二元一次方程组导学案

合集下载

(完整版)第五章二元一次方程组导学案.docx

(完整版)第五章二元一次方程组导学案.docx

第五章二元一次方程组导学案§ 5.1认识二元一次方程组班级:姓名 :小组:【学习目标】 1. 理解二元一次方程的定义和二元一次方程的解; 2. 会判断二元一次方程和二元一次方程的解; 3. 会求简单的不定方程的解。

【学习重点】 1. 会判断二元一次方程和二元一次方程的解。

2.会求简单的不定方程的解。

【学习过程】(一)学习准备:1.含未知数的等式叫,如: 2x 1 32.若方程中这样的方程叫,如: 3x 47x 83.满足方程左右两边未知数的值叫做方程的4.若 x 2 是关于x一元一次方程 ax 28 的解,则a=5.方程 x y 8 是一元一次方程吗?;若不是,请你把它取名叫方程。

(二)课堂探究:阅读教材P103—— P104,试解决下列问题:老牛与小马注意等号分析:审题:数量问题老牛小马2对齐设老牛驮了 x 个包裹,小马驮了 y 个包裹。

老牛 1 (2小马1)1. 二元一次方程:像方程x y 2 和 x12( y1) 等这类方程中,含有个未知数,并且所含未知数的项的次数都是的方程叫做。

即时练习:下列方程是二元一次方程的是① 2x13;② 5xy 10 ;③ x2y 2 ;评析:①二元一次方程的左右两边必y须是式;②方程中必须含个④ 3x y z 0;⑤ 2x y 3;⑥x35未知数;③未知项的次数为,而不是未知数的次数为12.二元一次方程的解:定义:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个即时练习:( 1)请找出是二元一次方程x y8 的解的是:x 0 x 2 x 1 x a①;②y;③y。

y859方程组的解应写成y b的形式,以表示它们要同时 取值才能使方程组成立..x 1 是二元一次方程 ax 2 y5 的解,求 a 的值。

( 2)已知y23. 二元一次方程组及方程组及二元一次方程组的解: 定义:共含有个未知数的两个方程所组成的一组方程,叫做二元一次方程组。

【冀教版】七年级下册:6.1《2元一次方程组》 精品导学案

【冀教版】七年级下册:6.1《2元一次方程组》 精品导学案

第六章 二元一次方程组 6.1 二元一次方程组【学习目标】 1.体会列二元一次方程组解应用题的意义2.认识二元一次方程和二元一次方程组,会判断一对未知数的值是否为二元一次方程(组)的解3.能找出一个二元一次方程的所有正整数解4.会运用“方程(组)的解”的意义求出方程(组)中未知字母的值。

【学习重点】二元一次方程(组)及二元一次方程(组)的解的意义【学习难点】求二元一次方程的所有正整数解【知识回顾】一个数的2倍加30,比这个数的6倍少14,求这个数. (1)设这个数为x ,列出关于x 的方程.(2)请在11,221,10,9====x x x x 中,找出所列出的方程的解. 【知识点一】二元一次方程定义阅读课本,进行如下学习:在篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x ,负的场数是y ,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.这两个条件可以用方程 ①, ②表示.发现:观察上面两个方程可看出:每个方程都含有 个未知数(x 和y ),并且 的都是1,像这样的方程叫做二元一次方程.练习11.已知方程:①2x+1y=3;②5xy-1=0;③x 2+y=2;④3x-y+z=0;⑤2x-y=3;⑥x+3=5,• 其中是二元一次方程的有___ ___.(填序号即可)2.在方程组、、、、、中,是二元一次方程组的有( )A. 2个B. 3个C. 4个D. 5个3.方程是二元一次方程,则的取值为( )A. a ≠0B. a ≠ -1C. a ≠1D. a ≠2【知识点二】二元一次方程组 把上面两个方程合在一起,写成 ,像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究讨论:满足方程①,且符合问题的实际意义的x 、y 的值有哪些?把它们分别填入表中.归纳:一般地,使二元一次方程两边的值相等的 的值,叫做二元一次方程的解.既满足方程①,又满足方程②,也就是说方程①与方程②这两个方程的 ,就叫做这两个二元一次方程所组成的二元一次方程组的解.练习21.判断⎩⎨⎧=-=12y x 是不是方程组⎩⎨⎧-=-=+95213y x y x 的解。

2.2《二元一次方程组》导学案

2.2《二元一次方程组》导学案

2.2 二元一次方程组导学案一、学习目标1.懂得什么叫二元一次方程组。

2.理解什么是二元一次方程组的解,学会用尝试的方法求出二元一次方程组的解。

二、回顾与学习1.小红买了面值为0.8元和1.5元的邮票共7张,刚好花了7元钱,求两种面值的邮票各多少张?分析:如果设面值0.8元的买了x张,面值1.5元的买了y张,(1)面值0.8元的买了x张共用去元。

面值1.5元的买了y张共用去元。

(2)根据两种邮票共7张可得方程。

(3)根据两种邮票共花了7元钱又程。

(4)两个方程中的未知数x是表示同一个量吗?y呢?(5)像这样的两个方程,我们把它合起来写成的方程组的形式。

2.在上题中得到的方程组中,整个方程组含有个未知数,且两个方程都是次方程,这样的方程组叫方程组。

3.(1)已知方程x+y=200,填写下表x …85 90 95 100 105 …y ……(2)已知方程y=x+10,填写下表x …85 90 95 100 105 …y ……(3)由上可知,既是方程x+y=200的解,又是方程y=x+10的解,所以是方程组的解。

三、基础巩固1.判断下列方程组是否是二元一次方程组的是()(A )⎩⎨⎧=+=+21z x y x (B) ⎩⎨⎧==+23x y x (C)⎩⎨⎧=-+6y x y x (D) ⎩⎨⎧==+12xy y x 2.方程组 ⎩⎨⎧-=--=+236y x y x 的解是( )(A ) ⎩⎨⎧==15y x (B )⎩⎨⎧==24y x (C ) ⎩⎨⎧-=-=15y x (D ) ⎩⎨⎧-=-=24y x 3.下列方程组中,解是 ⎩⎨⎧-==12y x 的方程组是( )(A ) ⎩⎨⎧=-=+12y x y x (B ) ⎩⎨⎧=+=-0232y x y x (C ) ⎪⎩⎪⎨⎧=-=-22102y x x (D ) ⎩⎨⎧=-=-023y x y x4.某年级共有246名学生,男生比女生的2倍少2人,设男生x 人,女生y 人,则下列方程组正确的是( )A.⎩⎨⎧+==+22246y x y x B⎩⎨⎧+==+22246x y y x C ⎩⎨⎧+==+22246y x y x D ⎩⎨⎧+==+22246x y y x 四、拓展提高1.已知 ⎩⎨⎧==32y x 是方程组⎩⎨⎧-=-=+51by ax y ax 的解,求a 、b 的值。

二元一次方程组(导学案)

二元一次方程组(导学案)

第八章二元一次方程组导学案 8.1二元一次方程组导学目标:1.认识二元一次方程和二元一次方程组.2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.导学导学重点:理解二元一次方程组的解的意义.导学导学难点:求二元一次方程的正整数解.导学过程:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?由问题知道,题中包含两个必须同时满足的条件:胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.这两个条件可以用方程x+y=222x+y=40 表示.上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.把两个方程合在一起,写成x+y=222x+y=40像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究:满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.x y上表中哪对x 、y 的值还满足方程②一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 例1 (1)方程(a +2)x +(b -1)y =3是二元一次方程,试求a 、b 的取值范围.(2)方程x ∣a ∣–1+(a -2)y =2是二元一次方程,试求a 的值. 例2 若方程x 2m –1+5y 3n –2=7是二元一次方程.求m 、n 的值 例3 已知下列三对值:x =-6 x =10 x =10 y =-9 y =-6 y =-1 (1) 哪几对数值使方程21x -y =6的左、右两边的值相等? (2) 哪几对数值是方程组 的解? 例4 求二元一次方程3x +2y =19的正整数解. 课堂练习:教科书第94页练习 作业布置:教科书第95页3、4、5题导学案 8.2 消元(第一课时)导学目标:1.会用代入法解二元一次方程组.2.初步体会解二元一次方程组的基本思想――“消元”.3.通过研究解决问题的方法,培养学生合作交流意识与探究精神.导学重点:用代入消元法解二元一次方程组.导学难点:探索如何用代入法将“二元”转化为“一元”的消元过程. 导学过程:一、知识回顾1、什么是二元一次方程及二元一次方程的解?21x -y =6 2x +31y =-112、什么是二元一次方程组及二元一次方程组的解?二、提出问题,创设情境篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?在上述问题中,我们可以设出两个未知数,列出二元一次方程组.这个问题能用一元一次方程解决吗?三、讲授新课1、那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?2、提出问题:从上面的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?归纳:基本思路:“消元”——把“二元”变为“一元”。

二元一次方程组的导学案

二元一次方程组的导学案

10.2二元一次方程组主备: 课型:新授 审核:七年级数学备课组 班级: 姓名:【学习目标】1.经历列二元一次方程组解决实际问题的过程,进一步体会方程组是解决这一类问题的有效数学模型.2.了解二元一次方程组解的概念,并会判断一组数是否是某个二元一次方程组的解;【学习重点】二元一次方程组的概念、二元一次方程组解的概念.【学习过程】一、课前复习1.写出二元一次方程x+3y=11的几组解:2.写出二元一次方程3x+y=9的几组解:二、方法引领问题1:“鸡兔同笼”是我国古代数学名著《孙子算经》中第31题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?”三、自主构建1. 自主交流问题2: 足球表面由黑色五边形和白色六边形共32块围成,且白皮块数是黑皮块数的35倍。

设黑皮块数为x,白皮块数为y ,列出关于x 、y 的二元一次方程组:2. 归纳定义这些方程组有哪些共同特点?你能再写出几个这样的方程组吗?3. 练一练:下列方程组是二元一次方程组吗?如果不是请说明理由.(1) 21,2.m n m n -=⎧⎨+=⎩ (2)⎩⎨⎧=-=+32n m y x (3)⎩⎨⎧=+=521b a a (4)25,4.x y x y ⎧+=⎨-=⎩ 问题3:小明在做摸球游戏,第一次摸到1个白球,3个红球,共得11分,你知道摸到1个白球、1个红球分别得多少分吗?再摸一次,摸到了3个白球,1个红球,共得9分,你知道摸到1个白球、1个红球分别得多少分吗?归纳二元一次方程组的解的概念⎩⎨⎧==12y x ⎩⎨⎧==21y x ⎩⎨⎧-==10y x ⎪⎪⎩⎪⎪⎨⎧==2321y x ⎩⎨⎧-=-=+13y x y x ⎩⎨⎧=-=12y x ⎩⎨⎧-=+=-322y nx m y x ⎩⎨⎧=+=+944235y x y x四、互动体验1.下列有四对数值 ① ② ③ ④是二元一次方程x+y=3的解;是二元一次方程x-y=-1的解;是二元一次方程组 的解。

二元一次方程组导学案

二元一次方程组导学案

《8.1 二元一次方程组 》导学案编写 班级 审核 时间 学习目标:1、能说出二元一次方程、二元一次方程组和它的解的概念,会检验所给的一组未知数的值是否是二元一次方程、二元一次方程组的解。

2、能设两个未知数并列方程组表示实际问题中的两种相关的等量关系。

3、学会运用数学知识去分析问题、解决问题。

重点难点:二元一次方程(组)及其解的内涵。

导学过程 一、自主学习阅读教材第87页至88页完成下列各题: 1、(1)什么是方程? 。

请你写出一个方程 (2)一元一次方程中“元”是指 ,“次”是指 。

叫做一元一次方程。

一元一次方程的标准形式是(3)什么是方程的解?x=1是不是方程2x -5=3的解?x=4呢?(4)用字母表示等式的两条基本性质 2.(1)看图,分析信息,用过去所学知识列方程解答问题;设老牛驮了X 个包裹,则小马驮了 个可列方程 设老牛驮了X 个包裹,小马驮了Y 个包裹.根据题意得到方程:(2)观察上述方程:未知数有个,含有未知数的项最高次数是 等号两边都是整式。

二.元一次方程.....:是指含有..... ,并且含有未知数的项..........的次数都是..... 的.整式方程....叫做二...元一次方程.....。

.试写出一个二元一次方程 。

练习A :下列方程中哪些是二元一次方程在是的后面打勾。

(1) x = y ( ) (2) 2x = 6 - x ( ) (3) x 2 + y = 20 ( ) (4) xy + y = 7( )(5) 2x + 6y = 14 ( )(6) π+ y + z = 9( )(7)321=+yx ( )讨论:a+b=b+a 是不是二元一次方程?(2)二元一次方程组:是指把具有相同未知数的两个 合在一起就组成了二元一次方程组(一般用大括号组合)。

试写出一个二元一次方程组 。

练习见长江作业。

3、(1)二元一次方程的解:使二元一次方程两边的值数的值,叫做二元一次方程的解。

(完整)《二元一次方程组》全章导学案

(完整)《二元一次方程组》全章导学案

导学案 7。

1 二元一次方程组和它的解一、学习目标:1、弄懂二元一次方程、二元一次方程组和它的解的含义;2、会检验一对数是不是某个二元一次方程组的解。

二、学习重点1、弄懂二元一次方程、二元一次方程组和它的解的含义;2、会检验一对数是不是某个二元一次方程组的解。

三、自学指导1:1、回忆:一元一次方程的一元指的是_______,一次指的是_________2、请认真看P22的问题1.试试: (1)用算术方法解答问题(2)用一元一次方程解答问题(3)完成探索中的表格(4)回答右边第二个问题:这两个方程有什么共同的特点?(5)什么叫二元一次方程?二元指的是_________,一次指的是________ (6)什么叫二元一次方程组?看完后,比比看有谁能回答这些问题.四、自学检测1:(1)判断下列方程是否为二元一次方程2x+3y=7 2a —3=6 22310x x +-= xy+3=4 3x —y=1 你能说出二元一次方程的特点有几个吗?(2)判断下列方程是否为二元一次方程组2x+3y=7 3x —y=1 3a –n=41 x-3y=8 5a+b=2 3x —y=1 2a –3=m xy=6 5b+a=3请你说说二元一次方程组有哪些特点?五、自学指导2: 阅读书本P23 后思考:什么是二元一次方程的解?什么是二元一次方程组的解?如何检验一对数值是某个方程组的解?(5分钟后看看谁能起来回答这些问题)六、自学测试2:1、下面4组数值中,哪些是二元一次方程2x+y=10的解?312=+yx 312=+y xx= –2 x=3 x=6 y= 6 y=4 y= –2从这个题目,大家一起思考一下二元一次方程的解只有一个吗?2、下列2组数值中, 哪一组是二元一次方程组 2x+3y=4 的解 x= –1 x=1 3x-y=-5y= 2 y= –2从这个题目,大家一起思考一下,二元一次方程组的解只有一组吗?七、加强训练:1、若212-m x+1+312-n y=0是二元一次方程,则m=______ ,n= ______;2、二元一次方程 3x+2y=12的解有_____个,正整数解有______个,分别是__________________;3、设甲数为x ,乙数为y ,根据下列语句,列二元一次方程。

2020初一数学第二节 二元一次方程组导学案

2020初一数学第二节  二元一次方程组导学案

第二节二元一次方程组导学案一、预习导航复习:(1)二元一次方程的定义(2)二元一次方程的解(3)二元一次方程解的不唯一性(无数个解)二、探索新知(二元一次方程组和二元一次方程组解的概念)二元一次方程组定义(创设情境,观察归纳):一个苹果和一个梨的质量合计200g,这个苹果的质量加上一个10g的砝码,恰好与这个梨的质量相等,问苹果和梨的质量各是多少克?(1)若用一元一次方程来解决问题,该怎么设?方程是什么?(2)如果设苹果和梨的质量分别为x g和yg,你能列出几个方程呢?方程是什么?(观察所列得的方程,有什么特点,你能说出二元一次方程组的定义吗)二元一次方程解的定义(探究体会)完成书本做一做第一题,已知方程x+y=200和y=x+10,通过填写表格观察,有没有这样的解,它既是方程x+y=200的一个解,又是方程y=x+10的一个解?能自行归纳二元一次方程组解的概念吗?三、例题解析,尝试应用例:北京2008年奥运会跳水决赛的门票价格如下表:小聪购买了B等级和C等级的跳水决赛门票共6张,他发现购买者6张门票所花的钱恰好能购买3张A等级门票。

如果设小聪购买B等级和C等级门票分别为x张和y张,请根据问题中的条件列出关于x,y的方程组,并且列表尝试的方法求两种门票的数量。

思考:(1)x,y必须取什么样的数?(为什么?)(2)x的最小可能性是多少?列表尝试法一般步骤:1.尝试在一定范围内先确定满足其中一个方程的一些解;2.再代入另一个方程检验解是否满足另一个方程;3.同时满足这两个方程的解就是方程组的解。

练一练:已知 是方程组 的解,求 的值思维挑战:用8块相同的长方形地砖拼成 一个矩形,每个小长方形的长宽如图,请列出关于x 、y 的方程组?四、小结今天的数学学习,你有怎样的体会和收获呢?1,2-==y x y x a by ax 2)1(5=--=+b a,。

《二元一次方程组》精品导学案 人教版七年级数学下册学案

《二元一次方程组》精品导学案 人教版七年级数学下册学案

初中数学七年级下册第八章二元一次方程组学案〔人教版〕学习目标1. 掌握二元一次方程和二元一次方程组的概念2. 了解二元一次方程和二元一次方程组的解, 会求二元一次方程的正整数解 新知形成知识点一、二元一次方程组的概念方程含有两个未知数, 并且含有未知数的项的次数都是1, 这样的方程叫二元一次方程 知识点二、二元一次方程的一般形式c by ax =+(c b a 、、为常数, 并且00≠≠b a ,)知识点三、二元一次方程的解使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解, 一个二元一次方程一般有无数组解.知识点四、二元一次方程组方程组含有两个未知数, 并且含有未知数的项的次数都是1, 这样的方程组叫二元一次方程组. 使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解, 一个二元一次方程组一般有一个解. 稳固练习例1.{x =−3y =−2是方程组{ax +c(y −1)=2cx −by =5的解, 那么 a , b 间的关系是〔〕A. 3a +2b =−3B. 3a +2b =3C. 3a −2b =7D. −3a +2b =−7 B【解析】解:将{x =−3y =−2代入方程组{ax +c(y −1)=2cx −by =5,得:{−3a −3c =2①−3c +2b =5②,由①式得:−3c =2+3a ①, 将①式代入①式得:3a +2b =3,故答案为:B .【分析】将方程组的解代入方程, 得到参数的方程组, 然后用代入消元法消去c , 即可得到a 、b 的关系式. 例2把二元一次方程2x −7y =8, “用含有一个未知数的代数式来表示另一个未知数〞, 其中变形错误的选....项是..〔〕 A. x =7y+82B. x =4+72yC. y =27x −87D. y =−27x +8D【解析】用含有x 的代数式来表示y, 那么2x −7y =8可得x =7y+82, 即x =4+72y ;用含有y 的代数式来表示x, 那么2x −7y =8可得y =27x −87, 故结合选项可知D 符合题意.【分析】对二元一次方程2x −7y =8进行移项和系数化为1, 再对选项进行分析即可得到答案.1.x 2m -1+3y 4-2n =7是关于x, y 的二元一次方程, 那么m, n 的值为〔〕. A. m=2, n=1 B.m=1, n= -32C. m=1, n= 52D. m=1, n= 322.以下方程中, 是二元一次方程的是〔〕.A. 3x −2y =4zB. 6x +9=0C. 4x =y −2D. 1x +2y =3 3.以下方程组中是二元一次方程组的是〔〕A. {x +y =3xy −1=0B. {x +3=42y−1=0C. {2x −y =3y +z =0D. {x 2−y =3y +2=04.以下某个方程与x −y =3组成方程组的解为{x =2y =−1, 那么这个方程是〔〕A. 3x −4y =10B. 12x +2y =3C. x +3y =2D. 2(x −y)=6y5.{x =2y =1是关于x 、y 的方程2x − y+3k =0的解, 那么k 的值为〔〕 A. − 1 B. 2 C. 0 D. 1 6.二元一次方程2x -y =11的一个解可以是〔〕A. {x =1y =9B. {x =4y =3C. {x =5y =−1D. {x =7y =−37.关于x 、y 元一次方程x +2y =2020的解, 以下说法正确的选项是〔 〕. A. 无解B. 有无数组解C. 只有一组解D. 无法确定8.假设{x =2y =3, 是关于x, y 的方程组{ax −y =3x −by =−1的解, 那么a+b 的值是( )A.5B.3C. -1D.49.二元一次方程2x+y=11的非负整数解有〔〕A.1个B.2个C.6个D.无数个10.假设点P〔x, y〕的坐标满足方程组{x+y=kx−y=6−3k, 那么点P不可能在〔〕A.第一象限B.第二象限C.第三象限D.第四象限参考答案1. D2. C3. D4. A5. A6. C7. B8. D9. C 10. C第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y是x的函数的是()5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x表示乘公共汽车的站数, y表示应付的票价.x/站12345678910y/元1112233344A.y是x的函数B.y不是x的函数C.x是y的函数D.以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h(单位:m)与上的台阶数m(单位:个)之间的函数关系式是() A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是()9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是() A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是()A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是()A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表:信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4设购置(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x吨, 这批原材料能用y天, 那么y与x之间的函数表达式为〔〕A.y=100x B.y=C.y=+100D.y=100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m3的圆柱形煤气储存室, 那么储存室的底面积S〔单位:m2〕与其深度d〔单位:m〕的函数图象大致是〔〕A.B.C.D.3.甲、乙两地相距s〔单位:km〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y〔单位:h〕关于行驶速度x〔单位:km/h〕的函数图象是〔〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热, 水温开始下降, 此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕10080604020压强y〔kPa〕6075100150300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32B.x≤32C.x>32D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k=〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2〕成反比例函数关系〔如图〕.当该物体与地面的接触面积为m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200240250400销售量y〔双〕3025241513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小,此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100125200250…镜片与光斑的距离y/m…1…如果按上述方法测得一副老花镜的镜片与光斑的距离为m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mg.研究说明当每立方米空气中含药量低于mg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕4006258001000 (1250)镜片焦距x〔cm〕251610 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.实验数据显示, 一般成人喝半斤低度白酒后, 小时内其血液中酒精含量y〔毫克/百毫升〕与时间x〔时〕成正比例;小时后〔包括小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式〔2〕当每立方米空气中的含药量低于mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?〔3〕当室内空气中的含药量每立方米不低于mg的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y是x的函数的是()5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x表示乘公共汽车的站数, y表示应付的票价.x/站12345678910y/元1112233344A.y是x的函数B.y不是x的函数C.x是y的函数D.以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h(单位:m)与上的台阶数m(单位:个)之间的函数关系式是()A.h=6m B.h=6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是()9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是() A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是()A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是()A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4设购置(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。

二元一次方程组导学案

二元一次方程组导学案

8.1 二元一次方程组学习目标:1、通过观察,归纳二元一次方程的概念 ,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个数是它的解。

重点:二元一次方程、二元一次方程组、二元一次方程组的解,以及检验一对数值是不是某个二元一次方程组的解;难点:二元一次方程组的解的概念。

一、自主预习:1.___________________________________________________叫做二元一次方程注意:(1)定义中未知数的项(单项式)的次数是1,而不是指两个未知数的次数都是1;(2)二元一次方程的左边和右边都应是整式;2、二元一次方程的解:使二元一次方程两边的值_____的两个未知数的_______叫做二元一次方程的解。

3.________________________________________叫做二元一次方程组。

4.使二元一次方程组的两个方程左右两边的值__________的两个未知数的_______叫做二元一次方程组的解.即:二元一次方程组的两个方程的________解叫做二元一次方程组的解。

二、合作解疑:(1)、判断下列方程是否为二元一次方程?并说明理由。

①y x 23+ ②74=-y x ③62=+y x④23+=xy x ⑤z y x =-43 ⑥y x 312=-(2)、已知x 、y 都是未知数,判别下列方程组是否为二元一次方程组?并说明理由。

① ⎩⎨⎧=+=+75243y x y x ② ⎩⎨⎧=+=32y x xy ③ ⎩⎨⎧+==+z y y x 75 ④ ⎩⎨⎧=+=823155y x y (3)方程(m +1)x +(m -1)y =0,当m______时,它是二元一次方程,当m______时,它是一元一次方程.(4)、把下列方程写成用含x 的代数式表示y 的形式x+y=10 2x+y=20 2x+3y=25三、限时检测:1.已知下面三对数值: 2.下面三对数值:⎩⎨⎧-==20y x ⎩⎨⎧-==32y x ⎩⎨⎧-==51y x ⎩⎨⎧-==11y x ⎩⎨⎧==12y x ⎩⎨⎧==54y x (1)哪几对是方程2x-y=7的解; 哪一对是二元一次方程组的解?(2)哪几对是方程x+2y=-4的解? (1)⎩⎨⎧=+=-104332y x y x (2)⎩⎨⎧=--=13432y x x y 3.判断⎩⎨⎧==26y x 是不是二元一次方程⎩⎨⎧=-=-192325y x y x 的解?4、写出以x=1,y=2为解的二元一次方程组。

初中数学人教版七年级下册《 二元一次方程组》全单元导学案

初中数学人教版七年级下册《 二元一次方程组》全单元导学案

8.1 二元一次方程组(第1课时)学案【学习目标】1.认识并会判断区分二元一次方程和二元一次方程组2.会求二元一次方程和二元一次方程组的解,并会通过检验一对数值是不是二元一次方程(组)的解.【重点难点】重点:二元一次方程(组)的含义及检验一对数是否是某个二元一次方程(组)的解.难点:求二元一次方程的正整数解.【学前准备】1.知识回顾:(1)方程的概念; (2)一元一次方程的概念;(3)求方程的解? (4)一元一次方程的解如何表示?2.合作学习:①小红到邮局寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?这个问题中有几个未知数?能列一元一次方程求解吗?如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,列出方程:②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,列出方程:【课中探究】问题一:CBA联赛中,每场比赛都要分出胜负,每队胜1场得2分,负一场得1分.山东黄金队为了争取好名次,想在全部22场比赛中得到40分,那么这个队胜负场数应分别是多少?1.问题中包含了那些必须同时满足的条件?请用我们学过的知识解答这个问题。

⑴、若设胜x 场,则:列方程得:2.能不能根据题意直接设两个未知数 ⑵、若设胜x 场,负y 场,则: 可以列出的方程是:观察⑵中的两个方程有什么特点?与⑴中一元一次方程有什么不同?总结:每个方程都含有_ ____个未知数,并且含有未知数的项的次数都是 ___,像这样的方程叫做二元一次方程. 问题二:探究⑴满足方程x +y =22,且符合问题意义的x 、y 的值有哪些? 把它们填在表中.若不考虑实际意义当x =-1时 y = x =0.5时y = 探究⑵上表中哪对x 、y 的值还满足方程2x +y =40?同时满足方程(1)和(2)的一对未知数的值叫 【尝试应用】1.下列各式是不是二元一次方程,为什么?①3x +2y ② 2-x +3+5=0 ③ 3x -4y =z ④x +xy =1 ⑤x 2+3x =5y ⑥7x -y =0 2.下列方程组是不是二元一次方程组?⎩⎨⎧=+=+75243y x y x ⎩⎨⎧=+=7524y x xy⎩⎨⎧=+=+7243z x y x ⎩⎨⎧=+=+752432y x y x ⎩⎨⎧=+=74y x x3.已知下列三对值:⎩⎨⎧-=-=96y x ⎩⎨⎧-==610y x ⎩⎨⎧-==110y x 哪几对数值使方程21x -y =6的左、右两边的值相等?哪几对数值是方程组 1622311x y x y ⎧-=⎪⎨⎪+=-⎩的解?【当堂达标】1.下列方程中,是二元一次方程的是( )A .3x -2y=4zB .6xy+9=0C .1x+4y=6 D .4x=24y - 2.下列方程组中,是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y xx y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 3.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( )A .246246216246 (22)222222x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩4.二元一次方程x+y=5的正整数解有______________.5.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.6.已知12x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41x y =⎧⎨=⎩.8.2消元——二元一次方程组的解法(第1课时)【学习目标】1.掌握代入消元法解二元一次方程组的步骤2.能够熟练运用代入法解二元一次方程组【重点难点】重点:熟练运用代入法解二元一次方程组难点:如何用代入法将“二元”转化为“一元”的消元过程【学前准备】x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.1.在二元一次方程-122.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.3.已知方程x-2y=8,用含x的式子表示y,则y =_________________,用含y的式子表示x,则x =________________.4.设第一个数是第二个数的2倍,第一个数与第二个数的2倍之和为20,求这个数?【课中探究】鸡兔同笼问题:今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何?方法一:解设有x只鸡,则有)(x只兔子.根据题意得:35方法二:解设有x只鸡,有y只兔,根据题意得:上面的方程和方程组有什么联系?能否讲方程组转化为方程⑴、由x + y=35 可得y=⑵、把2x+4y=94中的y 换成35-x就化为一元一次方程总结:将未知数的个数由多化少、逐一解决的想法是消元思想,二元一次方程组中一个方程的一个未知数用含另一未知数的式子表示出来,再代入另一方程的方法是代入消元法.【尝试应用】1.你能把下列方程写成用含x 的式子表示y 的形式吗?⑴ 2x -y =3 ⑵ 3x +y -1=02.例题:用代入法解方程组⎩⎨⎧=-=-14833y x y x3.你能选择合适的未知数进行代换,解出下列各题吗?(1)⎩⎨⎧=+=+1737y x y x (2)⎩⎨⎧=-=-322872x y y x4.用代入法解下列方程组:(1)⎩⎨⎧=+-=;823,32y x x y (2)⎩⎨⎧=+=-.243,52y x y x【当堂达标】1.在方程427x y -=中,如果用含有x 的式子表示y ,则y =_____. 2.在二元一次方程2()15x y x y ++=-中,当3y =时,x =_____.3.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是3:2,求这两种各有多少个?若设篮球有x 个,排球有y 个,则依题意得到的方程组是_____. 4.解方程组:(1)25437x y x y +=⎧⎨+=⎩,; (2)74321432x yy x ⎧+=⎪⎪⎨⎪+=⎪⎩,.5.列方程组解答将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?8.2消元——二元一次方程组的解法(第2课时)【学习目标】1. 能熟练运用代入消元法解二元一次方程组,并会列二元一次方程组解简单的实际问题.2. 灵活掌握代入法解二元一次方程组的技巧. 【重点难点】重点:熟练用代入法解二元一次方程组及列二元一次方程组解简单应用题. 难点:找应用题中满足的条件 【学前准备】1.已知二元一次方程3x+21y –1=0,用含y 的代数式表示x ,则x =_________;当y =-2时,x =___ ____.2.若方程组⎩⎨⎧=-=+137by ax by ax 的解是⎩⎨⎧-=-=12y x ,则a =_ _,b = _ .3.小红有5分和2分的硬币共20枚,共6角7分,设5分硬币有x 枚,2分硬币有y 枚,则可列方程组为 .4.用代入法解下列方程组⑴ 10325u v u v +=⎧⎨-=⎩ ⑵ ⎩⎨⎧=+=-173262y x y x1.七年级(3)班在上体育课时,进行投篮比赛,体育老师做好记录,并统计了在规定时间内投进n 个球的人数分布情况,体育委员在看统计表时,不慎将墨水同时,已知进球3个和3个以上的人平均每人投进3.5个球;进球4个和4•个以下的人平均每人投进2.5个球,你能把表格中投进3个球和投进4个球对应的人数补上吗?2.为了保护环境,某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1•号电池和5号电池每节分别重多少克?分析:如果1号电池和5号电池每节分别重x 克,y 克,则4克1号电池和5节5•号电池总重量为 克,2节1号电池和3节5号电池总重量为 克. 请同学们独立完成,写出解答过程解:设1号电池每节重x 克,5号电池每节重y 克,根据题意可得 【尝试应用】 1.方程组125x y x y -=⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=-⎩ C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩ 2.用代入法解方程组①⎩⎨⎧=-=+1126723t u t u ②⎩⎨⎧=--=-3435x 2y x y3.师傅对徒弟说“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的人了”.问这位师傅与徒弟现在的年龄各是多少岁?1.二元一次方程组32325x y x y -=⎧⎨+=⎩的解是( )A .3217 (23)122x x x x B C D y y y y =⎧⎧===⎧⎧⎪⎪⎨⎨⎨⎨==-=⎩⎩⎪⎪=⎩⎩ 2.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax+by=7的解,则a=_______,b=______. 3.解方程组(1)257320x y x y -=⎧⎨-=⎩ (2)⎩⎨⎧=-=+15234932y x y x4.王大伯承包了25亩土地,•今年春季改种茄子和西红柿两种大棚蔬菜,•用去了44000元,其中种茄子每亩用了1700元,获纯利2400元,种西红柿每亩用了1800元,•获纯利2600元,问王大伯一共获纯利多少元?8.2消元——二元一次方程组的解法(第3课时)【学习目标】1. 会运用加减消元法解二元一次方程组.2. 进一步体会解二元一次方程组的基本思想----“消元”. 【重点难点】重点:用加减法解二元一次方程组难点:灵活对方程进行恒等变形使之便于加减消元解下列方程组:⎩⎨⎧-=+=-2244)1(y x y x ⎩⎨⎧=-=+5231323)2(y x y x 【课中探究】1、解方程组:⎩⎨⎧-=+=-252132y x y x ⎩⎨⎧=-=+437835y x y x方程组⎩⎨⎧-=+=-252132y x y x 中,x 的系数特点是______;方程组⎩⎨⎧=-=+437835y x y x 中,y 的系数特点是________.这两个方程组用______法解比较方便. 2、解出以上两个方程组解方程组: ⎩⎨⎧=+=+15432525y x y x方程组中的x 、y 的系数特点是 ,讨论用加减法怎样去解. 总结:两个二元一次方程中同一未知数的系数 时,将两个方程的两边分别 ,就能消去这个未知数,得到一个一元一次方程,这种方法叫 【尝试应用】1.用加减法解下列方程组34152410x y x y +=⎧⎨-=⎩较简便的消元方法是:将两个方程_______,消去未知数2.已知方程组2332x x -⎧⎨+⎩ ,,用加减法消x 的方法是__________;用加减法消y 的方法是.3.用加减法解下列方程时,你认为先消哪个未知数较简单,填写消元的过程.(1) 32155423x y x y -=⎧⎨-=⎩ 消元方法___________.(2) 731232m n n m -=⎧⎨+=-⎩消元方法____________.4.解方程组:(1) 23123417x y x y +=⎧⎨+=⎩ (2) ⎩⎨⎧=-=+33651643y x y x让我们总结一下这节课的内容吧:加减消元法的步骤:①将原方程组的两个方程化为有一个未知数的系数_____________的两个方程.②把这两个方程____________,消去一个未知数.③解得到的___________方程.④将求得的未知数的值代入原方程组中的任意一个方程,求另一个未知数的值.⑤确定原方程组的解. 【当堂达标】1.方程组⎩⎨⎧=+=-521y x y x 的解是( )A .⎩⎨⎧=-=21y x B. ⎩⎨⎧-==12y x C. ⎩⎨⎧==21y x D. ⎩⎨⎧==12y x 2.如果⎩⎨⎧=+=-12232n m n m ,那么=+-35n m .3.解下列方程组:(1) ⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x8.2消元——二元一次方程组的解法(第4课时)【学习目标】1. 能熟练利用代入法和加减法解二元一次方程组2. 能利用二元一次方程组解决简单的实际问题 【重点难点】重点:熟练利用代入法和加减法解二元一次方程组 难点:根据方程组特点,灵活选择方法 【学前准备】1. 请选择适当的方法解下列方程组.⑴⎩⎨⎧=+=+2.54.22.35.12y x y x ⑵⎩⎨⎧=-=+5231284y x y x【课中探究】2台大收割机和5台小收割机均工作两小时共收割小麦3.6公顷,3台大收割机和2台小收割机均工作两小时共收割小麦8公顷,1台大收割机和1台小收割机每小时各收割小麦多少公顷?分析:如果1台大收割机和1台小收割机每小时各收割小麦x 公顷和y 公顷,•那么2台大收割机和5台小收割机1小时收割小麦______公顷,3台大收割机和2•台小收割机1小时收割小麦_______公顷.解:设1台大收割机和1台小收割机1小时各收割小麦x 公顷和y 公顷.•根据两种工作方式中的相等关系,得方程组(请同学们列出方程组,并讨论用什么方法解方程组) 【尝试应用】1.用加减法解下列方程组34152410x y x y +=⎧⎨-=⎩较简便的消元方法是:将两个方程_______,消去未知数_______.2.用加减法解下列方程时,你认为先消哪个未知数较简单,填写消元的过程.32155423x y x y -=⎧⎨-=⎩ 消元方法___________.731232m n n m -=⎧⎨+=-⎩ 消元方法_____________.3.二元一次方程组941611x y x y +=⎧⎨+=-⎩用代入法求解最好把 变形,再代入_______. 4.用适当的方法解方程组.⑴⎩⎨⎧=+=+944235y x y x ⑵⎩⎨⎧+=-=+)2(4)4(334343y x x y【当堂达标】1.将方程3x-y=1变形成用y 的代数式表示x ,则x =___________.2. 在y kx b =+中,当1x =时,4y =,当2x =时,10y =,则k = ,b = .3. 若2(341)3250x y y x +-+--=则x =( )A .-1B .1C .2D .-24.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( )A 、 ⎩⎨⎧=++=x y x y 5837 B 、⎩⎨⎧=-+=x y x y 5837 C 、⎩⎨⎧+=-=5837x y x y D 、⎩⎨⎧+=+=5837x y x y5.解方程组(1)⎩⎨⎧=+=-923132v u v u (2)⎩⎨⎧=+=-1732623y x y x6.运输360吨化肥,转载了6节火车皮和15辆汽车;运输440吨化肥,转载了8节火车皮和10辆汽车,每节火车皮与每辆汽车平均各装多少吨化肥?8.3实际问题与二元一次方程组(第1课时)学案【学习目标】1.知道用方程组解决实际问题的一般步骤.2.会找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.【重点难点】重点:会用列方程组的方法解决实际问题.难点:会找出简单的实际问题中的数量关系.【学前准备】1.你还记得列方程解应用题的步骤吗?(1)_______________(2)_______________(3)_______________(4)_______________(5)_______________2.买12支铅笔和5本练习本,铅笔每支x元,练习本每本y元,共需4.9元,则列关于的二元一次方程是_____________________ .3.30只大牛和15只小牛1天约用饲料675kg,若每只大牛1天约用饲料xkg,,每只小牛1天约用饲料y kg,列方程为____________________________.又购进12只大牛和5只小牛,这时1天约用饲料940 kg,此时列方程为__________________________ .【课中探究】看一看课本105页探究1想一想问题1:你能用自己的语言清晰、条理的把问题叙述一遍吗?问题2:问题中有哪些已知量?哪些未知量?问题3:问题中等量关系有哪些?本题的等量关系是(1)30只大牛和15只小牛一天需用饲料为675kg(2)____________________________________________ .做一做如何解这个应用题?解:设每只大牛和每只小牛1天各约用饲料为x kg和y kg 根据上面的两种情况的饲料用料,找出相等关系,列方程,得_______________________________(1)_______________________________(2)⎧⎨⎩ 解这个方程组得⎩⎨⎧==__________________y x 答:每只大牛和每只小牛1天各约需饲料为20kg 和5 kg ,因此饲养员李大叔估计每天大牛约需饲料18~20千克较准确,每只小牛一天约需饲料7~8千克偏高. 【尝试应用】有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨, 3辆大车与5辆小车一次可以运货多少吨?【当堂达标】1、甲乙两数的和为10,其差为2,若设甲数为x ,乙数为y ,则可列方程组为2.今年哥哥的年龄是妹妹的2倍,2年前哥哥的年龄是妹妹的3倍,求2年前哥哥和妹妹的年龄,设2年前哥哥x 岁,妹妹y 岁,依题意,得到的方程组是( )A .23(2),2x y x y +=+⎧⎨=⎩B .23(2),2x y x y -=-⎧⎨=⎩C .22(2),3x y x y +=+⎧⎨=⎩D .23(2),3x y x y -=-⎧⎨=⎩3.某学校现有甲种材料35㎏,乙种材料29㎏,制作A 、B 两种型号的工艺品,(1)利用这些材料能制作A 、B 两种工艺品各多少件?(2)若每公斤甲、乙种材料分别为8元和10元,问制作A 、B 两种型号的工艺品各需材料多少钱?8.3实际问题与二元一次方程组(第2课时)学案【学习目标】1.体会一题多解,学习从多种角度考虑问题.2.读懂并找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.【重点难点】重点:会从多种角度考虑用列方程组的方法解决实际问题.难点:会找出简单的实际问题中的数量关系.【学前准备】1.小麦、玉米两种作物的单位面积产量的比是1:1.5,你能说明它的含义吗?(可以举例说明)2.“甲、乙两种作物的总产量的比是3 : 4”是什么意思?3.总产量与哪些量有关?4.阅读课本106页探究2,按题的要求你能有几种方法划分这块土地,请你试着画出草图并思考:本题中有哪些等量关系?【课中探究】甲、乙两种作物的单位面积产量的比是1:1.5,那么甲和乙相同的3个单位面积的总产量的比是__________,这与问题中要达到的结果“甲、乙两种作物的总产量的比是3 : 4”比较,你发现作物_______的种植面积要减少,作物____的种植面积要增加.从而估计这块土地划分后较大一块土地种________种作物,较小一块土地种________种作物.想一想探究问题中划分土地时应注意什么要求?(1)__________________________________________.(2)__________________________________________ .做一做如何达到这些要求?解:如图,一种种植方案为:甲乙两种作物的种植区域分别为长方形AEFD 和BCFE.此时设AE=xm,BE=ym,由AB=AE+BE,得方程___________________________.(1)由总产量的比3:4的数量关系得方程_________________________.(2)列出方程组______________________________(1) ______________________________(2)⎧⎨⎩解这个方程组得⎩⎨⎧==__________________y x 答:这两个长方形,是过长方形ABCD 土地的长边上离一端A 约________米处,把这块土地分为两块长方形土地.较大一块土地种_______种作物,较小的一块土地种_________种作物. 【尝试应用】1.木工厂有28个工人,每个工人一天加工桌子数与加工椅子数的比是9:20,现在如何安排劳动力,使生产的一张桌子与4只椅子配套?2.一个长方形,它的长减少4cm ,宽增加2cm ,所得的是一个正方形,它的面积与长方形的面积相等,求原长方形的长与宽.完成后与小组同学交流,说说你找出的等量关系.小组间交流.【当堂达标】1.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?设生产螺栓x 人,生产螺帽y 人,列方程组为( )A .B . C. D.2.一张试卷有25道选择题,做对一题得4分,做错一题或不做扣1分.小英做了全部试题得70分,则她做对了________道题.3.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,用多少张铁皮做盒身,多少张铁皮做盒底可以使盒身与盒底正好配套?⎩⎨⎧==+y x y x 241590⎩⎨⎧=-=x y y x 154890⎩⎨⎧==+y x y x 243090⎩⎨⎧=--=yx xy 24)15(2908.3实际问题与二元一次方程组(第3课时)学案【学习目标】1.体会方程组是解决含有多个未知数问题的重要工具.2.读懂并能找出实际问题中的各种形式表达的数量关系,列出方程组,得出问题的解答.【重点难点】重点:用列方程组的方法解决实际问题.难点:会找出简单的实际问题中的数量关系.【学前准备】1.某运输队的公路运价为1.5元/(吨·千米),你能举例说明其含义吗?若已知运输35吨货物100千米需支付___________元的费用.2.阅读探究3思考:销售款与__________有关,原料费与___________有关,运输费与________有关.结合问题可知题目所求数值是__________________________,为此需先求出_________和________ .【课中探究】看一看:看探究3的问题及图8.3-2说一说已知量和未知量有哪些?想一想:从未知量中选取哪些量设为未知数较好?做一做:解:设产品重x吨,原料重y吨,由两次公路运费共15000元,列方程为______________________(1)由两次铁路运费共97200元,列方程为_______________________(2).列方程组_____________________(1) _____________________(2)⎧⎨⎩解这个方程组,得 ________________x y =⎧⎨=⎩因此,销售款为______________元,原料费与运输费的和为___________元,则这批产品的销售款比原料费与运输费的和多_______________元 【尝试应用】从甲地到乙地的路有一段上坡与一段平路.如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲地到乙地需54分,从乙地到甲地需42分.甲地到乙地全程是多少?【当堂达标】1.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( )A .27,2366x y x y +=⎧⎨+=⎩B .27,23100x y x y +=⎧⎨+=⎩C .27,3266x y x y +=⎧⎨+=⎩D .27,32100x y x y +=⎧⎨+=⎩2.用1块A 型钢板可制成2块C 型钢板,1块D 型钢板;用1块B 型钢板可制成1块C 型钢板,2块D 型钢板.现需15块C 型钢板,18块D 型钢板,可恰好用A 型钢板,B 型钢板各多少块?8.4三元一次方程组解法举例(第1课时)学案【学习目标】1.会辨别三元一次方程组.2.会用消元法解三元一次方程组. 【重点难点】重点:用消元法解三元一次方程组.灵活地化三元一次方程组为二元一次方程组. 【学前准备】1.二元一次方程组中有两个未知数,我们通过_________思想,将未知数的个数由多化少,转化为_____________方程,先求出一个未知数,然会再求另一个未知数,逐一解决.2.二元一次方程组的解法有__________和 _________.试根据下面方程组的的具体情况判断选择更适合它的解法:⑴3(1)3814(2)x y x y =+⎧⎨-=⎩ ⑵3416(1)5633(2)x y x y -=⎧⎨-=⎩ 【课中探究】[探究一].看问题,想问题:小明手头有12张面额分别为1元、2元、5元的纸币,共计22元.其中1元的纸币的数量是2元纸币数量的4倍.求1元、2元、5元的纸币各多少张. 1.设2个未知数你怎么想?设3个未知数你又怎么想?2.设3个未知数时,你可以列出几个方程?你列出的方程与问题的解有什么关系?3.类比二元一次方程组,因此,我们把这三个方程合在一起,写成_______________________(1)_______________________(2)_______________________(3)⎧⎪⎨⎪⎩4.观察这个方程组,含有_____个相同的未知数,每个方程中含___________的次数都是____,并且一共有_____个方程,像这样的方程组叫做___________________.5.试一试,练一练:⑴下列方程组是三元一次方程组的是( )A . 3583221x y z x y m x y z ++=-⎧⎪++=⎨⎪-+=⎩B .523x y z =⎧⎪=⎨⎪=⎩C .318x y y z z w +=⎧⎪+=-⎨⎪+=⎩D .9220a b d ab a b d +=⎧⎪-=⎨⎪-+=⎩⑵若41(1)4m m x y z ++++=是关于x ,y ,z 的三元一次方程组,则m=___.[探究二]1.我们知道,二元一次方程组可以利用代人法或加减法消去一个未知数,化为一元一次方程求解.请你类比说一说三元一次方程组怎么求解?2.试一试:试着求解我们前面列出的三元一次方程组. 3.总结:解三元一次方程组的基本思路是:−−→−−→4.典型例题解三元一次方程组3472395978x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩说一说化为二元一次方程组时消去哪一个未知数更简便一些. 【尝试应用】解方程组345x y y z z x +=⎧⎪+=⎨⎪+=⎩完成后与小组同学交流,说说你找出的消元方法.小组间交流. 【当堂达标】1. 解方程组:2333215x y z x y z x y z -+=⎧⎪+-=-⎨⎪++=⎩(1)若先消去x,得到的含y ,z 的二元一次方程组是__________________. (2)若先消去y,得到的含x ,z 的二元一次方程组是___________________. (3)若先消去z,得到的含x ,y 的二元一次方程组是____________________.8.4三元一次方程组解法举例(第2课时)学案【学习目标】1.灵活的选取字母作为未知数. 2.会用消元法解三元一次方程组. 【重点难点】重点:用消元法解三元一次方程组.难点:较灵活的化三元一次方程组为二元一次方程组. 【学前准备】1.说一说解三元一次方程组的思路. 2.通过观察方程组如何选择消元方法.3.解三元一次方程组275322344y x x y z x z =-⎧⎪++=⎨⎪-=⎩【课中探究】1.把1,0x y =-=同时代入等式2y ax bx c =++得_____________ __ . 2.把2,3x y ==同时代入等式2y ax bx c =++得______________ ___ . 3.把5,60x y ==同时代入等式2y ax bx c =++得___________________. 4.典型例题例2 在等式2y ax bx c =++中,当1,0x y =-=时;当2,3x y ==时;当5,60x y ==时.求a ,b ,c 的值.【尝试应用】1.甲、乙、丙三数的和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数.2.解方程组::1:2:336x y z x y z =⎧⎨++=⎩(提示:x :y=1: 2可化为y=2x)【当堂达标】1.解三元一次方程组3213272312x y z x y z x y z ++=⎧⎪++=⎨⎪-++=⎩你选择消去未知数________,得到关于_____的二元一次方程组____________________________,解这个二元一次方程组,得______________,原方程组的解是__________________.2.解三元一次方程组3222311410x y z x y z x y z ++=⎧⎪++=⎨⎪--=-⎩3.一个三位数,个位、百位上的数字的和等于十位上的数字,百位上的数字的7倍比个位、十位上的数字的和大2,个位、十位、百位上的数字的和是14.求这个三位数.① ② ③第8章复习课一(解法)学案【复习目标】1.知道二元一次方程组及其相关的概念,能用代入消元法和加减消元法解二元一次方程组.2.能用代入消元法和加减消元法解三元一次方程组 3.能根据方程组的具体形式选择适当的解法. 【知识回顾】1.已知方程①2x +y =3;②x +2=1;③ y =5-x ; ④x -xy =10;⑤x +y +z =6中二元一次方程有_____________.(填序号)2.在方程3x -ay =8中,如果⎩⎨⎧==13y x 是它的一个解,则a 的值为________.3.把面值2元的纸币换成1角或5角的硬币,则换发共有( )种.A .4B .5C .6D .7 4.下列是二元一次方程组的是( ).A . ⎩⎨⎧=-=+523z y y xB .⎩⎨⎧-==+3634x y xC .⎩⎨⎧=-=+21xy y x D .⎩⎨⎧=-=+38232y x y x5.方程组()⎩⎨⎧=+=+3?2y x y x 的解为()⎩⎨⎧==?2y x ,则()?里的两个数分别是( ).A .3,1B .5,1C .2,3D .2,4 6.在3x +4y =9中,如果2y =6,那么x =_______. 7.解下列方程组.⎩⎨⎧-=+=-4272y x y x ⎩⎨⎧=+--=--22)1(3)1(432yx y y x ⎪⎩⎪⎨⎧=+=+=+1053z x z y y x【综合探究】例1.若关于x .y 的二元一次方程组⎩⎨⎧-=-=+323a y x y x 的解均是正数,那么a 的取值范围是( ).A .-3<a <6B .a >6C .a <-3D .不存在例2. 用代入法解方程组 ⎩⎨⎧=-=-14433y x y x例 3.你能选择合适方法,解出下列各题吗?(1)⎩⎨⎧=+=+17372y x y x (2)⎩⎨⎧=-=-302672x y y x【变式练习】例1:解方程组4x-y-1223x y⎧⎪⎨+=⎪⎩()=3(1-y )-2例2:解方程组33231112x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩【当堂达标】1.下列各组数中,不是方程3x-2y-1=0的解的是( )A . x=1, y=1;B . x=2, y=52; C .x=0, y=12-; D. x=2, y=1. 2.已知x + y=4,且x-y=10,则2xy=________ 3.解下列方程组(1)35646y x x y =⎧⎨+=⎩ (2)123x y y z z x +=⎧⎪+=⎨⎪+=⎩第8章复习课二(应用)学案【复习目标】1.进一步巩固二元一次方程组的解法.2.会列方程组表示实际问题中的两种相关的等量关系.3.通过解答实际问题,进一步认识利用二元一次方程组解决问题的基本过程. 【知识回顾】1.用方程组解决下列问题甲、乙两车分别以均匀的速度在周长为600米的圆形轨道上运动.甲车的速度较快,当两车反向运动时,每15秒钟相遇一次,当两车同向运动时,每1分钟相遇一次,求两车的速度.2.你能结合上题说说用方程组解决实际问题的基本思路吗? 【综合探究】1.列一次方程组解应用题列一次方程组解应用题,是本章的重点,也是难点.列二元一次方程组解应用题的一般步骤:(1)审:审题,分析题中已知什么,求什么,理顺各数量之间的关系; (2)设:设未知数(一般求什么,就设什么为x 、y ,设未知数要带好单位名称); (3)找:找出能够表示应用题全部意义的两个相等关系;(4)列:根据这两个相等关系列出需要的代数式,进而列出两个方程,组成方程组;(5)解:解所列方程组,得未知数的值;(6)答:检验所求未知数的值是否符合题意,写出答案(包括单位名称). 归纳为6个字:审,设,找,列,解,答.2.观察下面两幅图谈一谈你对现实中数学的理解和作用.运用方程组解决实际问题的一般过程二元一次方程组的解法二元一次方程组二元一次方程丰富的问?题情境?【变式练习】1.张华到银行以两种形式分别存了2000元和1000元,一年后全部取出,扣除利息所得税后可得到利息43.92元,已知这两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:利息所得税=利息全额×20%;利率问题:利息=本金×利率×时间) 2.一班和二班共有100名学生。

新人教版七年级下第八章二元一次方程组导学案

新人教版七年级下第八章二元一次方程组导学案

课题:8.1二元一次方程组【学习目标】1、了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程与其中的已知数和未知数;2、理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。

【学习重点】1、二元一次方程(组)的含义;2、用一个未知数表示另一个未知数。

【学习难点】检验一对数是否是某个二元一次方程(组)的解;一、【自主学习】---二元一次方程概念1.我们来看一个问题:篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。

某队在10场比赛中得到16分,则这个队胜负场数应分别是多少?思考:以上问题包含了哪些必须同时满足的条件设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗______场数+______场数=总场数; ______积分+______积分=总积分,这两个条件可以用方程x+y=10,2x+y=16 表示。

观察:这两个方程有什么特点与一元一次方程有什么不同归纳:①定义___________________________________________________叫做二元一次方程2.二元一次方程的左边和右边都应是整式②二元一次方程的一般形式:ax + by + c = 0 (其中a≠0、b≠0 且a、b、c为常数)注意:1.要判断一个方程是不是二元一次方程,一般先要把它化成二元一次方程的一般形式,再根据定义判断。

③二元一次方程的解:使二元一次方程两边的值_______的两个未知数的_____叫做二元一次方程的解。

二、【合作探究】----什么是二元一次方程组和它的解二元一次方程组定义:含有 未知数,含有每个未知数的项的次数都是 ,并且一共有 方程,像这样的方程组叫做二元一次方程组。

1. 已知x 、y 都是未知数,判别下列方程组是否为二元一次方程组?并说明理由。

①⎩⎨⎧=+=+75243y x y x ②⎩⎨⎧=+=32y x xy③⎩⎨⎧+==+z y y x 75 ④⎩⎨⎧=+=823155y x y2、把3(x+5)=5(y-1)+3化成ax+by=c 的形式为_____________。

二元一次方程组(导学案)

二元一次方程组(导学案)

二元一次方程组(导学案)七年级数学课题:8.1二元一次方程组(导学案)主备人:研究目标:1.理解二元一次方程、二元一次方程组及其解的含义;2.能够检验一对数是否是某个二元一次方程组的解,并找出一些简单二元一次方程组的解。

一、预导学:1.含有一个未知数,且未知数的次数都是一次的方程叫一元一次方程。

其中,“元”是指未知数,“次”是指未知数的次数。

2.使一元一次方程成立的未知数的值叫一元一次方程的解。

3.一个二元一次方程示例为ax+by=c,其中a、b、c为已知数,x、y为未知数。

解是指使方程成立的未知数的值。

例如,方程2x+y=5的解可以是x=1,y=3.二、自学助学:1.含有两个未知数,且未知数的次数都是一次的方程叫二元一次方程。

2.使二元一次方程成立的未知数的值叫二元一次方程的解。

3.把两个具有相同未知数的二元一次方程合在一起,就组成了一个二元一次方程组。

三、探究研学1.使方程x+y=22成立的符合问题实际意义的值有:x=1,y=21;x=2,y=20;x=3,y=19;……;x=21,y=1.2.使方程2x+y=40成立的符合问题实际意义的值有:x=1,y=38;x=2,y=36;x=3,y=34;……;x=19,y=2;x=20,y=0.3.使方程组2x+y=40,x+y=22成立的符合问题实际意义的值有:x=9,y=13.归纳总结:符合二元一次方程组的解的数对,可以使方程组中的每个方程都成立。

四、实践检验1.x+y=2的正整数解是不存在的。

2.选择方程组x+y=4和2x-z=2组成一个方程组。

3、若 $\begin{cases} 3x-ay=3 \\ y=-3 \end{cases}$ 是一个解,那么 $a$ 的值是多少?4、已知 $3x+4y=9$,且 $2y=6$,求 $x$ 的值。

拓展延伸:求解二元一次方程 $x\mid a-1+(a-2)y=2$,并确定 $a$ 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、判断下列各式哪些是方程?
①3y-2x = z + 5 ②
④X 2 1 ⑤
y
哪些是一元一次方程?
y
l x③ 3 - 2xy =1丫2
4x+ =0 ⑥2x=1-3y 8.1《二元一次方程组》导学案
学习目标
1. 理解二元一次方程(组)及相关概念,会检验一组值是否是二元一次方程(组)的解。

能根据题意列出适当的方程(组)解决实际问题。

2. 经历概念的形成过程,初步培养观察、分析、抽象、概括等思维能力和应用意识。

一、复习回顾:1、七年三班举行一次知识竞赛,共出了20道题,现抽出了4份试卷进行分析如下表:求:(1)答对一题得______________ 分;(2)小明同学说他正好得了60分,请问可能吗?
请说明理由•
二、探究新知:
1、二元一次方程(组)的概念:
① 2x 2 2x 3 48 ② y 2x 3 ③ 2x 2y 48
(1)观察以上所列的方程,它们有何区别:
方程①:含有—个未知数,未知数的次数都是_____________ ,这样的方程叫做 __________ ;
方程②③:含有—个未知数,未知数的次数都是,这样的方程叫做 _____________________
注意:方程两边都是整式
2
练习:1、已知方程⑴ 5x+3y=7 ⑵ 5x-7=2 ⑶ 2xy=1 (4)X -y=1
1
⑸5(x-y)+2(2x-3y)=4 (6)=2其中二元一次方程的个数是()
x y
A、1
B、 2
C、 3
D、4
次方程,求m、n .
例1、方程x m 1 + y 2 n=5是关于x、y二元
练习:若方程9x a 6yb 1
2、使二元一次方程两边的值 ____ 的两个未知数的值,叫做二元一次方程的解。

注意:二元一次方程的解一般要写成x的形式
3
是关于x , y的二元一次方程,则a=_, b= _______________
探究:已知方程
+ = ①填写下表:
例2、已知y 1是关于x、y方程2x-3y+2a=3的一个解,求a的值
3、含有的两个二元一次方程所组成的一组方程叫做二元一次方程组。

注意:①方程组各方程中同一字母必须代表同一个量
x 2 ___
②3也可以看做二元一次方程组
y 3
练习:下列方程组中,是二元一次方程组的有()
x y 9 3 x 9 f — y 3 2x y 1
①(3x 2 y 4 ② |x y 4x 2 ③]x x y 4④7z 3
4、二元一次方程组的两个方程的__________________ ,叫做二元一次方程组的解。

练习:试写出一个二元一次方程组,使它的解是x 1,这个方程组可以是__________________
y 1
(2)用含y 的代数式表示x.
(1)2x y 3
(3)y x 10
例4、已知x + y = 5 (1)用含x 的代数式表示y ;
练习
1把下列方程改写成用含 x
的式子表示y 的形式。

(2)3x y 1 0
2、把下列方程改写成用含 y
的式子表示x 的形式。

(4)
7
x 1y 2 4 4
三、探究提升: 例3、已知关于
x 、y 的方程
ax y 5
的解为
X
2x by 3
y
例5、1、求二元一次方程 x+2y=5的正整数解
练习、写出方程x y 3的两个正数解:(1)
(2)
列二元一次方程组(不求解)
1、某训练基地训练,已知到甲处训练的人数比到乙地训练的人数的2倍少4人,求到甲、
乙两处训练的人数分别是多少?
2、一条船顺流航行,每小时行20km ;逆流航行,每小时16km。

求这条船在静水中的速
度与水的流速。

3、某一农户养了若干只鸡和兔子,它们一共有24个头和74只脚,求这个农户一共养了
多少只鸡和兔子?
4、运往某地的救灾物资,第一批运走460吨,共用10节火车皮和15辆汽车装完;第二批运走340吨,共用8节火车皮和5辆汽车装完,求1节火车皮和1辆汽车分别装运物资多少吨?
5、2008年5月12日四川汶川县发生强烈地震,给当地人民造成巨大的经济损失。

某校积极组织捐款支援灾区,七年级(3)班55名同学共捐款500元,捐款情况如下表。

表中捐款8元和10元的人数不小心倍墨水污染已看不清楚,请你帮助确定表中的数据。

解:。

相关文档
最新文档