岩石风化程度判断

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩石风化程度判断

1.岩石风化

岩石风化概念

岩石在各种风化营力作用下,发生的物理和化学变化的过程称为岩石风化。岩石风化是岩石在太阳辐射、大气、水和生物作用下出现破碎、疏松及矿物成分次生

变化的现象。

岩石风化的常用分带标志及其原则

常用分带标志主要有:颜色、岩体破碎程度、矿物成分的变化、水理性质及物理力学性质的变化、钻探掘进及开挖中的技术特性。

具体原则包括:

(1)要充分反映各风化带岩石变化的客观规律,反映各带岩石因风化程度不同所具有的不同特性;

(2)分带标志视具体条件选择,应既有代表性,又明确,便于掌握,尽量避免人为因素的影响;

(3)将定性与定量研究、宏观与微观研究结合起来,综合各种标志进行分带;

(4)分带数目要考虑工程建筑的实际需要,既不要过于繁琐,分级过多;也不要过于简略,致使同一带内的岩石特性差异过大。

2.岩石风化程度和各种性质变化

岩石风化程度的划分及工程特性研究,对于大型水利水电工程、高层建筑、道路桥梁等工程建基面的选择以及地基基础设计施工方案的确定起着关键性作用,对评价围岩的稳定和边坡工程亦具有重要意义。

影响岩石风化的因素有很多,其中最主要的有气候、岩性、地质构造、地形地貌和一些其他的因素。岩石的风化往往不是单因子作用的结果,而是由多种因素所共同控制的。

目前,岩石风化程度划分多采用工程地质定性评价方法,从岩石颜色、次生矿物的发生、节理裂隙发育情况、机械破碎程度、风化深度、以及岩石的物理、力学和水理性质变化等方面综合分析确定。关于岩石风化程度的定量评价,目前常采用的是对岩体工程地质性质比较敏感的一些物理力学性质指标,通过室内或现场测试岩石物理力学性质单项或综合指标进行风化程度分带。由于岩石类型的千差万别,影响岩石风化因素复杂,各种岩石风化速度和风化后形态的变化也各异。因此,很难建立岩石风化程度划分的统一、定量的标准。岩石风化程度划分应当采用定性描

述和定量指标相结合的方法,两者互为印证以积累利用定量指标划分岩石风化程度

的经验。

颜色的改变

风化前岩石断面颜色鲜艳,有光泽。而经过风化后的岩石。微风化,仅沿裂隙面颜色略有变色;弱风化,岩体表面及裂隙面大部分变色,但断口颜色仍保持新鲜岩石特点;强风化,大部分变色,惟有岩块的中心部分尚保持原有颜色;全风化,

原岩颜色已完全改变,光泽消失。

岩石物理、力学和水理性质的变化

物理力学性质:微风化,物理性质几乎不变,力学强度略有减弱;弱风化,力学性质较原岩低,单轴抗压强度为原岩的1/3—1/2;强风化,变形量小,承载强度低,物理力学性质显着降低,岩块单轴抗压强度小于原岩的1/3;全风化,浸水能崩解,压缩性能增大,手可捏碎。

水理性质:从全风化—强风化—弱风化—微风化—未风化的原岩,空隙性由大

到小,吸水性由强到弱。

次生矿物的发生

微风化,仅沿裂隙面有矿物轻微变异;弱风化,沿裂隙面矿物变异明显,有次生矿物出现;强风化,除石英外,大部分矿物均已变异,仅岩块中心变异较轻,次生矿物广泛出现;全风化,除石英外,其于矿物多已变异,形成次生矿物。

节理裂隙发育情况

微风化,组织结构未变,除构造节理外,一般风化裂隙不易察觉;弱风化,组织结构大部分完好,但风化裂隙发育,裂隙面风化剧烈;强风化,外观具有原岩组织结构,但裂隙发育,岩体呈块石状,岩块上裂纹密布,疏松易碎;全风化,组织

结构已完全破坏,呈松散状或仅外观保持原岩状态,用手可折断,捏碎。

机械破碎程度

微风化,岩体完整性较好,风化裂隙少见;弱风化,岩体一般完好,原岩结构构造清晰,风化裂隙尚发育,时夹少量岩屑;强风化,岩体强烈破碎,呈岩块,岩屑,时夹粘性土;全风化,呈土状,或粘性土夹碎屑,结构已彻底改变,有时外观

保持原岩状态。

风化深度

由于岩石风化作用一般是自地表面逐渐向岩体内部进行的,因此愈靠近地表,风化作用就愈强烈,岩石风化程度也愈严重;愈向岩石内部,岩石风化得愈轻微,最后过渡到未经风化的新鲜岩石,在相同的外部自然条件下,同样种类的岩石风化层厚度愈大,其风化程度也就愈严重。

岩性影响分析

大多数沉积岩是由前一旋回的风化产物组成的,在其成岩过程中可能只受到较轻微的变质和改造,它的形成环境比岩浆岩、变质岩更接近地表。一般说沉积岩的抗风化能力比岩浆岩及变质岩高,最终的化学变化较小。但是沉积岩的风化问题比较复杂,其主要矿物是前一旋回的风化次生矿物,如粘土矿物、绿泥石、石英及钙-镁碳酸盐。这些矿物颗粒大都极细,比表面积大,因表面效应较强,易遭水化、水解及淋滤作用,以恢复它们对新环境的平衡关系。实践证明:沉积岩中的粘土岩,页岩、粉砂质粘土岩、粘土质粉砂岩等风化厚度虽不大,但风化速度却很快。

组成地壳的岩石是极为复杂的,为工程建筑进行的风化作用的研究,应以岩浆岩、变质岩(深的)、粘土质类岩石为主。在研究岩石风化速度时,尤应以粘土质类岩石(粘土岩、页岩、粉砂质粘土岩及各种泥质胶结的砂岩)为主。

组成岩石的化学成分对抗风化能力也有很太影响,岩石中含K、Na、Li、Cl等元素较多者,因其化学活动性较强,经化学风化后易脱离母岩随水流失。岩石中Fe、Al、Si、Ti等元素的化学稳定性较好,经化学风化后易残留原地。即使同一元素,其所组成的化合物不同时,岩石的抗风化能力也不同,如方解石中的含Ca化合物易风化解体,而斜长石中的含Ca化合物却比较稳定。

岩石的抗风化能力不仅决定于其矿物成分和化学成分的活泼性,同时也决定于岩石的结构。单矿岩(如石英岩)的颜色、导热性较均一,在外界因素作用下胀缩性基本一致,不易,形成过大的应力而引起岩石的破坏,故其抗风化能力较强;而复矿岩的成分复杂,矿物的导热性、胀缩性各不相同,易形成过大的应力而引起岩石的破坏,故其抗风化能力较弱。

当矿物成分相同时,等粒结构岩石比不等粒结构岩石的抗风化能力强,原因是等粒结构岩石的胀缩性比不等粒结构岩石的胀缩性均一所致。

细粒结晶结构岩石受温度变化的影响较小,颗粒比表面积大,连结力较强,晶粒间的空隙较小,水、气等风化营力难以通过,其抗风化能力比成分相近的粗粒结构岩石强。

成分相近的碎屑沉积岩的抗风化能力与胶结物性质有关,泥、钙质胶结者比硅质胶结的岩石抗风化能力弱。

自然界岩石的矿物成分、化学成分和结构构造十分复杂,其抗风化能力各不相同。当抗风化能力不同的岩石呈相间分布时,就会形成风化深度不等的差异风化

相关文档
最新文档