(~),,(~2254μμN Y N X ,记)(),(5421+≥=-≤=μμY P P X P P ,则有( )(A )对任意实数μ,都有21P P = (B )对任意实数μ,都有21P P < (C )对任意实数μ,都有21P P > (D )只对μ的个别值才有21P P = 4、已知随机变量),(~p n B X ,42.)(=X E ,441.)(=X D ,则二项分布的参数为 ( ) (A )406.,==p n (B )4,0.6n p == (C )308.,==p n (D )1024.,==p n5、设12,,,n X X X 是取自正态总体),(20σN 的样本,则可以作为2σ的无偏估计量是 ( )(A )∑=n i i X n 11 (B )∑=-n i i X n 111 (C )∑=n i i X n 121 (D )∑=-n i i X n 1211 6、设μσμ),,(~2N X 已知,2σ未知,4321X X X X ,,,是X 的样本,则不是统计量的是 ( ) (A )43153X X X ++(B )∑=-41i i X )(μ(C )∑=-41i i X X )((D )∑=-4122i i X )(σ二、填空题(每小题3分,共18分)1、某射手射击命中率为0.6,重复独立射击3次,则恰好命中2次的概率为 ;2、某运动员投篮命中率是0.8,则在一次投篮时投中次数的概率分布为,分布函数为 ;3、设随机变量X 的分布函数200()/40212x F x x x x <⎧⎪=≤<⎨⎪≥⎩,则)(31≤≤X P = ;4、设),(Y X 在矩形区域:1020≤≤≤≤y x ,内服从均匀分布,则),(Y X 的联合概率密度函数为 ; 5、设随机变量X ,Y 相互独立,110===)(,)(,)(X D Y E X E , 则=-+)]([2Y X X E ;6、设随机变量n X X X ,,, 21独立同分布,2110σ==)(,)(X D X E ,令∑==ni i X n X 11∑=-=ni i X X Q 12)(,则=)(Q E ;三、解答题(1~4题,每小题10分,5、6题每小题12分,共64分)1、假设有两箱同种零件,第一箱内装有50件,其中10件一等品;第二箱装30件,其中18件一等品。

《概率论与数理统计》考试试卷

《概率论与数理统计》考试试卷

填空题(每空2分, 2×12=24分)1、 设 A.B.C 为三事件, 事件 A.B.C 恰好有两个事件发生可表示为__________________。

2、 已知 =0.5, =0.3, =0.6, 则 =__________________。

3、 设 , 则 的密度函数为____________________。

4、 设 服从区间 上的均匀分布, 则 ______________, _______________。

5、 设 是X 的一个随机样本, 则样本均值 _______________, 且 服从的分布为_____________________。

6、 若二维连续型随机变量密度函数为 , 则 。

7、 总体 且 已知, 用样本检验假设 时, 采用统计量_________________________。

8、 评选估计量的标准有_______________、_____________和一致性。

9、 切贝雪夫不等式应叙述为_______________判断题(每小题2分, 2×8=16分)1、 互不相容的随机事件一定相互独立。

( )2、 若连续型随机变量 的概率密度为 , 则 。

( )3、 二维随机变量的边缘分布可以确定联合分布。

( )4、 对于任意随机变量 , 有 。

( )5、 不相关的两个随机变量一定是相互独立的。

( )6、 对任意随机变量 , 若 存在, 则 。

( )7、 若 , 则 。

( )若 , , 密度函数分别为 及 , 则 。

( )概率计算题(每题10分, 4×10=40分)在1-2000的整数中随机地取一个数, 问取到的整数即不能被4整除又不能被6整除的概率是多少? (10分)设两台车床加工同样的零件, 第一台车床的优质品率为0.6, 第二台车床的优质品率为0.9, 现把加工的零件放在一起, 且已知第一台加工的零件比第二台加工的零件多一倍, 求: (1)从产品中任取一件是优质品的概率。

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)

概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。

把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。

概率论与数理统计试卷及参考答案

概率论与数理统计试卷及参考答案

概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。

2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。

3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。

4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。

5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。

二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。

做不放回抽取,每次取一只,求第三次才取到次品的概率。

解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。

解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。

《概率论与数理统计》试卷

《概率论与数理统计》试卷

《概率论与数理统计》试卷一、填空题('308'3=⨯)1、 若,A B 相互独立,且()()0.5P A P B ==,则 ()P A B = .2、 设总体X 服从正态分布()2,σμN ,12,,n X XX 是来自总体X 的样本,则()2E S = .3、 已知离散型随机变量X 的分布律如下:则b = ,{}13P X <<= .4、设()~1,5U ξ,当1215x x <<<时,{}12P x x ξ≤≤= .5、设随机变量,X Y 相互独立,且()4,1~N X ,)21,8(~b Y ,则()E X Y -= . 6、设总体X 服从参数为λ的泊松分布,λ未知,若125,,,X X X 是来自总体的样本,则λ23___+X 统计量.(请填写“是”或者“不是”) 7则()=XY E . 8、设()()25,36,0.4XY DX D Y ρ===,则()D X Y += .9、设X 表示10次独立重复射击命中目标的次数,每次命中率为0.4,则X 服从的分布为 . 10、口袋中有5只球,其中3只新的2只旧的,现接连取球三次,每次1只,则第二次取到新球的概率是 .二、('10)商店论箱出售玻璃杯,每箱20只,其中每箱含0,1,2只次品的概率分别为0.8, 0.1, 0.1,某顾客选中一箱,从中任选4只检查,结果都是好的,便买下了这一箱.问这一箱含有一个次品的概率是多少?三、('10)已知离散型随机变量的分布律如下表:求:(1)常数C ; (2)概率{}1=X P ;(3) 概率{}23<<-X P ;(4)随机变量的分布函数()x F .四、('10) 设二维离散型随机变量(),X Y 的分布律如下: 1231 16 19118213ab问:当,a b 取什么值时,,X Y 相互独立.五、('10)设总体X 的概率密度为1,01,()0,x x f x θθ-⎧≤≤⎪=⎨⎪⎩其他,其中0>θ,θ为未知参数,12,,,n X X X 是来自总体X 的样本,12,,,n x x x 为相应的样本值,分别用矩估计法和最大似然估计法求参数θ的估计值.六、('10)有两只口袋,每只口袋中装2个红球和2个绿球.先从第一个口袋中任取2个球放入第二个口袋中,再从第二只口袋中任取2个球.把两次取到的红球数分别记作X 和Y ,求(),X Y 的分布律,X ,Y 的边缘分布律,并求)(),(),(XY E Y E X E .七、('10)设随机变量X 服从参数为θ指数分布, 其概率密度为⎪⎩⎪⎨⎧≤>=-,0,0,0,1)(/x x e x f x θθ其中,0>θ 求).(),(X D X E八、('10)根据长期经验和资料的分析,某砖厂生产的砖的“抗断强度”(单位:kg ·cm -2)X 服从正态分布,方差σ2=1.21.从该厂产品中随机抽取6块,测得抗断强度如下:32.56 29.66 31.64 30.00 31.87 31.03检验这批砖的平均抗断强度为32.50kg ·cm -2是否成立(取α=0.05,并假设砖的抗断强度的方差不会有什么变化)?(96.105.0=Z )Y X。

概率试卷(一)卷及答案

概率试卷(一)卷及答案

《概率统计》试卷(一)注:(1)试卷每页的背面以及附页为草稿纸。

(2)解题中可能用到的查表值如下:95.0)645.1(=Φ,975.0)96.1(=Φ,995.0)58.2(=Φ,8413.0)1(=Φ 一、填空(每空2分,共20分) 1. 设31)()()(321===A P A P A P ,且321,,A A A 相互独立,则“321,,A A A 至少出现一个” 的概率为 。

2.设X 服从参数为2的泊松分布,Y =3X -2,则D Y = 。

3.设随机变量X ,Y 独立且分布律为323111pX- , 323111p Y - 则==)(Y X P 。

4. 若随机变量X 的分布列为 31313121 0 pX ,则X 分布函数。

5. 设n X X X ,,,21⋅⋅⋅相互独立,皆服从),(2σμN 分布,n c c c ,,,21⋅⋅⋅ 为一组常数,则∑=ni ii Xc 1~ 。

6.设ηξ,的相关系数为0.95,又05.0-=ξZ ,则η与Z 的相关系数为 . 7.设总体2~(,)X N μσ,321,,X X X 为样本,现取μ的估计量如下,21103513211^X X X ++=μ,313131321^2X X X ++=μ ,1^3X =μ则其中最有效的估计量为 。

* 8.设总体X 服从正态分布),(2σμN ,2σμ,皆未知,现有一容量为n 的样本,∑∑==--==n i in i i X X n S X n X 1221111)(,分别为样本均值和样本方差,则检验假设2212020σσσσ≠=:,:H H 的统计量为 . * 9.设总体ξ服从正态分布)9.0,(2a N ,现有一容量为9的子样,算得样本均值5=x ,则未知参数a 的置信度为0.95的置信区间为 .10.设总体X 服从均匀分布],0(θU ,0.2, 0.4, 0.5, 0.6, 0.8是一组子样观察值,则θ的 矩估计值为 .1. 19/27;2. 18;3. 5/9 ;4. =)(x F ⎪⎪⎩⎪⎪⎨⎧>≤<≤<≤ , , ,,212132103100x x x x 或 =)(x F ⎪⎪⎩⎪⎪⎨⎧≥<≤<≤< , , , ,212132103100x x x x 5. ),(1212∑∑==n i ni iic c N σμ; 6. 0.95; 7. 2^μ; 8. )( 20221σχS n -=9. (4.412, 5.588) ; 10 1.二、单项选择题(每小题2分,共20分)1. 设A ,B 为两个事件,,.)(,.)(2050=-=B A P A P 则=)(AB P D ) 。

概率论与数理统计考试试卷

概率论与数理统计考试试卷

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1()(1),1,2,,01k P X k p p k p -==-=<< ,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。

概率统计试卷答案

概率统计试卷答案
得分
评卷人
二、选择题(每小题3分,共15分)
1.设随机变量X在 上服从均匀分布,则随机变量X的概率密度p(x)为()
A. B.
C. D.
2.设随机变量X的概率密度为 则K=( )
(A) (B) (C) (D)
3.设随机变量X1,X2,…,Xn,…相互独立同分布,下表为Xi的分布律
0
1
P
1-p
P
(i=1,2,…,) 为标准正态分布函数,则 ()
(D)原假设 不成立,经检验被接受的概率。
得分
评卷人
三(10分)、某仪器有三个灯泡,烧坏第一、第二、
第三个灯泡的概率相应为0.1,0.2,0.3。当烧坏一个
灯泡时,仪器发生故障的概率为0.25,当烧坏两个灯泡时,仪器发生故障的
概率为0.6,而当烧坏三个时仪器发生故障的概率为0.9,如果没有灯泡烧坏,
(A)0(B)1(C) (D)1-
4.设总体 服从正态分布 ,其中 已知, 未知, 为来自总体 的一组简单随机样本,则下列表达式中不是统计量的是()
(A) (B)
(C) (D)
5.在假设检验中,显著性水平 的意义是()
(A)原假设 成立,经检验被拒绝的概率。
(B)原假设 成立,经检验被接受的概率。
(C)原假设 不成立,经检验被拒绝的概率。
题号


三四五六七八总分得分
阅卷人
一、1、写
得分
评卷人
二、
三、一、填空题(每空3分共24分)
四、
五、1.设A、B是两个互不相容的事件,已知P(A)=0.3,P(A∪B)=0.7,
六、则P(B)=_________。
七、2.设随机变量 服从参数 的泊松分布,则

概率统计考试试卷及答案

概率统计考试试卷及答案

概率统计考试试卷及答案一、 填空题(每小题4分,共20分)1. 设)(~λP X ,且)()(21===X P X P ,则_________)(==3X P .2. 设随机变量X 的分布函数)(,)(+∞<<-∞+=-x eA x F x1,则___=A3. 已知,)|(,)|(,)(213141===B A P A B P A P 则_____)(=⋃B A P 4. 已知随机变量),,(~10U X 则随机变量X Y ln 2-=的密度函数___)(=y f Y5. 设随机变量X 与Y 相互独立,且,2σ==DY DX 则____)(=-Y X D 42 二、 计算下列各题(每小题8分,共40分)1. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>=-000x x e x f x ,,)( 已知Y=2X ,求E(Y ), D(Y ).2. 两封信随机地投入标号为I ,II,III ,IV 的四个邮筒,求第二个邮筒恰好投入1封信的概率.3. 设X,Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y的概率密度为⎪⎩⎪⎨⎧≤>=-000212y y e y f yY ,,)( 求含有a 的二次方程022=++Y Xa a 有实根的概率。

4. 假设91X X ,, 是来自总体),(~220N X 的简单随机样本,求系数a,b ,c 使 298762543221)()()(X X X X c X X X b X X a Q ++++++++=服从2χ分布,并求其自由度.5. 某车间生产滚珠,从长期实践知道,滚珠直径X 服从正态分布。

从某天产品里随机抽取6个,测得直径为(单位:毫米)14.6, 15。

1, 14。

9, 14。

8, 15.2, 15.1 若总体方差0602.=σ, 求总体均值μ的置信区间(9610502.,./==ααz )三、(14分)设X,Y 相互独立,其概率密度函数分别为⎩⎨⎧≤≤=其他 ,,)(0101x x f X ,⎪⎩⎪⎨⎧≤>=-000y y e y f y Y ,,)( 求X+Y 的概率密度四、(14分)设⎪⎩⎪⎨⎧≤<-=其它,),()(~0063θθθx x xx f X ,且n X X ,, 1是总体X的简单随机样本,求 (1)θ的矩估计量θ,(2) )(θD五、(12分)据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机地取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1920小时的概率.(7881080.).(=Φ)普通本科概率统计期末考试试卷答案:一、填空题(每小题4分,共20分)1、243e -;2、 1;3、13;4、/21,020,0y e y y -⎧>⎪⎨⎪≤⎩; 5、220σ二、计算下列各题(每小题8分,共40分) 1、解:2()EY xf x dx +∞-∞=⎰。

概率与统计试题

概率与统计试题

16.电路由电池A与两个并联的电池B和C串联而成(如图),设电池A,B,C损坏的概率分别是0.1,0.2,0.3,若各电池是否损坏是独立的,求:电路发生断电的概率。

17.若随机变量X的概率密度为,求:①常数A;②X落在(0,1)区间内的概率。

18.已知连续型的随机变量X的密度函数为:求:(1) E(4X+5) ;(2) D(3X+8)19.设连续型随机变量X的服从区间[1,2]上的均匀分布,求的概率密度。

20.设随机变量X 服从参数为指数分布,概率密度为:,其中>0,且是未知参数,设是来自总体X的样本值,试求的最大似然估计量。

21.由经验知道某零件质量X~N(μ,σ2),μ=15,技术革新后,抽了9个样品,测得其均值克,方差,问技术革新后,该产品的平均质量是否为15克?(检验水平α=0.05,)22.设二维随机向量(X,Y)具有密度函数:(1)求P(0<x<1,0<y<1);(2)判断随机变量X与Y是否独立。

一、填空题(每小题2分,共12分)1.现有20件产品,其中有5件次品,从中任取一件,则取到次品的概率是2.某射手连续向同一个目标射击100次,已知该射手每次击中目标的概率为p,则恰有9次击中目标的概率是3.三门高射炮对一架敌机一齐各发一炮,它们的命中率分别为8%、20%、15%,则敌机恰中一弹的概率为4.设袋中有10个球,其中8个红球,2个白球,从中任取出2个,记X为取到的白球数,则X的概率分布列为阅读全文>>分类:3.试题与教| 阅读(288)| 评论(0)《概率论与数理统计》课程考试试卷2010-12-22 22:37阅读280评论0一、选择题:(本大题共6小题,每小题2分,共12分)1.设A、B、C为随机事件,则事件“A、B、C中恰有1个发生”可表示为()A、A+B+CB、A-B-CC、 D、C-AB2、设连续型随机变量X的分布函数为F(x),则有()A、P(a<X<b)=F(b)-F(a)一、填空题(每小题2分,共12分)1.现有20件产品,其中有5件次品,从中任取一件,则取到次品的概率是2.某射手连续向同一个目标射击100次,已知该射手每次击中目标的概率为p,则恰有9次击中目标的概率是3.三门高射炮对一架敌机一齐各发一炮,它们的命中率分别为8%、20%、15%,则敌机恰中一弹的概率为4.设袋中有10个球,其中8个红球,2个白球,从中任取出2个,记X为取到的白球数,则X的概率分布列为5.设随机变量X有分布列为三、计算题(共分)1.袋中12个球,其中红球9个,白球3个,从中任取3个,求:(1)3个都是红球的概率;(2)3个中至少有一个白球的概率。

概率统计考试试卷

概率统计考试试卷

概率统计考试试卷一、选择题(每题2分,共20分)1. 某事件的概率为0.5,这意味着:A. 这个事件几乎不可能发生B. 这个事件一定会发生C. 这个事件发生的可能性是50%D. 这个事件是不可能事件2. 以下哪个不是随机变量的类型?A. 离散型B. 连续型C. 确定型D. 混合型3. 期望值E(X)表示:A. 随机变量X的众数B. 随机变量X的中位数C. 随机变量X的平均值D. 随机变量X的方差4. 方差是衡量随机变量的:A. 偏度B. 峰度C. 离散程度D. 相关性5. 以下哪个不是大数定律的内容?A. 随机变量的算术平均数趋近于期望值B. 随机变量的几何平均数趋近于期望值C. 随机变量的加权平均数趋近于期望值D. 随机变量的样本均值趋近于总体均值...二、填空题(每空2分,共20分)1. 如果随机变量X服从二项分布B(n, p),则其期望值E(X)等于______。

2. 标准正态分布的均值为______,方差为______。

3. 随机变量X和Y的协方差衡量了X和Y的______程度。

4. 事件A和B同时发生的概率记作______。

5. 随机变量X的方差公式为______。

...三、简答题(每题10分,共30分)1. 简述什么是条件概率,并给出一个条件概率的例子。

2. 解释什么是中心极限定理,并说明它在统计学中的重要性。

3. 描述什么是泊松分布,并给出其概率质量函数。

...四、计算题(每题15分,共30分)1. 已知随机变量X服从正态分布N(μ, σ²),其中μ=50,σ²=25。

求P(40 < X ≤ 60)。

2. 某工厂生产的零件长度服从均匀分布U(10, 20)。

求该零件长度超过15的概率。

3. 假设有5个独立同分布的随机变量X₁, X₂, ..., X₅,每个随机变量Xᵢ服从泊松分布P(λ)。

求这5个随机变量之和的期望值和方差。

...结束语:请同学们认真审题,仔细作答。

《概率论与数理统计》期末复习试卷4套+答案

《概率论与数理统计》期末复习试卷4套+答案
四、计算题
1、(10分)甲箱中有 个红球, 个黑球,乙箱中有 个黑球, 个红球,先从甲箱中随机地取出一球放入乙箱。混合后,再从乙箱取出一球,
(1)求从乙箱中取出的球是红球的概率;
(2)若已知从乙箱取出的是红球,求从甲箱中取出的是黑球的概率;
2、(8分)设二维随机变量的联合概率密度为:
求关于 的边缘概率密度,并判断 是否相互独立?
7、(8分)设有一种含有特殊润滑油的容器,随机抽取9个容器,测其容器容量的样本均值为10.06升,样本标准差为0.246升,在 水平下,试检验这种容器的平均容量是否为10升?假设容量的分布为正态分布。
( , )
第二套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若 是离散型随机变量,则随机变量 的取值个数一定为无限个。()
2、(8分)设二维随机变量(X,Y)的联合概率密度为:
求边缘概率密度 ,并判断 与 是否相互独立?
3、(8分)设随机变量 的分布函数为:
求:(1) 的值;
(2) 落在 及 内的概率;
4、(8分)设随机变量 在 服从均匀分布,求 的概率密度;
5、(10分)设 及 为 分布中 的样本的样本均值和样本方差,求 ( )
第一套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若随机变量 的取值个数为无限个,则 一定是连续型随机变量。()
3、 与 独立,则 。()
4、若 与 不独立,则 。()
5、若 服从二维正态分布, 与 不相关与 与 相互独立等价。()
二、选择题(3分 5)
1、对于任意两个事件 和 ()
5、袋中有5个球(3个新,2个旧),每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )

概率与统计试卷1

概率与统计试卷1

一、 单项选择:(每小题2分,共20分)1) 设A ,B ,C 表示三个事件,则A ,B ,C 都不发生表示为( ) C B A D C B A C ABC B C B A A ++++)()()()(2)在一次实验中,事件A 发生的概率为P ,进行n 次独立试验,则A 至少发生一次的概率为( )nn n n P D p C p B p A )1(1)(1)()1()()(----3)抛两颗骰子,它们出现点数之和等于6的概率为( )366)(365)(364)(363)(D C B A 4)两个独立运行的电子元件,元件甲通电的概率为0.8,元件乙通电的概率为0.9。

若将两电子元件串联,则电路断电的概率为( )(A ) 0.72 (B ) 0.98 (C ) 0.02 (D ) 0.285)随机变量X 的概率密度为⎩⎨⎧≤≤-=其它010)(2x x x f λ则常数λ=( )(A ) 1 (B ) 2 (C ) 3/2 (D ) 4/36)已知随机变量X 的数学期望EX=2,方差DX=3,则2EX =( ) (A ) 1 (B ) 5 (C ) 7 (D ) 11 7) 设二维随机向量(X ,Y )的联合分布律为则常数a=( )(A ) 1/2 (B ) 1/3 (C ) 1/4 (D )3/4 8)设321,,X X X 是取自总体X 的样本,下列统计量不是总体均值EX 的无偏估计量为( )321321321321313131)(613221)(413121)(613121)(x X X D x X X C x X X B x X X A ++-+++++9)总体X 服从区间[2,5]上的均匀分布,621...,X X X 为其一样本,∑==6161i i x X 为样本均值,则D )(X =( )(A ) 1/12 (B ) 1/8 (C ) 1/6 (D ) 3/4 10)正态总体X~N ),(2σμ,用样本n X X X ...,21对未知参数2σ作假设检验,当μ未知时用统计量( )21222122)()()()(/)(/)(σσμμσμ∑∑==-=-=-=-=ni ini ix xx D xx C ns X t B nX u A二、 填空题(每空2分,共20分)1) 箱中装有10件产品,其中一等品6件,二等品3件,三等品1件。

概率论与数理统计考核试卷

概率论与数理统计考核试卷
一、单项选择题(20×1分)
1. ______
2. ______
3. ______
4. ______
5. ______
6. ______
7. ______
8. ______
9. ______
10. ______
11. ______
12. ______
13. ______
14. ______
15. ______
9. ABC
10. ABC
11. ABC
12. BD
13. AC
14. ABC
15. ABCD
16. ABC
17. AB
18. AD
19. ABCD
20. ABC
三、填空题
1. [0, 1]
2. ∫f(x)dx = 1
3.均方根
4. t检验
5.完全正相关
6.样本量
7. χ²分布
8.拒绝了正确的原假设
C.数据存在异常值
D. A、B和C
20.以下哪些是时间序列分析中常用的统计方法?()
A.移动平均
B.指数平滑
C.自相关函数
D. A、B和C
(以下为答题纸):
考生姓名:答题日期:得分:判卷人:
二、多选题(20×1.5分)
1. ______
2. ______
3. ______
4. ______
5. ______
16.以下哪个选项描述的是相关系数的性质?()
A.相关系数的取值范围为-1到1
B.相关系数表示两个随机变量之间的线性关系
C.相关系数可以为负值,表示负相关
D. A、B和C都是
17.在回归分析中,以下哪个选项表示解释变量与被解释变量之间的关系?()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.设 , ,且两随机变量相互独立,则

6.设随机变量 的数学期望 ,方差 ,则根据切比雪夫不等式,有 。
7.设 , , 为总体 的样本, ,则 _______________时, 是 的无偏估计。
8.设样本 来自正态总体 , 未知。假设检验问题为 ,则在显著性水平 下,假设检验的拒绝域为 。
得分
评卷人
(1)求他迟到的概率;(2)已知他迟到了,求他乘轮船去的概率。
得分
评卷人
四(11分)、设二维随机向量 的联合概率密度为
(1)求 分别关于 和 的边沿概率密度 ;
(2)判断 与 是否相互独立;(3概率分布律为
XY
1
2
0
1/3
1/3
1
1/3
0
求:(1) , ;(2) , ;(3)
题号








总分
得分
阅卷人
得分
评卷人
一、
二、一、填空题(每空3分共24分)
三、
四、1.设A、B是两个相互独立的事件,已知 , ,
五、则 _______。
2.设随机变量 ,则 。
3.设二维随机变量(X,Y)的概率密度为 则 ______。
4.设总体X的概率密度为 , ,…, 为来
自总体X的一组样本, 为总体X的样本均值,则 ________。
A. B. C. D.
5.设X1,X2,…,X100为来自总体 的样本,而Y1,Y2,…,Y100为来自总体 的样本,且两个样本独立,以 , 分别表示这两个样本的样本均值,则 ~()
A.N B. C. D.
得分
评卷人
三(10分)、我校一名“三好学生标兵”去某地参加先进事迹报告会。他乘汽车、火车、轮船、飞机去的概率分别为 、 、 、 。如果他乘汽车、火车、轮船去的话,迟到的概率分别为 、 、 ,而乘飞机去则不会迟到。
二、选择题(每小题3分,共15分)
1.设事件 相互独立,且 , ,则 =()
A. B. C. D.
2.已知 ,则 ()
A.0.004B.0.04C.0.4D.4
3.设 是 次独立重复试验中事件 出现的次数,p是事件 在每次试验中发生的概率,则对于任意的 ,均有 ()
A. B. C. D.不存在
4. ()
得分
评卷人
六(10分)、设随机变量 的概率密度函数为 , 未知, 为来自总体 的容量为 的样本。求:(1)未知参数 的矩估计量;(2)未知参数 的最大似然估计量。
相关文档
最新文档