中考数学每日一练:扇形面积的计算练习题及答案_2020年解答题版
2020年衢州市中考数学试卷及答案(word解析版)
浙江省衢州市2020年中考数学试卷项,不选、多选、错选均不给分.)1.(3分)(2020•衢州)比1小2的数是()A.3B.1C.﹣1 D.﹣2考点:有理数的减法.分析:根据有理数的减法运算法则进行计算即可得解.解答:解:1﹣2=﹣1.故选C.点评:本题考查了有理数的减法,是基础题.2.(3分)(2020•衢州)下列计算正确的是()A.3a+2b=5ab B.a﹣a4=a4C.a6÷a2=a3D.(﹣a3b)2=a6b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘;合并同类项,只把系数相加减,字母与字母的次数不变,对各选项分析判断后利用排除法求解.解答:解:A、3a+2b=5ab无法合并,故本选项错误;B、a﹣a4=a4,无法合并,故本选项错误;C、a6÷a2=a4,故本选项错误;D、(﹣a3b)2=a6b2,故本选项正确.故选:D.点评:本题考查了合并同类项,同底数幂的除法,幂的乘方的性质,熟练掌握运算性质是解题的关键.3.(3分)(2020•衢州)衢州新闻网2月16日讯,2020年春节“黄金周”全市接待游客总数为833100人次.将数833100用科学记数法表示应为()A.0.833×106B.83.31×105C.8.331×105D.8.331×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:833100=8.331×105,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2020•衢州)下面简单几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到简单几何体从左面看所得到的图形即可.解答:解:从左面看可得到左右两列正方形个数分别为:2,1.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.(3分)(2020•衢州)若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是()A.m<﹣2 B.m<0 C.m>﹣2 D.m>0考点:反比例函数的性质.分析:根据反比例函数的性质可得m+2<0,再解不等式公式即可.解答:解:∵函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,∴m+2<0,解得:m<﹣2,故选:A.点评:本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.6.(3分)(2020•衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.cm D.cm考点:含30度角的直角三角形;等腰直角三角形.分析:过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角直角边,再由等腰直角三角形求出最大边.解答:解:过点C作CD⊥AD,∴CD=3,在直角三角形ADC中,∵∠CAD=30°,∴AC=2CD=2×3=6,又三角板是有45°角的三角板,∴AB=AC=6,∴BC2=AB2+AC2=62+62=72,∴BC=6,故选:D.点评:此题考查的知识点是含30°角的直角三角形及等腰直角三角形问题,关键是先由求得直角边,再由勾股定理求出最大边.7.(3分)(2020•衢州)一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).组员日期甲乙丙丁戊方差平均成绩得分81 79 ■80 82 ■80那么被遮盖的两个数据依次是()A.80,2 B.80,C.78,2 D.78,考点:方差;算术平均数.分析:根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.解答:解:根据题意得:80×5﹣(81+79+80+82)=78,方差= [(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故选C.点评:本题考查了平均数与方差,掌握平均数和方差的计算公式是解题的关键,一般地设n 个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.(3分)(2020•衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,≈1.73).A.3.5m B.3.6m C.4.3m D.5.1m考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设CD=x,在Rt△ACD中求出AD,在Rt△CED中求出ED,再由AE=4m,可求出x 的值,再由树高=CD+FD即可得出答案.解答:解:设CD=x,在Rt△ACD中,CD=x,∠CAD=30°,则AD=x,在Rt△CED中,CD=x,∠CED=60°,则ED=x,由题意得,AD﹣ED=x﹣x=4,解得:x=2,则这棵树的高度=2+1.6≈5.1m.故选D.点评:本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.9.(3分)(2020•衢州)抛物线y=x2+bx+c的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为y=(x﹣1)2﹣4,则b、c的值为()A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=2考点:二次函数图象与几何变换.分析:先确定出平移后的抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出平移前的抛物线的顶点坐标,然后写出平移前的抛物线的顶点式形式,然后整理成一般形式,即可得到b、c的值.解答:解:函数y=(x﹣1)2﹣4的顶点坐标为(1,﹣4),∵是向右平移2个单位,再向下平移3个单位得到,∴1﹣2=﹣1,﹣4+3=﹣1,∴平移前的抛物线的顶点坐标为(﹣1,﹣1),∴平移前的抛物线为y=(x+1)2﹣1,即y=x2+2x,∴b=2,c=0.故选B.点评:本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减,利用顶点的变化确定函数解析式可以使计算更加简便.10.(3分)(2020•衢州)如图,正方形ABCD的边长为4,P为正方形边上一动点,沿A→D→C→B→A 的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.考点:动点问题的函数图象.分析:根据动点从点A出发,首先向点D运动,此时y不随x的增加而增大,当点p在DC 山运动时,y随着x的增大而增大,当点p在CB上运动时,y不变,据此作出选择即可.解答:解:当点P由点A向点D运动时,y的值为0;当点p在DC上运动时,y随着x的增大而增大;当点p在CB上运动时,y不变;当点P在BA上运动时,y随x的增大而减小.故选B.点评:本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.二、填空题(本大题共有6小题,每小题4分,共24分.)11.(4分)(2020•衢州)不等式组的解集是x≥2.考点:解一元一次不等式组.专题:计算题.分析:分别计算出每个不等式的解集,再求其公共部分.解答:解:,由①得,x≥2;由②得,x≥﹣;则不等式组的解集为x≥2.故答案为x ≥2. 点评: 本题考查了解一元一次不等式组,找到公共解是解题的关键,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.(4分)(2020•衢州)化简:=.考点:分式的加减法. 专题:计算题. 分析: 先将x 2﹣4分解为(x+2)(x ﹣2),然后通分,再进行计算. 解答:解:===.点评: 本题考查了分式的计算和化简.解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分. 13.(4分)(2020•衢州)小芳同学有两根长度为4cm 、10cm 的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是 .考点: 概率公式;三角形三边关系. 分析: 由桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的有:10cm ,12cm 长的木棒,直接利用概率公式求解即可求得答案. 解答: 解:∵小芳同学有两根长度为4cm 、10cm 的木棒,∴桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的有:10cm ,12cm 长的木棒,∴从中任选一根,能钉成三角形相框的概率是:. 故答案为:. 点评: 此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比. 14.(4分)(2020•衢州)如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB )为120°,OC 的长为2cm ,则三角板和量角器重叠部分的面积为+2.考点:扇形面积的计算.专题:数形结合.分析:在Rt△OBC中求出OB、BC,然后求出扇形OAB及△OBC的面积即可得出答案.解答:解:∵∠AOB=120°,∴∠BOC=60°,在Rt△OBC中,OC=2cm,∠BOC=60°,∴∠OBC=30°,∴OB=4cm,BC=2cm,则S扇形OAB==,S△OBC=OC×BC=2,故S重叠=S扇形OAB+S△OBC=+2.故答案为:+2.点评:本题考查了扇形的面积计算,解答本题关键是求出扇形的半径,注意熟练掌握扇形的面积公式,难度一般.15.(4分)(2020•衢州)某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种10棵橘子树,橘子总个数最多.考点:二次函数的应用.分析:根据题意设多种x棵树,就可求出每棵树的产量,然后求出总产量y与x之间的关系式,进而求出x=﹣时,y最大.解答:解:假设果园增种x棵橙子树,那么果园共有(x+100)棵橙子树,∵每多种一棵树,平均每棵树就会少结5个橙子,∴这时平均每棵树就会少结5x个橙子,则平均每棵树结(600﹣5x)个橙子.∵果园橙子的总产量为y,∴则y=(x+100)(600﹣5x)=﹣5x2+100x+60000,∴当x=﹣=﹣=10(棵)时,橘子总个数最多.故答案为:10.点评:此题主要考查了二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.16.(4分)(2020•衢州)如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD 各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是20;四边形A2020B2020C2020D2020的周长是.考点:中点四边形;菱形的性质.专题:规律型.分析:根据菱形的性质以及三角形中位线的性质以及勾股定理求出四边形各边长得出规律求出即可.解答:解:∵菱形ABCD中,边长为10,∠A=60°,顺次连结菱形ABCD各边中点,∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,∴A1D1=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=5,∴四边形A2B2C2D2的周长是:5×4=20,同理可得出:A3D3=5×,C3D3=AC=×5,A5D5=5×()2,C5D5=AC=()2×5,…∴四边形A2020B2020C2020D2020的周长是:=.故答案为:20,.点评:此题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.三、简答题(本大题共有8小题,共66分.务必写出解答过程.)17.(6分)(2020•衢州)﹣23÷|﹣2|×(﹣7+5)考点:实数的运算.专题:计算题.分析:先进行开方和乘方运算得到原式=2﹣8÷2×(﹣2),再进行乘除运算,然后进行加法运算.解答:解:原式=2﹣8÷2×(﹣2)=2+8=10.点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.18.(6分)(2020•衢州)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.考点:一元二次方程的应用.专题:几何图形问题.分析:(1)边长为x的正方形面积为x2,矩形面积减去4个小正方形的面积即可.(2)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可.解答:解:(1)ab﹣4x2;(2分)(2)依题意有:ab﹣4x2=4x2,(4分)将a=6,b=4,代入上式,得x2=3,(6分)解得x1=,x2=﹣(舍去).(7分)即正方形的边长为点评:本题是利用方程解答几何问题,充分体现了方程的应用性.依据等量关系“剪去部分的面积等于剩余部分的面积”,建立方程求解.19.(6分)(2020•衢州)如图,函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(a,1)、B(1,b)两点.(1)求函数y2的表达式;(2)观察图象,比较当x>0时,y1与y2的大小.考点:反比例函数与一次函数的交点问题.分析:(1)由函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(a,1)、B(1,b)两点,把A代入函数y1=﹣x+4,可求得A的坐标,继而求得函数y2的表达式;(2)观察图象可得即可求得:当x>0时,y1与y2的大小.解答:解:(1)把点A坐标代入y1=﹣x+4,得﹣a+4=1,解得:a=3,…(1分)∴A(3,1),把点A坐标代入y2=,∴k2=3,∴函数y2的表达式为:y2=;…(3分)(2)∴由图象可知,当0<x<1或x>3时,y1<y2,…(4分)当x=1或x=3时,y1=y2,…(5分)当1<x<3时,y1=y2.…(6分)点评:此题考查了一次函数与反比例函数的交点问题.此题难度适中,注意掌握方程思想与数形结合思想的应用.20.(8分)(2020•衢州)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.考点:切线的判定;全等三角形的判定与性质;相似三角形的判定与性质.分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.解答:(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.…(1分)又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.…(2分)在△COD和△COB中,,∴△COD≌△COB(SAS)…(3分)∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线.…(4分)(2)解:∵△COD≌△COB.∴CD=CB.…(5分)∵DE=2BC,∴ED=2CD.…(6分)∵AD∥OC,∴△EDA∽△ECO.…(7分)∴.…(8分)点评:此题考查了切线的判定、全等三角形的判定与性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.21.(8分)(2020•衢州)据《2012年衢州市国民经济和社会发展统计公报》(2020年2月5日发布),衢州市固定资产投资的相关数据统计图如下:根据以上信息,解答下列问题:(1)求2012年的固定资产投资增长速度(年增长速度即年增长率);(2)求2005﹣2012年固定资产投资增长速度这组数据的中位数;(3)求2006年的固定资产投资金额,并补全条形图;(4)如果按照2012年的增长速度,请预测2020年衢州市的固定资产投资金额可达到多少亿元(精确到1亿元)?考点:折线统计图;条形统计图;中位数.分析:(1)根据2012年和2011年投资进而求出增长率即可;(2)根据中位数的定义,按大小排列后找出最中间的两个求出平均数即可;(3)设2006年的固定资产投资金额为x亿元,进而得出280﹣x=12%x求出即可;(4)根据2012年的增长率,得出565×(1+13%)求出即可.解答:解:(1)根据题意得出:×100%=13%;答:2012年的固定资产投资增长速度为13%;(2)数据按大小排列得出:10.71%,12%,13%,13.16%,16.28%,18.23%,22.58,25%,∴中位数为:=14.72%;答:2005﹣2012年固定资产投资增长速度这组数据的中位数是14.72%;(3)设2006年的固定资产投资金额为x亿元,则有:280﹣x=12%x(或x﹣200=25%×200),解得:x=250,答:2006年的投资额是250亿元;如图所示;(4)565×(1+13%)=638.45≈638(亿元),答:预测2020年可达638亿元.点评:此题主要考查了折线图与条形图以及增长率和中位数的定义等知识,根据已知得出增长率求法是解题关键.22.(10分)(2020•衢州)【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.【拓展延伸】(3)如图3,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究∠ABC 与∠ACN的数量关系,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.分析:(1)利用SAS可证明△BAM≌△CAN,继而得出结论;(2)也可以通过证明△BAM≌△CAN,得出结论,和(1)的思路完全一样.(3)首先得出∠BAC=∠MAN,从而判定△ABC∽△AMN,得到=,根据∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,从而判定△BAM∽△CAN,得出结论.解答:(1)证明:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(2)解:结论∠ABC=∠ACN仍成立.理由如下:∵△ABC、△AMN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,∵在△BAM和△CAN中,∴△BAM≌△CAN(SAS),∴∠ABC=∠ACN.(3)解:∠ABC=∠ACN.理由如下:∵BA=BC,MA=MN,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC∽△AMN,∴=,又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,∴∠BAM=∠CAN,∴△BAM∽△CAN,∴∠ABC=∠ACN.点评:本题考查了相似三角形的判定与性质、全等三角形的判定与性质,解答本题的关键是仔细观察图形,找到全等(相似)的条件,利用全等(相似)的性质证明结论.23.(10分)(2020•衢州)“五•一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?考点:一次函数的应用.分析:(1)根据原有的人数﹣a分钟检票额人数+a分钟增加的人数=520建立方程求出其解就可以;(2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b,由待定系数法求出函数的解析式,再将x=20代入解析式就可以求出结论;(3)设需同时开放n个检票口,根据原来的人数+15分进站人数≥n个检票口15分钟检票人数建立不等式,求出其解即可.解答:解:(1)由图象知,640+16a﹣2×14a=520,∴a=10;(2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b,由题意,得,解得:,y=﹣26x+780,当x=2时,y=260,即检票到第20分钟时,候车室排队等候检票的旅客有260人.(3)设需同时开放n个检票口,则由题意知14n×15≥640+16×15解得:n≥4,∵n为整数,∴n=5.答:至少需要同时开放5个检票口.点评:本题考查了待定系数法求一次函数的解析式的运用,一元一次不等式的运用,解答的过程中求出函数的解析式是关键,建立一元一次不等式是重点.24.(12分)(2020•衢州)在平面直角坐标系x、y中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB于点D.点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒.(1)当点P移动到点D时,求出此时t的值;(2)当t为何值时,△PQB为直角三角形;(3)已知过O、P、Q三点的抛物线解析式为y=﹣(x﹣t)2+t(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)首先根据矩形的性质求出DO的长,进而得出t的值;(2)要使△PQB为直角三角形,显然只有∠PQB=90°或∠PBQ=90°,进而利用勾股定理分别分析得出PB2=(6﹣t)2+(2﹣t)2,QB2=(6﹣2t)2+22,PQ2=(2t﹣t)2+t2=2t2,再分别就∠PQB=90°和∠PBQ=90°讨论,求出符合题意的t值即可;(3)存在这样的t值,若将△PQB绕某点旋转180°,三个对应顶点恰好都落在抛物线上,则旋转中心为PQ中点,此时四边形PBQB′为平行四边形,根据平行四边形的性质和对称性可求出t的值.解答:解:(1)∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,∵OD平分∠AOC,∴∠AOD=∠DOQ=45°,∴在Rt△AOD中,∠ADO=45°,∴AO=AD=2,OD=2,∴t==2;(2)要使△PQB为直角三角形,显然只有∠PQB=90°或∠PBQ=90°.如图1,作PG⊥OC于点G,在Rt△POG中,∵∠POQ=45°,∴∠OPG=45°,∵OP=t,∴OG=PG=t,∴点P(t,t)又∵Q(2t,0),B(6,2),根据勾股定理可得:PB2=(6﹣t)2+(2﹣t)2,QB2=(6﹣2t)2+22,PQ2=(2t﹣t)2+t2=2t2,①若∠PQB=90°,则有PQ2+BQ2=PB2,即:2t2+[(6﹣2t)2+22]=(6﹣t)2+(2﹣t)2,整理得:4t2﹣8t=0,精品试卷解得:t1=0(舍去),t2=2,∴t=2,②若∠PBQ=90°,则有PB2+QB2=PQ2,∴[(6﹣t)2+(2﹣t)2]+[(6﹣2t)2+22]=2t2,整理得:t2﹣10t+20=0,解得:t=5±.∴当t=2或t=5+或t=5﹣时,△PQB为直角三角形.解法2:①如图2,当∠PQB=90°时,易知∠OPQ=90°,∴BQ∥OD∴∠BQC=∠POQ=45°可得QC=BC=2,∴OQ=4,∴2t=4,∴t=2,②如图3,当∠PBQ=90°时,若点Q在OC上,作PN⊥x轴于点N,交AB于点M,则易证∠PBM=∠CBQ,∴△PMB∽△QCB∴=,∴CB•PM=QC•MB,∴2(t﹣2)=(2t﹣6)(t﹣6),化简得t2﹣10t+20=0,解得:t=5±,∴t=5﹣;③如图3,当∠PBQ=90°时,若点Q在OC的延长线上,作PN⊥x轴于点N,交AB延长线于点M,则易证∠BPM=∠MBQ=∠BQC,∴△PMB∽△QCB,∴=,∴CB•PM=QC•MB,∴2(t﹣2)=(2t﹣6)(t﹣6),化简得t2﹣10t+20=0,解得:t=5±,∴t=5+;(3)存在这样的t值,理由如下:将△PQB绕某点旋转180°,三个对应顶点恰好都落在抛物线上,则旋转中心为PQ中点,此时四边形PBQB′为平行四边形.∵PO=PQ,由P(t,t),Q(2t,0),知旋转中心坐标可表示为(t,t),∵点B坐标为(6,2),∴点B′的坐标为(3t﹣6,t﹣2),代入y=﹣(x﹣t)2+t,得:2t2﹣13t+18=0,解得:t1=,t2=2.精品试卷点评:本题考查了相似形综合题,涉及了动点问题,勾股定理的运用,矩形的性质,直角三角形的性质以及平行四边形的判定和性质,解答本题关键是讨论点P的位置,由题意建立方程从而求出符合题意的t值,同时要数形结合进行思考,难度较大.友情提示:一、认真对待每一次考试。
中考数学每日一练:扇形面积的计算练习题及答案_2020年单选题版
A.
B.
C.
D.
考点: 勾股定理的应用;扇形面积的计算;
~~第5题~~ (2019西安.中考模拟) 如图,等边三角形
内接于
,若
答案
的半径为2,则图中阴影部分的面积等于( )
A. B. C. D.
考点: 等边三角形的性质;扇形面积的计算;
答案
~~第6题~~ (2019宿迁.中考真卷) 如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆 围成的6个月牙形的面积之和(阴影部分面积)是( )
A.
B.
C.
D.
考点: 几何图形的面积计算-割补法;正多边形和圆;扇形面积的计算;
答案
~~第7题~~ (2019石家庄.中考模拟) 在△ABC中,CA=CB=4,∠ACB=90°,以AB的中点D为圆心,作圆心角为90°的扇形DEF, 点C恰好在上(如图所示)。则图中阴影部分的面积为( )
A . 2π-4 B . 4π-4 C . 2π+4 D . 4π+4 考点: 三角形的面积;扇形面积的计算;
A . 50° B . 60° C . 70° D . 80°
考点: 弧长的计算;扇形面积的计算;
答案
~~第10题~~
(2019朝阳.中考模拟) 如图, 的半径为5, 是圆上任意两点,且
,以 为边作正方形
(点
在直线 两侧).若 边绕点 旋转一周,则 边扫过的面积为( )
A. B. C. D.
考点: 正方形的性质;垂径定理;扇形面积的计算;旋转的性质;
答案
~~第3题~~ (2020宁波.中考模拟) 如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′ ,B′,连接BB′,则图中阴影部分的面积是( )
扇形面积练习题
扇形面积练习题一、选择题1. 扇形的面积公式为S=nπR²/360,其中n代表圆心角的度数,R代表半径。
如果一个扇形的圆心角为60°,半径为6cm,那么它的面积是多少平方厘米?A. 9πB. 6πC. 3πD. π2. 已知一个扇形的圆心角为120°,半径为8cm,求扇形的面积。
A. 16πB. 24πC. 32πD. 40π3. 如果一个扇形的面积为18π平方厘米,半径为3cm,那么它的圆心角是多少度?A. 120°B. 180°C. 240°D. 360°二、填空题1. 一个扇形的圆心角为______度,半径为5cm,面积为12π平方厘米。
2. 扇形的圆心角为90°,半径为10cm,其面积为______平方厘米。
3. 若扇形的面积为25π平方厘米,圆心角为150°,则扇形的半径为______厘米。
三、计算题1. 一个扇形的圆心角为45°,半径为7cm,求扇形的面积。
2. 已知一个扇形的面积为28.26平方厘米,圆心角为135°,求扇形的半径。
3. 一个扇形的圆心角为120°,面积为50π平方厘米,求扇形的半径。
四、解答题1. 一个扇形的圆心角为90°,半径为12cm,求扇形的弧长。
2. 已知一个扇形的圆心角为60°,半径为8cm,求扇形的弧长和周长。
3. 一个扇形的圆心角为150°,面积为75π平方厘米,求扇形的弧长和周长。
五、应用题1. 一个圆形花坛的半径为20m,计划在花坛的中心区域种植一种特殊植物,该区域是一个扇形,圆心角为60°。
求该扇形区域的面积。
2. 一个圆形水池的周长为100π米,水池的中心区域是一个扇形,圆心角为120°。
求该扇形区域的面积和弧长。
3. 一个扇形的圆心角为90°,面积为40π平方厘米,这个扇形是从一个半径为20cm的圆中切割出来的。
2020年全国中考数学试题分类(11)——圆(含答案)
2020年全国中考数学试题分类(11)——圆一.圆心角、弧、弦的关系(共1小题)1.(2020•广安)如图,点A,B,C,D四点均在⊙O上,∠AOD=68°,AO∥DC,则∠B的度数为()A.40°B.60°C.56°D.68°二.圆周角定理(共9小题)2.(2020•巴中)如图,在⊙O中,点A、B、C在圆上,∠ACB=45°,AB=2√2,则⊙O的半径OA的长是()A.√2B.2 C.2√2D.33.(2020•贵港)如图,点A,B,C均在⊙O上,若∠ACB=130°,则∠α的度数为()A.100°B.110°C.120°D.130°̂上任意一4.(2020•临沂)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为BB 点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°5.(2020•陕西)如图,点A、B、C在⊙O上,BC∥OA,连接BO并延长,交⊙O于点D,连接AC,DC.若∠A=25°,则∠D的大小为()A.25°B.30°C.40°D.50°6.(2020•兰州)如图,AB是⊙O的直径,若∠BAC=20°,则∠ADC=()A .40°B .60°C .70°D .80°7.(2020•阜新)如图,AB 为⊙O 的直径,C ,D 是圆周上的两点,若∠ABC =38°,则锐角∠BDC 的度数为( )A .57°B .52°C .38°D .26°8.(2020•赤峰)如图,⊙A 经过平面直角坐标系的原点O ,交x 轴于点B (﹣4,0),交y 轴于点C (0,3),点D 为第二象限内圆上一点.则∠CDO 的正弦值是( )A .35B .−34C .34D .45 9.(2020•眉山)如图,四边形ABCD 的外接圆为⊙O ,BC =CD ,∠DAC =35°,∠ACD =45°,则∠ADB的度数为( )A .55°B .60°C .65°D .70°10.(2020•河池)如图,AB 是⊙O 的直径,点C ,D ,E 都在⊙O 上,∠1=55°,则∠2= °.三.圆内接四边形的性质(共2小题)11.(2020•广西)如图,已知四边形ABCD 为⊙O 的内接四边形,BD 平分∠ABC ,DH ⊥AB 于点H ,DH =√3,∠ABC=120°,则AB+BC的值为()A.√2B.√3C.2 D.√512.(2020•雅安)如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.四.点与圆的位置关系(共1小题)13.(2020•广东)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.五.三角形的外接圆与外心(共3小题)14.(2020•赤峰)如图,△ABC中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则△ABC外接圆的面积为()A.3πB.4πC.6πD.9π̂的长为.15.(2020•锦州)如图,⊙O是△ABC的外接圆,∠ABC=30°,AC=6,则BB16.(2020•黄石)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,̂的长等于.作△ABC的外接圆,则BB六.直线与圆的位置关系(共1小题)17.(2020•泰州)如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为.七.切线的性质(共4小题)18.(2020•桂林)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC 的度数是()A.60°B.65°C.70°D.75°19.(2020•眉山)如图,点P为⊙O外一点,过点P作⊙O的切线P A、PB,点A、B为切点,连接AO并延长交PB的延长线于点C,过点C作CD⊥PO,交PO的延长线于点D.已知P A=6,AC=8,则CD的长为.20.(2020•呼和浩特)已知AB为⊙O的直径且长为2r,C为⊙O上异于A,B的点,若AD与过点C的⊙O的切线互相垂直,垂足为D.①若等腰三角形AOC的顶角为120度,则CD=12r,②若△AOC为正三角形,则CD=√32r,③若等腰三角形AOC的对称轴经过点D,则CD=r,④无论点C在何处,将△ADC沿AC折叠,点D一定落在直径AB上,其中正确结论的序号为.21.(2020•济南)如图,AB为⊙O的直径,点C是⊙O上一点,CD与⊙O相切于点C,过点A作AD⊥DC,连接AC,BC.(1)求证:AC是∠DAB的角平分线;(2)若AD=2,AB=3,求AC的长.八.切线的判定与性质(共9小题)22.(2020•兰州)如图,在Rt△AOB中,∠AOB=90°,OA=OB,点C是AB的中点,以OC为半径作⊙O.(1)求证:AB是⊙O的切线;(2)若OC=2,求OA的长.23.(2020•西藏)如图所示,AB是⊙O的直径,AD和BC分别切⊙O于A,B两点,CD与⊙O有公共点E,且AD=DE.(1)求证:CD是⊙O的切线;(2)若AB=12,BC=4,求AD的长.24.(2020•葫芦岛)如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.25.(2020•镇江)如图,▱ABCD 中,∠ABC 的平分线BO 交边AD 于点O ,OD =4,以点O 为圆心,OD 长为半径作⊙O ,分别交边DA 、DC 于点M 、N .点E 在边BC 上,OE 交⊙O 于点G ,G 为BB̂的中点. (1)求证:四边形ABEO 为菱形;(2)已知cos ∠ABC =13,连接AE ,当AE 与⊙O 相切时,求AB 的长. 26.(2020•宁夏)如图,在△ABC 中,∠B =90°,点D 为AC 上一点,以CD 为直径的⊙O 交AB 于点E ,连接CE ,且CE 平分∠ACB .(1)求证:AE 是⊙O 的切线;(2)连接DE ,若∠A =30°,求BB BB .27.(2020•烟台)如图,在▱ABCD 中,∠D =60°,对角线AC ⊥BC ,⊙O 经过点A ,B ,与AC 交于点M ,连接AO 并延长与⊙O 交于点F ,与CB 的延长线交于点E ,AB =EB .(1)求证:EC 是⊙O 的切线;(2)若AD =2√3,求BB ̂的长(结果保留π).28.(2020•广东)如图1,在四边形ABCD 中,AD ∥BC ,∠DAB =90°,AB 是⊙O 的直径,CO 平分∠BCD .(1)求证:直线CD 与⊙O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧BB̂上一点,AD =1,BC =2.求tan ∠APE 的值.29.(2020•株洲)AB是⊙O的直径,点C是⊙O上一点,连接AC、BC,直线MN过点C,满足∠BCM=∠BAC=α.(1)如图①,求证:直线MN是⊙O的切线;(2)如图②,点D在线段BC上,过点D作DH⊥MN于点H,直线DH交⊙O于点E、F,连接AF并延长交直线MN于点G,连接CE,且CE=53,若⊙O的半径为1,cosα=34,求AG•ED的值.30.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧BB̂的中点,过点C作CE ⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.九.三角形的内切圆与内心(共1小题)31.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是()A.h=R+r B.R=2r C.r=√34a D.R=√3 3a一十.正多边形和圆(共7小题)32.(2020•济南)如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.33.(2020•黄石)匈牙利著名数学家爱尔特希(P.Erdos,1913﹣1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是.34.(2020•株洲)据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、斛(hú)也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”,如图所示.问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为尺.(结果用最简根式表示)35.(2020•南京)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.̂上一点(点P与点D,点E不重合),连36.(2020•绥化)如图,正五边形ABCDE内接于⊙O,点P为BB接PC、PD,DG⊥PC,垂足为G,∠PDG等于度.37.(2020•成都)如图,六边形ABCDEF是正六边形,曲线F A1B1C1D1E1F1…叫做“正六边形的渐开线”,BB 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .38.(2020•通辽)中心为O 的正六边形ABCDEF 的半径为6cm ,点P ,Q 同时分别从A ,D 两点出发,以1cm /s 的速度沿AF ,DC 向终点F ,C 运动,连接PB ,PE ,QB ,QE ,设运动时间为t (s ).(1)求证:四边形PBQE 为平行四边形;(2)求矩形PBQE 的面积与正六边形ABCDEF 的面积之比.一十一.弧长的计算(共4小题)39.(2020•盘锦)如图,在△ABC 中,AB =BC ,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,点E 为线段OB 上的一点,OE :EB =1:√3,连接DE 并延长交CB 的延长线于点F ,连接OF 交⊙O 于点G ,若BF =2√3,则BB̂的长是( ) A .B 3 B .B 2 C .2B 3 D .3B 440.(2020•沈阳)如图,在矩形ABCD 中,AB =√3,BC =2,以点A 为圆心,AD 长为半径画弧交边BC 于点E ,连接AE ,则BB̂的长为( ) A .4B 3 B .π C .2B 3 D .B 3 41.(2020•潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:BB 1̂的圆心为点A ,半径为AD ;B 1B 1̂的圆心为点B ,半径为BA 1;B 1B 1̂的圆心为点C ,半径为CB 1;B 1B 1̂的圆心为点D ,半径为DC 1;⋯BB 1̂,B 1B 1̂,B 1B 1̂,B 1B 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则B 2020B 2020̂的长是 .42.(2020•河南)如图,在扇形BOC 中,∠BOC =60°,OD 平分∠BOC 交BB̂于点D ,点E 为半径OB 上一动点.若OB =2,则阴影部分周长的最小值为 .一十二.扇形面积的计算(共6小题)43.(2020•山西)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC =BD =12cm ,C ,D 两点之间的距离为4cm ,圆心角为60°,则图中摆盘的面积是( )A .80πcm 2B .40πcm 2C .24πcm 2D .2πcm 244.(2020•日照)如图,AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E ,若CD =6√3,AE =9,则阴影部分的面积为( ) A .6π−92√3 B .12π﹣9√3C .3π−94√3D .9√3 45.(2020•西藏)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E .若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A .43π−√3B .43π﹣2√3C .83π−√3D .83π﹣2√3 46.(2020•呼伦贝尔)若一个扇形的弧长是2πcm ,面积是6πcm 2,则扇形的圆心角是 度.47.(2020•鄂尔多斯)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠BCD =30°,CD =2√3,则阴影部分面积S 阴影= .48.(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 .(结果保留π)一十三.圆锥的计算(共1小题)49.(2020•广东)如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m .一十四.圆的综合题(共1小题)50.(2020•呼和浩特)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现著名的黄金分割比√5−12≈0.618.如图,圆内接正五边形ABCDE ,圆心为O ,OA 与BE 交于点H ,AC 、AD 与BE 分别交于点M 、N .根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)(1)求证:△ABM 是等腰三角形且底角等于36°,并直接说出△BAN 的形状;(2)求证:BB BB =BB BB ,且其比值k =√5−12;(3)由对称性知AO ⊥BE ,由(1)(2)可知BB BB 也是一个黄金分割数,据此求sin18°的值.2020年全国中考数学试题分类(11)——圆参考答案与试题解析一.圆心角、弧、弦的关系(共1小题)1.【解答】解:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=68°,∵OD=OC,∴∠ODC=∠OCD=68°,∴∠COD=44°,∴∠AOC=112°,∴∠B=12∠AOC=56°.故选:C.二.圆周角定理(共9小题)2.【解答】解:根据圆周角定理得:∠AOB=2∠ACB,∵∠ACB=45°,∴∠AOB=90°,∵AB=2√2,OA=OB,∴2OA2=AB2,∴OA=OB=2,故选:B.3.【解答】解:在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:A.4.【解答】解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦AC的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE =x ,则∠COE =100°﹣x ,∠DOE =100°﹣x +40°, ∵OC =OE ,∠COE =100°﹣x ,∴∠OEC =∠OCE =40°+12x ,∵OD <OE ,∠DOE =100°﹣x +40°=140°﹣x ,∴∠OED <20°+12x , ∴∠CED =∠OEC ﹣∠OED >(40°+12x )﹣(20°+12x )=20°,∵∠CED <∠ABC =40°,∴20°<∠CED <40°故选:C .5.【解答】解:∵BC ∥OA ,∴∠ACB =∠A =25°,∠B =∠AOB =2∠ACB =50°,∵BD 是⊙O 的直径,∴∠BCD =90°,∴∠D =90°﹣∠B =90°﹣50°=40°,故选:C .6.【解答】解:∵AB 是直径,∴∠ACB =90°,∵∠BAC =20°,∴∠ABC =90°﹣20°=70°,∴∠ADC =∠ABC =70°,故选:C .7.【解答】解:连接AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠ABC =38°,∴∠BAC =90°﹣∠ABC =52°,∴∠BDC =∠BAC =52°.故选:B .8.【解答】解:连接BC ,如图,∵B (﹣4,0),C (0,3),∴OB =4,OC =3,∴BC =√32+42=5,∴sin ∠OBC =BB BB =35, ∵∠ODC =∠OBC ,∴sin ∠CDO =sin ∠OBC =35.故选:A .9.【解答】解:∵BC =CD , ∴BB̂=BB ̂, ∵∠ABD 和∠ACD 所对的弧都是BB̂, ∴∠BAC =∠DAC =35°,∵∠ABD =∠ACD =45°,∴∠ADB =180°﹣∠BAD ﹣∠ABD =180°﹣70°﹣45°=65°. 故选:C .10.【解答】解:如图,连接AD .∵AB 是直径,∴∠ADB =90°,∵∠1=∠ADE ,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.三.圆内接四边形的性质(共2小题)11.【解答】解:延长BA 到E ,使AE =BC ,连接DE ,如图,∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC =12×120°=60°,∵∠DAC =∠DBC =60°,∠DCA =∠DBA =60°,∴△DAC 为等边三角形,∴DA =DC ,在△ADE 和△BCD 中,{BB =BB BBBB =BBBB BB =BB ,∴△ADE ≌△BCD (SAS ),∴∠E =∠DBC =60°,而∠DBA =60°,∴△DBE 为等边三角形,∵DH ⊥AB ,∴BH =EH ,在Rt △BDH 中,BH =√33DH =√33×√3=1,∴BE =2BH =2,∴AB +BC =2.故选:C .12.【解答】(1)证明:∵四边形ABCD 内接于圆.∴∠ABC +∠ADC =180°,∵∠ABC =60°,∴∠ADC =120°,∵DB 平分∠ADC ,∴∠ADB =∠CDB =60°,∴∠ACB =∠ADB =60°,∠BAC =∠CDB =60°,∴∠ABC =∠BCA =∠BAC ,∴△ABC 是等边三角形.(2)过点A 作AM ⊥CD ,垂足为点M ,过点B 作BN ⊥AC ,垂足为点N . ∴∠AMD =90°,∵∠ADC =120°,∴∠ADM =60°,∴∠DAM =30°,∴DM =12AD =1,AM =√BB 2−BB 2=√22−12=√3,∵CD =3,∴CM =CD +DM =1+3=4,∴S △ACD =12CD •AM =12×3×√3=3√32,Rt △AMC 中,∠AMD =90°,∴AC =√BB 2+BB 2=√3+16=√19,∵△ABC 是等边三角形,∴AB =BC =AC =√19,∴BN =√32BC =√572,∴S △ABC =12×√19×√572=19√34, ∴四边形ABCD 的面积=19√34+3√32=25√34, ∵BE ∥CD ,∴∠E +∠ADC =180°,∵∠ADC =120°,∴∠E =60°,∴∠E =∠BDC ,∵四边形ABCD 内接于⊙O ,∴∠EAB =∠BCD ,在△EAB 和△DCB 中,{∠B =∠BBBBBBB =BBBB BB =BB,∴△EAB ≌△DCB (AAS ),∴△BDE 的面积=四边形ABCD 的面积=25√34. 四.点与圆的位置关系(共1小题)13.【解答】解:如图,连接BE ,BD .由题意BD =√22+42=2√5,∵∠MBN =90°,MN =4,EM =NE ,∴BE =12MN =2,∴点E 的运动轨迹是以B 为圆心,2为半径的弧, ∴当点E 落在线段BD 上时,DE 的值最小,∴DE 的最小值为2√5−2.(也可以用DE ≥BD ﹣BE ,即DE ≥2√5−2确定最小值) 故答案为2√5−2.五.三角形的外接圆与外心(共3小题)14.【解答】解:∵AB =AC ,AD 是∠BAC 的平分线, ∴BD =CD ,AD ⊥BC ,∵EF 是AC 的垂直平分线,∴点O 是△ABC 外接圆的圆心,∵OA =3,∴△ABC 外接圆的面积=πr 2=π×32=9π.故选:D .15.【解答】解:连接OC ,OA .∵∠AOC =2∠ABC ,∠ABC =30°,∴∠AOC =60°,∵OA =OC ,∴△AOC 是等边三角形,∴OA =OC =AC =6,∴BB ̂的长=60⋅B ⋅6180=2π, 故答案为2π.16.【解答】解:∵每个小方格都是边长为1的正方形, ∴AB =2√5,AC =√10,BC =√10,∴AC 2+BC 2=AB 2,∴△ACB 为等腰直角三角形,∴∠A =∠B =45°,∴连接OC ,则∠COB =90°,∵OB =√5,∴BB̂的长为:90⋅B ×√5180=√52π, 故答案为:√52π. 六.直线与圆的位置关系(共1小题)17.【解答】解:∵直线a ⊥b ,O 为直线b 上一动点, ∴⊙O 与直线a 相切时,切点为H ,∴OH =1cm ,当点O 在点H 的左侧,⊙O 与直线a 相切时,如图1所示:OP =PH ﹣OH =4﹣1=3(cm );当点O 在点H 的右侧,⊙O 与直线a 相切时,如图2所示:OP =PH +OH =4+1=5(cm );∴⊙O 与直线a 相切,OP 的长为3cm 或5cm ,故答案为:3cm 或5cm .七.切线的性质(共4小题)18.【解答】解:∵AC 与⊙O 相切于点A ,∴AC ⊥OA ,∴∠OAC =90°,∵OA =OB ,∴∠OAB =∠OBA .∵∠O =130°,∴∠OAB=180°−BB2=25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.19.【解答】解:连接OB,如图,∵P A、PB为⊙O的切线,∴PB=P A=6,OB⊥PC,OA⊥P A,∴∠CAP=∠CBO=90°,在Rt△APC中,PC=√BB2+BB2=√62+82=10,∴BC=PC﹣PB=4,设⊙O的半径为r,则OA=OB=r,OC=8﹣r,在Rt△BCO中,42+r2=(8﹣r)2,解得r=3,∴OA=3,OC=5,在Rt△OP A中,OP=√BB2+BB2=√32+62=3√5,∵CD⊥PO,∴∠CDO=90°,∵∠COD=∠POA,∠CDO=∠P AO,∴△COD∽△POA,∴CD:P A=OC:OP,即CD:6=5:3√5,∴CD=2√5.故答案为2√5.20.【解答】解:①如图1,∵∠AOC=120°,∴∠CAO=∠ACO=30°,∵CD和圆O相切,AD⊥CD,∴∠OCD=90°,AD∥CO,∴∠ACD=60°,∠CAD=30°,∴CD=12AC,∵C为⊙O上异于A,B的点,∴AC<AB,∴CD≠12r,故①错误;②如图2,过点A作AE⊥OC,垂足为E,若△AOC为正三角形,∠AOC=∠OAC=60°,AC=OC=OA=r,∴∠OAE=30°,∴OE=12AO,AE=√32AO=√32r,∵四边形AECD为矩形,∴CD=AE=√32r,故②正确;③若等腰三角形AOC的对称轴经过点D,如图3,∴AD=CD,而∠ADC=90°,∴∠DAC=∠DCA=45°,又∠OCD=90°,∴∠ACO=∠CAO=45°∴∠DAO=90°,∴四边形AOCD为矩形,∴CD=AO=r,故③正确;④如图4,过点C作CE⊥AO,垂足为E,连接DE,∵OC⊥CD,AD⊥CD,∴OC∥AD,∴∠CAD=∠ACO,∵OC=OA,∴∠ACO=∠CAO,∴∠CAD=∠CAO,∴CD=CE,在△ADC和△AEC中,∠ADC=∠AEC=90°,CD=CE,AC=AC,∴△ADC≌△AEC(HL),∴AD=AE,∴AC垂直平分DE,则点D和点E关于AC对称,即点D一定落在直径上,故④正确.故正确的序号为:②③④,故答案为:②③④.21.【解答】解:(1)证明:连接OC,如图,∵CD与⊙O相切于点C,∴∠OCD =90°,∴∠ACD +∠ACO =90°,∵AD ⊥DC ,∴∠ADC =90°,∴∠ACD +∠DAC =90°,∴∠ACO =∠DAC ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠DAC =∠OAC ,∴AC 是∠DAB 的角平分线;(2)∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠D =∠ACB =90°,∵∠DAC =∠BAC ,∴Rt △ADC ∽Rt △ACB ,∴BB BB =BB BB ,∴AC 2=AD •AB =2×3=6,∴AC =√6.八.切线的判定与性质(共9小题)22.【解答】(1)证明:∵OA =OB ,点C 是AB 的中点,∴OC ⊥AB ,∵OC 为⊙O 的半径,∴AB 是⊙O 的切线;(2)∵△AOB 是等腰直角三角形,点C 是AB 的中点,∴OC ⊥AB ,AB =2OC =4,∵12OA 2=12BB ⋅BB , ∴OA =√2×4=2√2.23.【解答】(1)证明:连接OD ,OE ,∵AD 切⊙O 于A 点,AB 是⊙O 的直径,∴∠DAB =90°,∵AD =DE ,OA =OE ,OD =OD ,∴△ADO ≌△EDO (SSS ),∴∠OED =∠OAD =90°,∴CD 是⊙O 的切线;(2)解:过C 作CH ⊥AD 于H ,∵AB 是⊙O 的直径,AD 和BC 分别切⊙O 于A ,B 两点,∴∠DAB =∠ABC =∠CHA =90°,∴四边形ABCH 是矩形,∴CH =AB =12,AH =BC =4,∵CD 是⊙O 的切线,∴AD =DE ,CE =BC ,∴DH =AD ﹣BC =AD ﹣4,CD =AD +4,∵CH 2+DH 2=CD 2,∴122+(AD ﹣4)2=(AD +4)2,∴AD =9.24.【解答】(1)证明:连接OD,∵OC=OD,∴∠OCD=∠ODC,∵AC是直径,∴∠ADC=90°,∵∠EDA=∠ACD,∴∠ADO+∠ODC=∠EDA+∠ADO=90°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是半径,∴直线DE是⊙O的切线.(2)解法一:过点A作AF⊥BD于点F,则∠AFB=∠AFD=90°,∵AC是直径,∴∠ABC=∠ADC=90°,∵在Rt△ACD中,AD=6,CD=8,∴AC2=AD2+CD2=62+82=100,∴AC=10,∵在Rt△ABC中,AB=BC,∴∠BAC=∠ACB=45°,∵BBB∠BBB=BB BB,∴BB=BBB45°⋅BB=5√2,∵∠ADB=∠ACB=45°,∵在Rt△ADF中,AD=6,∵BBB∠BBB=BB BB,∴BB=BBB45°⋅BB=3√2,∴BB=BB=3√2,在Rt△ABF中,BB2=BB2−BB2=(5√2)2−(3√2)2=32,∴BB=4√2,∴BB=BB+BB=7√2.解法二:过点B作BH⊥BD交DC延长线于点H.∴∠DBH=90°,∵AC是直径,∴∠ABC=90°,∵∠ABD=90°﹣∠DBC,∠CBH=90°﹣∠DBC,∴∠ABD=∠CBH,∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠BCH=180°,∴∠BAD=∠BCH,∵AB=CB,∴△ABD≌△CBH(ASA),∴AD =CH ,BD =BH ,∵AD =6,CD =8,∴DH =CD +CH =14,在Rt △BDH 中,∵BD 2=DH 2﹣BH 2,BD =BH ,则BD 2=98.∴BB =7√2.25.【解答】解:(1)证明:∵G 为BB̂的中点, ∴∠MOG =∠MDN .∵四边形ABCD 是平行四边形.∴AO ∥BE ,∠MDN +∠A =180°,∴∠MOG +∠A =180°,∴AB ∥OE ,∴四边形ABEO 是平行四边形.∵BO 平分∠ABE ,∴∠ABO =∠OBE ,又∵∠OBE =∠AOB ,∴∠ABO =∠AOB ,∴AB =AO ,∴四边形ABEO 为菱形;(2)如图,过点O 作OP ⊥BA ,交BA 的延长线于点P ,过点O 作OQ ⊥BC 于点Q ,设AE 交OB 于点F ,则∠P AO =∠ABC ,设AB =AO =OE =x ,则∵cos ∠ABC =13,∴cos ∠P AO =13,∴BB BB =13,∴P A =13x , ∴OP =OQ =2√23x当AE 与⊙O 相切时,由菱形的对角线互相垂直,可知F 为切点,∴在Rt △OBQ 中,由勾股定理得:(43B )2+(2√23B )2=82, 解得:x =2√6(舍负).∴AB 的长为2√6.26.【解答】(1)证明:连接OE ,如图1所示:∵CE 平分∠ACB ,∴∠ACE =∠BCE ,又∵OE =OC ,∴∠ACE =∠OEC ,∴∠BCE =∠OEC ,∴OE ∥BC ,∴∠AEO =∠B ,又∵∠B =90°,∴∠AEO =90°,即OE ⊥AE ,∵OE 为⊙O 的半径,∴AE 是⊙O 的切线;(2)解:连接DE ,如图2所示:∵CD 是⊙O 的直径,∴∠DEC =90°,∴∠DEC =∠B ,又∵∠DCE =∠ECB ,∴△DCE ∽△ECB ,∴BB BB =BB BB ,∵∠A =30°,∠B =90°,∴∠ACB =60°,∴∠DCE =12∠ACB =12×60°=30°,∴BB BB =cos ∠DCE =cos30°=√32,∴BB BB =√32.27.【解答】(1)证明:连接OB ,连接OM ,∵四边形ABCD 是平行四边形,∴∠ABC =∠D =60°,∵AC ⊥BC ,∴∠ACB =90°,∵BE =AB ,∴∠E =∠BAE ,∵∠ABC =∠E +∠BAE =60°,∴∠E =∠BAE =30°,∵OA =OB ,∴∠ABO =∠OAB =30°,∴∠OBC =30°+60°=90°,∴OB ⊥CE ,∴EC 是⊙O 的切线;(2)解:∵四边形ABCD 是平行四边形,∴BC =AD =2√3,过O 作OH ⊥AM 于H ,则四边形OBCH 是矩形,∴OH =BC =2√3,∴OA =BB BBB60°=4,∠AOM =2∠AOH =60°,∴BB ̂的长度=60⋅B ×4180=4B 3. 28.【解答】(1)证明:作OE ⊥CD 于E ,如图1所示:则∠OEC =90°,∵AD ∥BC ,∠DAB =90°,∴∠OBC =180°﹣∠DAB =90°,∴∠OEC =∠OBC ,∵CO 平分∠BCD ,∴∠OCE =∠OCB ,在△OCE 和△OCB 中,{∠BBB =∠BBBBBBB =BBBB BB =BB,∴△OCE ≌△OCB (AAS ),∴OE =OB ,又∵OE ⊥CD ,∴直线CD 与⊙O 相切;(2)解:作DF ⊥BC 于F ,连接BE ,如图2所示:则四边形ABFD 是矩形,∴AB =DF ,BF =AD =1,∴CF =BC ﹣BF =2﹣1=1,∵AD ∥BC ,∠DAB =90°,∴AD ⊥AB ,BC ⊥AB ,∴AD 、BC 是⊙O 的切线,由(1)得:CD 是⊙O 的切线,∴ED =AD =1,EC =BC =2,∴CD =ED +EC =3,∴DF =√BB 2−BB 2=√32−12=2√2,∴OB=√2,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH=BBBB=√22.29.【解答】(1)证明:连接OC,如图①,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠B=∠OCB,∵∠BCM=∠A,∴∠OCB+∠BCM=90°,即OC⊥MN,∴MN是⊙O的切线;(2)解:如图②,∵AB是⊙O的直径,⊙O的半径为1,∴AB=2,∵cos∠BAC=BBBB=BBBB=34,即BB2=34,∴BB=3 2,∵∠AFE=∠ACE,∠GFH=∠AFE,∴∠GFH=∠ACE,∵DH⊥MN,∴∠GFH+∠AGC=90°,∵∠ACE+∠ECD=90°,∴∠ECD=∠AGC,又∵∠DEC=∠CAG,∴△EDC∽△ACG,∴BB BB =BB BB ,∴BB ⋅BB =BB ⋅BB =32×53=52.30.【解答】解:(1)连接BF ,OC ,∵AB 是⊙O 的直径,∴∠AFB =90°,即BF ⊥AD ,∵CE ⊥AD ,∴BF ∥CE ,连接OC ,∵点C 为劣弧BB ̂的中点,∴OC ⊥BF ,∵BF ∥CE ,∴OC ⊥CE ,∵OC 是⊙O 的半径,∴CE 是⊙O 的切线;(2)连接OF ,CF ,∵OA =OC ,∠BAC =30°,∴∠BOC =60°,∵点C 为劣弧BB ̂的中点,∴BB ̂=BB ̂,∴∠FOC =∠BOC =60°,∵OF =OC ,∴∠OCF =∠COB ,∴CF ∥AB ,∴S △ACF =S △COF ,∴阴影部分的面积=S 扇形COF ,∵AB =4,∴FO =OC =OB =2,∴S 扇形FOC =60⋅B ×22360=23B , 即阴影部分的面积为:23B . 九.三角形的内切圆与内心(共1小题)31.【解答】解:如图,∵△ABC 是等边三角形,∴△ABC 的内切圆和外接圆是同心圆,圆心为O ,设OE =r ,AO =R ,AD =h ,∴h =R +r ,故A 正确;∵AD ⊥BC ,∴∠DAC =12∠BAC =12×60°=30°,在Rt △AOE 中,∴R =2r ,故B 正确;∵OD =OE =r ,∵AB =AC =BC =a ,∴AE =12AC =12a ,∴(12a )2+r 2=(2r )2,(12a )2+(12R )2=R 2, ∴r =√3B 6,R =√33a ,故C 错误,D 正确;故选:C .一十.正多边形和圆(共7小题)32.【解答】解:∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r ,∴120B ×B 2360×2=24π,解得r =6.则正六边形的边长为6.33.【解答】解:由题意知点A 、B 、C 、D 为正五边形任意四个顶点,且O 为正五边形中心, ∴∠AOB =∠BOC =∠COD =360°5=72°,∴∠AOD =360°﹣3∠AOB =144°,又∵OA =OD ,∴∠ADO =180°−BBBB 2=180°−144°2=18°, 故答案为:18°.34.【解答】解:如图,∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE为直径,∠ECD=45°,由题意得AB=2.5,∴CE=2.5﹣0.25×2=2,∴CD=CE⋅BBB∠BBB=2×√22=√2,∴正方形CDEF周长为4√2尺.故答案为:4√2.35.【解答】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BF,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°=√3,∴BF=2BT=2√3,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=12•EF•BF=12×2×2√3=2√3,故答案为2√3.36.【解答】解:连接OC、OD,如图所示:∵ABCDE是正五边形,∴∠COD=360°5=72°,∴∠CPD=12∠COD=36°,∵DG⊥PC,∴∠PGD=90°,∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,故答案为:54.37.【解答】解:BB 1̂的长=60⋅B ⋅1180=B 3,B 1B 1̂的长=60⋅B ⋅2180=2B 3, B 1B 1̂的长=60⋅B ⋅3180=3B 3,B 1B 1̂的长=60⋅B ⋅4180=4B 3,B 1B 1̂的长=60⋅B ⋅5180=5B 3, B 1B 1̂的长=60⋅B ⋅6180=6B 3,∴曲线F A 1B 1C 1D 1E 1F 1的长度=B 3+2B 3+⋯+6B 3=21B 3=7π, 故答案为7π.38.【解答】(1)证明:∵六边形ABCDEF 是正六边形,∴AB =BC =CD =DE =EF =F A ,∠A =∠ABC =∠C =∠D =∠DEF =∠F ,∵点P ,Q 同时分别从A ,D 两点出发,以1cm /s 速度沿AF ,DC 向终点F ,C 运动, ∴AP =DQ =t ,PF =QC =6﹣t ,在△ABP 和△DEQ 中,{BB =BBBB =BB BB =BB ,∴△ABP ≌△DEQ (SAS ),∴BP =EQ ,同理可证PE =QB ,∴四边形PEQB 为平行四边形.(2)解:连接BE 、OA ,则∠AOB =360°6=60°,∵OA =OB ,∴△AOB 是等边三角形,∴AB =OA =6,BE =2OB =12,当t =0时,点P 与A 重合,Q 与D 重合,四边形PBQE 即为四边形ABDE ,如图1所示: 则∠EAF =∠AEF =30°,∴∠BAE =120°﹣30°=90°,∴此时四边形ABDE 是矩形,即四边形PBQE 是矩形.当t =6时,点P 与F 重合,Q 与C 重合,四边形PBQE 即为四边形FBCE ,如图2所示: 同法可知∠BFE =90°,此时四边形PBQE 是矩形.综上所述,t =0s 或6s 时,四边形PBQE 是矩形,∴AE =√122−62=6√3,∴矩形PBQE 的面积=矩形ABDE 的面积=AB ×AE =6×6√3=36√3;∵正六边形ABCDEF 的面积=6△AOB 的面积=6×14矩形ABDE 的面积=6×14×36√3=54√3, ∴矩形PBQE 的面积与正六边形ABCDEF 的面积之比=23.一十一.弧长的计算(共4小题)39.【解答】解:连接OD 、BD ,∵在△ABC 中,AB =BC ,∠ABC =90°,∴∠A =∠C =45°,∵AB 是直径,∴∠ADB =90°,∵OA =OB ,∴OD ⊥AB ,∴∠AOD =90°,∴∠AOD =∠ABC ,∴OD ∥FC ,∴△DOE ∽△FBE ,∴BB BB =BB BB ,∵OB =OD ,OE :EB =1:√3,∴tan ∠BOF =BB BB =√3, ∴∠BOF =60°,∴BF =2√3,∴OB =2,∴BB̂的长=60B ×2180=23π, 故选:C .40.【解答】解:∵四边形ABCD 是矩形,∴AD =BC =2,∠B =90°,∴AE =AD =2,∵AB =√3,∴cos ∠BAE =BB BB =√32, ∴∠BAE =30°,∴∠EAD =60°,∴BB̂的长=60⋅B ×2180=2B 3, 故选:C .41.【解答】解:由图可知,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的,半径每次比前一段弧半径+1,AD =AA 1=1,BA 1=BB 1=2,……,AD n ﹣1=AA n =4(n ﹣1)+1,BA n =BB n =4(n ﹣1)+2,故B 2020B 2020̂的半径为BA 2020=BB 2020=4(2020﹣1)+2=8078,B 2020B 2020̂的弧长=90180×8078B =4039B . 故答案为:4039π.42.【解答】解:如图,作点D 关于OB 的对称点D ′,连接D ′C 交OB 于点E ′,连接E ′D 、OD ′, 此时E ′C +E ′D 最小,即:E ′C +E ′D =CD ′,由题意得,∠COD =∠DOB =∠BOD ′=30°,∴∠COD ′=90°,∴CD ′=√BB 2+BB′2=√22+22=2√2,BB ̂的长l =30B ×2180=B 3, ∴阴影部分周长的最小值为2√2+B 3=6√2+B 3. 故答案为:6√2+B 3.一十二.扇形面积的计算(共6小题)43.【解答】解:如图,连接CD .∵OC =OD ,∠O =60°,∴△COD 是等边三角形,∴OC =OD =CD =4cm ,∴S 阴=S 扇形OAB ﹣S 扇形OCD =60⋅B ⋅162360−60⋅B ⋅42360=40π(cm 2), 故选:B .44.【解答】 解:∵AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E , ∴CE =DE =12BB =3√3. 设⊙O 的半径为r ,在直角△OED 中,OD 2=OE 2+DE 2,即B 2=(9−B )2+(3√3)2, 解得,r =6,∴OE =3,∴cos ∠BOD =BB BB =36=12,∴∠EOD =60°,∴B 扇形BBB =16B ×36=6B ,B BB △BBB =12×3×3√3=92√3,∴B 阴影=6B −92√3,故选:A .45.【解答】解:∵OD ⊥AC , ∴∠ADO =90°,BB̂=BB ̂,AD =CD , ∵∠CAB =30°,OA =4,∴OD =12OA =2,AD =√32OA =2√3, ∴图中阴影部分的面积=S 扇形AOE ﹣S △ADO =60⋅B ×42360−12×2√3×2=8B 3−2√3,故选:D .46.【解答】解:设圆心角都度数为n 度,扇形的面积=12BB =6π,解得:r =6,又∵B =BB ×6180=2π, ∴n =60.故答案为:60.47.【解答】解:连接OC .∵AB ⊥CD ,∴BB̂=BB ̂,CE =DE =√3, ∴∠COB =∠BOD ,∵∠BOD =2∠BCD =60°,∴∠COB =60°,∵OC =OB =OD ,∴△OBC ,△OBD 都是等边三角形,∴OC =BC =BD =OD ,∴四边形OCBD 是菱形,∴OC ∥BD ,∴S △BDC =S △BOD ,∴S 阴=S 扇形OBD ,∵OD =BB BBB60°=2,∴S 阴=60⋅B ⋅22360=2B 3,故答案为2B 3. 48.【解答】解:S 扇形=90⋅B ⋅42360=4π, 故答案为:4π.一十三.圆锥的计算(共1小题)49.【解答】解:如图,连接OB ,OC ,OA ,∵OB =OA ,OA =OC ,AB =AC ,∴△ABO ≌△ACO (SSS ),∴∠BAO =∠CAO =60°,∵AO =BO ,∴△ABO 是等边三角形,∴AB =AO =1,由题意得,阴影扇形的半径为1m ,圆心角的度数为120°, 则扇形的弧长为:120B ×1180, 而扇形的弧长相当于围成圆锥的底面周长,因此有: 2πr =120B ×1180, 解得,r =13,故答案为:13. 一十四.圆的综合题(共1小题)50.【解答】解:(1)连接圆心O 与正五边形各顶点, 在正五边形中,∠AOE =360°÷5=72°,∴∠ABE =12∠AOE =36°,同理∠BAC =12×72°=36°,∴AM =BM ,∴△ABM 是等腰三角形且底角等于36°,∵∠BOD =∠BOC +∠COD =72°+72°=144°,∴∠BAD =12∠BOD =72°, ∴∠BNA =180°﹣∠BAD ﹣∠ABE =72°,∴AB =NB ,即△ABN 为等腰三角形;(2)∵∠ABM =∠ABE ,∠AEB =12∠AOB =36°=∠BAM , ∴△BAM ∽△BEA ,∴BB BB =BB BB ,而AB =BN , ∴BB BB =BB BB ,设BM =y ,AB =x ,则AM =AN =y ,AB =AE =BN =x ,∵∠AMN =∠MAB +∠MBA =72°=∠BAN ,∠ANM =∠ANB , ∴△AMN ∽△BAN ,∴BB BB =BB BB ,即B B =B −B B ,则y 2=x 2﹣xy ,两边同时除以x 2,得:(B B )2=1−B B ,设B B=t , 则t 2+t ﹣1=0,解得:t =√5−12或−1−√52(舍), ∴BB BB =BB BB =B B =√5−12; (3)∵∠MAN =36°,根据对称性可知:∠MAH =∠NAH =12∠MAN =18°, 而AO ⊥BE ,∴sin18°=sin ∠MAH =BB BB =12BB BB =12(B −B )B =B −B 2B =12×B B −12=12×√5−1−12=√5−14.。
2020年湖北省咸宁市中考数学试题及参考答案(word解析版)
湖北省咸宁市2020年初中毕业生学业考试数学试卷(满分120分,考试时间120分钟)一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×1083.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a44.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣27.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.10.因式分解:mx2﹣2mx+m=.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)15.按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)19.(8分)如图,已知一次函数y 1=kx+b 与反比例函数y 2=的图象在第一、三象限分别交于A (6,1),B (a ,﹣3)两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式;(2)△AOB 的面积为 ;(3)直接写出y 1>y 2时x 的取值范围.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t (单位:min ),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表根据以上图表,解答下列问题:(1)这次被调查的同学共有 人,a = ,m = ;(2)求扇形统计图中扇形D 的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min ?21.(9分)如图,在Rt △ABC 中,∠C =90°,点O 在AC 上,以OA 为半径的半圆O 交AB 于点D ,交AC 于点E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF =DF ;(2)若AC =4,BC =3,CF =1,求半圆O 的半径长.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m 盒(m 为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m 的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w 元,求w 关于m 的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?组别 在线阅读时间t 人数 A 10≤t <30 4 B 30≤t <50 8 C 50≤t <70 a D 70≤t <90 16 E 90≤t <110 223.(10分)定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形ABCD是对余四边形,则∠A与∠C的度数之和为;证明:(2)如图1,MN是⊙O的直径,点A,B,C在⊙O上,AM,CN相交于点D.求证:四边形ABCD是对余四边形;探究:(3)如图2,在对余四边形ABCD中,AB=BC,∠ABC=60°,探究线段AD,CD和BD之间有怎样的数量关系?写出猜想,并说明理由.24.(12分)如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c过点B且与直线相交于另一点C(,).(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当∠PAO=∠BAO时,求点P的坐标;(3)点N(n,0)(0<n<)在x轴的正半轴上,点M(0,m)是y轴正半轴上的一动点,且满足∠MNC=90°.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个?答案与解析一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的)1.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是()A.3+(﹣2)B.3﹣(﹣2)C.3×(﹣2)D.(﹣3)÷(﹣2)【知识考点】有理数的混合运算.【思路分析】分别按照有理数的加减法、有理数的乘除法法则计算即可.【解答过程】解:A.3+(﹣2)=1,故A不符合题意;B.3﹣(﹣2)=3+2=5,故B不符合题意;C.3×(﹣2)=﹣6,故C符合题意;D.(﹣3)÷(﹣2)=1.5,故D不符合题意.综上,只有C计算结果为负.故选:C.【总结归纳】本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题的关键.2.中国互联网络信息中心数据显示,随着二胎政策全面开放,升学就业竞争压力的不断增大,满足用户碎片化学习需求的在线教育用户规模持续增长,预计2020年中国在线教育用户规模将达到305000000人.将305000000用科学记数法表示为()A.0.305×1011B.3.05×108C.3.05×106D.305×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:305000000=3.05×108,故选:B.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.3a﹣a=2 B.a•a2=a3C.a6÷a2=a3D.(3a2)2=6a4【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.【解答过程】解:3a﹣a=a,因此选项A计算错误,不符合题意;a•a2=a3,因此选项B计算正确,符合题意;a6÷a2=a4,因此选项C计算错误,不符合题意;(3a2)2=9a4≠6a4,因此选项D计算错误,不符合题意.故选:B.【总结归纳】本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.4.如图是由5个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答过程】解:从左面看有两层,底层是2个正方形,上层的左边是1个正方形.故选:A.【总结归纳】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.如图是甲、乙两名射击运动员某节训练课的5次射击成绩的折线统计图,下列判断正确的是()A.乙的最好成绩比甲高B.乙的成绩的平均数比甲小C.乙的成绩的中位数比甲小D.乙的成绩比甲稳定【知识考点】折线统计图;加权平均数;中位数;方差.【思路分析】利用折线统计图可得甲、乙两名射击运动员5次射击的成绩,把他们的最好成绩进行比较,即可判断A;利用平均数、中位数、方差的意义分别求出他们的平均数、中位数、方差,即可判断B、C、D.【解答过程】解:由折线图可知,甲的5次射击成绩为6,7,10,8,9,乙的5次射击成绩为8,9,8,7,8,∵10>9,∴甲的最好成绩比乙高,故选项A错误,不符合题意;∵=(6+7+10+8+9)=8,=(8+9+8+7+8)=8,∴乙的成绩的平均数与甲相等,故选项B错误,不符合题意;∵甲的成绩按从小到大的顺序排列为:6,7,8,9,10,所以中位数为8,乙的成绩按从小到大的顺序排列为:7,8,8,8,9,所以中位数为8,∴乙的成绩的中位数与甲相等,故选项C错误,不符合题意;∵=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,=[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,2>0.4,∴乙的成绩比甲稳定,故选项D正确,符合题意.故选:D.【总结归纳】本题考查了折线统计图,平均数、中位数与方差.从折线图中得到必要的信息是解决问题的关键.6.如图,在⊙O中,OA=2,∠C=45°,则图中阴影部分的面积为()A.﹣B.π﹣C.﹣2 D.π﹣2【知识考点】扇形面积的计算.【思路分析】由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB可得出结论.【解答过程】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB=﹣=π﹣2.故选:D.【总结归纳】本题考查的是扇形面积的计算,根据题意求得三角形与扇形的面积是解答此题的关键.7.在平面直角坐标系xOy中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A.y=﹣x B.y=x+2 C.y=D.y=x2﹣2x【知识考点】一次函数图象上点的坐标特征;反比例函数图象上点的坐标特征;二次函数图象上点的坐标特征.【思路分析】根据横、纵坐标相等的点称为“好点”,即当x=y时,函数解析式变为方程后,方程有解即可判断.【解答过程】解:∵横、纵坐标相等的点称为“好点”,∴当x=y时,A.x=﹣x,解得x=0;不符合题意;B.x=x+2,此方程无解,符合题意;C.x2=2,解得x=±,不符合题意;D.x=x2﹣2x,解得x1=0,x2=3,不符合题意.故选:B.【总结归纳】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解决本题的关键是掌握每个函数的性质.8.如图,在矩形ABCD中,AB=2,BC=2,E是BC的中点,将△ABE 沿直线AE翻折,点B落在点F处,连结CF,则cos∠ECF的值为()A.B.C.D.【知识考点】矩形的性质;翻折变换(折叠问题);解直角三角形.【思路分析】由矩形的性质得出∠B=90°,由勾股定理求出AE,由翻折变换的性质得出△AFE ≌△ABE,得出∠AEF=∠AEB,EF=BE=,因此EF=CE,由等腰三角形的性质得出∠EFC =∠ECF,由三角形的外角性质得出∠AEB=∠ECF,cos∠ECF=cos∠AEB=,即可得出结果.【解答过程】解:如图,∵四边形ABCD是矩形,∴∠B=90°,∵E是BC的中点,BC=2,∴BE=CE=BC=,∴AE===3,由翻折变换的性质得:△AFE≌△ABE,∴∠AEF=∠AEB,EF=BE=,∴EF=CE,∴∠EFC=∠ECF,∵∠BEF=∠EFC+∠ECF,∴∠AEB=∠ECF,∴cos∠ECF=cos∠AEB==.故选:C.【总结归纳】本题考查了矩形的性质,勾股定理,翻折变换的性质,等腰三角形的判定与性质,三角形的外角性质,三角函数;熟练掌握矩形的性质和翻折变换的性质,证出∠AEB=∠ECF是解决问题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分)9.点A在数轴上的位置如图所示,则点A表示的数的相反数是.【知识考点】数轴;相反数.【思路分析】A在数轴上表示的数是3,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答过程】解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.【总结归纳】此题主要考查了在数轴上表示数的方法,相反数的定义.解题的关键是熟练掌握在数轴上表示数的方法,以及相反数的含义和求法.10.因式分解:mx2﹣2mx+m=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提公因式,再利用完全平方公式进行因式分解即可.【解答过程】解:mx2﹣2mx+m=m(x2﹣2x+1)=m(x﹣1)2,【总结归纳】本题考查提公因式法、公式法因式分解,确定多项式的公因式是提公因式的关键,掌握公式的结构特征是正确使用公式的前提.11.如图,请填写一个条件,使结论成立:∵,∴a∥b.【知识考点】平行线的判定.【思路分析】要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.【解答过程】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.【总结归纳】考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.12.若关于x的一元二次方程(x+2)2=n有实数根,则n的取值范围是.【知识考点】根的判别式.【思路分析】将原方程变形为一般式,根据方程的系数结合根的判别式△≥0,即可得出关于n 的一元一次不等式,解之即可得出n的取值范围(利用偶次方的非负性也可以找出n的取值范围).【解答过程】解:原方程可变形为x2+4x+4﹣n=0.∵该方程有实数根,∴△=42﹣4×1×(4﹣n)≥0,解得:n≥0.故答案为:n≥0.【总结归纳】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.13.某校开展以“我和我的祖国”为主题的“大合唱”活动,七年级准备从小明、小东、小聪三名男生和小红、小慧两名女生中各随机选出一名男生和一名女生担任领唱,则小聪和小慧被同时选中的概率是.【知识考点】列表法与树状图法.【思路分析】用列表法表示所有可能出现的结果,进而求出相应的概率.【解答过程】解:利用列表法表示所有可能出现的结果如下:共有6种可能出现的结果,其中小聪和小慧同时被选中的有1种,∴P(小聪和小慧)=,故答案为:.【总结归纳】本题考查列表法求随机事件发生的概率,列举出所有可能出现的结果,是正确解答的关键.14.如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从小岛A出发,由西向东航行24nmile到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是nmile.(结果保留一位小数,≈1.73)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】过P作PD⊥AB于D,易证△ABP是等腰三角形,得到BP=AB=24nmile.然后在直角△PBD中,利用三角函数的定义求得PD的长即可.【解答过程】解:过P作PD⊥AB于D.∵∠PAB=30°,∠PBD=60°,∴∠PAB=∠APB,∴BP=AB=24nmile.在直角△PBD中,PD=BP•sin∠PBD=24×=12≈20.8(nmile).即此时轮船与灯塔P的距离约为20.8nmile.故答案为20.8.【总结归纳】本题考查了解直角三角形的应用﹣方向角问题,等腰三角形的判定与性质等知识,正确作出高线,转化为直角三角形的计算是解决本题的关键.15.按一定规律排列的一列数:3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是.【知识考点】规律型:数字的变化类.【思路分析】首项判断出这列数中,3的指数各项依次为1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,每个数的指数都是前两数指数之差;可得这列数中的连续三个数,满足a÷b=c,据此解答即可.【解答过程】解:∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,1﹣2=﹣1,2﹣(﹣1)=3,﹣1﹣3=﹣4,3﹣(﹣4)=7,﹣4﹣7=﹣11,7﹣(﹣11)=18,…,∴a,b,c满足的关系式是a÷b=c.故答案为:a÷b=c.【总结归纳】此题主要考查了规律型:数字的变化类,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出a、b、c的指数的特征.16.如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是.(把正确结论的序号都填上)【知识考点】二次函数的最值;全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.【思路分析】①由∠AEB+∠CEG=∠AEB+∠BAE得∠BAE=∠CEG,再结合两直角相等得△ABE∽△ECG;②在BA上截取BM=BE,易得△BEM为等腰直角三角形,则∠BME=45°,所以∠AME=135°,再利用等角的余角相等得到∠BAE=∠FEC,于是根据“ASA”可判断△AME≌△ECF,则根据全等三角形的性质可对②进行判断;③由∠MAE+∠DAF=45°,∠CEF+∠CFE=45°,可得出∠DAF与∠CFE的大小关系,便可对③判断;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,利用三角形面积公式得到S△AME=•x•(2﹣x),则根据二次函数的性质可得S△AME的最大值,便可对④进行判断.【解答过程】解:①∵四边形ABCD是正方形,∴∠B=∠ECG=90°,∵∠AEF=90°,∴∠AEB+∠CEG=∠AEB+∠BAE,∴∠BAE=∠CEG,∴△ABE∽△ECG,故①正确;②在BA上截取BM=BE,如图1,∵四边形ABCD为正方形,∴∠B=90°,BA=BC,∴△BEM为等腰直角三角形,∴∠BME=45°,∴∠AME=135°,∵BA﹣BM=BC﹣BE,∴AM=CE,∵CF为正方形外角平分线,∴∠DCF=45°,∴∠ECF=135°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,在△AME和△ECF中,∴△AME≌△ECF,∴AE=EF,故②正确;③∵AE=EF,∠AEF=90°,∴∠EAF=45°,∴∠BAE+∠DAF=45°,∵∠BAE+∠CFE=∠CEF+∠CFE=45°,∴∠DAF=∠CFE,故③正确;④设BE=x,则BM=x,AM=AB﹣BM=4﹣x,S△ECF=S△AME=•x•(2﹣x)=﹣(x﹣1)2+,当x=1时,S△ECF有最大值,故④错误.故答案为:①②③.【总结归纳】本题考查了四边形的综合题:熟练掌握正方形的性质和二次函数的性质;能灵活运用全等三角形的知识解决线段线段的问题.构建△AME与△EFC全等是关键.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤)17.(8分)(1)计算:|1﹣|﹣2sin45°+(﹣2020)0;(2)解不等式组:【知识考点】实数的运算;零指数幂;解一元一次不等式组;特殊角的三角函数值.【思路分析】(1)先去绝对值符号、代入三角函数值、计算零指数幂,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答过程】解:(1)原式=﹣1﹣2×+1=﹣1﹣+1=0;(2)解不等式﹣(x﹣1)>3,得:x<﹣2,解不等式2x+9>3,得:x>﹣3,则不等式组的解集为﹣3<x<﹣2.【总结归纳】本题考查的是解一元一次不等式组和实数的运算,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(7分)如图,在▱ABCD中,以点B为圆心,BA长为半径画弧,交BC于点E,在AD上截取AF=BE.连接EF.(1)求证:四边形ABEF是菱形;(2)请用无刻度的直尺在▱ABCD内找一点P,使∠APB=90°.(标出点P的位置,保留作图痕迹,不写作法)【知识考点】平行四边形的性质;菱形的判定与性质;圆周角定理;作图—复杂作图.【思路分析】(1)根据平行四边形的性质和判定,菱形的判定即可证明;(2)连结AE,BF,根据菱形的性质可得AE和BF的交点即为点P.【解答过程】(1)证明:∵四边形ABCD是平行四边形,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形,∵BA=BE,∴四边形ABEF是菱形;(2)如图所示:点P即为所求:【总结归纳】本题考查菱形的判定和性质、平行四边形的性质、作图﹣基本作图等知识,解题的关键是作出图形,属于中考常考题型.19.(8分)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A (6,1),B(a,﹣3)两点,连接OA,OB.(1)求一次函数和反比例函数的解析式;(2)△AOB的面积为;(3)直接写出y1>y2时x的取值范围.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)首先把A(6,1)代入反比例函数解析式中确定m,然后把B(a,﹣3)代入反比例函数的解析式确定a,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)求得一次函数与x轴的交点,根据S△AOB=S△AOC+S△BOC即可求解;(3)根据图象,写出直线y1=kx+b落在双曲线y2=上方的部分对应的自变量的取值范围即可.【解答过程】解:(1)把A(6,1)代入y2=中,解得:m=6,故反比例函数的解析式为y2=;把B(a,﹣3)代入y2=,解得a=﹣2,故B(﹣2,﹣3),把A(6,1),B(﹣2,﹣3)代入y1=kx+b,得,解得:,故一次函数解析式为y1=x﹣2;(2)如图,设一次函数y1=x﹣2与x轴交于点C,令y =0,得x =4. ∴点C 的坐标是(4,0), ∴S △AOB =S △AOC +S △BOC =×4×1+×4×3=8.故答案为8;(3)由图象可知,当﹣2<x <0或x >6时,直线y 1=kx+b 落在双曲线y 2=上方,即y 1>y 2,所以y 1>y 2时x 的取值范围是﹣2<x <0或x >6.【总结归纳】此题考查了一次函数与反比例函数的交点问题,待定系数法求一次函数与反比例函数的解析式,三角形的面积,待定系数法求函数解析式是中学阶段求函数解析式常用的方法,一定要熟练掌握并灵活运用.利用了数形结合思想.20.(8分)随着科技的进步和网络资源的丰富,在线阅读已成为很多人选择的阅读方式.为了解同学们在线阅读情况,某校园小记者随机调查了本校部分同学,并统计他们平均每天的在线阅读时间t (单位:min ),然后利用所得数据绘制成如图不完整的统计图表.在线阅读时间频数分布表根据以上图表,解答下列问题:(1)这次被调查的同学共有 人,a = ,m = ; (2)求扇形统计图中扇形D 的圆心角的度数;(3)若该校有950名学生,请估计全校有多少学生平均每天的在线阅读时间不少于50min ? 【知识考点】用样本估计总体;频数(率)分布表;扇形统计图.【思路分析】(1)根据B 组的频数和所占的百分比,可以求得这次被调查的同学总数,用被调查的同学总数乘以C 组所占百分比得到a 的值,用A 组人数除以被调查的同学总数,即可得到m ; (2)用360°乘以D 组所占百分比得到D 组圆心角的度数;(3)利用样本估计总体,用该校学生数乘以样本中平均每天的在线阅读时间不少于50min 的人组别 在线阅读时间t 人数 A 10≤t <30 4 B 30≤t <50 8 C 50≤t <70 a D 70≤t <90 16 E90≤t <1102数所占的百分比即可.【解答过程】解:(1)这次被调查的同学共有8÷16%=50(人),a=50×40%=20,∵m%==8%,∴m=8.故答案为:50,20,8;(2)扇形统计图中扇形D的圆心角的度数为:360°×=115.2°;(3)950×=722(人),答:估计全校有多少学生平均每天的在线阅读时间不少于50min的有722人.【总结归纳】本题考查了频数分布表,扇形统计图,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.也考查了利用样本估计总体.21.(9分)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.(1)求证:BF=DF;(2)若AC=4,BC=3,CF=1,求半圆O的半径长.【知识考点】圆周角定理;切线的性质;相似三角形的判定与性质.(1)连接OD,由切线性质得∠ODF=90°,进而证明∠BDF+∠A=∠A+∠B=90°,【思路分析】得∠B=∠BDF,便可得BF=DF;(2)设半径为r,连接OD,OF,则OC=4﹣r,求得DF,再由勾股定理,利用OF为中间变量列出r的方程便可求得结果.【解答过程】解:(1)连接OD,如图1,∵过点D作半圆O的切线DF,交BC于点F,∴∠ODF=90°,∴∠ADO+∠BDF=90°,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD+∠BDF=90°,∵∠C=90°,∴∠OAD+∠B=90°,∴∠B=∠BDF,∴BF=DF;(2)连接OF,OD,如图2,设圆的半径为r,则OD=OE=r,∵AC=4,BC=3,CF=1,∴OC=4﹣r,DF=BF=3﹣1=2,∵OD2+DF2=OF2=OC2+CF2,∴r2+22=(4﹣r)2+12,∴.故圆的半径为.【总结归纳】本题主要考查了切线的性质,等腰三角形的性质与判定,勾股定理,已知切线,往往连接半径为辅助线,第(2)题关键是由勾股定理列出方程.22.(10分)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.(1)求每盒口罩和每盒水银体温计的价格各是多少元?(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?【知识考点】分式方程的应用;一次函数的应用.【思路分析】(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意列出分式方程即可;(2)根据配套问题,设购买水银体温计y盒能和口罩刚好配套,根据口罩的数量等于水银体温计数量的2倍列出方程即可用含m的代数式表示;(3)根据题意列出不等式:200m+50×5m≤1800,可得m≤4时,w=450m;当m>4时,w=1800+(450m﹣1800)×0.8=360m+360,进而可得w关于m的函数关系式.【解答过程】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得=,解得x=200,经检验,x=200是原方程的解,∴x﹣150=50,答:每盒口罩和每盒水银体温计的价格各是200元、50元;(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得100m=2×10y,则y=5m,答:购买水银体温计5m盒能和口罩刚好配套;。
中考数学专卷2020届中考数学总复习(22)圆-精练精析(1)及答案解析
图形的性质——圆1一.选择题(共8小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1 D.1﹣2.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A.cm B.cm C.cm或cm D.cm或cm3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A.2 B.4 C.6 D.84.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x 的图象被⊙P截得的弦AB的长为,则a的值是()A.4 B.C.D.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3 B.3 C. D.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C.3 D.27.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.48.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3 B.6 C.6 D.12二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是_________ .10.正六边形的中心角等于_________ 度.11.如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=_________ .12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为_________ .13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为_________ cm.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是_________ .15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为_________ .三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=_________ ;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.图形的性质——圆1 参考答案与试题解析一.选择题(共8小题) 1.如图,正方形ABCD 的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是( )A .B .1﹣C .﹣1D . 1﹣考点: 扇形面积的计算. 分析: 图中1、2、3、4图形的面积和为正方形的面积,1、2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和﹣正方形的面积=无阴影两部分的面积之差,即﹣1=.解答: 解:如图: 正方形的面积=S 1+S 2+S 3+S 4;① 两个扇形的面积=2S 3+S 1+S 2;② ②﹣①,得:S 3﹣S 4=S 扇形﹣S 正方形=﹣1=.故选:A .点评: 本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键.2.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB⊥CD,垂足为M ,则AC 的长为( )A . cmB .cmC .cm 或cmD . cm 或cm考点: 垂径定理;勾股定理. 专题: 分类讨论. 分析: 先根据题意画出图形,由于点C 的位置不能确定,故应分两种情况进行讨论.解答:解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.3.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()A. 2 B.4C.6D.8考点:垂径定理;勾股定理.专题:计算题.分析:根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE,根据垂径定理得出AB的长.解答:解:∵CE=2,DE=8,∴OB=5,∴OE=3,∵AB⊥CD,∴在△OBE中,得BE=4,∴AB=2BE=8.故选:D.点评:本题考查了勾股定理以及垂径定理,是基础知识要熟练掌握.4.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A. 4 B.C.D.考点:垂径定理;一次函数图象上点的坐标特征;勾股定理.专题:计算题;压轴题.分析:PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.解答:解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.5.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3B.3C.D.考点:垂径定理;等边三角形的性质.专题:几何图形问题.分析:先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.解答:解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵⊙O的面积为2π∴⊙O的半径为∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB•sin∠BOD==,∴BC=2BD=,∴OD=OB•cos∠BOD=•cos60°=,∴△BOC的面积=•BC•OD=××=,∴△ABC的面积=3S△BOC=3×=.故选:C.点评:本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键.6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A.B.C3 D.2考点:垂径定理;圆周角定理.分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.解答:解:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=,OP=3,∴PA==.故选B.点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA取最大值”这一隐含条件.7.在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为()A.3或5 B.5 C.4或5 D.4考点:垂径定理;等腰三角形的性质;勾股定理;解直角三角形.专题:分类讨论.分析:作AD⊥BC于D,由于AB=AC=5,根据等腰三角形的性质得AD垂直平分BC,根据垂径定理的推论得到点O在直线AD上,连结OB,在Rt△ABD中,根据正弦的定义计算出AD=4,根据勾股定理计算出BD=3,再在Rt△OBD中,根据勾股定理计算出OD=1,然后分类讨论:①当点A与点O在BC的两侧,有OA=AD+OD;②当点A与点O在BC的同侧,有OA=AD ﹣OD,即求得OA的长.解答:解:如图,作AD⊥BC于D,∵AB=AC=5,∴AD垂直平分BC,∴点O在直线AD上,连结OB,在Rt△ABD中,sinB==,∵AB=5,∴AD=4,∴BD==3,在Rt△OBD中,OB=,BD=3,∴OD==1,当点A与点O在BC的两侧时,OA=AD+OD=4+1=5;当点A与点O在BC的同侧时,OA=AD﹣OD=4﹣1=3,故OA的长为3或5.故选:A.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.也考查了等腰三角形的性质和勾股定理.8.如图,B,C,D是半径为6的⊙O上的三点,已知的长为2π,且OD∥BC,则BD的长为()A.3B.6 C.6D.12考点:垂径定理;等边三角形的判定与性质;圆周角定理;弧长的计算;解直角三角形.专题:计算题.分析:连结OC交BD于E,设∠BOC=n°,根据弧长公式可计算出n=60,即∠BOC=60°,易得△OBC为等边三角形,根据等边三角形的性质得∠C=60°,∠OBC=60°,BC=OB=6,由于BC∥OD,则∠2=∠C=60°,再根据圆周角定理得∠1=∠2=30°,即BD平分∠OBC,根据等边三角形的性质得到BD⊥OC,接着根据垂径定理得BE=DE,在Rt△CBE中,利用含30度的直角三角形三边的关系得CE=BC=3,CE=CE=3,所以BD=2BE=6.解答:解:连结OC交BD于E,如图,设∠BOC=n°,根据题意得2π=,得n=60,即∠BOC=60°,而OB=OC,∴△OBC为等边三角形,∴∠C=60°,∠OBC=60°,BC=OB=6,∵BC∥OD,∴∠2=∠C=60°,∵∠1=∠2(圆周角定理),∴∠1=30°,∴BD平分∠OBC,BD⊥OC,∴BE=DE,在Rt△CBE中,CE=BC=3,∴BE=CE=3,∴BD=2BE=6.故选:C.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了弧长公式、等边三角形的判定与性质和圆周角定理.二.填空题(共7小题)9.如图,⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,则△ACD的面积是32 .考点:垂径定理;勾股定理.分析:连接OD,先根据垂径定理得出PD=CD=4,再根据勾股定理求出OP的长,根据三角形的面积公式即可得出结论.解答:解:连接OD,∵⊙O的半径是5,AB是⊙O的直径,弦CD⊥AB,CD=8,∴PD=CD=4,∴OP===3,∴AP=OA+OP=5+3=8,∴S△ACD=CD•AP=×8×8=32.故答案为:32.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.正六边形的中心角等于60 度.考点:正多边形和圆.分析:根据正六边形的六条边都相等即可得出结论.解答:解:∵正六边形的六条边都相等,∴正六边形的中心角==60°.故答案为:60.点评:本题考查的是正多边形和圆,熟知正多边形的性质是解答此题的关键.11.(2014•扬州)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.考点:圆的认识;三角形内角和定理;等腰三角形的性质;圆周角定理.专题:几何图形问题.分析:如图,连接BE.由圆周角定理和三角形内角和定理求得∠ABE=25°,再由“同弧所对的圆周角是所对的圆心角的一半”进行答题.解答:解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.点评:本题考查了圆的认识及三角形的内角和定理等知识,难度不大.12.如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,则PA+PC的最小值为.考点:垂径定理;轴对称的性质.分析:A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值解答:解:连接OA,OB,OC,作CH垂直于AB于H.根据垂径定理,得到BE=AB=4,CF=CD=3,∴OE===3,OF===4,∴CH=OE+OF=3+4=7,BH=BE+EH=BE+CF=4+3=7,在直角△BCH中根据勾股定理得到BC=7,则PA+PC的最小值为.故答案为:点评:正确理解BC的长是PA+PC的最小值,是解决本题的关键.13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为 2 cm.考点:垂径定理;等腰直角三角形;圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:解:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为:2.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.14.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.考点:垂径定理;圆周角定理.专题:压轴题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB•CD+AB•CE=AB(CD+CE)=AB•DE=×2×4=4.故答案为:4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.15.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为1或3 .考点:垂径定理;勾股定理.专题:分类讨论.分析:根据题意画出图形,连接OB,由垂径定理可知BD=BC,在Rt△OBD中,根据勾股定理求出OD的长,进而可得出结论.解答:解:如图所示:∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,∴AD⊥BC,∴BD=BC=,在Rt△OBD中,∵BD2+OD2=OB2,即()2+OD2=22,解得OD=1,∴当如图1所示时,AD=OA﹣OD=2﹣1=1;当如图2所示时,AD=OA+OD=2+1=3.故答案为:1或3.点评:本题考查的是垂径定理,在解答此题时要进行分类讨论,不要漏解.三.解答题(共8小题)16.一个弓形桥洞截面示意图如图所示,圆心为O,弦AB是水底线,OC⊥AB,AB=24m,sin∠COB=,DE是水位线,DE∥AB.(1)当水位线DE=4m时,求此时的水深;(2)若水位线以一定的速度下降,当水深8m时,求此时∠ACD的余切值.考点:垂径定理的应用;勾股定理.分析:(1)延长CO交DE于点F,连接OD,根据垂径定理求出BC的长,由sin∠COB=得出OB的长,根据DE∥AB可知∠ACD=∠CDE,∠DFO=∠BCO=90°.由OF过圆心可得出DF的长,再根据勾股定理求出OF的长,进而可得出CF的长;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中由勾股定理求出DF的长,由cot∠ACD=cot∠CDF即可得出结论.解答:解:(1)延长CO交DE于点F,连接OD∵OC⊥AB,OC过圆心,AB=24m,∴BC=AB=12m.在Rt△BCO中,sin∠COB==,∴OB=13mCO=5m.∵DE∥AB,∴∠ACD=∠CDE,∠DFO=∠BCO=90°.又∵OF过圆心,∴DF=DE=×4=2m.在Rt△DFO中,OF===7m,∴CF=CO+OF=12m,即当水位线DE=4m时,此时的水深为12m;(2)若水位线以一定的速度下降,当水深8m时,即CF=8m,则OF=CF﹣OC=3m,连接CD,在Rt△ODF中,DF===4m.在Rt△CDF中,cot∠CDF==.∵DE∥AB,∴∠ACD=∠CDE,∴cot∠ACD=cot∠CDF=.答:若水位线以一定的速度下降,当水深8m时,此时∠ACD的余切值为.点评:本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,已知在△ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,与边AC交于点E,过点D作DF⊥AC于F.(1)求证:DF为⊙O的切线;(2)若DE=,AB=,求AE的长.考点:切线的判定;勾股定理.专题:计算题;证明题.分析:(1)连接AD,OD,则∠ADB=90°,AD⊥BC;又因为AB=AC,所以BD=DC,OA=OB,OD∥AC,易证DF⊥OD,故DF为⊙O的切线;(2)连接BE交OD于G,由于AC=AB,AD⊥BCED⊥BD,故∠EAD=∠BAD,=,ED=BD,OE=OB;故OD垂直平分EB,EG=BG,因为AO=BO,所以OG=AE,在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2,代入数值即可求出AE的值.解答:(1)证明:连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC;∵AB=AC,∴BD=DC.∵OA=OB,∴OD∥AC.∵DF⊥AC,∴DF⊥OD.∴∠ODF=∠DFA=90°,∴DF为⊙O的切线.(2)解:连接BE交OD于G;∵AC=AB,AD⊥BC,ED=BD,∴∠EAD=∠BAD.∴.∴ED=BD,OE=OB.∴OD垂直平分EB.∴EG=BG.又AO=BO,∴OG=AE.在Rt△DGB和Rt△OGB中,BD2﹣DG2=BO2﹣OG2∴()2﹣(﹣OG)2=BO2﹣OG2解得:OG=.∴AE=2OG=.点评:本题比较复杂,涉及到切线的判定定理及勾股定理,等腰三角形的性质,具有很强的综合性.18.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.专题:几何综合题.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;19.如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.考点:垂径定理;勾股定理.专题:几何图形问题.分析:过点O作OE⊥AB于点E,连接OB,由垂径定理可知AE=BE=AB,再根据勾股定理求出OE的长,由此可得出结论.解答:解:过点O作OE⊥AB于点E,连接OB,∵AB=8cm,∴AE=BE=AB=×8=4cm,∵⊙O的直径为10cm,∴OB=×10=5cm,∴OE===3cm,∵垂线段最短,半径最长,∴3cm≤OP≤5cm.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.考点:垂径定理;圆周角定理;弧长的计算.专题:几何图形问题.分析:(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD;(2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度.解答:解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)连结OC,OD.∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.点评:本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键.21.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理.专题:几何图形问题.分析:(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解答:解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.点评:本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.22.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.考点:圆周角定理;勾股定理;圆心角、弧、弦的关系;解直角三角形.专题:几何综合题.分析:(1)由AB为直径,OD∥BC,易得OD⊥AC,然后由垂径定理证得,=,继而证得结论;(2)由AB=10,cos∠ABC=,可求得OE的长,继而求得DE,AE的长,则可求得tan∠DAE,然后由圆周角定理,证得∠DBC=∠DAE,则可求得答案.解答:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD﹣OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.点评:此题考查了圆周角定理、垂径定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=120°;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.考点:切线的性质;扇形面积的计算.专题:几何综合题.分析:(1)根据切线的性质可以证得∠OAP=∠OBP=90°,根据四边形内角和定理求解;(2)证明直角△OAP≌直角△OBP,根据全等三角形的对应边相等,即可证得;(3)首先求得△OPA的面积,即求得四边形OAPB的面积,然后求得扇形OAB的面积,即可求得阴影部分的面积.解答:(1)解:∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°;(2)证明:连接OP.在Rt△OAP和Rt△OBP中,,∴Rt△OAP≌Rt△OBP,∴PA=PB;(3)解:∵Rt△OAP≌Rt△OBP,∴∠OPA=∠OPB=∠APB=30°,在Rt△OAP中,OA=3,∴AP=3,∴S△OPA=×3×3=,∴S阴影=2×﹣=9﹣3π.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.。
冲刺2020年数学中考专题练习:《扇形面积的计算》(包含答案)
冲刺2020年数学中考专题练习:《扇形面积的计算》一.选择题1.如图一个扇形纸片的圆心角为9090°°,半径为6.将这张扇形纸片折叠,使点A与点O 恰好重合,折痕为CD,则阴影部分的面积为( )A. B. C. D. 2.如图,菱形ACBD中,AB与CD交于O点,∠ACB=120°,以C为圆心AC为半径作弧AB,再以C为圆心,CO为半径作弧EF分别交AC于F点,BC于E点,若CB=2,则图中阴影部分的面积为( )A. B. C. D. 3.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为( )A.π﹣2 B.π+2 C.2﹣π D. +π 4.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A. B. C.2 D.2 5.如图,在△ABC中,∠C=90°,AB=,分别以A、B为圆心,AC,BC为半径在△ABC的外侧构造扇形CAE,扇形CBD,且点E,C,D在同一条直线上,若BC=2AC,且的长度恰好是的倍,则图中阴影部分的面积为( )A.π B.π C.π D.π6.如图,矩形ABDC与⊙O交于E,F两点,且AE=EF,CD过圆心O,且CD=4,则阴影部分的面积为( )A.2﹣π B.4﹣π C.3﹣π D.2﹣π 7.如图,在矩形ABCD中,AB=,BC=1,把矩形ABCD绕点A顺时针旋转3030°°得到矩形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为( )A.﹣ B.﹣+2 C.﹣+2 D.﹣二.填空题8.如图所示,扇形AOB中,∠AOB=130°,点C为OA中点,OA=10,CD⊥AO交于D,以OC为半径画交OB于E,则图中阴影部分面积为 .9.如图,把半径为2的⊙O沿弦AB折叠,经过圆心O,则阴影部分的面积为 (结果保留π).10.如图,在△ABC中,BA=BC,∠ABC=90°,AC=4,D为AC的中点,以D为圆心,DB为半径作圆心角为90°的扇形DEF,则图中阴影部分的面积为 .11.如图,已知△OAB是等腰直角三角形,OA=OB=,点E是AB上一点,且∠AOE =15°,以O为圆心,OE的长为半径画弧,与△OAB的三边分别交于点C、F、D,则图中阴影部分的面积为 (结果保留π).12.如图所示,⊙O是以坐标原点O为圆心,4为半径的圆,点P的坐标为(,),弦AB经过点P,则图中阴影部分面积的最小值= .13.如图,正方形ABCD的边长为2,四条弧分别以相应顶点为圆心,正方形ABCD的边长为半径.求阴影部分的面积 .14.如图,以直角三角形的两条直角边AC、AB为直径,向三角形内作半圆,两半圆交于点D,CD=1,BD=3,则图中阴影部分的面积为 (平方单位).15.如图:矩形ABCD中,AB=6,BC=4,O为AB上一点,且OB=4,以O为圆心,OB长为半径画弧,切CD于E,交AD于F,则扇形OBEF的面积是 .16.已知, OA是⊙O的半径,AB是以OA为直径的⊙O′的弦,O′B的延长线交⊙O 于点C,且OA=4,∠OAB=45°.则由和线段BC所围成的图形面积是 .17.如图,在扇形OAB中,∠AOB=90°,OA=OB=2,将扇形OAB绕边OB的中点D顺时针旋转9090°°得到扇形O'A'B',弧A'B′交OA于点E,则图中阴影部分的面积为 .三.解答题18.如图,已知AB是半圆O的直径,点P是半圆上一点,连结BP,并延长BP到点C,使PC=PB,连结AC.(1)求证:AB=AC.(2)若AB=4,∠ABC=30°.①求弦BP的长.②求阴影部分的面积.19.如图,△ABC中,∠ABC=9090°°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接OD、DE.(1)求证:OD⊥DE.(2)若∠BAC=30°,AB=8,求阴影部分的面积.20.在附中中心花园的草坪上,有一些自动旋转喷泉水装置,它的喷灌区域是一个扇形,小孙同学想了解这种装置能够喷灌的草坪面积,小孙同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,他测量出了相关数据,他测量出了相关数据,并画出了示意图,并画出了示意图,如图,这种旋转喷水装置的旋转角度为240°,喷灌起终点A ,B 两点的距离为12米,求这种装置能够喷的草坪面积.21.如图,点C ,D 是半圆O 上的三等分点,直径AB =4,连接AD ,AC ,作DE ⊥AB ,垂足为E ,DE 交AC 于点F .(1)求证:AF =DF .(2)求阴影部分的面积(结果保留π和根号)22.如图,四边形ABCD 内接于圆O ,对角线AC 是圆O 的直径,DB 平分∠ADC ,AC 长10cm .(1)求点O 到AB 的距离;(2)求阴影部分的面积.23.如图,在矩形ABCD中,点F在BC边上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB;(2)以A为圆心,AB长为半径作弧交AF于点G,若AD=4,tan∠ADE=,求阴影部分的面积(结果保留π)24.已知,如图,有一块含30°的直角三角板OAB的直角边长BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把把该套三角板放置在平面直角坐标系中,且AB=3.(1)若某开口向下的抛物线的顶点恰好为点A,请写出一个满足条件的抛物线的解析式;(2)若把含3030°°的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好与x轴重叠,点A落在点A′,试求图中阴影部分的面积(结果保留π).参考答案一.选择题1.解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD=2OC=6,∴CD==3,∴∠CDO=3030°°,∠COD=6060°°,∴由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD=﹣×3×3=6π﹣,∴阴影部分的面积为﹣2×(6π﹣)=9﹣3π,故选:A.2.解:∵四边形ACBD是菱形,∠ACB=120°,∴∠DCA=∠ACB=6060°°,AB⊥CD,AD=BC=AC=2,∴∠CBA=∠CBA=(180°﹣∠ACB)=30°,∠AOC=9090°°,∴OC=AC==1,由勾股定理得:AO==,∵AC=AD,∠ACD=6060°°,∴△ACD是等边三角形,∴CD=AC=2,∴DO=CD﹣OC=2﹣1=1,∴阴影部分的面积S=S扇形DCA﹣S△DOA=﹣=﹣,故选:A.3.解:连接OE,∵∠BOA=9090°°,点C为BD的中点,CE∥OA,OA=4∴∠ECO+∠COA=180°,OB=OE=4,OC=2,∴∠OCE=9090°°,OE=2OC,∴∠EOC=6060°°,CE=2,∴阴影部分的面积为:=, 故选:A.4.解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵A D⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S==π,扇形BAC∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.5.解:如图,连接ED,作AM⊥EC于M,BN⊥CD于N.∵BC=2AC,∴设AC=x,BC=2x,∵∠C=9090°°,∴x2+(2x)2=5,∴x=1,2x=2,AC=1,BC=2,∵∠AMC=∠BNC=∠ACB=9090°°,∴∠ACM+∠CAM=9090°°,∠ACM+∠BCN=90°,∴∠BCN=∠CAM,∵∠CBN+∠BCN=90°,∴∠CAM+∠CBN=9090°°,∵AE=AC,AM⊥EC,BC=BD,BN⊥CD,∴∠CAE=2∠CAM,∠CBD=2∠CBN,∴∠CAE+∠CBD=180°,∵的长度恰好是的倍,设∠CBD=m,∠CAE=n, ∴=×,∴4m=5n,∵m+n=180°,∴m=100°,n=80°,∴S阴=+=,故选:B.6.解:如图,连接OE、OF,作OM⊥AB于M.∵OM⊥AB,∴EM=MF,∵四边形OCAM,四边形ODBM是矩形,∴AM=OC.BM=OD,∵OC=OD,∴AM=BM,∴AE=BF,∵EF=2AE,CD=AB,∴EF=OC=OD=OE=OF,∴△OEF是等边三角形,∴∠EOF=∠OEF=∠OFE=60°,∵CD∥AB,∴∠COE=∠OEF=6060°°,∠DOF=∠OFE=60°,∴OM=,∴S阴=S矩形ABCD﹣S扇形OCE﹣S扇形ODF﹣S△OEF+S弓形EFM=4﹣2×﹣×22+(﹣×22)=2﹣π.故选:A.7.解:如图连接AC′,CB′.在矩形ABCD中,∵∠B=90°,AB=,BC=1,∴tan∠BAC=,∵旋转角为30°,∴A、B′、C共线.设C′B′交CD于E.S阴=S扇形ACC′﹣S△AB′C′﹣S△ECB′=﹣•1•﹣•(2﹣)••(2﹣)=﹣+2,故选:B.二.填空题(共10小题)8.解:如图,连接OD.∵CD⊥OA,AC=OC,∴OAO=2OC,∴∠CDO=3030°°,∴∠COD=6060°°,∴S阴=S扇形OAB﹣S扇形OCE﹣(S扇形OAD﹣S△OCD)=﹣﹣(﹣×5×5)=+,故答案为: +.9.解:过O作OD⊥AB于D,交劣弧AB于E,如图:∵把半径为2的⊙O沿弦AB折叠,经过圆心O,∴OD=DE=1,OA=2,∵在Rt△ODA中,sin A==,∴∠AOE=60°,同理∠BOE=60°,∴∠AOB=6060°°+60°=120°,在Rt△ODA中,由勾股定理得:AD===,∵OD⊥AB,OD过O,∴AB=2AD=2,∴阴影部分的面积S=S扇形AOB﹣S△AOB=﹣=﹣, 故答案为:﹣.10.解:在Rt△ABC中,∠ABC=90°,BC=AB,AC=4,由勾股定理得:BC=AB=2,∵在Rt△ABC中,∠ABC=90°,BC=AB,AC=4,D为AC的中点,∴BD=AC=2=DE=DF,CD=AD=2,∠DBM=∠ABC=4545°°=∠A=,CD=AD,∠BDA=90°,∵∠MDN=9090°°,∴∠MDB=∠NDA=9090°°﹣∠BDN,在△BDM和△ADN中,,∴△BDM≌△ADN(ASA),∴△ADN与△BDN的面积之和=△BDM与△BDN的面积之和,∴四边形DNBM的面积等于△CDB的面积,∴阴影部分的面积是S=S扇形DEF﹣S四边形DNBM=﹣××2×2=π﹣2,故答案为:π﹣2.11.解:如图,连接OF.作OH⊥EF于H.由题意:∠AOE=∠FOB=1515°°,∠EOF=9090°°﹣15°﹣15°=60°,∵∠AOB=9090°°,OA=OB=,∴AB=2,∵OH⊥AB,OA=OB,∴AH=BH,∴OH=AB=,∠EOH=∠FOH=30°,∴OF==2,∴S阴=(S△AOB﹣2•S扇形EOC﹣S△EOF)+(S扇形OEF﹣S△OEF)=××﹣2×﹣×22+﹣×22=3+﹣2.故答案为3+﹣2.12.解:由题意当OP⊥A'B'时,阴影部分的面积最小,∵P(,),∴OP=2,∵OA'=OB'=4,∴P A'=PB'=2,∴tan∠A'OP=tan∠B'OP=,∴∠A'OP=∠B'OP=6060°°,∴∠A'OB'=120°,∴S阴=S扇形OA'B'﹣S△A'OB'=,故答案为:.13.解:如图,设点O为弧的一个交点,连接OA、OB,过O作OE⊥AB于E,则△OAB为等边三角形,所以∠OBC=3030°°,过点O作EF⊥CD,分别交AB、CD于点E、F,则OE为等边△OAB的高,∴OE=AB=,∴OF=2﹣,∴阴影部分的面积S=4×(S正方形ABCD﹣S△AOB﹣2S扇形CBO)=4×(2×2﹣﹣2×)=16﹣4﹣.故答案为:16﹣4﹣.14.解:如图,设N是以AC为直径的半圆的圆心,连接ND,M为以AB为直径的半圆的圆心,连接MD,连接AD.则AD⊥BC,根据射影定理有:AC2=CD•CB=CD(CD+BD)=4,即AC=2;同理可求得AB=2;因此∠ABD=30°,∠ACD=6060°°;∴∠AMD=6060°°,∠AND=120°.∴扇形MAD中,弓形AD的面积=S扇形MAD﹣S△MAD=﹣=﹣;同理可求得扇形AND中,S=﹣;弓形AD=﹣(﹣+﹣)=﹣(平方单位). 因此S阴影15.解:由题意,AO=AB﹣OB=2,OF=BC=OB=4,∴Rt△OF A中,=,∴∠FOA=6060°°,∴∠FOB=120°∴S扇形OBEF==.16.解:连接OC、AC.∵O′A=O′B,∠OAB=45°,∴∠AO′B=90°.又OO′=AO′,∴OC=AC.又OA=OC,∴△AOC是等边三角形.∴∠A=6060°°.∵O′A=2,∴O′C=2.∴阴影部分的面积=S扇形OAC﹣S△OO'C﹣S扇形O'A0B=﹣2.17.解:延长EO交O'A'于P,则由∠AOB=9090°°,OA=OB=2,D为OB中点,可得 S=12﹣=1﹣;阴影OPO′∵O′P=OE,∠EPO'=90°,∴cos∠EO'P=,∴∠EO'P=6060°°,EP=∴S阴影A′PE=S扇形O′A′E﹣S△O′PE=﹣××1=﹣∴S阴影═1﹣+﹣=1﹣+.故答案为1﹣+.三.解答题(共7小题)18.(1)证明:连接AP,∵AB是半圆O的直径,∴∠APB=90°,∴AP⊥BC.∵PC=PB,∴△ABC是等腰三角形,即AB=AC;(2)解:①∵∠APB=9090°°,AB=4,∠ABC=3030°°, ∴AP=AB=2,∴BP===2;②连接OP,∴∠P AB=60°,∴∠POB=120°.∵点O时AB的中点,∴S△POB=S△P AB=×AP•PB=×2×2=, ∴S阴影=S扇形BOP﹣S△POB=﹣=π﹣.19.(1)证明:连接DB.∵AB是⊙O的直径,∴∠ADB=9090°°,∴∠CDB=9090°°,∵点E是BC的中点,∴DE=CE=BC,∴∠EDC=∠C,∵OA=OD,∴∠A=∠ADO,∵∠ABC=9090°°,∴∠A+∠C=9090°°,∴∠ADO+∠EDC=90°,∴∠ODE=9090°°,∴OD⊥DE;(2)∵AB=8,∠BAC=3030°°,∴AD=4,阴影部分的面积=﹣×4×2=π﹣4.20.解:过O作OC⊥AB于C,则∠ACO=90°,∵OC过O,OC⊥AB,AB=12米,∴AC=BC=6米,∵旋转喷水装置的旋转角度为240°,∴∠AOB=120°,∵OA=OB,∴∠OAC=∠OBC=(180°﹣120°)=3030°°,∴OA===4(米),∴这种装置能够喷的草坪面积是=3232ππ(平方米). 21.(1)证明:连接OD,OC,∵C、D是半圆O上的三等分点,∴∠AOD=∠DOC=∠COB=6060°°,∴∠DAC=3030°°,∠CAB=30°,∵DE⊥AB,∴∠AEF=9090°°,∴∠ADE=180°﹣9090°°﹣30°﹣30°=30°,∴∠DAC∠ADE=3030°°,∴AF=DF;(2)解:由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×2×=π﹣.22.解:(1)过点O作OE⊥AB于点E,∵对角线AC是圆O的直径,DB平分∠ADC,∴∠ADC=9090°°,则∠ADB=∠CDB=45°,∴∠AOB=9090°°,∵AO=BO,∴△AOB是等腰直角三角形,则EO=A O•sin45°=5×=(cm);(2)阴影部分的面积为:﹣×5×5=﹣.∴∠ABC=9090°°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠AED=90°=∠FBA,在△ABF和△DEA中,∴△ABF ≌△DEA (AAS),∴DE =AB;(2)解:∵tan∠ADE=,∴∠ADE =60°,∵AD=4,∠AED=9090°°,∴AE=AD•sin∠ADE=4×=6,DE =2,由(1)知,△ABF≌△DEA,∴AB=DE=2,BF=EA=6,∠BAF=∠EDA=60°, ∴阴影部分的面积=△ABF 的面积﹣扇形ABG的面积=×2×6﹣=6﹣2π.24.解:(1)在Rt△OBA中,∠AOB=3030°°,AB=3, ∴OA=2AB=6,∴,∴点A(3,3).∴抛物线的解析式可以为:;21 / 22(2)由(1)可知 OA=6,由题意得:∠AOC=60°, ∴S扇形AOA′=πOA2=6π.在Rt△OCD中,∠DOC=45°,OC=OB=3,∴S阴影=S扇形AOA′﹣S△ODC=6π﹣22 / 22。
2024年中考数学总复习考点梳理第六章第三节与圆有关的计算
改变图形
设问)
第三节 与圆有关的计算
返回目录
考情分析
年份 题号 题型 分值 图形背景 计算公式 设问
结果 溯源教材 教材改编维度
网格,等腰
解答题( 2019 22(2)
4 直角三角形
nπr 2
求阴影面积 20-5π
/
/
二)
360
,扇形
nπr 2
2018 15 填空题 4 矩形,半圆 360 求阴影面积 π
第三节 与圆有关的计算
返回目录
2. (2022广东15题3分)扇形的半径为2,圆心角为90°,则该扇形 的面积(结果保留π)为_π_. 3. (2021广东13题4分)如图,等腰直角三角形ABC中,∠A= 90°,BC=4.分别以点B,点C为圆心,线段BC长的一半为半径 作圆弧,交AB,BC,AC于点D,E,F, 则图中阴影部分的面积为_4_-__π_.
返回目录
改编维度 第1次改编:改变半径,直径是1 m的铁皮→半径是1 m的铁皮; 第2次改编:改变度数,剪出一个圆心角为90°的扇形→剪出一个圆周 角为120°的扇形.
第三节 与圆有关的计算
返回目录
维度拓展 改变扇形顶点的位置,改变设问. 如图,从一块半径是 13 cm的圆形铁皮上剪出一个圆心角为60°的扇形, 将剪下的扇形围成一个圆锥,若OA=2 cm,则 BC 的长是___3_π__.
1 教材改编题课前测 2 教材知识逐点过 3 广东近6年真题
第三节 与圆有关的计算
返回目录
广东近6年考情及趋势分析
命题点1 圆锥的有关计算(2020.16) 考情及趋势分析
考情分析
年份 题号 题型 分值
已知
设问 计算公式溯源教材教材改编维度半径(母线长)
扇形面积的计算精选题45道
扇形面积的计算精选题45道一.选择题(共18小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1D.1﹣2.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.﹣B.﹣2C.π﹣D.﹣3.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π4.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.25.如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.6.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣7.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.24﹣4πB.32﹣4πC.32﹣8πD.168.如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π9.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.10.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.11.如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A.6πB.3πC.2πD.2π12.如图,在扇形OAB中,已知∠AOB=90°,OA=,过的中点C作CD⊥OA,CE ⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A.π﹣1B.﹣1C.π﹣D.﹣13.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A.3πB.6πC.5πD.4π14.如图,在矩形ABCD中,CD=1,∠DBC=30°.若将BD绕点B旋转后,点D落在DC延长线上的点E处,点D经过的路径,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣15.如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π16.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π17.如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD 于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π18.如图,两个半径长均为的直角扇形的圆心分别在对方的圆弧上,扇形CFD的圆心C 是的中点,且扇形CFD绕着点C旋转,半径AE、CF交于点G,半径BE、CD交于点H,则图中阴影面积等于()A.B.C.π﹣1D.π﹣2二.填空题(共18小题)19.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是(结果保留π).20.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.21.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.(结果保留π)22.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是.23.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.24.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)25.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为.26.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是.27.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.28.如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O 交AD于点E,则图中阴影部分的面积为.29.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为.(结果保留π)30.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是.31.如图,直角△ABC中,∠A=90°,∠B=30°,AC=4,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分的面积是(结果保留π).32.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为.33.如图,在扇形OAB中,点C在上,∠AOB=90°,∠ABC=30°,AD⊥BC于点D,连接AC,若OA=2,则图中阴影部分的面积为.34.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分面积S阴影=.35.已知扇形的圆心角为120°,弧长为6π,则扇形的面积是.36.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是度.三.解答题(共9小题)37.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.38.如图,△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,点E为BC的中点,连接OD、DE.(1)求证:OD⊥DE.(2)若∠BAC=30°,AB=8,求阴影部分的面积.39.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连接BC.(1)求证:AE=ED;(2)若AB=6,∠ABC=30°,求图中阴影部分的面积.40.如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=2,求阴影部分的面积.41.如图,已知AB是⊙O的直径,C、D是⊙O上的点,OC∥BD,交AD于点E,连接BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求弧AC的长及扇形AOC的面积.42.如图,AB是⊙O的直径,弦CD⊥AB于点E,连接AC,BC.(1)求证:∠A=∠BCD;(2)若CD=4,∠B=60°,求扇形OAC(阴影部分)的面积.43.如图,在△ABC中,∠B=∠C=30°,线段BC上点D为线段AB的垂直平分线与BC 的交点,以AC为直径的⊙O交BC于点E.(1)求证:AD切⊙O于点A;(2)若BD=2,求图中阴影部分的面积.44.如图,⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,求图中的三个扇形(即阴影部分)的面积之和.(友情提示:三个圆心角之间有何关系)45.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD =45°.(1)求AB的长;(2)求BD的长;(3)求图中阴影部分的面积.扇形面积的计算精选题45道参考答案与试题解析一.选择题(共18小题)1.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1D.1﹣【分析】图中1、2、3、4图形的面积和为正方形的面积,1、2和两个3的面积和是两个扇形的面积,因此两个扇形的面积的和﹣正方形的面积=无阴影两部分的面积之差,即﹣1=.【解答】解:如图:正方形的面积=S1+S2+S3+S4;①两个扇形的面积=2S3+S1+S2;②②﹣①,得:S3﹣S4=2S扇形﹣S正方形=﹣1=.故选:A.【点评】本题主要考查了扇形的面积计算公式及不规则图形的面积计算方法.找出正方形内四个图形面积之间的联系是解题的关键.2.如图,AB为⊙O的切线,切点为B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A=30°,⊙O的半径为2,则图中阴影部分的面积为()A.﹣B.﹣2C.π﹣D.﹣【分析】过O点作OE⊥CD于E,首先根据切线的性质和直角三角形的性质可得∠AOB =60°,再根据平角的定义和三角形外角的性质可得∠COD=120°,∠OCD=∠ODC=30°,根据含30°的直角三角形的性质可得OE,CD的长,再根据阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积,列式计算即可求解.【解答】解:过O点作OE⊥CD于E,∵AB为⊙O的切线,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∴∠COD=120°,∠OCD=∠ODC=30°,∵⊙O的半径为2,∴OE=1,CE=DE=,∴CD=2,∴图中阴影部分的面积为:﹣×2×1=π﹣.故选:A.【点评】考查了扇形面积的计算,切线的性质,本题关键是理解阴影部分的面积=扇形OCD的面积﹣三角形OCD的面积.3.如图,在菱形ABCD中,点E是BC的中点,以C为圆心、CE为半径作弧,交CD于点F,连接AE、AF.若AB=6,∠B=60°,则阴影部分的面积为()A.9﹣3πB.9﹣2πC.18﹣9πD.18﹣6π【分析】连接AC,根据菱形的性质求出∠BCD和BC=AB=6,求出AE长,再根据三角形的面积和扇形的面积求出即可.【解答】解:连接AC,∵四边形ABCD是菱形,∴AB=BC=6,∵∠B=60°,E为BC的中点,∴CE=BE=3=CF,△ABC是等边三角形,AB∥CD,∵∠B=60°,∴∠BCD=180°﹣∠B=120°,由勾股定理得:AE==3,∴S△AEB=S△AEC=×6×3×=4.5=S△AFC,∴阴影部分的面积S=S△AEC+S△AFC﹣S扇形CEF=4.5+4.5﹣=9﹣3π,故选:A.【点评】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出△AEC、△AFC和扇形ECF的面积是解此题的关键.4.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.【点评】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.5.如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到∠CDO=30°,∠COD=60°,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD,进行计算即可.【解答】解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD=2OC=6,∴CD==3,∴∠CDO=30°,∠COD=60°,∴由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD=﹣×3×3=6π﹣,∴阴影部分的面积为6π﹣.故选:A.【点评】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.记住扇形面积的计算公式.也考查了折叠性质.6.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=2,以AB的中点O为圆心,OA 的长为半径作半圆交AC于点D,则图中阴影部分的面积为()A.﹣B.+C.2﹣πD.4﹣【分析】根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知S阴影=S△ABC﹣S△AOD﹣S扇形BOD,从而可以解答本题.【解答】解:作DE⊥AB于点E,连接OD,如图所示,∵在Rt△ABC中,∠ABC=90°,AB=2,BC=2,∴tan A=,∴∠A=30°,∴∠DOB=60°,∵OD=AB=,∴DE=,∴S阴影=S△ABC﹣S△AOD﹣S扇形BOD==,故选:A.【点评】本题考查扇形面积的计算、解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.7.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.24﹣4πB.32﹣4πC.32﹣8πD.16【分析】连接AD,因为△ABC是等腰直角三角形,故∠ABD=45°,再由AB是圆的直径得出∠ADB=90°,故△ABD也是等腰直角三角形,所以=,S阴影=S△ABC﹣S△ABD﹣S弓形AD由此可得出结论.【解答】解:连接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圆的直径,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴=.∵AB=8,∴AD=BD=4,∴S阴影=S△ABC﹣S△ABD﹣S弓形AD=S△ABC﹣S△ABD﹣(S扇形AOD﹣S S△ABD)=×8×8﹣×4×4﹣+××4×4=16﹣4π+8=24﹣4π.故选:A.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.8.如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π【分析】连接OC,易证得四边形CDOE是矩形,则△DOE≌△CEO,得到∠COB=∠DEO=∠CDE=36°,图中阴影部分的面积=扇形OBC的面积,利用扇形的面积公式即可求得.【解答】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S扇形OBC==10π∴图中阴影部分的面积=10π,故选:A.【点评】本题考查了扇形面积的计算,矩形的判定与性质,利用扇形OBC的面积等于阴影的面积是解题的关键.9.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF,求出答案.【解答】解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF=1×2﹣×1×1﹣=﹣.故选:B.【点评】此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE的长以及∠EBC的度数是解题关键.10.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.πD.【分析】根据垂径定理求得CE=ED=,然后由圆周角定理知∠COE=60°,然后通过解直角三角形求得线段OC、OE的长度,最后将相关线段的长度代入S阴影=S扇形OCB ﹣S△COE+S△BED.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=,又∵∠CDB=30°,∴∠COE=2∠CDB=60°,∠OCE=30°,∴OE=CE•cot60°=×=1,OC=2OE=2,∴S阴影=S扇形OCB﹣S△COE+S△BED=﹣OE×EC+BE•ED=﹣+=.解法二:连接OD,BC,证明OD∥BC,可以证明S阴影=S扇形OCB=.故选:D.【点评】本题考查了垂径定理、扇形面积的计算,通过解直角三角形得到相关线段的长度是解答本题的关键.11.如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A.6πB.3πC.2πD.2π【分析】连接OB,根据平行四边形的性质得到AB=OC,推出△AOB是等边三角形,得到∠AOB=60°,根据扇形的面积公式即可得到结论.【解答】解:连接OB,∵四边形OABC是平行四边形,∴AB=OC,∴AB=OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∵OC∥AB,∴S△AOB=S△ABC,∴图中阴影部分的面积=S扇形AOB==6π,故选:A.【点评】本题考查的是扇形面积的计算,平行四边形的性质,掌握扇形的面积公式是解题的关键.12.如图,在扇形OAB中,已知∠AOB=90°,OA=,过的中点C作CD⊥OA,CE ⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A.π﹣1B.﹣1C.π﹣D.﹣【分析】根据矩形的判定定理得到四边形CDOE是矩形,连接OC,根据全等三角形的性质得到OD=OE,得到矩形CDOE是正方形,根据扇形和正方形的面积公式即可得到结论.【解答】解:∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=∠AOB=90°,∴四边形CDOE是矩形,连接OC,∵点C是的中点,∴∠AOC=∠BOC,∵OC=OC,∴△COD≌△COE(AAS),∴OD=OE,∴矩形CDOE是正方形,∵OC=OA=,∴OE=1,∴图中阴影部分的面积=﹣1×1=﹣1,故选:B.【点评】本题考查了扇形面积的计算,正方形的判定和性质,全等三角形的判定和性质,正确识别图形是解题的关键.13.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A.3πB.6πC.5πD.4π【分析】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB 为直径的半圆的面积.即可求解.【解答】解:阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB 为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选:B.【点评】本题主要考查了扇形的面积的计算,正确理解阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积﹣以AB为直径的半圆的面积=扇形ABB′的面积是解题的关键.14.如图,在矩形ABCD中,CD=1,∠DBC=30°.若将BD绕点B旋转后,点D落在DC延长线上的点E处,点D经过的路径,则图中阴影部分的面积是()A.﹣B.﹣C.﹣D.﹣【分析】先由矩形的性质可得:∠BCD=90°,然后根据CD=1,∠DBC=30°,可得BD=2CD=2,然后根据勾股定理可求BC=,然后由旋转的性质可得:BE=BD=2,然后再根据扇形的面积公式及三角形的面积公式计算扇形DBE的面积和三角形BCD的面积,然后相减即可得到图中阴影部分的面积.【解答】解:∵四边形ABCD是矩形,∴∠BCD=90°,∵CD=1,∠DBC=30°,∴BD=2CD=2,由勾股定理得BC==,∵将BD绕点B旋转后,点D落在BC延长线上的点E处,∴BE=BD=2,∵S扇形DBE===,S△BCD=•BC•CD==,∴阴影部分的面积=S扇形DBE﹣S△BCD=﹣.故选:B.【点评】此题主要考查了矩形的性质,扇形的面积和三角形的面积计算,关键是掌握扇形的面积公式:S=.15.如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π【分析】根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.【点评】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.16.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π【分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积,再减去2个以边长为1的正方形的面积,加上以1半径的四分之一个圆的面积,本题得以解决.【解答】解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,解法二:连接BD,由题意,S阴影=S扇形CBD﹣S△BCD=×π×22﹣×2×2=π﹣2,故选:B.【点评】本题考查扇形的面积的计算,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD 于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣π【分析】根据S阴=S△ABD﹣S扇形BAE计算即可.【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故选:C.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.18.如图,两个半径长均为的直角扇形的圆心分别在对方的圆弧上,扇形CFD的圆心C 是的中点,且扇形CFD绕着点C旋转,半径AE、CF交于点G,半径BE、CD交于点H,则图中阴影面积等于()A.B.C.π﹣1D.π﹣2【分析】根据扇形的面积公式求出面积,再过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,然后证明△CMG与△CNH全等,从而得到中间空白区域的面积等于以为对角线的正方形的面积,从而得出阴影部分的面积.【解答】解:两扇形的面积和为:=π,过点C作CM⊥AE,作CN⊥BE,垂足分别为M、N,则四边形EMCN是矩形,∵点C是的中点,∴EC平分∠AEB,∴CM=CN,∴矩形EMCN是正方形,∵∠MCG+∠FCN=90°,∠NCH+∠FCN=90°,∴∠MCG=∠NCH,在△CMG与△CNH中,,∴△CMG≌△CNH(ASA),∴中间空白区域面积相当于对角线是的正方形面积,∴空白区域的面积为:××=1,∴图中阴影部分的面积=两个扇形面积和﹣2个空白区域面积的和=π﹣2.故选:D.【点评】此题主要考查了扇形的面积求法,正方形的面积的计算,全等三角形的判定和性质,得出四边形EGCH的面积是解决问题的关键.二.填空题(共18小题)19.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是3﹣π(结果保留π).【分析】过D点作DF⊥AB于点F.可求▱ABCD和△BCE的高,观察图形可知阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积,计算即可求解.【解答】解:过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2,∴阴影部分的面积:4×1﹣﹣2×1÷2=4﹣π﹣1=3﹣π.故答案为:3﹣π.【点评】考查了平行四边形的性质,扇形面积的计算,本题的关键是理解阴影部分的面积=▱ABCD的面积﹣扇形ADE的面积﹣△BCE的面积.20.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【分析】连接CD,证明△DCH≌△DBG,则S四边形DGCH=S△BDC,求得扇形FDE的面积,则阴影部分的面积即可求得.【解答】解:连接CD,∵CA=CB,∠ACB=90°,∴∠B=45°,∵点D为AB的中点,∴DC=AB=BD=1,CD⊥AB,∠DCA=45°,∴∠CDH=∠BDG,∠DCH=∠B,在△DCH和△DBG中,,∴△DCH≌△DBG(ASA),∴S四边形DGCH=S△BDC=S△ABC=AB•CD=×2×1=.∴S阴影=S扇形DEF﹣S△BDC=﹣=﹣.故答案为﹣.【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DCH ≌△DBG,得到S四边形DGCH=S△BDC是关键.21.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2.(结果保留π)【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO≌△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,∴S扇形B′OB==π,S扇形C′OC==,∴阴影部分面积=S扇形B′OB+S△B′C′O﹣S△BCO﹣S扇形C′OC=S扇形B′OB﹣S扇形C′OC=π﹣=π;故答案为:π.【点评】此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是解决本题的关键.22.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是﹣2.【分析】如图,连接CE.图中S阴影=S扇形BCE﹣S扇形BOD﹣S△OCE.根据已知条件易求得OB=OC=OD=2,BC=CE=4.∠ECB=60°,OE=2所以由扇形面积公式、三角形面积公式进行解答即可.【解答】解:如图,连接CE.∵AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,∴∠ACB=90°,OB=OC=OD=2,BC=CE=4.又∵OE∥AC,∴∠ACB=∠COE=90°.∴在直角△OEC中,OC=2,CE=4,∴∠CEO=30°,∠ECB=60°,OE=2∴S阴影=S扇形BCE﹣S扇形BOD﹣S△OCE=﹣π×22﹣×2×2=﹣2,故答案为:﹣2.【点评】本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.23.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.【分析】过O′作O′M⊥OA于M,解直角三角形求出旋转角的度数,根据图形得出阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′,分别求出即可.【解答】解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(1,),∴O′M=,OM=1,∵AO=2,∴AM=2﹣1=1,∴tan∠O′AM==,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°,∵把△OAC绕点A按顺时针方向旋转到△O′AC′,∴S△OAC=S△O′AC′,∴阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′=﹣=,故答案为:.【点评】本题考查了解直角三角形,旋转的性质、扇形的面积计算等知识点,能把求不规则图形的面积转化成求出规则图形的面积是解此题的关键.24.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是π﹣1.(结果保留π)【分析】延长DC,CB交⊙O于M,N,根据圆和正方形的面积公式即可得到结论.【解答】解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.【点评】本题考查了圆面积的计算,正方形的性质,正确的识别图形是解题的关键.25.如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为﹣.【分析】连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四,求得扇形FOE的面积,则阴影部分的面积即可求得.边形OMCN【解答】解:连接OC,作OM⊥BC,ON⊥AC.∵CA=CB,∠ACB=90°,点O为AB的中点,∴OC=AB=1,四边形OMCN是正方形,OM=.则扇形FOE的面积是:=.∵OA=OB,∠ACB=90°,点O为AB的中点,∴OC平分∠BCA,又∵OM⊥BC,ON⊥AC,∴OM=ON,∵∠GOH=∠MON=90°,∴∠GOM=∠HON,则在△OMG和△ONH中,,∴△OMG≌△ONH(AAS),∴S四边形OGCH=S四边形OMCN=()2=.则阴影部分的面积是:﹣.故答案为:﹣.【点评】本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△OMG≌△ONH,得到S四边形OGCH=S四边形OMCN是解题的关键.26.如图,在半径AC为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则图中阴影部分的面积是π﹣1.【分析】已知BC为直径,则∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,阴影部分的面积可以看作是扇形ACB的面积与△ADC 的面积之差.【解答】解:在Rt△ACB中,AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故答案为π﹣1.【点评】本题考查扇形面积的计算公式及不规则图形面积的求法,掌握面积公式是解题的关键.27.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.【解答】解:连接OE、AE,∵AB是⊙O的直径,∴∠AEB=90°,∵四边形ABCD是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S阴影=S扇形OBE﹣S△BOE,=﹣×,=﹣,=﹣,故答案为:﹣.【点评】本题考查了扇形的面积计算、平行四边形的性质,直角三角形中30度角等知识点,能求出扇形OBE的面积和△ABE的面积是解此题的关键.28.如图,在平行四边形ABCD中,AB<AD,∠A=150°,CD=4,以CD为直径的⊙O交AD于点E,则图中阴影部分的面积为.【分析】连接OE,作OF⊥DE,先求出∠COE=2∠D=60°、OF=OD=1,DF=OD cos ∠ODF=,DE=2DF=2,再根据阴影部分面积是扇形与三角形的面积和求解可得.【解答】解:如图,连接OE,作OF⊥DE于点F,∵四边形ABCD是平行四边形,且∠A=150°,∴∠D=30°,则∠COE=2∠D=60°,∵CD=4,∴CO=DO=2,∴OF=OD=1,DF=OD cos∠ODF=2×=,∴DE=2DF=2,∴图中阴影部分的面积为+×2×1=+,故答案为:+.【点评】本题考查的是扇形面积计算、平行四边形的性质,掌握扇形面积公式:S=是解题的关键.29.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为4﹣π.(结果保留π)【分析】根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.【解答】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC==2,∴OA=OC=,∴图中的阴影部分的面积=22﹣×2=4﹣π,故答案为:4﹣π.【点评】本题考查的是扇形面积计算、正方形的性质,掌握扇形面积公式是解题的关键.。
中考数学每日一练:扇形面积的计算练习题及答案_2020年综合题版
中考数学每日一练:扇形面积的计算练习题及答案_2020年综合题版答案答案答案2020年中考数学:图形的性质_圆_扇形面积的计算练习题~~第1题~~(2020沭阳.九上期中) 如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD =CB ,延长CD 交BA 的延长线于点E.(1) 求证:CD 为⊙O 的切线;(2) 若OF ⊥BD 于点F ,且OF =2,BD =4,求图中阴影部分的面积.考点: 垂径定理;切线的性质;扇形面积的计算;~~第2题~~(2019盘锦.中考真卷) 如图,△ABC 内接于⊙O ,AD 与BC 是⊙O 的直径,延长线段AC 至点G ,使AG =AD ,连接DG 交⊙O于点E ,EF ∥AB 交AG 于点F.(1) 求证:EF 与⊙O 相切.(2) 若EF =2 ,AC =4,求扇形OAC 的面积.考点: 垂径定理;圆周角定理;切线的判定;扇形面积的计算;~~第3题~~(2019丹东.中考真卷) 如图,在Rt △ABC 中,∠ACB =90°,点D 在AB 上,以AD 为直径的⊙O与边BC 相切于点E ,与边AC 相交于点G ,且 = ,连接GO 并延长交⊙O 于点F ,连接BF.(1) 求证:①AO =AG.②BF 是⊙O 的切线.(2) 若BD =6,求图形中阴影部分的面积.考点: 全等三角形的判定与性质;等边三角形的判定与性质;圆周角定理;切线的判定;扇形面积的计算;~~第4题~~(2019信阳.中考模拟) 如图,△ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,OF ⊥AB ,交AC 于点F ,点E 在AB 的延长线上,射线EM 经过点C ,且∠ACE+∠AFO=180°.答案答案(1) 求证:EM 是⊙O 的切线;(2) 若∠A=∠E,BC= ,求阴影部分的面积.(结果保留 和根号).考点: 等边三角形的判定与性质;圆周角定理;切线的判定;扇形面积的计算;~~第5题~~(2019齐齐哈尔.中考真卷) 如图,以△ABC 的边BC 为直径作⊙O ,点A 在⊙O 上,点D 在线段BC 的延长线上,AD=AB,∠D=30°。
2020年中考数学压轴题: 图形面积计算
2020年中考数学压轴题:图形面积计算【例1】(2019·南阳模拟)如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B 的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的面积为()A.9π﹣9 B.9π﹣63C.9π﹣18 D.9π﹣123【答案】D.【解析】解:连接OD,由折叠的性质知:CD=CO,BD=BO,∠DBC=∠OBC,∴OB=OD=BD,即△OBD是等边三角形,∴∠DBO=60°,∴∠CBO=30°,∴OC=33OB=23,∴S阴影=S扇形AOB﹣S△BDC﹣S△OBCS△BDC=S△OBC=12×OB×OC=12×6×23=63,S扇形AOB=9π,∴S阴影=S扇形AOB﹣S△BDC﹣S△OBC=9π﹣63﹣63=9π﹣123.所以答案为:D.【变式1-1】(2019·开封模拟)如图,把半径为2的⊙O沿弦AB,AC折叠,使弧AB和弧BC都经过圆心O,则阴影部分的面积为()A.3B.3C.23D.43【答案】C.【解析】解:过O作OD⊥AC于D,连接AO、BO、CO,∴OD=12AO=1,AD=12AC3∴∠OAD=30°,∴∠AOC=2∠AOD=120°,同理∠AOB=120°,∠BOC=120°,∴S阴=2S△AOC=2×34×22=23, 所以答案为:C .【变式1-2】如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是 .【答案】326π-. 【解析】解:设折痕为AB ,连接OM 交AB 于点C ,连接OA 、OB ,由题意知,OM ⊥AB ,且OC =MC =12,在RT △AOC 中,OA =1,OC =12,∴∠AOC =60°,AC =3,AB =2AC =3, ∴∠AOB =2∠AOC =120°, S 阴影=S 半圆﹣2S 弓形ABM=12π×12﹣2(2120111336022π⨯-⨯⨯)=36π-. 故答案为:36π-. 【例2】(2019·郑州外外国语测试)如图所示,在Rt △ABC 中,∠ACB =90°,AC =BC ,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,若图中阴影部分面积为3π,则AB =【答案】2.【解析】S 阴影=S △ADE +S 扇形BAD -S △ABC ∵S △ADE = S △ABC ∴S 阴影= S 扇形BAD =3π,∴230360AB π⨯=3π,解得:AB =2, 故答案为:2.【变式2-1】(2019·河南南阳一模)如图,在正方形ABCD 中,AB =3,点M 在CD 边上,且DM =1,△AEM 与△ADM 关于AM 所在直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为()D MA . 3B .C .D . 【分析】求线段的长度,常用方法是将所求线段放在直角三角形中借助勾股定理求解,如图作出辅助线,通过分析可知,△ADM ≌△ABF ≌△AEM ,可得DM =EM =1,AE =AD =AB =3,进而利用△AEK ∽△EMH ,求得EH ,MH 的长,再计算出EG ,FG 的长,在Rt △EFG 中,利用勾股定理求EF 的长度即可.【解析】过点E 作EG ⊥BC 于G ,作EH ⊥CD 于H ,延长HE 交AB 于K ,如图所示,D FMH由题意知,△ADM ≌△ABF ≌△AEM ,∴DM =EM =1,AE =AD =AB =3, 由△AEK ∽△EMH , 得:AE AK EKEM EH MH===3,∴设EH=x,则AK=3x,即DH=3x,MH=3x-1,在Rt△EMH中,由勾股定理得:()22311x x-+=,解得:x=0(舍)或x=35,∴MH=45,AK=DH=95,CH=3-DH=65,KE=BG=3MH=125,∴FG=BF+BG=175,EG=CH=65,在Rt△EFG中,由勾股定理得:EF=22221761355FG EG⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭,故答案为:C.【变式2-2】(2019·洛阳二模)如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕点A旋转得到矩形AB′C′D′,点C的运动路径为弧CC′,当点B′落在CD上时,则图中阴影部分的面积为.【答案】532 12π+-.【解析】解:连接AC’,AC,过点B’作B’E⊥AB于E,如图图所示,由旋转性质,得:AC=AC’,AB’=AB=2,∠CAB=∠C’AB’,∵BC=B’E=1,∴∠B’AB=30°,∴∠C’AC=30°,∴AE=3,B’C=2-3,在Rt△ABC中,由勾股定理得:AC=5, ∴S阴影=S扇形C’AC-S△AB’C’-S△B’CA=()()23051121231 36022π⨯-⨯⨯-⨯-⨯=532 122π+-.故答案为:532 12π+-.【例3】(2019·河南南阳一模)如图,在△ABC中,AB=BC,∠ABC=90°,CA=4,D为AC的中点,以D为圆心,以DB的长为半径作圆心角为90°的扇形EDF,则图中阴影部分的面积为.【分析】设DE与BC交于M,DF与AB交于N,S阴影=S扇形EDF-S四边形DMBN,根据△DBM≌△DAN,得S四边形DMBN=S△BDA,再利用扇形面积公式及三角形面积公式求解即可.【解析】解:设DE与BC交于M,DF与AB交于N,∵AB=BC,∠ABC=90°,D是AC中点,∴∠A=∠C=∠CBD=∠DBA=45°,AD=BD=2,∠BDA=90°,∵∠EDF=90°,∴∠BDM=∠ADF,∴△DBM≌△DAN,即S△DBM=S△DAN,∴S四边形DMBN=S△BDA,S阴影=S扇形EDF-S四边形DMBN=213602n rAD BD π-⋅⋅=2902122 3602π⨯-⨯⨯=π-2,故答案为:π-2.【变式3-1】(2018·洛阳三模)如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与弧AB交于点D,以O为圆心,OC的长为半径作弧CE交OB于点E,若OA=6,∠AOB=120°,则图中阴影部分的面积为.【答案】93 32π+.【解析】解:连接OD,交弧CE于F,连接AD,∵OC=AC=3,CD⊥OA,∴CD是线段OA的垂直平分线,∴OD=AD,∵OD=OA,∴△OAD是等边三角形,∵∠AOB=120°,∴∠DOA=∠BOD=60°,∴CD33∴S阴影=S扇形BOD-S扇形EOF+S△COD-S扇形COF=222 6066031603333 3603602360πππ⨯⨯⨯-+⨯⨯=3π93.即答案为:3π93.【变式3-2】(2018·河南第一次大联考)如图,O是边长为a的正方形ABCD的中心,将一块半径足够长、圆心为直角的扇形纸板的圆心放在O点处,并将纸板的圆心绕O旋转,则正方形ABCD被纸板覆盖部分的面积为()A .13a 2 B .14a 2 C .12a 2 D .14a 【答案】B .【解析】解:如图,过O 作OE ⊥AD 于E ,OF ⊥CD 于F ,∴OE =OF ,∠EOF =90°,∴四边形OEDF 是正方形,OF =12a ,∵扇形的圆心角为直角, ∴△OME ≌△ONF , ∴S 阴影=S 正方形OEDF =214a , 故答案为:B .1.(2018·河南师大附中模拟)如图,菱形ABCD 和菱形ECGF 的边长分别为2和3,∠A =120°,则图中阴影部分(△BDF )的面积等于.3【解析】解:由题意得:S △BDF =S 菱形ABCD +S 菱形ECGF -S △BGF -S △EDF -S △ABD 菱形ECGF 边CG 边上的高为:GF ·sin 60°33,菱形ECGF 边CE 边上的高为:EF ·sin 60°=332, ∴S △BDF =222331331333235122222224⨯+⨯-⨯⨯-⨯⨯-⨯ =3,故答案为:3.2.(2019·济源一模)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,中间的小正方形 ABCD 的边长为 1,分别以A ,C 为圆心,1为半径作圆弧,则图中阴影部分的面积为【答案】12π-.【解析】解:连接BD , S 阴影=2(S 扇形BAD -S △ABD )=2(29011113602π⨯-⨯⨯)=12π-, 故答案为:12π-.3.(2019·偃师一模)如图,正方形ABCD 中,AB =1,将线段 CD 绕点 C 顺时针旋转 90°得到线段CE ,线段 BD 绕点 B 顺时针旋转 90°得到线段 BF ,连接 EF ,则图中阴影部分的面积是【答案】32-4π.【解析】解:过F作FM⊥BE于M,则∠FME=∠FMB=90°,∵四边形ABCD是正方形,AB=1,∴∠DCB=90°,DC=BC=AB=1,∠DCB=45°,由勾股定理得:BD=2,由旋转性质得:∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,∴BM=FM=1,即C点与M点重合,ME=1,∴阴影部分的面积:S=S△BCD+S△BFE+S扇形DCE-S扇形DBF=12+1+2901360π⨯-()2902360π⨯=32-4π,故答案为:32-4π.4.(2019·洛阳三模)如图,已知矩形ABCD的两条边AB=1,AD=3,以B为旋转中心,将对角线BD顺时针旋转60°得到线段BE,再以C为圆心将线段CD顺时针旋转90°得到线段CF,连接EF,则图中阴影部分面积为.15 3212π-.【解析】解:连接CE,由CD=AB=1,AD3BD=2,∴∠DBC =30°,由旋转知∠DBE =60°,BE =BD =2, ∴∠DBC =∠EBC =30°, 此时D 、C 、E 共线,∴S 阴影=S 扇形DCF +S △BCD +S △BEF -S 扇形DBE=()22901160113131236022360ππ⨯+⨯⨯+⨯+⨯-⨯ =153212π+-.故答案为:153212π+-.5.(2019·周口二模)如图,△AOB 中,∠AOB =90°,AO =3,BO =6,△AOB 绕点O 逆时针旋转到△A ′OB ′处,此时线段A ′B ′与BO 的交点E 为BO 的中点,则线段B ′E 的长度为( )A .35B .95C .65D .35A′B′OB AE【答案】B .【解析】解:过O 作OF ⊥A ’B ’于F ,由旋转性质得:OA =OA ’=3,OB =OB ’=6, ∴F 为A ’E 的中点, ∵E 为OB 中点,在Rt△A’OB’中,由勾股定理得:A’B’=35,∴OF=6535=,在Rt△A’OF中,由勾股定理得:A’F=35,∴A’E=65∴B’E=A’B’-A’E=95,故答案为:B.6.(2019·周口二模)如图,等腰直角三角形ABC,绕点C顺时针旋转得到△A′B′C,AB′所在的直线经过A′C的中点时,若AB=2,则阴影部分的面积为_________.A′B′A【答案】4313π--.【解析】解:延长AB’交A’C于E,由题意知E为A’C的中点,∵A’B’=B’C=AB=BC=2,∴B’E⊥A’C,在Rt△ABC中,由勾股定理得:AC2,∴CE=A’E2,∴∠CAE=30°,∠ACE=60°,∴S阴影=S扇形ACA’-S△ACE-S△A’B’E=()26022112622 36022π⨯-⨯⨯-⨯⨯=431 3π--.故答案为:431 3π--.7.如图,在扇形OAB中,∠O=60°,OA=43,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,弧AB,OB上,则图中阴影部分的面积为.【答案】8π﹣83.【解析】解:连接EF、OC交于点H,则OH=12OC3FOH=∠AOC=30°,在Rt△FOH中,FH=OH×tan30°=2,∴菱形FOEC的面积=12×33扇形OAB的面积=(26043360π⨯=8π,则阴影部分的面积为8π﹣3故答案为:8π﹣38.(2019·开封二模)如图,在圆心角为120°的扇形OAB中,半径OA=2,C为弧AB的中点,D为OA 上任意一点(不与点O、A重合),则图中阴影部分的面积为.【答案】23π.【解析】解:连接OC,BC,由题意知∠BOC=∠AOC=60°,∵OB=OC,∴△BOC为等边三角形,∴∠OCB=∠COA=60°,∴BC∥OA,∴S△BOC=S△BCD,∴S阴影=S弓形BC+S△BCD=S弓形BC+S△BOC=S扇形BOC=23π,故答案为:23π.9.(2019·安阳一模)如图,在正方形ABCD中,AD=3,将线段AB绕点B逆时针旋转90°得到线段BE,将线段AC绕点C逆时针旋转90°得到线段CF,连接EF,则图中阴影部分的面积是___________.AB CF【答案】27924π-.【解析】解:由图知:S阴影=S扇形ABE+S△BEF-S弓形AFS弓形AF=S扇形ACF-S△ACF由题意知,AD=3,AC=CF=32,AB=BC=BF=BE=3,∠EBA=∠ACF=90°,∴S弓形AF=S扇形ACF-S△ACF=()29032360π⨯-132322⨯⨯=92π-9,S阴影=S扇形ABE+S△BEF-S弓形AF=2903360π⨯+1332⨯⨯-(92π-9)=279 24π-.10.(2019·省实验一模)如图,将半径为1的半圆O,绕着其直径的一端点A顺时针旋转30°,直径的另一端点B的对应点为B',O的对应点为O',则图中阴影部分的面积是.【答案】3 2π-.【解析】解:连接O′D、B′D,∵∠B′AB=30°,∴∠AO′D=120°,∵AB′是直径,∴∠ADB′=90°,由∠B ′AB =30°,得B ′D =12AB ′=1,在Rt △ADB ’中,由勾股定理得,AD =3,∴S 阴影=S 扇形BAB ’-S △AO ’D -S 扇形DO ’B ’+S 扇形AO ’D -S △AO ’D=222223023601120131136043603604πππ⨯⨯⨯-⨯-+-⨯ =322π- 故答案为:322π-.11.(2019·叶县一模)如图,在平行四边形ABCD 中,以点A 为圆心,AB 的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若弧EF 的长为2π,则图中阴影部分的面积为 .【答案】22π-.【解析】解:连接AC ,∵DC 是⊙A 的切线, ∴AC ⊥CD , ∵AB =AC =CD ,∴△ACD 是等腰直角三角形, ∴∠CAD =45°,∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∴∠CAD =∠ACB =45°,∴∠ACB =∠B =45°, ∴∠F AD =∠B =45°, ∵弧EF 的长为2π,∴45=2180rππ, 解得:r =2,∴S 阴影=S △ACD ﹣S 扇形ACE=21452222360π⨯⨯⨯- =22π-.故答案为:22π-.12.(2019·濮阳二模)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以点A 为圆心,AC 的长为半径作弧CE 交AB 于点E ,以点B 为圆心,BC 的长为半径作弧CD 交AB 于点D ,则阴影部分的面积为 .【答案】π﹣2.【解析】解:S 阴影=S △ABC ﹣S 空白, ∵∠ACB =90°,AC =BC =2,∴S △ABC =12×2×2=2,S 扇形BCD =2452360π⨯=12π,S 空白=2×(2﹣12π)=4﹣π,S 阴影=S △ABC ﹣S 空白=2﹣4+π =π﹣2, 故答案为:π﹣2.13.(2019·南阳模拟)如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,点P 是⊙A 上的一点,且∠EPF =45°,则图中阴影部分的面积为 .【答案】4﹣π.【解析】解:连接AD∵⊙A与BC相切于点D,∴AD⊥BC,∵∠EPF=45°,∴∠BAC=2∠EPF=90°.∴S阴影=S△ABC﹣S扇形AEF=12×4×2﹣2902360π⨯=4﹣π.故答案是:4﹣π.14.(2019·商丘二模)如图,在扇形OAB中,∠AOB=90°,点C为OB的中点,CD⊥OB交弧AB于点D.若OA=2,则阴影部分的面积为.【答案】23 3π【解析】解:连接DO,则OD=OA=OB=2,∵CD∥OA,∠AOB=90°,∴∠OCD=90°,∵C为OB的中点,∴CO=12OB=12DO,∴∠CDO=30°,∠COD=60°,则CD=3,∴S阴影=S扇形BOD-S△OCD=2602113 3602π⨯-⨯⨯=233π-,故答案为:23 32π-.15.(2019·开封二模)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙O相交于点F.若弧EF的长为π,则图中阴影部分的面积为.【答案】8﹣2π.【解析】解:连结AC,∵CD是圆A的切线,∴AC⊥CD,即∠ACD=90°,∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠CAF=90°,∠F AE=∠B,∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠F AE=∠EAC=45°,∵弧EF的长为π,设圆A的半径为r,∴45180rππ⨯=,得:r=4,∴S阴影=S△ACD﹣S扇形CAE=12×4×4﹣2454360π⨯=8﹣2π.故答案为:8﹣2π.16.(2019·安阳二模)如图,点C为弧AB的三等分点(弧BC<弧AC),∠AOB=90°,OA=3,CD⊥OB,则图中阴影部分的面积为.【答案】393 28π-.【解析】解:连接OC,AC,由题意知:∠COD=30°,∠AOC=60°,∵CD⊥OB,∴S△OCD=S△ACD,∵∠CDO=90°,OC=OA=3,∠COD=30°,∴CD=32,OD=332,S阴影=S△ACD+S弓形AC =S△OCD+S弓形AC=12×332×32+2603360π⨯-34×32=393 28π-.故答案为:393 28π-.17.(2019·平顶山三模)如图,长方形纸片ABCD的长AB=3,宽BC=2,以点A为圆心,以AB的长为半径作弧;以点C为圆心,以BC的长为半径作弧.则图中阴影部分的面积是.【答案】134π-6.【解析】解:由图可知:S阴影=2903360π⨯+2902360π⨯-S矩形ABCD= 94π+π-6=134π-6,故答案为:134π-6.18.(2019·名校模考)如图,在△ABC中,∠ABC=45°,∠ACB=30°,AB=2,将△ABC绕点C顺时针旋转60°得△CDE,则图中线段AB扫过的阴影部分的面积为.【答案】233π.【解析】解:过A作AF⊥BC于F,∵∠ABC=45°,∴AF=BF=22AB=2,在Rt△AFC中,∠ACB=30°,AC=2AF=22,FC=6,由旋转的性质可知,S△ABC=S△EDC,S阴影=S扇形DCB+S△EDC﹣S△ABC﹣S扇形ACE=S扇形DCB﹣S扇形ACE=()()22 60266022360360ππ⨯+⨯-=233π,故答案为:233π.19.(2019·枫杨外国语三模)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕点D顺时针旋转90°得到矩形A′B′C′D,连接A′B,则图中阴影部分的面积为.【答案】25144π-.【解析】解:连接BD,B’D,由题意知:∠BDB’=90°,A’C=A’D-CD=1,由勾股定理得:BD=B’D=5,∴S阴影=S扇形DBB’-S△BCD-S△A’B’D-S△A’BC=2905111343414 360222π⨯-⨯⨯-⨯⨯-⨯⨯=2514 4π-.故答案为:2514 4π-.20.(2019·中原名校大联考)如图,在菱形ABCD中,AB=2,∠BAC=30°,将菱形ABCD绕点A逆时针旋转120°,点B的对应点为点B′,点C的对应点为点C′,点D的对应点为点D′,则图中阴影部分的面积为.【答案】83π.【解析】解:连接BD,与AC相交于点O,则BD=2BO=2,AC3AD=3S扇形=S扇形CAC′+S△ABC+S△AC′D′﹣S菱形ABCD﹣S扇形DAD′=S扇形CAC′﹣S扇形DAD′=(22 120231202360360ππ⨯⨯-=83π.故答案为:83π.21.(2019·三门峡一模)如图,在平行四边形ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD 的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是__________.ACE30°【答案】33-3π.【解析】解:∵∠A=30°,AD=2,∴平行四边形AB边上的高为:AD·sin30°=3,∵AB=4,∴BE=2,S阴影=S平行四边形ABCD-S扇形AED-S△BEC=43-2302360π⨯-1232⨯⨯=33-3π故答案为:33-3π.22.(2019·周口二模)如图,P A、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP与弦AB交于点C,与⊙O交于点D.阴影部分的面积是(结果保留π).【答案】6π.【解析】解:∵P A、PB是⊙O的切线,∴OA⊥P A,OB⊥PB,OP平分∠APB,∵∠APB=60°,∴∠APO=30°,∠POA=60°,由AP=BP,OA=OB得:OP垂直平分AB,∴AC=BC,∴S△AOC=S△BOC,∴S阴影部分=S扇形OAD=26013606ππ⨯=.故答案为:.6。
2020年九年级数学中考复习 扇形的面积 专题练习 含答案
扇形的面积1. 一个扇形的半径等于一个圆的半径的6倍,如果扇形的面积等于圆的面积,则这个扇形的圆心角等于( )A .10°B .20°C .30°D .60° 2. 半径为6,圆心角为120°的扇形的面积是( ) A .3π B .6π C .9π D .12π3. 一个扇形的圆心角是120°,面积为3π cm 2,那么这个扇形的半径是( ) A .1cm B .3cm C .6cm D .9cm4. 在圆心角为120°的扇形AOB 中,半径OA =6cm ,则扇形AOB 的面积是( ) A .6πcm 2 B .8πcm 2 C .12πcm 2 D .24πcm 25. ⊙O 的半径为9cm ,弧AB 的长是5πcm,则扇形OAB 的面积是( ) A .22.5πcm 2 B .25πcm 2 C .45πcm 2 D .100πcm 26. 钟面上的分针的长度是6cm ,经过25分钟,分针在钟面上扫过的面积是( )A.152πcm 2 B .15πcm 2 C .9πcm 2 D .30πcm 2 7. 如图,已知扇形的圆心角为60°,半径为3,则图中弓形的面积为( )A.4π-334B.π-34C.2π-334D.π-3328. 如图,在同心圆中,两圆的半径分别为2和1,且∠AOB=120°,则阴影部分的面积是( )A .4πB .2π C.43π D .π9. 如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是( )A .3πB .6πC .5πD .4π10. 如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA ,OB 为直径作半圆,则图中阴影部分的面积为( )A .(π2-1)cm 2B .(π2+1)cm 2C .1 cm 2D.π2cm 211. 如图,在等腰直角三角形ABC 中,∠ACB=90°,AB = ,以A 为圆心,AC 长为半径作弧,交AB 于点D ,则图中阴影部分的面积是__________.(结果保留π)12. 半径为4 cm ,圆心角为60°的扇形的面积为____cm 2.13. 如图,将长为8 cm 的铁丝首尾相接围成半径为2 cm 的扇形,则S 扇形=____cm 2.14. 半圆的直径AB =10,P 为AB 上一点,点C ,D 为半圆的三等分点,则图中阴影部分的面积等于____.15. 如图两圆圆心相同,大圆的弦AB 与小圆相切,AB =8,则图中阴影部分的面积是________.(结果保留π)16. 如图,将四个圆两两相切拼接在一起,它们的半径均为 1 cm ,则中间阴影部分的面积为______________cm 2.17. 如图,三个小正方形的边长都为1,则图中阴影部分的面积和是_______.(结果保留π)18. 如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是AB ︵的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为_______.19. 已知⊙O的半径为1.5cm ,圆心角∠AOB=580,求扇形OAB 的面积(精确到0.1cm 2)20. 如图,是一条弧形弯道,已知OA=20m ,OC=12m ,OC 的长度为9πm ,求圆弧形弯道的面积。
初中数学:扇形面积的相关计算练习(含答案)
初中数学:扇形面积的相关计算练习(含答案)知识点1 扇形的面积1.半径为6,圆心角为60°的扇形的面积是( )A.3π B.6π C.9π D.12π2已知扇形的面积为3π,圆心角为120°,则它的半径为________.3.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,那么半径为2的“等边扇形”的面积为( )A.π B.1 C.2 D.2 3π4.若扇形的面积为15π cm2,半径为5 3 cm,则这个扇形的圆心角的度数为________.5.杭州市某中学的铅球场如图3-8-11所示,已知扇形AOB的面积是36 m2,弧AB的长度为9 m,那么半径OA为________m.图3-8-11图3-8-126.如图3-8-12,在3×3的方格中(共有9个小方格),每个小方格都是边长为1的正方形,O,B,C是格点,则扇形OBC的面积等于________(结果保留π).7.已知扇形的圆心角为120°,面积为253πcm2,求扇形的弧长.知识点2 弓形的面积8.如图3-8-13,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为________(结果保留π).3-8-133-8-149.如图3-8-14,AB是⊙O的直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是________.知识点3 不规则图形的面积10.如图3-8-15,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,则阴影部分的面积是( )A.2 3-23π B.4 3-23πC.2 3-43π D.23π3-8-153-8-1611.课本例3变式如图3-8-16,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,竹条AB的长为25 cm,贴纸部分的宽BD为15 cm,若纸扇两面贴纸,则一面贴纸的面积为________cm2(结果保留π).12.如图3-8-17,在⊙O中,直径AB=2,CA⊥AB,BC交⊙O于点D.若∠C=45°,则:(1)BD的长是________;(2)求阴影部分的面积.图3-8-1713.如图3-8-18,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2 3,则阴影部分的面积为( )A.2πB.πC.π3D.2π33-8-183-8-1914.用等分圆周的方法,在半径为1的圆中画出如图3-8-19所示的图形,则图中阴影部分的面积为________.15.如图3-8-20①,将一圆形纸片向右、向上两次对折后得到如图②所示的扇形AOB.已知OA =6,取OA 的中点C ,过点C 作CD⊥OA 交AB ︵于点D ,F 是AB ︵上一点,若将扇形BOD 沿OD 翻折,点B 恰好与点F 重合.用剪刀沿着线段BD ,DF ,FA 依次剪下,则剪下的纸片(阴影图形)面积之和为__________.图3-8-2016.如图3-8-21所示,已知菱形ABCD 的边长为1.5 cm ,B ,C 两点在扇形AEF 的EF ︵上,求BC ︵的长度及扇形ABC 的面积.图3-8-2117.如图3-8-22①是某公园一块草坪上的自动旋转喷水装置,这种旋转喷水装置的旋转角度为240°,它的喷灌区是一个扇形.小涛同学想了解这种装置能够喷灌的草坪面积,他测量出了相关数据,并画出了示意图(如图②),A,B两点的距离为18 m,求这种装置能够喷灌的草坪面积.图3-8-2218.如图3-8-23所示,已知AB为⊙O的直径,CD是弦,AB⊥CD于点E,OF⊥AC于点F,BE=OF.(1)求证:OF∥BC;(2)求证:△AFO≌△CEB;(3)若EB=5 cm,CD=10 3 cm,设OE=x cm,求x的值及阴影部分的面积.图3-8-2319.如图3-8-24,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD 沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴图3-8-24围成图形的面积为( )A.π2+12B.π2+1C.π+1 D.π+1 2详解详析1.B2.3 [解析] 设半径为r ,由题意,得120πr 2360=3π,解得r =3.3.C [解析] 根据扇形面积公式得S =12lr =12r 2=2.4.72°5.8 [解析] S 扇形=12lR ,∴12×9×R =36,∴R =8. 6.54π 7.解:∵扇形的圆心角为120°,面积为253πcm 2, ∴120π×R 2360=253π,∴πR =5,∴l =120πR 180=103 cm.即扇形的弧长为103cm.8.π-2 [解析] ∵S 扇=n πr 2360=90×π×22360=π,S △AOB =12OA ·OB =12×2×2=2,∴阴影部分的面积=S扇-S△AOB=π-2.9.4π-3 33[解析] 连结OC,过点C作CH⊥AB于点H.∵AB为⊙O的直径,∴∠ACB=90°.∵∠B=30°,∴AB=2AC=4,∠AOC=2∠B=60°,∴∠BOC=120°,CH=3,∴S弓形=S扇形OBC-S△BOC=120π·OB2360-12OB·CH=4π3-12×2×3=4π-3 33.10.A [解析] ∵在Rt△ABC中,∠A=30°,BC=2,∴AB=4,∠B=60°,∴AC=2 3,∴S阴影=S△ABC-S扇形CBD=12×2 3×2-60π×22360=2 3-23π.11.175π[解析] 设AB=R,AD=r,则S贴纸=13πR2-13πr2=13π(R2-r2)=13π(R+r)(R-r)=13×(25+10)×(25-10)π=175π(cm2).即一面贴纸的面积为175π cm2.12.解:(1) 2(2)连结AD.∵AB是⊙O的直径,∴AD⊥BC.又∵∠C=45°,AC⊥AB,∴∠B=45°,∴△ACD,△ABD均是等腰直角三角形,∴AD=BD=2,∴弓形BD的面积=弓形AD的面积,∴阴影部分的面积=△ADC的面积=12×(2)2=1.13.D [解析] 如图,连结OD. ∵CD⊥AB,∴CE=DE=12CD=3(垂径定理),故S△OCE=S△ODE,即可得阴影部分的面积等于扇形OBD的面积.又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2.∵OC=OD,CD⊥OB,∴∠BOD=∠COB=60°,∴S扇形OBD=60π×22360=2π3,即阴影部分的面积为2π3.故选D.14.π-3 32[解析] 如图,连结OA,OP,AP,则△OAP的面积是34,扇形POA的面积是60π×12360=π6,∴弓形OA的面积和弓形AP的面积都是π6-34,∴阴影部分的面积是3×2×⎝⎛⎭⎪⎫π6-34=π-3 32.15.9π-27 [解析] 由题意,得∠DOB=30°,∴△DOB的面积为12×6×3=9.∴剪下的纸片(阴影图形)面积之和为π×624-3×9=9π-27. 16∵四边形ABCD是菱形且边长为1.5 cm,∴AB=BC=1.5 cm.又∵B,C两点在扇形AEF的EF︵上,∴AB=BC=AC=1.5 cm,∴△ABC是等边三角形,∴∠BAC=60°,∴BC︵的长=60π×1.5180=π2(cm),S 扇形ABC =12lR =12×π2×1.5=38π(cm 2).17.解:如图,过点O 作OC ⊥AB 于点C .∵OC ⊥AB ,AB =18 m ,∴AC =12AB =9 m.∵OA =OB ,∠AOB =360°-240°=120°,∴∠AOC =12∠AOB =60°.在Rt △OAC 中,OA 2=OC 2+AC 2,又∵OC =12OA ,∴r =OA =6 3 m ,∴S =240360πr 2=72π(m 2).18.(1)证明:∵AB 为⊙O 的直径,∴∠ACB =90°.又∵OF ⊥AC 于点F ,∴∠AFO =90°,∴∠ACB =∠AFO ,∴OF ∥BC .(2)证明:由(1)知,∠CAB +∠ABC =90°.∵AB ⊥CD ,∴∠BEC =90°,∴∠CBE +∠BCE =90°,∴∠CAB =∠BCE .又∵∠AFO =∠CEB ,OF =BE ,∴△AFO ≌△CEB .(3)∵AB 为⊙O 的直径,CD 是弦,AB ⊥CD 于点E ,∴∠OEC =90°,EC =12CD =12×103=53(cm).在Rt △OCE 中,OE =x cm ,OB =OC =(5+x )cm.由勾股定理,得OC 2=EC 2+OE 2,即(5+x )2=(53)2+x 2,解得x =5, 即OE =5 cm ,OC =10 cm.在Rt △OCE 中,OC =2OE ,故∠OCE =30°,∴∠COE =60°.由圆的轴对称性可知阴影部分的面积为S 阴影=2(S 扇形OBC -S △OEC )=2×(60π×102360-12×53×5)=(100π3-253)cm 2.19.C[解析] 如图所示,点A运动的路径线与x轴围成图形的面积=S扇形BAA1+S扇形CA1A2+S扇形DA2A3+2S△A1BC=90π×12360+90π×(2)2360+90π×12360+⎝⎛⎭⎪⎫2×12×1×1=π+1.。
2020年中考数学必考考点专题26与弧长、扇形面积有关的问题(含解析)
专题26 与弧长、扇形面积有关的问题1.扇形弧长面积公式(1)弧长的计算公式(2)扇形面积计算公式2.弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。
(2)弓形的周长=弦长+弧长(3)弓形的面积当弓形所含的弧是劣弧时,如图1所示,当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,3.圆柱侧面积体积公式(1)圆柱的侧面积公式S侧=2πrh(2)圆柱的表面积公式:S表=S底×2+S侧=2πr2+2πr h专题知识回顾1802360rnrnlππ=⋅=2360rnsπ⋅=lrs21=或4.圆锥侧面积体积公式(1)圆锥侧面积计算公式 从右图中可以看出,圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形= = πrl(2)圆锥全面积计算公式:S 圆锥全=S 圆锥侧+S 圆锥底面= πr l +πr 2=πr (l +r )【例题1】(2019•湖北武汉)如图,AB 是⊙O 的直径,M 、N 是(异于A.B )上两点,C 是上一动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C.E 两点的运动路径长的比是( )A .B .C .D .【答案】A .【解析】如图,连接E B .设OA =r .易知点E 在以D 为圆心DA 为半径的圆上,运动轨迹是,点C 的运动轨迹是,由题意∠MON =2∠GDF ,设∠GDF =α,则∠MON =2α,利用弧长公式计算即可解决问题. 如图,连接E B .设OA =r .专题典型题考法及解析∵AB 是直径,∴∠ACB =90°,∵E 是△ACB 的内心,∴∠AEB =135°,∵∠ACD =∠BCD ,∴=,∴AD =DB =r ,∴∠ADB =90°,易知点E 在以D 为圆心DA 为半径的圆上,运动轨迹是,点C 的运动轨迹是,∵∠MON =2∠GDF ,设∠GDF =α,则∠MON =2α ∴==.【例题2】(2019山西)如图,在Rt △ABC 中,∠ABC =90°,AB =32,BC =2,以AB 的中点为圆心,OA 的长为半径作半圆交AC 于点D ,则图中阴影部分的面积为( ) A.2435π- B.2435π+ C.π-32 D.234π-【答案】A【解析】作DE ⊥AB 于点E ,连接OD ,在Rt △ABC 中:tan ∠CAB =3BC AB ==, ∴∠CAB =30°,∠BOD =2∠CAB =60°.在Rt △ODE 中:OE =21OD =23,DE =3OE =23.S 阴影=S △ABC -S △AOD -S 扇形BOD =2116022360AB BC OD DE OB π︒⋅⋅-⋅⋅-⋅⋅︒=21136022223602ππ︒⨯--⨯⨯=-︒,故选A【例题3】(2019·贵州安顺)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2,扇形的圆心角θ=120°,则该圆锥母线l 的长为 .【答案】6【解析】根据题意得2π×2=,解德l =6,即该圆锥母线l 的长为6.一.选择题1.(2019•四川省广安市)如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =4,以BC 为直径的半圆O 交斜边AB 于点D ,则图中阴影部分的面积为( )专题典型训练题A.π﹣B.π﹣C.π﹣D.π﹣【答案】A.【解析】本题考查扇形面积公式、直角三角形的性质、解题的关键是学会分割法求面积,中考常考题型.根据三角形的内角和得到∠B=60°,根据圆周角定理得到∠COD=120°,∠CDB=90°,根据扇形和三角形的面积公式即可得到结论.∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∴∠COD=120°,∵BC=4,BC为半圆O的直径,∴∠CDB=90°,∴OC=OD=2,∴CD=BC=2,图中阴影部分的面积=S扇形COD﹣S△COD=﹣2×1=﹣。
中考数学专题复习 专题28 求几何图形面积及面积法解题的问题(学生版)
中考专题28 求几何图形面积及面积法解题的问题一、几何图形面积公式1.三角形的面积:设三角形底边长为a ,底边对应的高为h ,则面积S=ah/22.平行四边形的面积:设平行四边形的底边长为a ,高为h ,则面积S=ah3.矩形的面积:设矩形的长为a ,宽为b ,则面积S=ab4.正方形的面积:设正方形边长为a ,对角线长为b ,则面积S=222b a = 5.菱形的面积:设菱形的底边长为a ,高为h ,则面积S=ah若菱形的两条对角线长分别为m 、n ,则面积S=mn/2也就是说菱形的面积等于两条对角线乘积的一半。
6.梯形的面积:设梯形的上底长为a,下底长为b ,高为h ,则面积S=(a+b)h/27.圆的面积:设圆的半径为r,则面积S=πr 28.扇形面积计算公式9.圆柱侧面积和表面积公式(1)圆柱的侧面积公式S 侧=2πrh(2)圆柱的表面积公式:S 表=2S 底+S 侧=2πr 2+2πrh2360r n s π⋅=lr s 21=或10.圆锥侧面积公式从右图中可以看出,圆锥的母线L 即为扇形的半径,而圆锥底面的周长是扇形的弧长2πr ,这样,圆锥侧面积计算公式:S 圆锥侧=S 扇形=πrL注意:有时中考专题题还经常考查圆的周长、扇形的弧长的公式的应用。
(1)圆的周长计算公式为:C=2πr(2)扇形弧长的计算公式为:(3)其他几何图形周长容易计算,不直接给出。
二、用面积法解题的理论知识1.面积方法:运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
2.面积法解题的特点:把已知量和未知量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
三、面积方法问题主要涉及以下两部分内容1.证明面积相等的理论依据(1)三角形的中线把三角形分成两个面积相等的部分。
扇形的面积专项练习题
扇形的面积专项练习题
以下是一些关于扇形面积的专项练题,每题都有相应的解答。
1. 已知一个扇形的弧长为12厘米,半径为4厘米,求该扇形
的面积。
解答:扇形的面积公式为:面积 = (1/2) * 半径 * 弧长。
将已知
数据代入公式得到:面积 = (1/2) * 4厘米 * 12厘米 = 24平方厘米。
2. 已知一个扇形的面积为36π平方米,半径为6米,求该扇形
的弧长。
解答:扇形的面积公式为:面积 = (1/2) * 半径 * 弧长。
将已知
数据代入公式得到:36π平方米= (1/2) * 6米* 弧长。
解方程可得:弧长= 12π米。
3. 已知一个扇形的面积为16π平方厘米,弧长为8厘米,求该
扇形的半径。
解答:扇形的面积公式为:面积 = (1/2) * 半径 * 弧长。
将已知数据代入公式得到:16π平方厘米 = (1/2) * 半径 * 8厘米。
解方程可得:半径 = 4厘米。
4. 若扇形的半径为r,弧长为l,面积为A,则弧长与半径的关系是什么?
解答:根据扇形的面积公式可得:A = (1/2) * r * l。
整理公式可得:l = (2A) / r。
也就是说,弧长与半径的关系是弧长等于2倍的面积除以半径。
5. 若一个扇形的半径增加了50%,面积会增加多少?
解答:扇形的面积公式为:面积 = (1/2) * 半径 * 弧长。
根据题目,扇形的半径增加了50%,即增加了原来半径的一半。
面积公式中半径是线性关系,所以面积也会增加50%。
请根据以上内容进行练习,加深对扇形面积的理解和运用。
扇形面积练习题
扇形面积练习题扇形是我们学习几何学中的一个重要概念,它在日常生活和工程应用中都有广泛的应用。
本文将为大家提供一些扇形面积练习题,帮助大家巩固和加深对扇形面积计算的理解。
一、扇形面积计算公式扇形的面积计算公式为:1/2 * r^2 * θ其中,r代表扇形的半径,θ代表扇形的弧度。
根据该公式,我们可以得出以下几个练习题。
二、1. 如图所示,一个扇形的半径为8cm,弧长为12cm。
求该扇形的面积。
(插入图片,以示图所示)解析:首先,我们需要通过弧长求出扇形的弧度。
由于弧长为12cm,而半径为8cm,我们可以通过以下公式计算出弧度:弧度 = 弧长 / 半径= 12cm / 8cm= 1.5然后,我们将弧度代入扇形面积计算公式中,得到:面积 = 1/2 * 8cm^2 * 1.5= 48cm^2所以,该扇形的面积为48平方厘米。
2. 已知一个扇形的面积为16π平方米,半径为2米。
求该扇形的弧长。
解析:根据扇形的面积计算公式,我们可以将已知条件代入,得到以下方程:16π = 1/2 * 2^2 * θ= 4θ通过上述方程可以解得弧度θ为4π/16,即π/4。
然后,通过弧长的计算公式,我们可以计算出弧长为:弧长 = 半径 * 弧度= 2m * π/4= π/2所以,该扇形的弧长为π/2米。
3. 在一块圆形蛋糕上,小明吃了其中一个扇形的1/3,如果整个蛋糕的面积为72π平方厘米,求其中一个扇形的面积。
解析:首先,我们需要根据已知条件算出整个蛋糕的半径r。
根据圆形的面积计算公式,我们可以算出整个蛋糕的半径为:π * r^2 = 72πr^2 = 72r = √72所以,整个蛋糕的半径为√72厘米。
然后,我们需要计算小明吃掉的扇形的弧度。
由于小明吃了其中一个扇形的1/3,所以扇形的弧度为:弧度= 2π * 1/3= 2π/3最后,我们将已知条件代入扇形面积的计算公式中,得到:面积= 1/2 * (√72)^2 * 2π/3= 8π平方厘米所以,其中一个扇形的面积为8π平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学每日一练:扇形面积的计算练习题及答案_2020年解答题版答案答案答案2020年中考数学:图形的性质_圆_扇形面积的计算练习题
~~第1题~~
(2019铁西.中考模拟) 如图,在平行四边形
ABCD 中,以A 为圆心,AB
的长为半径的圆恰好与CD 相切于点C ,交AD 于点E ,延长BA 与⊙A 相交于点F .若弧EF 的长为 ,求图中阴影部分的面积.
考点: 平行四边形的性质;切线的性质;弧长的计算;扇形面积的计算;~~第2题~~
(2018
衡水.中考模拟) 如图,矩形ABCD 中,BC=" 2" , DC = 4。
以AB 为直径的半圆O 与DC 相切于点E ,则阴影部分的面积为 。
(结果保留π)
考点: 扇形面积的计算;~~第3题~~
(2018吉林.中考模拟)
如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,4),B (4,2),C (3,5)(每个方格的边长均为1个单位长度).
①请画出△A B C , 使△A B C 与△ABC 关于x 轴对称;
②将△ABC 绕点O 逆时针旋转90°,画出旋转后得到的△A B C , 并直接写出点B 旋转到点B 所经过的路径长.考点: 扇形面积的计算;作图﹣轴对称;作图﹣旋转;~~第4题~~
(2018湖州.中考模拟) 如图,AB 为⊙O 的直径,弦CD 垂直平分OB 于点E ,点F 在AB 延长线上,∠AFC=30°.(1)求证:CF 为⊙O 的切线.
(2)若半径ON ⊥AD 于点M ,CE= , 求图中阴影部分的面积.
1111112222
答案
答案考点: 切线的判定;扇形面积的计算;~~第5题~~(2018
淮南.中考模拟) 如图是某工件的三视图,求此工件的全面积和体积.
考点: 勾股定理;弧长的计算;扇形面积的计算;圆锥的计算;由三视图判断几何体;2020年中考数学:图形的性质_圆_
扇形面积的计算练习题答案
1.
答案:
2.答案:
3.答案:
4.答案:
5.答案:。