《人工智能清华大学》PPT课件

合集下载

人工智能ppt课件免费

人工智能ppt课件免费
人工智能的未来趋势
随着算法、算力和数据的发展,人工 智能将在各个领域发挥更大的作用, 如自动驾驶、医疗诊断、智能制造等 。
对观众的寄语和期望
寄语
希望观众能够深入了解人工智能的发展和应用,把握未来的机遇和挑战。
期望
期待观众能够积极探索人工智能在各个领域的应用,为未来的发展做出贡献。
感谢您的观看
THANKS
人工智能 PPT 课件
目录
CONTENTS
• 人工智能简介 • 人工智能技术 • 人工智能的实际应用 • 人工智能的未来展望 • 如何学习和应用人工智能 • 结语
01 人工智能简介
人工智能的定义
人工智能
指通过计算机程序和算法,使机 器能够模拟人类的智能行为,实 现人机交互和自主决策。
人工智能的核心
自动驾驶汽车能够提高交通效率和安 全性,减少交通事故和拥堵现象。
医疗诊断
人工智能在医疗领域的应用, 可以帮助医生提高诊断准确性 和效率。
人工智能可以通过分析大量的 医疗数据和病例,辅助医生进 行疾病诊断和治疗方案制定。
人工智能还可以用于医学影像 分析,自动识别病变和异常情 况,提高医学影像诊断的准确 性和效率。
模拟人类的感知、认知、学习和 推理等智能行为,实现机器的自 主决策和智能控制。
人工智能的历史与发展
早期阶段
当前阶段
20世纪50年代,人工智能概念开始出 现,主要研究领域包括专家系统和自 然语言处理。
21世纪初至今,人工智能技术广泛应 用于各个领域,包括自动驾驶、智能 家居、医疗诊断等。
发展阶段
20世纪80年代末至90年代,随着计算 机技术和大数据的发展,人工智能技 术逐渐成熟,机器学习、深度学习等 领域取得重要突破。

2024版《人工智能》PPT课件

2024版《人工智能》PPT课件

《人工智能》PPT课件•人工智能概述•机器学习原理及算法•自然语言处理技术•计算机视觉技术•语音识别与合成技术•智能推荐系统与数据挖掘•人工智能伦理、法律与社会影响目录定义与发展历程定义人工智能是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的新技术科学。

发展历程从早期的符号学习到现代的深度学习,人工智能经历了多个发展阶段,包括专家系统、知识工程、机器学习等。

重要事件人工智能领域的重要事件包括图灵测试、达特茅斯会议、AlphaGo战胜围棋世界冠军等。

人工智能的技术原理包括感知、思考、学习和行动四个方面,通过模拟人类的思维和行为方式来实现智能化。

技术原理人工智能的核心思想是让机器能够像人类一样具有智能,包括理解、推理、决策、学习等能力。

核心思想人工智能的实现方式包括符号主义、连接主义和行为主义等多种方法,其中深度学习是当前最热门的技术之一。

实现方式技术原理及核心思想前景展望未来人工智能的发展前景非常广阔,将会在更多领域得到应用,同时也会出现更多的技术创新和突破。

应用领域人工智能已经广泛应用于各个领域,包括智能家居、自动驾驶、医疗诊断、金融风控等。

挑战与机遇人工智能的发展也面临着一些挑战,如数据安全、隐私保护等问题,但同时也带来了巨大的机遇和发展空间。

应用领域与前景展望原理通过最小化预测值与真实值之间的均方误差,学习得到最优的线性模型参数。

应用预测连续型数值,如房价、销售额等。

原理在特征空间中寻找最大间隔超平面,使得不同类别的样本能够被正确分类。

应用分类问题,如图像识别、文本分类等。

原理通过递归地选择最优特征进行划分,构建一棵树状结构,用于分类或回归。

应用分类、回归问题,如信用评分、医学诊断等。

原理将数据划分为K个簇,使得同一簇内的数据尽可能相似,不同簇间的数据尽可能不同。

应用数据挖掘、图像压缩等。

原理通过计算数据点间的相似度,将数据逐层进行聚合或分裂,形成树状结构。

应用社交网络分析、生物信息学等。

《人工智能》大学课件PPT

《人工智能》大学课件PPT
《人工智能》大学 课件
contents
目录
• 人工智能概述 • 机器学习与深度学习 • 自然语言处理 • 计算机视觉 • 语音识别与合成 • 人工智能的伦理与法律问题
01
CATALOGUE
人工智能概述
人工智能的定义
人工智能定义
人工智能是计算机科学的一个分支,旨在研究和开发能够 模拟、延伸和扩展人类智能的理论、方法、技术及应用系 统的一门新的技术科学。
自然语言处理的基本任务
分词、词性标注、句法分析、语义理解和对话系统等。
自然语言处理的技术与方法
基于规则的方法
通过人工定义规则来处理自然语言,例如正则表达式和手工编写 的解析器。
基于统计的方法
利用大规模语料库进行训练,通过机器学习算法找到语言的内在 规律,例如隐马尔可夫模型和条件随机场。
基于深度学习的方法
替代就业
人工智能的发展可能导致部分传统岗位被自动化取代,需要关注由此产生的失业 问题,并采取措施进行缓解。
创造就业
同时,人工智能的发展也将催生新的产业和就业机会,需要培养适应新时代的技 能和人才。
人工智能的决策责任问题
决策透明度
人工智能系统在做出决策时,应具备足够的透明度,以便理 解和追踪其决策过程。
利用神经网络进行自然语言处理,例如循环神经网络和 Transformer模型。
自然语言处理的应用实例
机器翻译
利用NLP技术将一种自然语言 自动翻译成另一种自然语言。
智能客服
通过NLP技术实现智能化的客 户服务,自动回答用户的问题 和提供帮助。
信息抽取
从大量文本中自动提取关键信 息,例如人物、事件和地点等 。
计算机视觉的构成
计算机视觉主要由图像获取、图 像处理和图像理解三个部分组成 。

人工智能PPT课件

人工智能PPT课件
21世纪初,随着大数据和 云计算技术的普及,人工 智能在机器学习和深度学 习等领域取得重大进展。
人工智能的应用领域
自动驾驶
利用计算机视觉和传感 器技术,实现车辆自主
导航和驾驶。
智能语音助手
通过语音识别和自然语 言处理技术,实现人机
语音交互。
医疗诊断
利用人工智能技术辅助 医生进行疾病诊断和治
疗方案制定。
金融风控
通过大数据分析和机器 学习技术,实现金融风
险控制和欺诈检测。
02
人工智能技术
机器学习
总结词
机器学习是人工智能的核心技术之一,通过从数据中自动学习模型和规律,实现 对新数据的预测和分析。
详细描述
机器学习算法可以分为监督学习、无监督学习和强化学习等类型,其中监督学习 是指通过已知标签的数据进行学习,无监督学习是指在没有标签的情况下进行聚 类、降维等操作,强化学习是指通过与环境的交互进行学习。
教育领域
01 02 03 04
人工智能在教育领域的应用,可以实现个性化教育和智能化教学。
人工智能可以根据学生的学习情况和兴趣爱好,自动推荐学习资源和 课程计划,提高学习效果。
人工智能还可以通过智能评估和反馈系统,自动评估学生的学习成果 和提供改进建议,帮助教师更好地指导学生。
人工智能在教育领域的应用将改变教学方式和评估方式,提高教育质 量和效率。
人工智能的就业影响
自动化与就业
人工智能的发展可能导致某些工作被自动化,对传统行业和职业产生冲击。需要关注就业市场的变化 ,采取措施帮助受影响的劳动者转岗和再就业。
新兴职业与技能需求
随着人工智能技术的普及,新兴职业和技能需求将不断涌现。需要培养和更新劳动者的技能,以适应 新的就业市场需求。

2024版人工智能教学PPT课件

2024版人工智能教学PPT课件
应用
二分类问题,如垃圾邮件识别、疾病预 测等。
监督学习算法
原理
寻找一个超平面,使得正负样本间隔最大化。
应用
分类和回归问题,如图像识别、文本分类等。
非监督学习算法
原理
将数据划分为K个簇,使得簇内距离最小,簇间距离最大。
应用
客户细分、图像压缩等。
非监督学习算法
原理
通过计算数据点之间的距离,将数据逐层进行聚合。
三维重建与虚拟现实应用 展示三维重建与虚拟现实技术在游戏娱乐、教育 培训、工业设计等领域的应用案例。
06
语音识别与合成技术及应 用
语音信号处理基础
语音信号的特性
时域特性、频域特性、倒谱特性等
语音信号的预处理
预加重、分帧、加窗等
语音信号的数字化
采样、量化、编码等
语音识别技术原理及实现方法
语音识别基本原理
目标检测与跟踪应用
展示目标检测与跟踪技术在视频监控、智能交通、无人机 等领域的应用案例。
三维重建与虚拟现实技术
1 2 3
三维重建方法 介绍基于多视几何的三维重建方法和基于深度学 习的三维重建方法,如SFM、MVS、深度学习 三维重建网络等。
虚拟现实技术 阐述虚拟现实技术的原理和实现方式,包括头戴 式显示设备、3D建模和渲染技术、空间定位技 术等。
产业生态
包括科研机构、高校、企业等 组成的产业生态,共同推动人
工智能技术的发展和应用。
02
机器学习原理及算法
监督学习算法
原理
通过最小化预测值与真实值之间的 均方误差,求解最优参数。
应用
预测连续型数值,如房价、销售额 等。
监督学习算法
原理
通过Sigmoid函数将线性回归结果映 射到[0,1]区间,表示概率。

《人工智能》大学课件-PPT(精)

《人工智能》大学课件-PPT(精)
✓ 具有行为能力(系统输出):对外界的智能化反应
11
两个界定:图灵测试和中文屋子
12
图灵测试 Turing Test
英国数学家阿兰·图灵(Alan Turing) 提出了现称为“图灵测 试”(Turing Test)的方法。简单来讲, 图灵测试的做法是: 让一位测试者分别与一台计算机和一个人进行交谈(当时是用 电传打字机), 而测试者事先并不知道哪一个是人, 哪一个是 计算机。如果交谈后测试者分不出哪一个被测者是人, 哪一个 是计算机, 则可以认为这台被测的计算机具有智能。
记载,“公输子(鲁班)削竹木以为 鹊”,“三日不下” 。他还造了能载 人的大木鸢,在战争中担任侦查的任 务。
➢ 指南车:东汉张衡
➢ 木牛流马:鲁班?诸葛亮?
25
人工智能的发展概况
孕育期(1956年以前)
• 亚里斯多德(Aristotle,公元前384——322):古希腊伟大的哲学家和思想 家,创立了演绎法。给出了形势逻辑的基本规律
• 1960年研制了通用问题求解(General Problem Solving) 程序。该程序的设计是从模仿人类问题求解的规程开始 的,不依赖于具体领域。在它能处理的有限类别的问题 中,它显示出程序决定的子目标及可能采取的行动的次 序,与人类求解同样问题是类似的。因此,GPS是第一
个实现了“像人一样思考”方法的程序。
27
人工智能的发展概况
孕育期(1956年以前)
• 麦克洛奇(W.McCulloch)和皮兹(W.Pitts):美国神经生理学 家,于1943年建成了第一个神经网络模型(MP模型)。
• 维纳(N.Wiener,1874—1956) :美国著名数学家、控制 论创始人。1948年创立了控制论。控制论向人工智能的渗 透,形成了行为主义学派。

《人工智能》课件

《人工智能》课件

交通领域:自动驾驶、智 能交通系统、智能物流等
制造业:智能制造、智能 生产、智能检测等
金融领域:智能投资、风 险控制、智能客服等
家居领域:智能家居、智 能家电、智能安防等
人工智能的技术原 理
机器学习
概念:一种通过数据训练模型,使 模型能够自动学习并预测未知数据 的技术
应用:广泛应用于图像识别、语音 识别、自然语言处理等领域
智能机器人
工业生产:用于生产线上的自动化操作 服务行业:用于酒店、餐厅等场所提供接待、引导等服务 医疗领域:用于手术、康复等医疗操作 家庭生活:用于家务、陪伴等家庭服务
智能安防
智能监控:实时监 控,自动识别异常 情况
智能门禁:人脸识 别,提高安全系数
智能报警:自动报 警,及时响应紧急 情况
智能巡逻:自动巡 逻,提高巡逻效率
概念:人工智能是指由人制造出来的系统能够理解、学习、适应并执行人类的某些特定任 务。
起源:人工智能起源于20世纪50年代,由美国科学家约翰·麦卡锡提出。
发展:人工智能经历了三次发展浪潮,分别是20世纪50年代、80年代和21世纪初。
应用:人工智能广泛应用于各个领域,如医疗、金融、教育、交通等。
人工智能的发展阶段
添加标题
添加标干预,能够自动 学习并预测未知数据
技术:包括监督学习、无监督学习、 强化学习等
深度学习
概念:一种模拟人 脑神经网络的学习 方法
特点:多层次、非 线性、自适应
应用:图像识别、 语音识别、自然语 言处理等领域
发展:近年来深度 学习技术取得了显 著进展,成为人工 智能领域的重要分 支
1956年,达特茅斯会 议提出人工智能概念, 标志着人工智能的诞

1960年代,人工智能 进入黄金时期,出现 了许多重要的研究成

2024版人工智能(全套课件)

2024版人工智能(全套课件)

•人工智能概述•机器学习基础•自然语言处理技术•计算机视觉技术•强化学习及优化方法•知识图谱与推理技术•人工智能伦理、法律和社会影响目录01人工智能概述定义与发展历程定义发展期发展历程低谷期萌芽期复苏期技术原理及核心思想技术原理核心思想应用领域与前景展望应用领域前景展望02机器学习基础逻辑回归(梯度提升树(Linear Regression )Random Forests )010203040506监督学习算法非监督学习算法深度学习原理及实践神经网络基础(Neural NetworkBasics)循环神经网络(RecurrentNeural Networks)生成对抗网络(GenerativeAdversarial Networks)卷积神经网络(Convolutional Neural Networks)长短期记忆网络(Long Short-Term Memory Networks)深度学习优化算法(DeepLearning OptimizationAlgorithms)03自然语言处理技术词法分析与句法分析词法分析01句法分析02词汇语义分析03语义理解情感分析观点挖掘030201语义理解与情感分析机器翻译与对话系统01020304机器翻译对话系统多轮对话管理自然语言生成04计算机视觉技术1 2 3传统图像识别方法深度学习图像识别方法图像分类数据集图像识别与分类方法目标检测与跟踪技术目标检测方法介绍基于滑动窗口、区域提议网络(RPN)等目标检测方法。

目标跟踪方法探讨基于相关滤波、深度学习等目标跟踪技术的原理和实现。

目标检测与跟踪应用展示目标检测与跟踪在视频监控、自动驾驶等领域的应用案例。

三维重建与虚拟现实应用三维重建技术虚拟现实技术三维重建与虚拟现实融合05强化学习及优化方法MDP 基本概念介绍马尔可夫决策过程(MDP )的定义、组成要素以及基本性质。

贝尔曼方程详细推导贝尔曼方程,解释值函数和策略函数的含义及计算方法。

(完整版)人工智能介绍PPT课件

(完整版)人工智能介绍PPT课件

智能模拟
机器视、听、触、感觉及思维方式的模拟:指纹识别,人脸识别,视网膜识别, 虹膜识别,掌纹识别,专家系统,智能搜索,定理证明,逻辑推理,博弈,信 息感应与辨证处理。
谢谢
主条目:GOFAI
基于逻辑不像艾伦 纽厄尔和赫伯特 西蒙,JOHN MCCARTHY认为机器不需要模拟 人类的思想,而应尝试找到抽象推理和解决问题的本质,不管人们是否使用同样的 算法。他在斯坦福大学的实验室致力于使用形式化逻辑解决多种问题,包括知识表 示,智能规划和机器学习。致力于逻辑方法的还有爱丁堡大学,而促成欧洲的其他 地方开发编程语言PROLOG和逻辑编程科学。“反逻辑”斯坦福大学的研究者 (如 马文 闵斯基和西摩尔 派普特)发现要解决计算机视觉和自然语言处理的困难问题, 需要专门的方案-他们主张不存在简单和通用原理(如逻辑)能够达到所有的智能行 为。ROGER SCHANK 描述他们的“反逻辑”方法为 "SCRUFFY" 。常识知识库 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因为他们必须人工一次编写一 个复杂的概念。
大脑模拟
主条目:控制论和计算神经科学 20世纪40年代到50年代,许多研究者探索神经病学,信息理论及控 制论之间的联系。其中还造出一些使用电子网络构造的初步智能, 如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。这 些研究者还经常在普林斯顿大学和英国的RATIO CLUB举行技术协 会会议。直到1960,大部分人已经放弃这个方法,尽管在80年代再 次提出这些原理。 符号处理
集成方法
智能AGENT范式智能AGENT是一个会感知环境并作出行动以达致目标的系统。最简单的智能AGENT是 那些可以解决特定问题的程序。更复杂的AGENT包括人类和人类组织(如公司)。这些范式可以让研究 者研究单独的问题和找出有用且可验证的方案,而不需考虑单一的方法。一个解决特定问题的AGENT可 以使用任何可行的方法-一些AGENT用符号方法和逻辑方法,一些则是子符号神经网络或其他新的方法。 范式同时也给研究者提供一个与其他领域沟通的共同语言--如决策论和经济学(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被广泛接受。AGENT体系结构和认知体系结构研究者设计出 一些系统来处理多ANGENT系统中智能AGENT之间的相互作用。一个系统中包含符号和子符号部分的系 统称为混合智能系统,而对这种系统的研究则是人工智能系统集成。分级控制系统则给反应级别的子符号 AI和最高级别的传统符号AI提供桥梁,同时放宽了规划和世界建模的时间。RODNEY BROOKS的 SUBSUMPTION ARCHITECTURE就是一个早期的分级系统计划。

2024版《人工智能》课件

2024版《人工智能》课件

一、教学内容二、教学目标1. 理解机器学习的基本概念和分类,了解各种学习方法的应用场景。

2. 掌握监督学习和无监督学习的基本原理,能够运用所学知识解决实际问题。

3. 了解神经网络的构成和工作原理,认识不同类型的神经网络及其应用。

三、教学难点与重点重点:机器学习的基本概念、分类和原理;监督学习、无监督学习;神经网络的构成和工作原理。

难点:理解机器学习的核心算法;掌握神经网络的训练和应用。

四、教具与学具准备1. 教具:PPT课件、黑板、粉笔。

2. 学具:教材、笔记本、计算器。

五、教学过程2. 理论讲解:a. 介绍机器学习的基本概念、分类和原理。

b. 详细讲解监督学习和无监督学习的原理及其应用场景。

c. 简要介绍神经网络的构成、工作原理和主要类型。

3. 实践演示:a. 演示监督学习中的线性回归算法。

b. 演示无监督学习中的Kmeans算法。

c. 演示神经网络的构建和训练过程。

4. 例题讲解:针对每个知识点,讲解典型例题,引导学生掌握解题方法。

5. 随堂练习:布置相关练习题,检验学生对知识点的掌握程度。

六、板书设计1. 机器学习的分类、原理及应用场景。

2. 监督学习和无监督学习的原理及例题。

3. 神经网络的构成、工作原理和主要类型。

七、作业设计1. 作业题目:a. 解释监督学习和无监督学习的区别与联系。

b. 应用线性回归算法解决实际问题。

c. 简述神经网络的构成及工作原理。

2. 答案:a. 监督学习:根据已知输入和输出,学习得到一个函数,用于预测未知输入的输出。

无监督学习:在无标签的数据中,寻找潜在规律和结构。

b. 略。

c. 神经网络由输入层、隐藏层和输出层组成,通过学习输入和输出之间的映射关系,实现对未知数据的预测。

八、课后反思及拓展延伸1. 反思:本节课学生对机器学习的基本概念和原理掌握程度较好,但在实践操作中,部分学生对算法的理解和应用还存在困难,需要在课后加强练习。

重点和难点解析1. 机器学习的分类和原理的理解。

《人工智能清华大学》课件

《人工智能清华大学》课件

清华大学人工智能 科研成果转化
清华大学人工智能研究院:负责科研成果的转化和推广 清华大学科技园:提供创业孵化和投资支持 清华大学校友会:提供校友资源和人脉支持 清华大学与政府、企业合作:共同推动科研成果的转化和应用
案例:清华大学研发的智能 语音助手“小冰”,已广泛应 用于手机、智能家居等领域
清华大学人工智能研究院在自然语言处理、计算机视觉、机器学习等领域取得了重 要成果
清华大学与国内外知名企业合作,推动人工智能技术的应用和发展
清华大学在人工智能领域的研究成果多次获得国际奖项和认可
学科历史悠久,底 蕴深厚
师资力量雄厚,拥 有众多知名教授和 学者
科研实力强大,拥 有多个国家级重点 实验室和研究机构
清华大学在人工智能领域的研究:清华大学在人工智能领域有着深厚的研究基础和实力,特别 是在自然语言处理方面,有着许多重要的研究成果和突破。
研究方向:图像处 理、模式识别、计 算机视觉等
研究内容:图像分 类、目标检测、图 像分割、三维重建 等
研究成果:在CVPR 、ICCV、ECCV等顶 级会议上发表多篇 论文
清华大学人工智能 未来发展
加强人工智能基础 研究,推动人工智 能理论创新
建设人工智能创新 平台,推动人工智 能技术应用
培养人工智能人才 ,推动人工智能产 业发展
加强人工智能国际 合作,推动人工智 能全球发展
自然语言处理:研究语言理解和生成技术, 提高机器与人类的交互能力
计算机视觉:研究图像和视频识别技术, 提高机器对环境的感知能力
清华大学举办 了多次国际人 工智能学术会
议和论坛
清华大学与国 际知名高校和 企业开展了多 项人工智能领 域的联合研究
项目
跨学科融合:人工智能与其他学科的交叉融合,培养复合型人才 实践导向:注重实践能力的培养,提高学生的动手能力和创新能力 国际化视野:加强国际交流与合作,培养具有国际视野的人才 产学研结合:加强产学研合作,培养适应市场需求的人才

清华大学人工智能导论课件_高级搜索2

清华大学人工智能导论课件_高级搜索2

1 T * voff _ line f (t ) T t 1
其中T是到目前为止的进化代数,f*(t)是 第t代中,染色体的最好指标函数值。
适应函数

一般情况下,我们可以直接选取问题的 指标函数作为适应函数。如求函数f(x)的 最大值,就可以直接采用f(x)为适应函数。 但在有些情况下,函数f(x)在最大值附近 的变化可能会非常小,以至于他们的适 应值非常接近,很难区分出那个染色体 占优。在这种情况下,希望定义新的适 应函数,要求该适应函数与问题的指标 函数具有相同的变化趋势,但变化的速 度更快。
在线比较法

该方法用当前代中染色体的平均指标函 数值来刻划算法的变化趋势。计算方法 如下:
1 von _ line f (t ) T t 1
其中T为当前代中染色体的个数 。
T
离线比较法

该方法与在线比较法有些相似,但是用 进化过程中每代最好解的指标函数值的 平均值,来评价算法的进化过程。计算 方法如下:
交配

交配发生在两个染色体之间,由两个被 称之为双亲的父代染色体,经杂交以后, 产生两个具有双亲的部分基因的新的染 色体。当染色体采用二进制形式编码时, 交配过程是以这样一种形式进行的:
交配位置
a1 a2 ... ai ai+1 ... an b1 b2 ... bi bi+1 ... bn
a1 a2 ... ai bi+1 ... bn b1 b2 ... bi ai+1 ... an
p ( xi )
F ( xi )
F (x j )
j 1
N
x1 x6 x2
x5 x4
x3
模拟“轮盘赌” 算法

人工智能PPT课件

人工智能PPT课件

人工智能的发展将改变就业结构,部分传统岗位可能消失或被
替代,同时将催生新的就业机会。
数据隐私和安全
02
随着人工智能应用的普及,数据隐私和安全问题将更加突出,
需要加强数据保护和安全措施。
技术伦理和法律责任
03
人工智能的发展将带来技术伦理和法律责任问题,需要建立健
全相关法规和规范。
06
结论
人工智能的潜力和价值
商业价值
人工智能技术能够提高企业的生 产效率,降低成本,提升产品和 服务的质量,从而为企业创造更
大的商业价值。
社会价值
人工智能在医疗、教育、交通等 领域的应用,能够提高社会服务 水平,改善人们的生活质量,为
社会创造巨大的价值。
创新价值
人工智能的发展推动了科技创新 ,促进了各行业的数字化转型, 为人类社会带来了前所未有的变
03
人工智能的实际应用
智能家居
智能家居利用人工智能技术,通 过智能设备、传感器和自动化系 统,实现家庭环境的智能化控制
和管理。
智能家居能够提供便利的生活体 验,如语音助手控制家电、自动 调节室内温度和湿度、智能照明
和安全监控等。
智能家居还可以通过数据分析, 为用户提供更个性化的服务,如
定制化的音乐、电影推荐等。
人工智能 PPT 课件
汇报人:可编辑 2023-12-25
• 人工智能简介 • 人工智能技术 • 人工智能的实际应用 • 人工智能的挑战与伦理问题 • 未来的人工智能发展 • 结论
01 人工智能简介
人工智能的定义
人工智能
指通过计算机程序和算法,使机器能够模拟人类的智能行为 ,实现人机交互、自主策、学习和推理等功能的技术。
驶。

(完整版)人工智能介绍PPT课件

(完整版)人工智能介绍PPT课件

2023/12/16
4
人工智能的未来
对待人工智能的态度
在人工智能发展遇到种种伦理困境的今天 ,我们要始终贯彻以人为本的原则,马克 思说过,“人是人的最高本质。”对于人 工智能的伦理领域的研究也要时刻与其技 术保持同步,要未雨绸缪但要避免过度敏 感。在这条智能走向智慧的路上还会有更 多的问题将接踵而至,而我们要做的就是 不偏不倚走在“科技以人为本”的道路上 迎接人工智能即将带给我们的种种福利。
Part 3 人工智能面临的问题
2023/12/16
3
人工智能面临的问题
人工智能的伦理问题
机器人的日益活跃肯定会引发全社会关 于伦理、道德的大讨论,这有可能会在 一定时间内阻碍机器人的发展,但总的 来说,科技是第一生产力,左右着人类 的进程,至于伦理、道德体系只是科技 的衍生物,大不了推倒重建,更何况, 我们已有了如此成熟的法律监管制度, 估计不会把自己搞瘫痪。如此看来,对 人工智能技术伦理问题的研究也就成为 了重中之重,机器人伦理问题近年来也 引起了许多学者和社会大众的关注 [1]
1956年,塞缪尔在IBM计算机上研制成功了具有自学习、自组织和自适应 能力的西洋跳棋程序。
1957年,纽厄尔、肖(Shaw)和西蒙等研制了一个称为逻辑理论机(LT)的 数学定理证明程序。
1958年,麦卡锡建立了行动规划咨询系统 1960年纽厄尔等研制了通用问题求解(GPS)程序。麦卡锡研制了人工智
人工智能简介
Brief introduction of
Artificial Intelligence
2023/12/16 Made by Bob
•Contents
1 人工智能是什么?
What is Artificial Intelligence?

《人工智能》课件

《人工智能》课件
人工智能伦理与法规
数据隐私与安全
数据隐私
确保个人数据在收集、存储和使 用过程中的保密性和安全性,防 止数据泄露和滥用。
数据安全
采取措施保护数据免受未经授权 的访问、修改或破坏,确保数据 的完整性和可用性。
人工智能的就业影响
就业机会
人工智能的发展将创造新的就业机会 ,包括人工智能专业人才、技术研发 人员等。

人工智能对人类社会的影响
提高生产效率
人工智能技术能够提高 生产效率,降低成本,
促进经济发展。
改善生活质量
人工智能在医疗、教育 、交通等领域的应用能 够改善人们的生活质量

改变就业结构
人工智能的发展将改变 就业结构,需要人们不 断更新技能以适应变化

推动创新发展
人工智能技术能够激发 创新,推动科技发展, 改变人类社会的面貌。
跨界融合
促进人工智能与其他产业 的融合发展,推动经济转 型升级。
可持续发展
引导人工智能技术在环境 保护、能源利用等领域的 运用,推动可持续发展。
THANKS
感谢观看
《人工智能》ppt课件
目录
• 人工智能概述 • 人工智能技术 • 人工智能伦理与法规 • 人工智能未来展望 • 人工智能的实际应用案例 • 总结与思考
01
人工智能概述
人工智能的定义
人工智能定义
人工智能是研究、开发用于模拟、延 伸和扩展人的智能的理论、方法、技 术及应用系统的一门新的技术科学。
人工智能的学科性质
深度学习在计算机视觉中取得了 重大突破,如YOLO、SSD和 Faster R-CNN等目标检测算法 。
语音识别
语音识别是使计算机能够理解和识别 人类语音的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R(1,1)
L(0,2)
0,0,0
L(0,1) R(0,1)
R(0,1) L(0,1)
3,2,0
精选ppt
0,1,1
17
由上述状态空间图,可见从初始状态 (3,3,1)到目标状态(0,0,0)的任何一条通路都是 问题的一个解。
精选ppt
11
第三步: 求解过程:
f1:从A瓶往B瓶倒油,
把B瓶倒满。
f7
2,0
f6 f5
0,2
f4
2,3
f1f15ff,7105ff,3530,ff017f05,ff3363,f08
f5
f3 f8
f8 f1
0,3
f7
f5
f1 f3
f7 f3
3,3
f4 f2
5,1
f2:从C瓶往B瓶倒油, 把B瓶倒满。
精选ppt
9
解:第一步: 定义问题状态的描述形式: 设Sk=(b,c)表示B瓶和C瓶中的油量的状态。
其中: b表示B瓶中的油量。 c表示C瓶中的油量。 初始状态集:S={(0,0)} 目标状态集:G={(4,0)}
精选ppt
10
第二步: 定义操作符:
操作:把瓶子倒满油,或把瓶子的油倒空。 f1:从A瓶往B瓶倒油,把B瓶倒满。 f2:从C瓶往B瓶倒油,把B瓶倒满。 f3:从A瓶往C瓶倒油,把C瓶倒满。 f4:从B瓶往C瓶倒油,把C瓶倒满。 f5:从B瓶往A瓶倒油,把B瓶倒空。 f6:从B瓶往C瓶倒油,把B瓶倒空。 f7:从C瓶往A瓶倒油,把C瓶倒空。 f8:从C瓶往B瓶倒油,把C瓶倒空。
人工智能及其应用
清华大学
精选ppt
1
第1章 绪论
1、重点掌握人工智能的几种定义。 2、掌握目前人工智能的三个主要学派及
其认知观。 3、一般了解人工ቤተ መጻሕፍቲ ባይዱ能的主要研究范围和
应用领域。
精选ppt
2
定义2 人工智能(学科)
人工智能(学科)是计算机科学中涉及研究、 设计和应用智能机器的一个分支。它的 近期主要目标在于研究用机器来模仿和 执行人脑的某些智力功能,并开发相关 理论和技术。
15
第二步:定义算符。 算符R(i, j)表示划船将i个传教士和j个野
人送到左岸的操作。 算符L(i, j)表示划船从左岸将i个传教士和j
个野人带回右岸的操作。 由于过河的船每次最多载两个人,所以
i+j≤2。这样定义的算符集F中只可能有如下10 个算符。 F:R(1,0), R(2,0), R(1,1), R(0,1), R(0,2)
定义3 人工智能(能力)
人工智能(能力)是智能机器所执行的通常 与人类智能有关的智能行为,如判断、 推理、证明、识别、感知、理解、通信、 设计、思考、规划、学习和问题求解等 思维活动。
精选ppt
3
人工智能的三大学派及其认知观: (1)符号主义 认为人工智能起源于数理逻
辑。 (2)连接主义 认为人工智能起源于仿生学,
特别是对人脑模型的研究。 (3)行为主义 认为人工智能起源于控制论。
精选ppt
4
第2章 知识表示方法
重点掌握用状态空间法、问题归约 法、谓词逻辑法、语义网络法、框架表 示法来描述问题,解决问题;
精选ppt
5
2.1 状态空间法
➢ 许多问题求解方法是采用试探搜索方 法的。也就是说,这些方法是通过在某 个可能的解空间内寻找一个解来求解问 题的。这种基于解答空间的问题表示和 求解方法就是状态空间法,它是以状态 和算符(operator)为基础来表示和求解 问题的。
7
2.1 状态空间法
➢由上可知,对一个问题的状态描述, 必须确定3件事: (1) 该状态描述方式,特别是初始状态 描述; (2) 操作符集合及其对状态描述的作用; (3) 目标状态描述的特性。
精选ppt
8
例2:(分油问题) 有A、B、C三个不带刻度的 瓶子,分别能装8kg, 5kg和3kg油。如果A瓶 装满油,B和C是空瓶,怎样操作三个瓶,使 A中的油平分两份?(假设分油过程中不耗油)
L(1,0), L(2,0), L(精1选,1ppt), L(0,1), L(0,2) 16
第三步:求解过程。
R(2,0)
1,1,0 R(1,1)
L(2,0) 3,1,1 L(0,1) R(0,1)
3,0,0 L(0,2) R(0,2)
L(1,1) 2,2,1
L(2,0) R(2,0)
L(1,0)
0,2,0
0,3,1
R(0,1)
L(0,2) R(0,2)
R(1,0)
3,2,1
R(0,1) L(1,0)
0,1,0 L(0,1)
L(1,0) L(0,1)
2,2,0
3,1,0
L(1,1)
R(1,1)L(0,2) R(0,2)
3,3,1
R(1,0) R(0,1)
1,1,1
0,2,1
L(1,1)R(0,2)
精选ppt
14
解:第一步: 定义问题状态的描述形式:
设Sk=(M,C,B)表示传教士和野人在河右岸 的状态。
其中:
M表示传教士在右岸的人数。
C表示野人在右岸的人数。
B用来表示船是不是在右岸。
(B=1表示在右岸,B=0表示在左岸)。
初始状态集:S={(3,3,1)}
目标状态集:G={(0,精0选,0pp)t }
精选ppt
6
2.1 状态空间法
➢状态空间法三要点
(1) 状态(state):表示问题解法中每 一步问题状况的数据结构;
(2) 算符(operator):把问题从一种状 态变换为另一种状态的手段;
(3) 状态空间方法:基于解答空间的问
题表示和求解方法,它是以状态和算符
为基础来表示和求解问题的。
精选ppt
1,0
f7 f3
1,3
精选ppt
把C瓶倒空。 f8:从C瓶往B瓶倒油,
把C瓶倒空。
12
由上述状态空间图,可见从初始状态(0,1) 到目标状态(4,0)的任何一条通路都是问题的一 个解。其中:
{f1, f4, f7, f6, f1, f4, f7}是算符最少的解之一。
精选ppt
13
例:设有3个传教士和3个野人来到河边, 打算乘一只船从右岸渡到左岸去。该船的 负载能力为两人。在任何时候,如果野人 人数超过传教士人数,那么野人就会把传 教士吃掉。他们怎样才能用这条船安全地 把所有人都渡过河去?
f3:从A瓶往C瓶倒油, 把C瓶倒满。
f4:从B瓶往C瓶倒油, 把C瓶倒满。
f5:从B瓶往A瓶倒油, 把B瓶倒空。
f6:从B瓶往C瓶倒油, 把B瓶倒空。
f1 f5 f7 0,0
f7
f1 f5
f7:从C瓶往A瓶倒油,
5,2
f4 f2
f3
f5
0,1
f6 f8
4,3 f1 5,3
f7 f3
f8
4,0
f4
f1
相关文档
最新文档