实验三 二极管双平衡混频器

实验三  二极管双平衡混频器
实验三  二极管双平衡混频器

实验十二变容二极管调频实验

一、实验目的

1、掌握变容二极管调频电路的原理。

2、了解调频调制特性及测量方法。

3、观察寄生调幅现象,了解其产生及消除的方法。

二、实验内容

1、测试变容二极管的静态调制特性。

2、观察调频波波形。

3、观察调制信号振幅时对频偏的影响。

4、观察寄生调幅现象。

三、实验仪器

1、信号源模块1块

2、频率计模块1块

3、 3 号板1块

4、双踪示波器1台

5、万用表1块

6、频偏仪(选用)1台

四、实验原理及电路

1、变容二极管工作原理

调频即为载波的瞬时频率受调制信号的控制。其频率的变化量与调制信号成线性关系。常用变容二极管实现调频。

变容二极管调频电路如图12-1所示。从P3处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从P2处输出为调频波(FM)。C15为变容二级管的高频通路,L2为音频信号提供低频通路,L2可阻止外部的高频信号进入振荡回路。本电路中使用的是飞利浦

公司的BB910型变容二极管,其电压-容值特性曲线见图12-4,从图中可以看出,在1到10V 的区间内,变容二极管的容值可由35P到8P左右的变化。电压和容值成反比,也就是TP6的电平越高,振荡频率越高。

图12-1 变容二极管调频

图12-4 BB910型变容二极管容值与电压特性曲线

图12-2示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。在(a)中,U0是加到二极管的直流电压,当u=U0时,电容值为C0。uΩ是调制电压,当uΩ为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当uΩ为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。在图(b)中,对应于静止状态,变容二极管的电容为C0,此时振荡频率为f0。

因为LC f π21

=,所以电容小时,振荡频率高,而电容大时,振荡频率低。从图(a )

中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LC f π21

=,f 和C 的关系也是非线性。不难看出,C-u 和f-C 的

非线性关系起着抵消作用,即得到f-u 的关系趋于线性(见图(c ))。

图12-2 调制信号电压大小与调频波频率关系图解

2、 变容二极管调频器获得线性调制的条件

设回路电感为L ,回路的电容是变容二极管的电容C (暂时不考虑杂散电容及其它与变容二极管相串联或并联电容的影响),则振荡频率为LC f π21

=。为了获得线性调制,频

率振荡应该与调制电压成线性关系,用数学表示为Au f =,式中A 是一个常数。由以上二式可得LC Au π21

=,将上式两边平方并移项可得2222)2(1-==Bu u

LA C π,这即是变容二极管调频器获得线性调制的条件。这就是说,当电容C 与电压u 的平方成反比时,振荡频率就与调制电压成正比。

3、 调频灵敏度

调频灵敏度f S 定义为每单位调制电压所产生的频偏。

设回路电容的C-u 曲线可表示为n Bu C -=,式中B 为一管子结构即电路串、并固定电容有关的参数。将上式代入振荡频率的表示式LC

f π21=

中,可得 LB

u f n

π22=

调制灵敏度 LB nu u f S n f π412-=??=

当n =2时 LB S f π21

=

设变容二极管在调制电压为零时的直流电压为U 0,相应的回路电容量为C 0,振荡频率为0021

LC f π=,就有

20

0-=BU C LB U f π20

0=

则有 0

0U f S f = 上式表明,在n =2的条件下,调制灵敏度与调制电压无关(这就是线性调制的条件),而与中心振荡频率成正比,与变容二极管的直流偏压成反比。后者给我们一个启示,为了提高调制灵敏度,在不影响线性的条件下,直流偏压应该尽可能低些,当某一变容二极管能使总电容C-u 特性曲线的n =2的直线段愈靠近偏压小的区域时,那么,采用该变容二极管所能得到的调制灵敏度就愈高。当我们采用串和并联固定电容以及控制高频振荡电压等方法来获得C-u 特性n =2的线性段时,如果能使该线性段尽可能移向电压低的区域,那么对提高调制灵敏度是有利的。 由LB S f π21

=可以看出,当回路电容C-u 特性曲线的n 值(即斜率的绝对值)愈大,

调制灵敏度越高。因此,如果对调频器的调制线性没有要求,则不外接串联或并联固定电容,并选用n 值大的变容管,就可以获得较高的调制灵敏度。

五、实验步骤

1、 连线框图如图12-3所示

信号源

(1号板)低频输出P3音频输入

P2变容二极管调频(3号板)

示波器

振荡输出TP7

图12-3 变容二极管调频接线图

2、 静态调制特性测量

1) 将3号板SW1拨置“LC ”,P3端先不接音频信号,将频率计接于P2处。

2) 调节电位器W 2,记下变容二极管测试点TP6电压和对应输出频率,并记于下表中。 V TP6(V)

F 0(MHz)

3、动态测试

1)将电位器W2置于某一中值位置,将峰-峰值为4V,频率为1KHz的音频信号(正弦波)从P2输入。

2)在TP6用示波器观察,可以看到调频信号特有的疏密波。将示波器时间轴靠拢,可以看到有寄生调幅现象。调频信号的频偏可用频谱分析仪观测。

六、实验报告要求

1、在坐标纸上画出静态调制特性曲线,并求出其调制灵敏度。说明曲线斜率受哪些因

素的影响。

2、画出实际观察到的FM波形,并说明频偏变化与调制信号振幅的关系。

实验三集成混频器研究通信电路与系统实验

实验三 集成混频器的实验研究 一、实验目的 1.了解集成乘积混频器的工作原理及典型电路。 2.了解本振电压幅度和模拟乘法器的偏置电流对混频增益的影响。 3.学习利用直流负反馈改善集成混频器动态工作范围的方法。 4.观察混频器寄生通道干扰现象。 二、实验原理 当本振电压u L 和信号电压u s 皆为小信号(U Lm <<26mV ,U sm <<26mV)时,模拟乘法器的输出电压可表示为[1][4] []t t U U kT q R I u s L s L sm Lm L o )cos()cos(42 0ωωωω++-?? ? ??≈ (2-15) 式中,R L 为负载电阻,I 0为恒流源电流。 当u L 为大信号、u s 为小信号(U Lm 约为100~200mV ,U sm <<26mV)时,模拟乘法器的输出电压是多谐波的,可表示为[1][4] []2 01sin 2cos()cos()22 L o Lm sm L s L s n n I R q u U U t t n kT πωωωωπ∞ =?? ? ??≈?-++ ? ??? ??? ∑ (2-16) 其中最低的一组频率分量(n=1)为 []2 00.637cos()cos()2L o Lm sm L s L s I R q u U U t t kT ωωωω?? ≈-++ ??? (2-17) 式中,相乘因子较Lm u 为小信号时增大。 由上述讨论可知,若模拟乘法器输出端接有带通滤波器,也就是说接有中频为)(S L I ωωω-=的滤波网络作为负载,可取出所需的差频分量来实现混频。 三、实验电路说明 集成混频器的实验电路如图2-7所示。图中,晶体管VT 1与电容C 1、C 2、C 3、C 4及 L 1构成改进型电容三点式振荡电路,作为本地振荡器。晶体管VT 2和VT 3分别构成两级射随器起缓冲隔离作用。本振电压u L 从P1端口馈入,信号电压u s 从P2端口馈入。中频滤波网络为L 2、C 13、C 14构成的并联回路。VT4为缓冲隔离级。 在图2-7所示实验电路中,中频回路调谐于2MHz ,模拟乘法器及其外接元件的作用与前一个实验中的情况相似,只是R w4代替了接在MC1496P 引脚2和引脚3之间的固定反馈电阻R E 。电位器R w5用来调节乘法器的偏置电流I 5。另外,图中的P4端口是由中频回路副方输出的中频电压u I 。 四、实验仪器及设备 1.直流稳压电源 SS3323型 1台 2.数字示波器 DSO-X2012A 型 1台 3.高频信号发生器 TFG6080型 1台 4.数字万用表 DT9202型 1块 5.实验电路板 1块

平衡混频器设计

应用ADS 设计混频器 1. 概述 图1为一微带平衡混频器,其功率混合电路采用3dB 分支线定向耦合器,在各端口匹配的条件下,1、2为隔离臂,1到3、4端口以及从2到3、4端口都是功率平分而相位差90°。 图1 设射频信号和本振分别从隔离臂1、2端口加入时,初相位都是0°,考虑到传输相同的路径不影响相对相位关系。通过定向耦合器,加到D1,D2上的信号和本振电压分别为: D1上电压 ) 2cos(1π ω- =t V v s s s 1-1 )cos(1πω-=t V v L L L 1-2 D2上电压 )cos(2t V v s s s ω= 1-3 )2cos(2π ω+ =t V v L L L 1-4 可见,信号和本振都分别以2 π 相位差分配到两只二极管上,故这类混频器称为 2 π 型平衡混频器。由一般混频电流的计算公式,并考虑到射频电压和本振电压的相位差,可以得到D1中混频电流为:

∑∑ ∞-∞ =∞ -+- = m n L s m n t jn t jm I t i ,,1)]()2 (exp[)(πωπ ω 同样,D2式中的混频器的电流为: ∑∑∞ -∞ =∞ + += m n L s m n t jn t jm I t i ,,2)]2 ()(exp[)(π ωω 当1,1±=±=n m 时,利用1,11,1-++-=I I 的关系,可以求出中频电流为: ]2 )cos[(41,1π ωω+ -=+-t I i L s IF 主要的技术指标有: 1、噪音系数和等效相位噪音(单边带噪音系数、双边带噪音系数); 2、变频增益,中频输出和射频输入的比较; 3、动态范围,这是指混频器正常工作时的微波输入功率范围; 4、双频三阶交调与线性度; 5、工作频率; 6、隔离度; 7、本振功率与工作点。 设计目标:射频:3.6 GHz ,本振:3.8 GHz ,噪音:<15。 2.具体设计过程 2.1创建一个新项目 ◇ 启动ADS ◇ 选择Main windows ◇ 菜单-File -New Project ,然后按照提示选择项目保存的路径和输入文件名 ◇ 点击“ok ”这样就创建了一个新项目。 ◇ 点击 ,新建一个电路原理图窗口,开始设计混频器。

施耐德ATV630变频器模拟实验指导书

ATV630模拟调试指导书 QCS-Helpdesk 2016年1月22日

目录 一、实验目的 ........................ 错误!未定义书签。 二、实验设备 ........................ 错误!未定义书签。 三、实验步骤 ........................ 错误!未定义书签。 1.接线概述 (6) 2.上电完成如下实验 (7) (1)预设速度实验 (7) (2)加减速实验 (9) (3)速度切换实验 (10) (4)PI调节实验 (11) (5)Modbus通讯实验 (13)

一、实验目的 1、掌握ATV630变频器预设速度的功能 2、掌握ATV630变频器加减速的功能 3、掌握ATV630变频器速度给定切换的功能 4、掌握ATV630变频器PI调节的功能 5、掌握ATV630变频器与PLC通讯应用的功能 二、实验设备 变频器ATV630U07M3一台、小电机一台、电位计R分别接到VIA、10V,COM,DI1,DI2到DI6端子为逻辑输入端子,R2,R3灯接在变频器的R2,R3上。AO1电流表接AQ1和COM 上。 三、实验步骤 1.控制端子布局及功能介绍 ATV630控制端子的布局图如下: ATV630控制端子的功能表如下: ATV630的接线图: 2.实验操作 (1)预设速度实验 1.能够正转,并有七级速度:10Hz,15HZ,20Hz,25Hz,30Hz,35HZ,40HZ。端子采用 DI3,DI5,DI6三个端子;

2. 加减速斜坡时间分别10S,10S; 实验解答:在完整设置菜单中找到通用功能,按OK键进去找到预设速度,再按OK键进去,2预设速度设为DI3,4预设速度设为DI5,8预设速度设为DI6。预设速度2设为 10HZ,预设速度3设为15HZ,预设速度4设为20HZ,预设速度5设为25HZ,预设速度6设为30HZ,预设速度7设为35HZ,预设速度8设为40HZ。找到5完整设置按OK键进去,找到通用功能,按OK键进去找到斜坡,把加速时间,减速时间分别改为10S。 (2)加减速实验 1.用端子DI1为正转功能; 2.用端子DI5,做加速功能;端子DI6做减速功能; 3.当断电时,有存储原给定值; 实验解答:找到5完整设置菜单,进去找到命令和参考值,按OK键进去找到频率切换分配菜单改为参考频率通道2,给定频率2配置改为通过DI的参考频率,找到通用功能进去找到加减速菜单,把加速分配改为DI5,把减速分配改为DI6,给定频率存储改为保存至EEPROM。 (3)速度切换实验 1.单向正转运行; 2.本地用变频器的面板调速,远方用电位计R调速 实验解答:找到5完整设置菜单,找到命令和参考值,按OK键进去,把参考频率1配置设为AI1,控制模式改为隔离通道,频率切换分配改为DI5,给定频率2分配改为安装流量。

混频仿真

通信电子线路实验 实验名称:混频器仿真 混频器的作用是在保持已调信号的调制规律不变的前提下,使信号的载波频率升高(上变频)或下降(下变频)到另一个频率。 一、晶体管混频器电路仿真 本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。 电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。(3)本振信号与基极偏压Eb共同构成时变工作点。由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。 工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。 在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。 1、直流工作点分析 使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。 注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。 2、混频器输出信号“傅里叶分析”

选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为: 基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。在图中指出465KHz中频信号频谱点及其它谐波成分。 注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。 分析:图中最高频谱点在465KHZ的中频信号成分,同时电路中还有较弱的其他谐波成分。 二、模拟乘法器混频电路 模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。 与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。 1、混频输入输出波形测试 在仿真软件中构建如下模拟乘法器混频电路,启动仿真,观察示波器显示波形,分析实验结果。

虚拟存储器管理 页面置换算法模拟实验

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理A 》 题目:虚拟存储器管理 页面置换算法模拟实验 班级:软件*** 学号:20**1228** 姓名:****

一、实验目的与要求 1.目的: 请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。 2.要求: 本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。 二、实验说明 1.设计中虚页和实页的表示 本设计利用C语言的结构体来描述虚页和实页的结构。 在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实 页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页 的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。 在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号, 取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。 2.关于缺页次数的统计 为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内,此虚页被命中,count加1。最终命中率=count/20*100%。 3.LRU算法中“最近最久未用”页面的确定

8.模拟乘法器的应用-乘积型混频器

模拟乘法器的应用 ——乘积型混频器 学号:200800120228 姓名:辛义磊仪器编号:30 一、实验目的 1、掌握集成模拟乘法器的工作原理及其特点 2、进一步掌握集成模拟乘法器(MC1596/1496)实现振幅调制、同步检波、混频、倍频的电路调整与测试方法 二、实验仪器 低频信号发生器 高频信号发生器 频率计 稳压电源 万用表 示波器 三、实验原理与实验电路 集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。可用作宽带、抑制载波双边带平衡调制器,不需要耦合变压器或调谐电路,还可作为高性能的SSB乘法检波器、AM调制解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多数学运算,如乘法、除法、乘方、开放等。 MC1496的内部电路继引脚排列如图所示

MC1496型模拟乘法器只适用于频率较低的场合,一般工作在1MHz以下的频率。双差分对模拟乘法器MC1496/1596的差值输出电流为 MC1595是差值输出电流为 式中,错误!未找到引用源。为乘法器的乘法系数。 MC1496/1596使用时,VT 1至VT 6 的基极均需外加偏置电压。 实验电路 四、实验步骤

检查电路无误后接通电源,完成如下操作: 1、 当本振信号的频率为43 .4=L f MHz 、振幅为5 .0≤-p p V V ,输入信号的频率 为4 =C f MHz ,振幅为50 ≤-p p V mV 时,观察并测绘输入输出信号波形,记 录I L C f f f 、、。 2、当本振信号的频率为43.4=L f MHz 、振幅为5.0≤-p p V V ,输入信号的振幅为 50 ≤-p p V mV 时,改变输入信号频率C f (在3.9-4.1MHz 之间,每隔200kHz 测量 一次),测量输出信号的频率和幅度,记录在表格中,并由此计算带通滤波器的 通频带宽度。 f c 3.9MHz 4.0MHz 4.1MHz f 4.43 MHz 4.43 MHz 4.43 MHz v 500mV 500mV 500mV 3、保持两输入信号的频率及本振信号幅度不变,改变输入信号振幅V sm (峰峰值在40-100mV 之间变化)的大小,逐渐测量输入V sm 和中频输出V im 。将测量及计算结果填入表格中,并完成下列任务: ①计算混频增益A vc 。将混频电压增益A vc 定义为变频器中频输出电压幅值与输入信号幅值之比,以分贝表示为sm vc V V A Im lg 20= ②作出V sm 和V im 的关系曲线 V sm 40 mV 60 mV 80 mV 100mV V im 60mV 85mV 100mV 120mV 五、思考题

混频器实验

实验二混频器仿真实验 一.无源混频器仿真实验 二极管环形混频电路 载频是f L=1kHz,调制频率为f R=100Hz,因此混频后会出现f L f R f L- f R==900Hz ,f L+ f R=1100Hz,如图所示前两个峰值。由于二级管的开关作用,还会产生组合频率,不过幅度会随次数的增加而减小,如图所示后两个峰值。 二.有源混频器仿真实验 1.三极管单平衡混频电路 直流分析 傅里叶分析 差模输出将直流分量抵消,组合频率分量也被抵消了,本振不会馈通。但是由于射频信号是非平衡的,所以射频信号带入的直流分量与本振信号相乘后产生了较大幅值的本振频率分量,并且在频谱中还是会出现少量本振信号的奇次谐波与射频相混频的频率分量,单平衡混频电路有效地抑制了高频率分量,单节点输出存在低频分量过大的问题,但使用差分放大器的双点输出能够很好地解决这个缺陷。但与无源混频器相比,出现了大量的杂波。 2.加入有源滤波器后

混频后得到上下变频分量,通过一个带通滤波器,滤除上变频以及本振频率分量,只剩下下变频。 3.吉尔伯特单元混频电路 由于射频信号差分输入,因此在输出的时候射频直流分量被抵消,本振不会馈通。由于是双差分输入,频谱较为纯净。但是由于吉尔伯特电路也是通过本振大信号作为开断信号对输出信号采样,因此也产生了本振信号的奇次谐波的分量与射频信号相混频产生的组合频率分量。

加入有源滤波器后 本电路将作为接收机电路的前端。与单平衡电路的频谱比较起来更加纯净,无用的频率分量更少,幅值更小。 思考题: 1. 吉尔伯特电路是双平衡电路,而三极管是单平衡电路,它们的区别体现在射频信号是否是平衡的,吉尔 伯特电路射频信号是平衡的,射频信号中蕴含的直流分量在输出时被抵消,因此不会产生本振信号馈通。而三极管单平衡电路产生馈通和许多组合频率分量。 当频率增加后会更加明显,因为各个频点上的幅值都会降低,区别显得更加突出。 2.如图,该二阶带通有源滤波器的截止频率在1k 与1.4k 附近正好可以滤去不需要的分量。 二阶带通有源滤波器的BW : 要想BW 变为原来的80%。只能改变 。即 变为1.92 。R8变为76.8kohm 或R7变为40.625Kohm 。 或者比值保持1.92。 01 222F F f f R R BW f R R RC π????=-?=-? ? ? ? ???? ?F f R R F f R R

操作系统实验五虚拟存储器管理

操作系统实验 实验五虚拟存储器管理 学号1115102015 姓名方茹 班级11 电子A 华侨大学电子工程系

实验五虚拟存储器管理 实验目的 1、理解虚拟存储器概念。 2、掌握分页式存储管理地址转换盒缺页中断。 实验内容与基本要求 1、模拟分页式存储管理中硬件的地址转换和产生缺页中断。 分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。为此,在为作业建立页表时,应说 明哪些页已在主存,哪些页尚未装入主存。作业执行 时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转 换机构按页号查页表,若该页对应标志为“ 1”,则表示该页 已在主存,这时根据关系式“绝对地址 =块号×块长 +单元号”计算出欲访问的主 存单元地址。如果块长为 2 的幂次,则可把块号作为高地址部分,把单元号作为低 地址部分,两者拼接而成绝对地址。若访问的页对 应标志为“ 0”,则表示该页不在主存,这时硬件发“缺页中断”信号, 有操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后 再重新执行这条指令。设计一个“地址转换”程序来模拟硬件的地址转 换工作。当访问的页在主存时,则形成绝对地址,但不去模拟指令的执 行,而用输出转换后的地址来代替一条指令的执行。当访问的页不在主 存时,则输出“ * 该页页号”,表示产生了一次缺页中断。 2、用先进先出页面调度算法处理缺页中断。 FIFO 页面调度算法总是淘汰该作业中最先进入主存的那一页,因此可以用一个数组来表示该作业已在主存的页面。假定作业被选中时, 把开始的 m 个页面装入主存,则数组的元素可定为m 个。 实验报告内容 1、分页式存储管理和先进先出页面调度算法原理。 分页式存储管理的基本思想是把内存空间分成大小相等、位置固定

混频器仿真实验报告

混频器实验(虚拟实验) 姓名:郭佩学号:04008307 (一)二极管环形混频电路 傅里叶分析 得到的频谱图为 分析:可以看出信号在900Hz和1100Hz有分量,与理论相符 (二)三极管单平衡混频电路 直流分析

傅里叶分析 一个节点的傅里叶分析的频谱图为 两个节点输出电压的差值的傅里叶分析的频谱图为:

分析:同样在1K的两侧有两个频率分量,900Hz和1100Hz 有源滤波器加入电路后 U IF的傅里叶分析的频谱图为: U out节点的傅里叶分析的频谱图为:

分析:加入滤波器后,会增加有2k和3k附近的频率分量 (三)吉尔伯特单元混频电路 直流分析 傅里叶分析 一个节点的输出电压的傅里叶分析的参数结果与相应变量的频谱图如下: 两个节点输出电压的差值的傅里叶分析的参数结果与相应变量的频谱图为:

分析:1k和3k两侧都有频率分量,有IP3失真 将有源滤波器加入电路 U IF的傅里叶分析的参数结果与相应变量的频谱图为: U out节点的傅里叶分析的参数结果与相应变量的频谱图为:

分析:有源滤波器Uout节点的傅里叶分析的频谱相对于Uif的傅里叶分析的频谱来说,其他频率分量的影响更小,而且Uout节点的输出下混频的频谱明显减小了。输出的电压幅度有一定程度的下降。 思考题: (1)比较在输入相同的本振信号与射频信号的情况下,三极管单平衡混频电路与吉尔伯特混频器两种混频器的仿真结果尤其是傅里叶分析结果的差异,分析其中的原因。若将本振信号都设为1MHz,射频频率设为200kHz,结果有何变化,分析原因。 答:没有改变信号频率时 三极管 吉尔伯特 吉尔伯特混频器没有1k、2k、3k处的频率分量,即没有本振信号的频率分量,只有混频后的频率分量。因为吉尔伯特混频器是双平衡对称电路结果,有差分平衡。 将本振信号频率和射频频率改变后:

二极管双平衡混频器

高频电子实验报告 实验名称: 二极管双平衡混频器 实验目的: 1、掌握二极管双平衡混频器频率变换的物理过程。 2、掌握晶体管混频器频率变换的物理过程和本振电压V0和工作电流Ie对中频转出电压大小的影响。 3、掌握集成模拟乘法器实现的平衡混频器频率变换的物理过程。 4、比较上述三种混频器对输入信号幅度与本振电压幅度的要求。 实验仪器: 1、 1号板 1块 2、 6号板 1块 3、 3 号板 1块 4、 7 号板 1块 5、双踪示波器 1台 实验原理: 1. 二极管双平衡混频原理

图3-1 二极管双平衡混频器 二极管双平衡混频器的电路图示见图3-1。图中V为输入信号电压,V为本机振荡电压。在负载R上产生差频和合频,还夹杂有一些其它频率的无用产物,再接上一个滤波器(图中未画出) 二极管双平衡混频器的最大特点是工作频率极高,可达微波波段,由于二极管双平衡混频器工作于很高的频段。图3-1 中的变压器一般为传输线变压器。 二极管双平衡混频器的基本工作原理是利用二极管伏安特性的非线性。众所周知,二极管的伏安特性为指数律,用幂级数展开为 当加到二极管两端的电压v 为输入信号V和本振电压V之和时,V项产生差频与和频。其它项产生不需要的频率分量。由于上式中u 的阶次越高,系数越小。因此,对差频与和频构成干扰最严重的是v 的一次方项(因其系数比v项大一倍)产生的输入信号频率分量和本振频率分量。 用两个二极管构成双平衡混频器和用单个二极管实现混频相比,前者能有效的抑制无用产物。双平衡混频器的输出仅包含(pω±ω)(p 为奇数)的组合频率分量,而抵消了ω、ω以及p 为偶数(pω±ω)众多组合频率分量。 下面我们直观的从物理方面简要说明双平衡混频器的工作原理及其对频率为ω及ω 的抑制作用。

OS实验指导四——虚拟存储器管理

OS实验指导四——虚拟存储器管理

————————————————————————————————作者:————————————————————————————————日期: 2

《操作系统》实验指导四 开课实验室:A207、A209 2015/11/23 、2015/11/24 实验类型设计 实验项目(四)虚拟存储器管理实验 实验学时 4 一、实验目的 设计一个请求页式存储管理方案,并编写模拟程序实现。 二、设备与环境 1. 硬件设备:PC机一台 2. 软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发 环境,如C \C++\Java 等编程语言环境。 三、实验要求 1) 上机前认真复习页面置换算法,熟悉FIFO算法和LRU页面分配和置换算法的过程; 2) 上机时独立编程、调试程序; 3) 根据具体实验要求,完成好实验报告(包括实验的目的、内容、要求、源程序、实例运行 结果截图)。 四、实验内容 1、问题描述: 设计程序模拟FIFO和LRU页面置换算法的工作过程。假设内存中分配给每个进程的最小物理块数为m,在进程运行过程中要访问的页面个数为n,页面访问序列为P1, … ,Pn,分别利用不同的页面置换算法调度进程的页面访问序列,给出页面访问序列的置换过程,并计算每种算法缺页次数和缺页率。 2、程序具体要求如下: 编写程序用来模拟虚拟页式存储管理中的页面置换 要求: 1)快表页面固定为4块 2)从键盘输入N个页面号 3)输出每次物理块中的页面号和缺页次数,缺页率 4)实现算法选择

3、程序流程图 3、源程序参考: (1)FIFO 算法部分 #include "stdio.h" #define n 12 #define m 4 void main() { int ym[n],i,j,q,mem[m]={0},table[m][n]; char flag,f[n]; printf("请输入页面访问序列\n "); for(i =0;i

模拟乘法混频实验报告

模拟乘法混频实验报告 姓名: 学号: 班级: 日期:

模拟乘法混频 一、实验目的 1. 进一步了解集成混频器的工作原理 2. 了解混频器中的寄生干扰 二、实验原理及实验电路说明 混频器的功能是将载波为vs (高频)的已调波信号不失真地变换为另一载频(固定中频)的已调波信号,而保持原调制规律不变。例如在调幅广播接收机中,混频器将中心频率为535~1605KHz 的已调波信号变换为中心频率为465KHz 的中频已调波信号。此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。 混频器的电路模型如图1所示。 图1 混频器电路模型 混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。本振用于产生一个等幅的高频信号VL ,并与输入信号 VS 经混频器后所产生的差频信号经带通滤波器滤出。目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。本实验采用集成模拟相乘器作混频电路实验。 图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。 V s V

+12 -12 J7J8 J9 C12104 C11104 C7104 C15104 C8104 R101K R11200 R12820 R13820 R71K R14100 R153.3K R163.3K R216.8K R20510 R171k F24.5M D28.2V C16104 TH6 TH7 TH8 TH9 TP5 SIG+ 1 G N A D J 2 G N A D J 3 SIG- 4 B I A S 5 OUT+6NC 7CAR+8 NC 9CAR- 10 NC 11OUT-12 NC 13V E E 14 U1 MC1496 图2 MC1496构成的混频电路 MC1496可以采用单电源供电,也可采用双电源供电。本实验电路中采用+12V ,-8V 供电。R12(820Ω)、R13(820Ω)组成平衡电路,F2为4.5MHz 选频回路。本实验中输入信号频率为 fs =4.2MHz ,本振频率fL =8.7MHz 。 为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压VS 和本振电压VL 外,不可避免地还存在干扰和噪声。它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。干扰是由于混频器不满足线性时变工作条件而形成的,因此干扰不可避免,其中影响最大的是中频干扰和镜象干扰。 三、 实验仪器与设备 高频电子线路综合实验箱; 高频信号发生器; 双踪示波器; 频率计。 四、实验步骤 1. 打开本实验单元的电源开关,观察对应的发光二极管是否点亮,熟悉电路各部分元件的作用。

二极管双平衡混频器实验报告

二极管双平衡混频器 一、实验目的 1、掌握二极管双平衡混频器频率变换的物理过程。 2、掌握晶体管混频器频率变换的物理过程和本振电压V0和工作电流Ie对中频转出电压大小的影响。 3、掌握集成模拟乘法器实现的平衡混频器频率变换的物理过程。 4、比较上述三种混频器对输入信号幅度与本振电压幅度的要求。 二、实验内容 1、研究二极管双平衡混频器频率变换过程和此种混频器的优缺点。 2、研究这种混频器输出频谱与本振电压大小的关系。 三、实验仪器 1、1号板1块 2、6号板1块 3、3 号板1块 4、7 号板1块 5、双踪示波器1台

四、实验原理与电路 i. 二极管双平衡混频原理 图3-1 二极管双平衡混频器 二极管双平衡混频器的电路图示见图3-1。图中VS为输入信号电压,VL为本机振荡电压。在负载RL上产生差频和合频,还夹杂有一些其它频率的无用产物,再接上一个滤波器(图中未画出) 二极管双平衡混频器的最大特点是工作频率极高,可达微波波段,由于二极管双平衡混频器工作于很高的频段。图3-1中的变压器一般 为传输线变压器。 二极管双平衡混频器的基本工作原理是利用二极管伏安特性的非 线性。众所周知,二极管的伏安特性为指数律,用幂级数展开为 当加到二极管两端的电压v 为输入信号VS和本振电压VL之和时, V2项产生差频与和频。其它项产生不需要的频率分量。由于上式中u

的阶次越高,系数越小。因此,对差频与和频构成干扰最严重的是v 的一次方项(因其系数比v2项大一倍)产生的输入信号频率分量和本振频率分量。 用两个二极管构成双平衡混频器和用单个二极管实现混频相比,前者能有效的抑制无用产物。双平衡混频器的输出仅包含(pωL±ωS)(p为奇数)的组合频率分量,而抵消了ωL、ωC 以及p为偶数(pωL±ωS)众多组合频率分量。 下面我们直观的从物理方面简要说明双平衡混频器的工作原理及其对频率为ω L 及ω S 的抑制作用。 (a)

实验四 虚拟存储器管理实验

实验四虚拟存储器管理实验 ◆实验名称:存储器管理实验 ◆仪器、设备:计算机 ◆参考资料:操作系统实验指导书 ◆实验目的: 设计一个请求页式存储管理方案,并编写模拟程序实现。 ◆实验内容: 编写程序用来模拟虚拟页式存储管理中的页面置换 要求: 1.快表页面固定为4块 2.从键盘输入N个页面号 3.输出每次物理块中的页面号和缺页次数,缺页率 ◆实验原理、数据(程序)记录: #define PAGES 4 /* 物理块数*/ #define N 16 /*最多输入的页面号*/ int pages[PAGES][2]; /*page[i][0]保存页面号,page[i][1]保存页面存留时间*/ int queue[N]; /*页面号数组*/ void initialise(void) /*------------初始化:快表和页面号数组++++++++++++++*/ { int i; for(i=0;i

混频器设计

混频器设计 简介 无线收发机射频前端在本质上主要完成频率变换的功能,接收机射频前端将 接收到的射频信号装换成基带信号,而发射机射频前端将要发射的基带信号转换成射频信号,频率转换功能就是由混频器完成的。 本文设计应用于无线传感器网络(Wireless Sensor Network,简称WSN)的混频器,无线传感器网络是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织网络系统,其目的是协作的感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者。这就要求所设计的混频器具有很低的功耗。同时,混频器是一种非线性电路,是接收机中输入射频信号最强的模块,这就对混频器的线性度提出了严格的要求。而混频过程通常会引入很大的噪声,考虑到LNA 的增益有限,混频器噪声也是要考虑的关键指标。由于所设计的接收机采用的是低中频的结构,中频频率只有2MHz,所以混频器的隔离度也是关键的指标。 结构选择及原理分析 结构选择 本接收机采用的结构为低中频结构,中频频率只有2MHz,LO 信号泄漏到RF 端口可能造成自混频及信号阻塞等问题。LO 信号泄漏到IF 端口,会对中频信号形成阻塞,同时LO 的噪声也将提高整体的噪声系数。而RF 信号馈通到LO端会造成自混频现象。双平衡的吉尔伯特混频器具有很好的隔离度,故本设计采用该结构。 本设计中频频率很低,开关对噪声(包括热噪声和1/ 噪声)是限制混频器噪声性能的主要因素,可以在不影响驱动级偏置电流的情况下减小流过开关对的偏置电流来减小混频器的噪声系数。可以通过在开关对的源极注入一个固定的偏置电流来实现。 线性度是混频器的一个重要指标,通常可以采用在驱动级晶体管的源极串一个无源元件形成串联反馈来提高驱动级的线性度。电阻作源简并元件会引入热噪声,而电阻本身会产生压降。电感和电容作源简并元件不会引入额外的噪声,而且对高频谐波成分和交调成分具有一定的抑制作用。因此通常选择电感作为源简并元件。但是本设计并没有采用结构,考虑到本设计的偏置电流很低,转换增益低,源简并技术将进一步降低转换增益,同时电感占用很大的芯片面积,不利于降低成本,故不可采用。根据Zigbee 协议,WSN 接受信号范围为-85 -20dBm,为了达到系统的线性度的要求,可以在低噪放级采用可调结构,这样使输入混频器的最大信号为-20dBm,降低了对混频器线性度的要求,有助于降低整个系统的功耗,但增加了LNA 的设计难度。 混频器的负载通常有三种形式:电阻作负载、晶体管作负载和LC 并联谐振电路作负载。晶体管作负载会引入非线性,而LC 并联谐振电路作负载虽具有很多的优势,但电感占用的芯片面积很大,不宜采用。电阻作负载不会引入非线性,同时具有很宽的带宽,但电阻上会引入直流压降,为了不使开关对和驱动级中的晶体管离开饱和区,电阻的取值不能太大,考虑到转换增益,电阻的取值将需要特别注意。而且这种负载不具有滤波的特性,因此不能衰减混频过程中产生的毛刺以及LO-IF、RF-IF 馈通成分。所以,本设计采用一个电容与电阻并联组成一个低通滤波网络来滤除高频成分。 综上所述,本设计所采用的结构如图4.1 所示。

混频器实验

混频器实验(虚拟实验) 姓名:王欢学号:04010218 (一)二极管环形混频电路 傅里叶分析 得到的频谱图为 分析: 信号在900Hz和1100Hz有分量,与理论相符 (二)三极管单平衡混频电路 直流分析 傅里叶分析 一个节点的傅里叶分析的频谱图为

两个节点输出电压的差值的傅里叶分析的频谱图为: 分析: 在1K的两侧有两个频率分量,900Hz和1100Hz 有源滤波器加入电路后 U IF的傅里叶分析的频谱图为:

U out节点的傅里叶分析的频谱图为: 分析: 加入滤波器后,会增加有2k和3k附近的频率分量(三)吉尔伯特单元混频电路 直流分析

傅里叶分析 一个节点的输出电压的傅里叶分析的参数结果与相应变量的频谱图如下: 两个节点输出电压的差值的傅里叶分析的参数结果与相应变量的频谱图为:

分析: 1k和3k两侧都有频率分量,有IP3失真 将有源滤波器加入电路 U IF的傅里叶分析的参数结果与相应变量的频谱图为: U out节点的傅里叶分析的参数结果与相应变量的频谱图为:

分析: 有源滤波器Uout节点的傅里叶分析的频谱相对于Uif的傅里叶分析的频谱来说,其他频率分量的影响更小,而且Uout节点的输出下混频的频谱明显减小了。输出的电压幅度有一定程度的下降。 思考题(教材P116): (1)比较在输入相同的本振信号与射频信号的情况下,三极管单平衡混频电路与吉尔伯特混频器两种混频器的仿真结果尤其是傅里叶分析结果的差异,分析其中的原因。若将本振信号都设为1MHz,射频频率设为200kHz,结果有何变化,分析原因。 答:没有改变信号频率时吉尔伯特混频器没有1k、2k、3k处的频率分量,即没有本振信号的频率分量,只有混频后的频率分量。因为吉尔伯特混频器是双平衡对称电路结果,有差分平衡。 将本振信号频率和射频频率改变后, 本振信号输入频率增大后,经过混频器后的IP3也有增加,即混频器的线性范围也会加宽。 (2)对图18中加入的有源滤波器的特性进行分析,对其幅频特性、相频特性进行仿真。若要使得滤波器的带宽减小20%,应对滤波器元件参数如何调整。将调整带宽后的滤波器与混频器相连,比较前后傅里叶分析的结果异同,分析原因。

变频器实验报告

实验一变频器的面板操作与运行 一、实验目的和要求 1. 熟悉变频器的面板操作方法。 2. 熟练变频器的功能参数设置。 3. 熟练掌握变频器的正反转、点动、频率调节方法。 4.通过变频器操作面板对电动机的启动、正反转、点动、调速控制。 二、实验仪器和用具 西门子MM420变频器、小型三相异步电动机、电气控制柜、电工工具(1套)、连接导线若干等。 三、实验内容和步骤 1.按要求接线 系统接线如图2-1所示,检查电路正确无误后, 合上主电源开关Q S。 图2-1 变频调速系统电气图 2.参数设置 (1)设定P0010=30和P0970=1,按下P键,开始复位,复位过程大约3min,这样就可保证变频器的参数回复到工厂默认值。 (2)设置电动机参数,为了使电动机与变频器相匹配,需要设置电动机参数。电动机参数设置见表2-2。电动机参数设定完成后,设P0010=0,变频器当前处于准备状态,可正常运行。 表2-2 电动机参数设置

(3)设置面板操作控制参数,见表2-3。 3.变频器运行操作 (1)变频器启动:在变频器的前操作面板上按运行键,变频器将驱动电动机升速,并运行在由P1040所设定的20Hz频率对应的560r∕min的转速上。 (2)正反转及加减速运行:电动机的转速(运行频率)及旋转方向可直接通过按前操作面板上的键∕减少键(▲/▼)来改变。 (3)点动运行:按下变频器前操作面板上的点动键,则变频器驱动电动机升速,并运行在由P1058所设置的正向点动10Hz频率值上。当松开变频器前错做面板上的点动键,则变频器将驱动电动机降速至零。这时,如果按下一变频器前操作面板上的换向键,在重复上述的点动运行操作,电动机可在变频器的驱动下反向点动运行。 (4)电动机停车:在变频器的前操作面板上按停止键,则变频器将驱动电动机降速至零。 四、实验思考 1. 怎样利用变频器操作面板对电动机进行预定时间的启动和停止? 答:P0010=30,P0970=1,变频器恢复出厂设置; P701=0,屏蔽原来端子启动功能; P2800=1,使能内部功能自由块; P2802=1,使能内部定时器; P2849=1,连接定时器启动命令; P2850=1,设定延时时间(假设1s); P2851=1,定时器延时动作方式; P0840=2852.0,连接变频器启动命令。 2. 怎样设置变频器的最大和最小运行频率? 答:P0010=30;P0970=1,按下P键(约10秒),开始复位。 一般P1080=0;电动机运行的最低频率(HZ) P1082=50;电动机运行的最高频率(HZ)。

虚拟存储器管理实验报告

淮海工学院计算机科学系实验报告书 课程名:《操作系统》 题目:虚拟存储器管理 页面置换算法模拟实验 班级: 学号: 姓名:

一、实验目的与要求 1.目的: 请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。 2.要求: 本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。 二、实验说明 1.设计中虚页和实页的表示 本设计利用C语言的结构体来描述虚页和实页的结构。 在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。 在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。 2.关于缺页次数的统计 为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内, 此虚页被命中,count加1。最终命中率=count/20*100%。 3.LRU算法中“最近最久未用”页面的确定 为了能找到“最近最久未用”的虚页面,程序中可引入一个时间计数器countime,每当要访问 一个虚页面时,countime的值加1,然后将所要访问的虚页的time项值设置为增值后的当前

基于模拟乘法器MC1496的混频器设计

基于模拟乘法器MC1496的混频器设计

摘要 集成模拟乘法器是完成两个模拟量(电压或电流)相乘的电子器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频等调制与解调的过程均可视为两个信号相乘的过程,而集成模拟乘法器正是实现两个模拟量,电压或电流相乘的电子器件。采用集成模拟乘法器实现上述功能比用分立器件要简单得多,而且性能优越,因此集成模拟乘法器在无线通信、广播电视等方面应用较为广泛。 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 Matlab是一种电子技术界应用广泛的优秀科学计算软件,大量应用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。主要内容是基于MC1946的混频器应用设计与仿真,阐述混频器基本原理,并在Matlab中实现各信号波形的仿真。 关键词:MC1496模拟乘法器,混频器,Matlab

DESING OF MIXER BASED ON THE ANALOG MULTIPLIER MC1496 Abstract Integrated analog multiplier is to complete two analog multiplication electronics (voltage or current) In high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, times frequency, frequency modulation and demodulation process can be regarded as the multiplication of two signals process, and integrated analog multiplier is the realization of two analog, voltage or current multiplication of electronic devices. The function is realized by using integrated analog multiplier is much simpler than with a discrete device, and superior performance, therefore integrated analog multiplier in wireless communication, radio and television are more widely application. Mixer in communication engineering and electronic technology, are widely applied in modulation system, the input of the baseband signal through frequency conversion into high frequency modulated signals. In the process of demodulation, receive the high frequency signal is modulated by frequency conversion, into the corresponding intermediate frequency signals. Especially in a superheterodyne receiver, which has been widely applied mixer, mixing circuit is a professional application of electronic technology, and radio must master the key circuit. Matlab is an electronic technology widely used mathematical software, a large number of used in algorithm development, data visualization, data analysis and numerical calculation of senior technical computing language and interactive environment. Main content is based on the MC1946 mixer application design and simulation, the basic principle of mixer, and realize the signal waveform in the Matlab simulation. Key Words: MC1496 analog multiplier, mixer, Matlab

相关文档
最新文档