图像的傅里叶变换实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机科学与技术系
实验报告
专业名称计算机科学与技术
课程名称数字图像处理
项目名称Matlab语言、图像的傅里叶变换
班级14计科2班
学号**********
姓名卢爱胜
同组人员张佳佳、王世兜、张跃文
实验日期2016.11.30
一、实验目的与要求:
(简述本次实验要求达到的目的,涉及到的相关知识点,实验的具体要求。)
实验目的:
1了解图像变换的意义和手段;
2熟悉傅立叶变换的基本性质;
3熟练掌握FFT 变换方法及应用;
4通过实验了解二维频谱的分布特点;
5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。 6评价人眼对图像幅频特性和相频特性的敏感度。
实验要求:
应用傅立叶变换进行图像处理
傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。
二、实验内容
(根据本次实验项目的具体任务和要求,完成相关内容,可包括:实验目的、算法原理、实验仪器、设备选型及连线图、算法描述或流程图、源代码、实验运行步骤、关键技术分析、测试数据与实验结果、其他 )
1.傅立叶(Fourier )变换的定义
对于二维信号,二维Fourier 变换定义为:
2()(,)(,)j ux uy F u v f x y e dxdy π∞∞
-+-∞-∞=
⎰⎰
逆变换: 2()(,)(,)j ux uy f x y F u v e dudv π∞∞
+-∞-∞=
⎰⎰
二维离散傅立叶变换为:
112()00
1(,)(,)i k N N j m n N N i k F m n f i k e
N π---+===∑∑ 逆变换: 112()001(,)(,)i k N N j m n N N m n f i k F m n e N π--+===∑∑
图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。
2.利用MATLAB 软件实现数字图像傅立叶变换的程序:
I=imread(‘原图像名.gif’);%读入原图像文件
imshow(I); %显示原图像
fftI=fft2(I); %二维离散傅立叶变换
sfftI=fftshift(fftI); %直流分量移到频谱中心
RR=real(sfftI); %取傅立叶变换的实部
II=imag(sfftI); %取傅立叶变换的虚部
A=sqrt(RR.^2+II.^2); %计算频谱幅值
A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225 %归一化
figure; %设定窗口
imshow(A); %显示原图像的频谱
四、源代码
clc;clear all
I=imread('Fig0707(a)(Original).tif.tif'); %读入原图像文件 imshow(I); %显示原图像
title('原始图像')
fftI=fft2(I); %二维离散傅立叶变换
sfftI=fftshift(fftI); %直流分量移到频谱中心
RR=real(sfftI); %取傅立叶变换的实部
II=imag(sfftI); %取傅立叶变换的虚部
A=sqrt(RR.^2+II.^2); %计算频谱幅值
A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化 figure; %设定窗口
imshow(A); %显示原图像的频谱
title('原始图像的频谱')
f1=ifft2(A); %用Fourier 系数的幅度进行Fourier 反变换 f2=ifft2(angle(fftI)); %用Fourier 系数的相位进行Fourier 反变换;
figure
subplot 121;imshow(f1,[])
title('幅度进行Fourier反变换') subplot 122;imshow(f2,[])
title('相位进行Fourier反变换') 五、实验结果及分析
原始图像
原始图像的频谱
幅度进行Fourier反变换相位进行Fourier反变换
实验分析:本次试验研究了有关傅里叶算法方面的知识,将傅里叶变换应用在图像的处理上,让我学习到了傅里叶算法方面的知识,实践才是成长的好道路。