一个整数的约数个数与约数和的计算方法
小一数学学习技巧:掌握数字的约数与倍数性质
小一数学学习技巧:掌握数字的约数与倍数性质数学是一门需要严谨思考和逻辑推理的学科,小学数学作为数学的基础阶段,对培养孩子的逻辑思维、分析问题的能力以及解决问题的方法具有重要意义。
其中,掌握数字的约数与倍数性质是小学数学的重点之一,本文将介绍一些小一数学学习的技巧,帮助孩子掌握数字的约数与倍数性质。
一、认识约数和倍数首先,我们需要明确什么是约数和倍数。
简单来说,约数是指能够整除给定数的数,而倍数是指给定数的某个整数倍。
以数字6为例,2和3都是6的约数,而12和18都是6的倍数。
对于小学生来说,最直观的理解方式是通过图形的划分来认识。
二、认识数字的约数性质1. 数字的约数个数:让孩子自己列举出一些数字的约数,发现其中的规律。
例如,让孩子列举出12的约数,可以得到1、2、3、4、6、12。
通过观察可以发现,除了1和12外,2和6分别是3的倍数和2的倍数,而3和4正好是2和3的乘积。
所以,我们可以得出一个结论:一个数的约数是成对出现的,成对的约数除了平方根外,都是一个小于平方根的数与一个大于平方根的数的乘积。
同时,让孩子尝试找出某些数字的约数个数。
例如,孩子可以发现,12的约数个数是6个(1、2、3、4、6、12)。
再比如,24的约数个数是8个(1、2、3、4、6、8、12、24)。
2. 数字的约数之和:让孩子通过试验发现数字的约数之和与它本身之间的关系。
以数字6为例,它的约数是1、2、3、6,这些数的和为12,与6本身相等。
让孩子尝试着找出其他数字的约数之和,例如10的约数是1、2、5、10,将这些数相加得到18,与10本身相等。
通过这样的尝试,孩子会发现,一个数的约数之和恰好与它本身相等。
这是因为一个数的约数包括了1和它本身,而其他的约数都是成对出现的,总和必定相等。
三、认识数字的倍数性质1. 数字的倍数之间的关系:让孩子列举一些数字的倍数,例如6的倍数有6、12、18、24等,让他们观察这些倍数有什么规律。
约数和公式
约数和公式约数是常见的整数概念,是指一个数能被另外一个数整除,所得的商和余数都是整数。
在数学中,约数通常被称为因数,而被整除的数则被称为倍数。
任何一个数都有约数,1和它本身都是它的约数,这被称为质数。
而对于任意一个数n,我们可以通过枚举比它小的每一个数,判断它们能否整除n,来求得它的所有约数。
约数有很多有趣的性质,其中之一是它们的个数与它们的乘积密切相关。
具体来说,一个数n的约数个数等于n的各个质因子幂次数加1的乘积。
例如,如果一个数的分解式为2^3 × 3^2 × 5,则它的约数个数就等于(3+1) × (2+1) × (1+1) = 24。
除此之外,还有一个常见的应用场景就是求约数之和。
约数之和是指一个数所有约数的和,数学符号表示为sigma(n)。
对于一个给定的数n,我们可以通过枚举它的每一个约数并求和来求得它的约数之和。
具体地,如果我们把n分解成若干个质因数的乘积,可以得到它的约数之和公式:sigma(n) = (p1^0 + p1^1 + ... + p1^a1) × (p2^0 + p2^1+ ... + p2^a2) × ... × (pk^0 + pk^1 + ... + pk^ak)其中pi表示n的第i个质因数,ai表示它的幂次数。
这个公式的意义在于,它把n的每一个约数和它对应的幂次数一一对应起来,然后求它们的乘积。
综上所述,约数和约数之和是数学中常见的概念,它们的应用极为广泛,从数论到计算机科学都扮演着至关重要的角色。
如果你学习这些概念,可以为你理解和解决一些复杂的问题提供帮助。
同时,我们也可以通过这些公式和性质来简化计算和分析过程,为实际问题的解决提供支持。
约数个数计算公式(二)
约数个数计算公式(二)约数个数计算公式简介在数论中,约数是指一个整数能被另一个整数整除的数。
求一个数的约数个数是数论中常见的问题之一。
本文将介绍几种常见的约数个数计算公式,并给出相应的例子进行说明。
计算公式1:穷举法穷举法是最简单直观的一种计算约数个数的方法。
它通过遍历所有小于等于给定数的正整数,判断是否能整除给定数,从而计算出约数的个数。
公式约数个数 = 约数1 + 约数2 + … + 约数n其中,约数i是小于等于给定数的正整数,且能整除给定数。
示例以整数12为例,穷举法计算其约数个数的步骤如下:1. 1 可整除 12,约数个数加1。
2. 2 可整除 12,约数个数加1。
3. 3 不可整除 12,跳过。
4. 4 可整除 12,约数个数加1。
5. 5 不可整除 12,跳过。
6. 6 可整除 12,约数个数加1。
7.7 不可整除 12,跳过。
8.8 不可整除 12,跳过。
9.9 不可整除 12,跳过。
10.10 不可整除 12,跳过。
11.11 不可整除 12,跳过。
12.12 可整除 12,约数个数加1。
最终,约数个数为6。
计算公式2:因数分解法因数分解法是另一种常用的计算约数个数的方法。
它通过将给定数分解为质因数的乘积,再利用质因数的指数求约数个数。
公式设给定数n的质因数分解为:n = p1^a1 * p2^a2 * … * pk^ak其中,p1, p2, …, pk为质因数,a1, a2, …, ak为对应的指数。
约数个数= (a1 + 1) * (a2 + 1) * … * (ak + 1)以整数24为例,因数分解法计算其约数个数的步骤如下:1.将24分解为质因数的乘积:24 = 2^3 * 3^12.根据公式,约数个数 = (3 + 1) * (1 + 1) = 4 * 2 = 8最终,约数个数为8。
计算公式3:欧拉函数法欧拉函数是数论中的一个重要函数,表示小于等于给定数且与给定数互质的数的个数。
约数的个数及合的经典计算技巧
① 45 ② 120 ③ 360 ④ 520
将此数分解质因数,如20=2*2*5就是分解成2、5两个质数的乘积
20的约数就有1、2、2*2=4、2*5=10、5、20
约数和=(1+2+2*2)*(1+5)=42
21的约数和=(1+3)*(1*7)=28
2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
5. 能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
大家都知道,一个自然数(0除外)的约数的个数是有限的,1的约数只有1个,就是1;一个质数的约数只有两个,就是1和它本身;任何一个合数的约数至少有3个,那么,一个合数的约数的个数到底有多少个呢?
象小一点的合数,如12的约数,我们可以用配对列举的办法迅速写出它的约数有1,12,2,6,3,4,一共有6个。如果是大一些的数,列举就相当麻烦了。有没有巧妙一些的方法呢?回答是肯定的。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:
1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
数字的约数与公约数概念及计算方法
数字的约数与公约数概念及计算方法在数学中,约数和公约数是基础的概念,对于理解整数的性质和计算素数等问题至关重要。
本文将详细介绍数字的约数与公约数的概念,以及它们的计算方法。
一、约数的概念约数指的是能够整除一个数的数,也就是说,假设a和b是两个整数,如果b能够被a整除,则称b是a的约数。
例如,数字6的约数包括1、2、3和6。
对于任意一个正整数n,它的约数可以用数学表达式表示为n = a ×b,其中a和b是整数。
而对于负整数n来说,它的约数也包括负数。
例如,数字-6的约数包括-1、-2、-3、-6和它们的相反数。
二、公约数的概念公约数是两个或多个数的公共约数,也就是这些数同时能够整除的数。
如果a和b是两个整数,而c是同时能够整除a和b的数,则称c是a和b的公约数。
例如,数字12和20的公约数包括1、2、4。
对于任意一对正整数a和b,它们的公约数可以用数学表达式表示为a = n × c 和 b = m × c,其中n、m和c均为整数。
而对于负整数,公约数同样适用。
例如,数字-12和-20的公约数包括1、2、4和它们的相反数。
三、约数与公约数的计算方法1. 约数的计算方法要找出一个数的约数,可以逐个从1到该数进行整除运算,判断是否能够整除。
如果能够整除,则该数是约数之一。
例如,对于数字12,可以逐个尝试除以1、2、3、4、5、6、7、8、9、10、11和12,得到的结果为整数的即为约数。
2. 公约数的计算方法给定两个数a和b,可以先找出它们的约数集合,然后求出约数集合的交集,即可得到两个数的公约数。
例如,对于数字12和20,首先确定它们的约数集合为{1, 2, 3, 4, 6, 12}和{1, 2, 4, 5, 10, 20},然后求出它们的交集为{1, 2, 4},这些数即为12和20的公约数。
对于更多个数的公约数计算,可以依次求出每两个数的公约数,再求这些公约数与第三个数的公约数的公约数,直至计算完所有的数。
1到n中所有整数的约数个数和数论
1到n中所有整数的约数个数和数论
数论中关于整数的约数个数的问题是一个经典的数论问题,也与著名的数论函数σ(n)(约数函数)相关。
σ(n)表示n的所有正约数之和,包括1和n本身。
首先,我们知道一个数n的约数是成对出现的,例如对于数m,如果它是n的约数,那么n/m也是n的约数。
但是当m等于n/m时,即m的平方等于n,那么m就是n的唯一的约数(平方数的约数个数为奇数个)。
因此,我们可以得出结论:当n不是完全平方数时,它的约数个数是偶数;当n是完全平方数时,它的约数个数是奇数。
现在,我们来具体分析一下1到n中所有整数的约数个数的和。
我们可以利用上面的结论,对1到n中每个数的约数个数进行分类讨论。
1. 对于非完全平方数m,它的约数个数是偶数,设为2k,则它的约数对中包括k对,每对的和为m,因此1到n中所有非完全平方数的约数个数和为2 * (1 + 2 + ... + k) = k * (k + 1)。
2. 对于完全平方数m,它的约数个数是奇数,设为2k + 1,则它的约数对中包括k对,每对的和为m,另外还有一个m的平方根没有配对,因此1到n中所有完全平方数的约数个数和为(k * (k + 1)) + m = k * (k + 1) + m。
通过以上分析,我们可以得出结论:1到n中所有整数的约数个数和为k * (k + 1) + m,其中k为非完全平方数的个数,m为完全平方数的个数。
因此,我们可以通过统计1到n中完全平方数的个数和非完全平方数的个数,然后套入上述公式,就可以计算出1到n中所有整数的约数个数的和。
算一个数的技巧和方法
算一个数的技巧和方法
算一个数的技巧和方法有很多种,下面列举一些常用的方法:
1.分解质因数法:将一个数分解成几个质数的乘积,可以帮助我们快速计算一个数的因数和约数。
2.近似估算法:使用近似值或者舍入法来快速估算一个数的大小,可以用于大数的计算或者解决实际问题中的快速估算。
3.位运算:对于二进制数,可以使用位运算(如按位与、按位或、按位异或)来对数字进行快速计算,适用于计算机领域。
4.凑整法:对于带有小数的数,可以利用凑整法将小数部分舍入或者进位,快速得到一个近似的整数结果。
5.倍数法:对于某些特殊规律的数字,可以使用倍数法来找到特定的倍数或者判断是否为某数的倍数。
6.平均分配法:对于一些需要平均分配的问题,可以使用平均分配法来计算每个部分的数量或者大小。
以上只是一些常见的方法和技巧,具体选择哪种方法取决于具体的情况和需要解
决的问题。
在实际问题中,还可以根据问题的特点和要求,结合不同的方法和技巧来解决。
初中数学《约数和倍数(二)》讲义及练习
约数个数定理与约数和定理1. 求任一整数约数的个数一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数)加1后所得的乘积。
如:1400严格分解质因数之后为32257⨯⨯,所以它的约数有(3+1)×(2+1) ×(1+1)=4×3×2=24个。
(包括1和1400本身)约数个数的计算公式是本讲的一个重点和难点,授课时应重点讲解,公式的推导过程是建立在开篇讲过的数字“唯一分解定理”形式基础之上,结合乘法原理推导出来的,不是很复杂,建议给学生推导并要求其掌握。
难点在于公式的逆推,有相当一部分常考的偏难题型考察的就是对这个公式的逆用,即先告诉一个数有多少个约数,然后再结合其他几个条件将原数“还原构造”出来,或者是“构造出可能的最值”。
2. 求任一整数的所有约数的和一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从1加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。
如:33210002357=⨯⨯⨯,所以21000所有约数的和为2323(1222)(13)(1555)(17)74880++++++++=此公式没有第一个公式常用,推导过程相对复杂,需要许多步提取公因式,建议帮助学生找规律性的记忆即可。
约数个数问题【例 1】 数160的约数个数是多少?它们的和是多少?它们的积呢?【解析】 对任意一个自然数,我们首先可以将它作因式分解,化成质数及其次数的乘积,以160为例,我们有5116025=⨯.要算它的约数的个数,我们可以这样来理解:约数的因数只可能是2,5.并且它们的次数不会超过原数的次数,从而约数的因数的2的次数可以为0,1,2,3,4,5;而5的次数也只可能是0或1.把它展开你就可以发现它就是我们要求的:情况1:不包含5的约数:1,2,22,32,42,52,情况2:包含5的约数:15⨯,25⨯,225⨯,325⨯,425⨯,525⨯.从而我们可以任意地从中选若干个2,5的次数,即:(15+)⨯(11+)12=.(个)所以它的约数的和:(2345122222+++++)⨯(15+)至于要算它们的约数的积,我们可以将它的约数配对:一个约数和它被原数除的数组成一对(如2和80是160的一对).这样,对于非平方数而言,我们得到整数对,并且它们的积就是原数本身;而对于平方数而言,仅仅是多了一个数(它的开方),从而通过对它的约数的个数,可以求出它们的积.知识点拨第五讲约数与倍数(二)例题精讲对本题而言,我们有(1;160),(2;80),(4;40),(5;32),(8;20),(10;16)共6对.从而它们的积为6160.【例 2】 求在1到100中,恰好有10个约数的所有自然数.【解析】 逆用约数个数定理:101100191=⨯=+⨯+()()或10251141=⨯=+⨯+()(),所以自然数N 只有两种分解可能,一种是4N p =一种是1412N p p =⨯,但第一种情况100以内这样的数不存在,第二种情况只有2p 等于2的可能,所以432N =⨯或452N =⨯因此满足条件的自然数只有48和80.【巩固】 在1到100中,恰好有6个约数的数有多少个?【解析】6只能表示为(51+)或(11+)(21+),所以恰好有6个约数的数要么能表示成某个质数的5次方,要么表示为某个质数的平方再乘以另一个质数,100以内符合前者的只有32,符合后者的数枚举如下:2222222222222222325272112132172192238323537311452532721⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯种种种种所以符合条件的自然数一共有1842116++++=种.【例 3】 一个两位数有6个约数,且这个数最小的3个约数之和为10,那么此数为几?【解析】 最小的三个约数中必然包括约数1,除去1以外另外两个约数之和为9,由于9是奇数,所以这两个约数的奇偶性一定是相反的,其中一定有一个是偶数,如果一个数包含偶约数,那么它一定是2的倍数,即2是它的约数。
【小升初专项训练】5 约数个数与约数和定理
第10讲约数个数与约数和定理第一关约数的个数【知识点】约数个数与约数和定理设自然数n的质因子分解式如n=p1×p2×…×p k那么:n的约数个数公式:d(n)=(a1+1)(a2+1)…(a k+1)【例1】一个合数至少有3个约数.(判断对错)【答案】√【例2】若a=2×3×5,则a的因数有多少个,分别是什么?【答案】8;1、2、3、5、6、10、15、30【例3】60的不同约数(1除外)的个数是多少?【答案】11【例4】105可以分解成105=3×5×7,它的约数共有多少个?【答案】8【例5】已知360=2×2×2×3×3×5,那么360的约数共有多少个?【答案】24【例6】求2016的因数个数为36个?【答案】36【例7】2009的平方的约数有多少个?【答案】15【例8】已知a=22×32×52,那么a的因数有多少个?【答案】27【例9】数22×33×55有多少个不同的约数?【答案】72【例10】a=2×3×n2;b=3×5×n2,那么A×B一共有多少个因数?【答案】144【例11】用表示4的不同约数有1,2,4共3个,所以【答案】1【例12】若用G(a)表示自然数a的约数的个数,如:自然数6的约数有1、2、3、6,共4个,记作G(6)=4,求G(36)+G(42)。
【答案】17【例13】已知自然数a有3个约数,那么4a有多少个约数?【答案】5【例14】m有8个约数,7m有多少个约数?【答案】16【例15】已知ab是一个质数,那么ababab有几个约数?【答案】32【例16】一个数约数的和是403,这个数约数的个数是多少?【答案】15【例17】如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是多少?【答案】961【例18】如果一个自然数的2004倍恰有2004个约数,这个自然数自己最少有多少个约数?【答案】167第二关【知识点】约数个数与约数和定理设自然数n的质因子分解式如n=p1×p2×…×p k那么:n的约数个数公式:d(n)=(a1+1)(a2+1)…(a k+1)【例19】一个自然数有10个不同的约数,则这个自然数最小是多少?【答案】48【例20】恰好有12个不同因数的最小的自然数为多少?【答案】60【例21】已知一个自然数有14个不同的约数,这个数最小是多少?【答案】192【例22】恰有20个因数的最小自然数是多少?【答案】240【例23】把72的所有约数从小到大排列,第4个是多少?【答案】4【例24】把360的所有约数从小到大排列,第4个数是4,那么倒数第4个数是多少?【答案】90【例25】写出不大于100且恰有8个约数的所有自然数。
1.7正整数地正约数个数与总和
§1.7正整数的正约数个数与总和一、正整数的正约数个数我们先看一个有趣的问题:在一间房子里有编号为1~100的100盏电灯,每盏都配有一个开关,开始灯全灭着.现在有100个人依次进入房间,第k 个人把编号是的k 倍数的灯的开关各拉一次,这样操作完之后,哪些编号的灯亮着?解决这个问题,需要讨论各盏灯编号的约数个数的奇偶性.如何求一个正整数的约数的个数呢?下面我们讨论这个问题.设为n 正整数,的n 正约数最小为1,最大为,n 因此的n 正约数的个数有限.为了叙述更方便,我们把正整数的n 正约数个数记作()d n . 例如, (1)1d =,(2)2d =,(5)5d =,(8)4d =,(12)6d =.从理论上讲,求d(n)只要把n 的正约数全部找出来数一数就可以了,但这种方法并不适合求数值较大的数的正约数的个数,例如(360)d ,(450000)d .下面我们以求d(360)为例,介绍可行的方法.由于3602332=⨯⨯5,其正约数比形如323n 2γ=⨯⨯5,其中α可取0~3四个数之一,β可取0~2三个数之一, γ可取0,1两个数之一. α,β,γ各选定一个允许值,构成一个组合,代入n 即可得到360的正约数个数是24,故(360)43224d =⨯⨯=.同理由144=4322⨯,可知(144)(41)(21)15d =++=. 定理1 设正整数n 的标准分解式为1212n p p αα=…m m p α,则 12()(1)(1)d n =α+α+…(1)m α+. 证明: n 的正约数必形如1212k p p αα=…mmp α,其中1β可取0至1α中任意一个,共有11α+种取法; 2β可取0至2α中任意一个, 共有21α+种取法;…;m β可取0至m α中任意一个,共有1m α+种取法,那么12()(1)(1)d n =α+α+…(1)m α+. 例1 求(300000)d .解: 因为5530000025 =⨯3⨯,所以(300000)(51)(11)(51)72d =+++=.例2 若n p q αβ=,其中p ,q 为不同质数, α≥1, β≥1.且2n 有15个正约数,求7()d n .解: 由222n p q αβ5=,得2()(2)(21)1535d n =α+1β+==⨯. 不失一般性.设β≥α,则2α+1=3, 2β+1=5,解得α=1, β=2,故2n pq =,则7714n p q =,所以7()(71)(141)815120d n =++=⨯=.例3 有一个小于2000 的四位数,它恰有14个正约数,其中有一个制约数的末尾 数字是1,求这个四位数. (1984年上海初中赛题) 解: 设n 为所求,则()14172d n =⨯=⨯.若()141d n =⨯,则13n p =,而13112000> ,故此时无解.若()72d n =⨯,则6n p q =,其中p , q 为不同质数.为质数p , q 选取适当的值,使其满足p , q 之一的末位数是1,且0002000n 1 << .易知只有当2p =,31q =时, 62311984n =⨯=符合题意.定理2 正整数n 为完全平方数的充要条件是()d n 为奇数. 证明: 必要性设1212(n p p αα= (2))m mp α (其中1212p p αα…m m p α的标准分解式),则1212n p p αα=…mmp α,故12()(2)(21)d n =α+1α+…(21)m α+. 因为12α+1,221α+,21m α+均为奇数,所以12()(2)(21)d n =α+1α+…(21)m α+.为奇数. 充分性 设1212n p p αα=…mmp α为n 的标准分解式,则12()()(1)d n =α+1α+…(1)m α+.因为()d n 为奇数,所以1α+1,21α+,… ,1m α+均为奇数,从而1α,2α,…,m α均为偶数.设11α=2β,22α=2β,…,m m α=2β,则 1212n p p 2α2α=…1212(m m p p p 2αββ=…2)m m p β,所以n 为完全平方数.该定理可以用来分析解决本节开头提出的“拉灯”问题:各盏灯的开关被拉几次取决于其编号的正约数的个数,而灯是否被拉亮取决于其开关被拉次数的奇偶性(奇数则被拉亮).由定理2可知,亮灯的编号必为完全平方数,即第21,22,23,… ,210号的灯亮着.当然,该定理的价值远不止于此,它主要用来判断一个数是否是完全平方数,进而解决其它有关问题.例4 求证:正整数n证明: 设n 的所有正约数为1n ,2n ,…,()d n n .因为k n n |,所以存在k m ,使(1,2,k n m k ==…())d n ,,从而k m n |,即k m 是n 的正约数,所以k m 是1n ,2n ,… ,()d n n 之一(1())k d n ≤≤.故1m ,2m ,…,()d n m 是1n ,2n ,…,()d n n 重新排序的一个结果,所以12n n …()12d n n m m =…()12d n n n m n n =…()d n n n =()12()...d n d n n n n n ,则12(n n (2)()())d n d n n n=,所以12n n…()d n n =即正整数n由例4自然联想,正整数n 的所有正约数之和等于多少呢? 二、正整数n 的所有正约数之和正整数n 的所有正约数之和记作()S n ,下面我们按n 含有的质约数的个数来讨论.1.当n 只含一个质约数时例如,9的正约数有1,3,23,其和为3231(9)13331S -=++=-;32的正约数有23451,2,2,2,2,2,其和为6234521(32)12222221S -=+++++=-,一般地,若mn p =,则2()1S n p p =+++ (11)1m mp p p +-+=-.2.当n 含有两个质约数时例如, 327223=⨯,其正约数排列如下:1 2 22 323 3⨯2 23⨯2 33⨯223 23⨯2 223⨯2 233⨯2则2323222223(72)(12222322333232)S =+++)+(3+3⨯+⨯+3⨯)+(+⨯2+⨯+⨯ 232(1222)(133)=+++++4321312131--=⨯--. 一般地,若mkn p q =(,p q 是互异质数, ,m k 为正整数),则1()(1S n p =++…1)(1m p q +++…)k q +111111m k p q p q ++--=⨯--. 由上述过程不难猜想:若1212n p p αα=…mmp α(12,,p p …,m p 是互异质数, 12,,αα…,m α为正整数),则11()(1S n p =++…1112)(1p p α+++…22)p α+…1(1m p ++…)m m p +α. ①下面试证这个结论.从①式中每个括号任取一项相乘,积必形如 1212p p ββ…mmp β(其中0,1,2,k k k ≤β≤α=…,m ),这样的积共有多少个呢?在第k 个括号内任取一项,有1k α+种取法,故在m 个括号内各任取一项,共有12(α+1)(α+1)…1)()m d n (α+=种取法,即有()d n 个这样的积.由§1.4中算术基本定理的推论可知.每个这样的积都是n 的一个正约数,且n 的任一正约数必是这样的积中的一个,故所有这样的积作成的和就是n 的所有正约数之和()S n ,即11(1p ++…1112)(1p p α+++…22)p α+…1(1m p ++…)()m m p S n +α=这说明我们的猜想是正确的,从而得到了如下的定理. 定理3 设正整数1212n p p αα=…mmp α,(12,,p p …,m p 是互异质数, 12,,αα…,m α为正整数),则11()(1S n p =++…1112)(1p p α+++…22)p α+…1(1m p ++…)m m p +α121112121111p p p p α+α+--=⨯⨯-- (111)m m m p p α+-⨯-. 例5 求()360S n =.解: 因为32360235=⨯⨯,所以432213151(360)1170213151S ---=⨯⨯= ---. 例6 求形如23k m的正整数,且使其所有正约数之和为403. 解: 由题意可得112131(23)140313312131k m k mS ++--=⨯=⨯=⨯--, 故可得下面四个方程组11211,2131403;31k m ++⎧-=⎪⎪-⎨-⎪=⎪-⎩ 1121403,21311;31k m ++⎧-=⎪⎪-⎨-⎪=⎪-⎩112113,213131;31k m ++⎧-=⎪⎪-⎨-⎪=⎪-⎩ 112131,213113.31k m ++⎧-=⎪⎪-⎨-⎪=⎪-⎩上述四种情况只有最后一组有正整数解4,2.k m =⎧⎨=⎩故只有4223144⨯=的所有正约数之和为403.例7 求1998 的所有正约数的倒数之和. 解: 因为319982337=⨯⨯ ,所以(1998)(11)(31)(11)16d =+++= ,23(1998)(12)(1333)(137)4560S =+++++= .设1998 的16个正约数分别为12,,x x …,16x 可按乘积等于1998 分为8组,不妨设123456789101112131415161998x x x x x x x x x x x x x x x x ======== ,则1211x x ++ (16)1x + 12341111()()x x x x =++++ (1516)11()x x ++ 34121234x x x x x x x x ++=++ (15161516)x x x x ++ 1216 (4560760)199********x x x +++===. 如果()2S n n =,则称n 为完全数,如6,28,496,8128,... 截止1996年11月,共发现了34个完全数.在两个正整数中,若一个数的所有正约数之和恰好等于另一个数,则称这两个数为一对亲和数,如1184 与1210 ,220与284,….对完全数与亲和数感兴趣的读者,以阅读上海教育出版社1998年1月版谈祥柏译[美]阿尔伯特••H •贝勒著《数论妙趣》.例8 能被30整除,且恰有30个不同正约数的自然数共有多少个?(98年上海市初中数学竞赛题)解:设正整数p 分解质因数为1212aap p ⨯⨯…na np ⨯,则它的约数个数为12(1)(1)a a ++…(1)n a +.因为题中要求的数能被30整除,以必然含有质因数2,3,5,设此数为312235aaa⨯⨯⨯…, 则它的约数的个数为123(1)(1)(1)a a a +++…,因为3530=2⨯⨯,所以123()(30)(1)(1)(1)35d p d a a a ==+++=2⨯⨯,所以p 没有除3,52,之外的质因数,所以1231,1,1a a a +++只能是3,52,或者2,5,3或3,5,2或3,2,5或5,2,3或5,3,2,共6个.例9 证明对任意一个正整数,其正约数中末位为1或9的的个数不小于末位为3或7的数的个数.证明: 设正整数约数中末尾为3有m 个, 7的有n 个. 设其为12,,x x …,m x ,12,,y y …,n y (从小到大排列)当0,0m n ==显然正确.1n =时, 1是n 的正约数,2n >时, 1231,y y ,y ,i y ⨯⨯…1,y y ,n ⨯互不相同,共n 个. 0m =,同理可证.,m n ≥1时, 123y y ,y ,i y ⨯⨯…1,y y ,n ⨯共n 1-个. 12,x x ⨯…1,m x x ⨯共1m -.11y x ⨯末尾为1,又有1为n 的正约数,至少1111m n m n -+-++=+个. 综上,得证.例10求出最小的正整数n ,使其恰有144个正约数,并且其中有十个是连续的整数.例11(1) 所有的正约数的和等于15的最小自然数是多少?8 (2) 所有正约数的积等于64的最小自然数是多少?8(3) 有没有这样的自然数,其所有正的真约数之积等于它本身?21 例12只有13个正约数的最小正整数是? 解:()13(121)d n ==+ n 最小取2,所以 1224096=. 例13用()d n 表示正整数n 的正约数的个数,证明:存在无穷多个正整数n ,使得()(1)1d n d n +++是3的倍数.证明: 可知当n 为质数时()2d n =则当1n +的约数个数为3时 ()(1)16d n d n +++=是3的倍数又可知当n 为质数, 1n +的约数为3有无数组所以存在无穷多个正整数n ,使得()(1)1d n d n +++是3的倍数.例14在30~300的所有正整数中,有几个数恰有三个正约数?解: 三个正约数就是:1,x ,其本身,且本身/ x x =, 推得这个数等于2x , x 是个质数.2255= 2366= 217289= 218324=可知, x 是在6到17间的质数:7、11、13、17。
约数的计算方法和技巧
约数的计算方法和技巧
约数的计算方法和技巧有很多种,以下是一些常用的方法:
1. 质数分解法:将一个大于1的自然数分解质因数,即可找到其中含有多少个质因数的数。
2. 合数分解法:将一个大于1的自然数分解合数,即可找到其中含有多少个偶数和多少个奇数的数。
3. 韦达定理:韦达定理是一个用于计算两个数之间是否为因数
的定理。
4. 埃氏筛法:埃氏筛法是用于寻找质数的算法。
通过不断地缩小范围,将未筛选的数逐渐排除,最终找到质数。
5. 米勒-拉宾素性测试:米勒-拉宾素性测试是一种用于确定一
个数是否为素数的算法。
它通过模拟该数的加减运算,判断它是否容易被一个小于一定大小的数整除。
6. 欧拉公式:欧拉公式是一个用于计算两个数之间余数的公式。
该公式可以用于计算任意两个数的和与差,以及它们的中位数、众数等。
7. 快速幂算法:快速幂算法是一种用于计算一个整数的幂的算法。
该算法的时间复杂度为 O(log n),其中n是输入整数的位数。
8. 蒙特卡罗方法:蒙特卡罗方法是一种用于模拟随机过程的算法。
该方法可以用于计算一些随机变量的分布,从而得到它们的概率分布。
这些算法和技巧都是常用的约数计算方法和技巧,不同的约数问
题可能需要选择不同的算法和技巧来解决。
一个整数的约数个数与约数和的计算方法
一个整数的约数个数与约数和的计算方法,两数的最大公约数与最小公倍数之间的关系,分数的最小公倍数.涉及一个整数的约数,以及若干整数最大公约数与最小公倍数的问题,其中质因数分解发挥着重要作用.1.数360的约数有多少个?这些约数的和是多少?【分析与解】 360分解质因数:360=2×2×2×3×3×5=23×32×5;360的约数可以且只能是2a×3b×5c,(其中a,b,c均是整数,且a为0~3,6为0~2,c为0~1).因为a、b、c的取值是相互独立的,由计数问题的乘法原理知,约数的个数为(3+1)×(2+1)×(1+1)=24.我们先只改动关于质因数3的约数,可以是l,3,32,它们的和为(1+3+32),所以所有360约数的和为(1+3+32)×2y×5w;我们再来确定关于质因数2的约数,可以是l,2,22,23,它们的和为(1+2+22+23),所以所有360约数的和为(1+3+32)×(1+2+22+23)×5w;最后确定关于质因数5的约数,可以是1,5,它们的和为(1+5),所以所有360的约数的和为(1+3+32)×(1+2+22+23)×(1+5).于是,我们计算出值:13×15×6=1170.所以,360所有约数的和为1170.评注:我们在本题中分析了约数个数、约数和的求法.下面我们给出一般结论:I.一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)Ⅱ.约数的和是在严格分解质因数后,将M的每个质因数最高次幂的所有约数的和相乘所得到的积.如:21000=23×3×53×7,所以21000所有约数的和为(1+2+22+23)×(1+3)×(1+5+52+53)×(1+7)=74880.2.一个数是5个2,3个3,6个5,1个7的连乘积.这个数有许多约数是两位数,那么在这些两位数的约数中,最大的是多少?【分析与解】设这个数为A,有A=25×33×56×7,99=3×3×11,98=2×7×7,97均不是A的约数,而96=25×3为A的约数,所以96为其最大的两位数约数.3.写出从360到630的自然数中有奇数个约数的数.【分析与解】一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)如果某个自然数有奇数个约数,那么这个数的所有质因子的个数均为偶数个.这样它们加1后均是奇数,所得的乘积才能是奇数.而所有质因数的个数均是偶数个的数为完全平方数.即完全平方数(除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数.由以上分析知,我们所求的为360~630之间有多少个完全平方数?18×18=324,19×19=361,25×25=625,26×26=676,所以在360~630之间的完全平方数为192,202,212,222,232,242,252.即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,625.4.今有语文课本42册,数学课本112册,自然课本70册,平均分成若干堆,每堆中这3种课本的数量分别相等.那么最多可分多少堆?【分析与解】显然堆数是42的约数,是112的约数,是70的约数.即为42,112,70的公约数,有(42,112,70)=14.所以,最多可以分成14堆.5.加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人?【分析与解】为了使生产均衡,则每道工序每小时生产的零件个数应相等,设第一、二、三道工序上分别有A、B、C个工人,有6A=10B=15C=k,那么k的最小值为6,10,15的最小公倍数,即[6,10,15]=30.所以A=5,B=3,C=2,则三道工序最少共需要5+3+2=10名工人.6.有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚?【分析与解】设在x分钟后3人再次相聚,甲走了120x米,乙走了lOOx米,丙走了70x米,他们3人之间的路程差均是跑道长度的整数倍.即120x-100x,120x-70x,lOOx-70x均是300的倍数,那么300就是20x,50x,30x的公约数.有(20x,50x,30x):300,而(20x,50x,30x)=x(20,50,30)=lOx,所以x=30.即在30分钟后,3人又可以相聚.7.3条圆形跑道,圆心都在操场中的旗杆处,甲、乙、内3人分别在里圈、中圈、外圈沿同样的方向跑步.开始时,3人都在旗杆的正东方向,里圈跑道长15千米,中圈跑道长14千米,外圈跑道长38千米.甲每小时跑312千米,乙每小时跑4千米,丙每小时跑5千米.问他们同时出发,几小时后,3人第一次同时回到出发点?【分析与解】甲跑完一圈需11235235÷=小时,乙跑一圈需114416÷=小时,丙跑一圈需335840÷=则他们同时回到出发点时都跑了整数圈,所以经历的时间为235,116,340的倍数,即它们的公倍数.而213,,351640⎡⎤⎢⎥⎣⎦[]()2,1,335,16,4=661==.所以,6小时后,3人第一次同时回到出发点.评注:求一组分数的最小公倍数,先将这些分数化为最简分数,将分子的最小公倍数作为新分数的分子,将分母的最大公约数作为新分数的分母,这样得到的新分数即为所求的最小公倍数;求一组分数的最大公约数,先将这些分数化为最简分数,将分子的最大公约数作为新分数的分子,将分母的最小公倍数作为新分数的分母,这样得到的新分数即为所求的最大公约数.8.甲数和乙数的最大公约数是6最小公倍数是90.如果甲数是18,那么乙数是多少?【分析与解】有两个数的最大公约数与最小公倍数的乘积等于这两数的乘积.有它们的最大公约数与最小公倍数的乘积为6×90=540,则乙数为540÷18=30.9.A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有10个约数,那么A,B两数的和等于多少?【分析与解】方法一:由题意知A可以写成3×52×a,B可以写成3×52×6,其中a、b为整数且只含质因子3、5.即A:31+x×52+y,B=31+m×52+n,其中x、Y、m、n均为自然数(可以为0)由A有12个约数,所以[(1+x)+1]×[ (2+y)+1]=(2+x)×(3+y)=12,所以21,01x xy y==⎧⎧⎨⎨==⎩⎩4xy=⎧⎨=⎩或.对应A为31+2×52=675,31+1×52+1=1125,或31+0×52+4=46875;由B 有10个约数,所以[(1+m)+1]×[(2+n)+l]=(2+m)×(3+n):10,所以02m n =⎧⎨=⎩.对应B 为31+0×52+2=1875.只有(675,1875)=75,所以A=675,B=1875. 那么A,B 两数的和为675+1875=2550. 方法二:由题中条件知A 、B 中有一个数质因数中出现了两次5,多于一次3,那么,先假设它出现了N 次3,则约数有:(2+1)×(N+1):3×(N+1)个12与10其中只有12是3的倍数,所以3(N+1)=12,易知N=3,这个数是A ,即A=33×52=675.那么B 的质数中出现了一次3,多于两次5,则出现了M 次5,则有:(1+1)×(M+1)=2(M+1)=10,M=4.B=3×54=1875.那么A,B 两数的和为675+1875=2550.10.有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693.这两个自然数的差等于多少?【分析与解】 设这两数为a,b,记a=(a,b)q1,b=(a,b)q2. 它们的和为:a+b=(a,b)ql+(a,b)q2=(a,b)(q1+q2)=297………① 它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)qlq2+(a,b)=(a,b)(qlq2+1)=693,且(q1,q2)=1.………………………………………………………………②综合①、②知(a,b)是297,693的公约数,而(297,693)=99,所以(a,b)可以是99,33,1l,9,3,1. 第一种情况:(a,b)=99,则(q1+q2)=3,(qlq2+1)=7,即qlq2=6=2×3,无满足条件的ql,q2; 第二种情况:(a,b)=33,则(q1+q2)=9,(q1q2+1)=21,即q1q2=20=22×5,则ql=5,q2=4时满足,a=(a,b)q 1=33×5=165,b=(a,b)q 2=33×4=132,则a-b=165-132=33;第三种情况:(a,b)=11,则(q1+q2)=27,(q1q2+1)=63,即q q2=62=2×31,无满足条件的q1,q2;一一验证第四种情况,第五种情况,第六种情况没有满足条件的q1q2. 所以,这个两个自然数的差为33.11.两个不同自然数的和是60,它们的最大公约数与最小公倍数的和也是60.问这样的自然数共有多少组?【分析与解】 设这两数为a,b,记a=(a,b)q1,b=(a,b)q2.它们的和为:a+b=(a,b)q1+(a,b)q2=(a,b)(ql+q 2)=60…………① 它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)q1q2+(a,b)=(a,b)(q1q2+1)=60,且(q1,q2)=1…………………………………………………………………②联立①、②有(ql+q2)=(q1q2+1),即ql+q2-qlq2=1,(ql-1)(1-q2)=0,所以ql=1或q2=1. 即说明一个数是另一个数的倍数,不妨记a=kb(k 为非零整数),有()[]60,60a b kb b a b b a b kb +=+=⎧⎪⎨+=+=+=⎪⎩a,b ,即()160k b +=确定,则k 确定,则kb 即a 确定60的约数有2,3,4,5,6,10,12,15,20,30,60这11个,b可以等于2,3,4,5,6,10.12,15,20,30这10个数,除了60,因为如果6=60,则(k+1)=1,而k为非零整数.对应的a、b有10组可能的值,即这样的自然数有10组.进一步,列出有(a,b)为(58,2),(57,3),(56,4),(55,5),(54,6),(50,10),(48,12),(45,15),(40,20),(30,30).评注:如果两个自然数的和等于这两个数最大公约数与最小公倍数的和,那么这两个数存在倍数关系.12.3个连续的自然数的最小公倍数是9828,那么这3个自然数的和等于多少?【分析与解】若三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半;若三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积.则当a,a+1,a+2中有2个偶数时,a(a+1)(a+2)=9828×2,当a,a+1,a+2中有1个偶数时,a(a+1)(a+2)=9828.对9828分解质因数:9828=2×2×3×3×3×7×13,我们注意,13是其最大的质因数,验证不存在3个连续的自然数的积为9828.则这三个自然数的积只能是9828×2,此时这三个数中存在两个偶数,有9828×2=2×2×2×3×3×3×7×13.13×2=26,有26,27,28三个数的积为9828×2,所以这三个连续的自然数为26,27,28,其中有两个偶数,满足题意.所以,这三个数的和为26+27+28=81.评注:我们知道两个连续的自然数互质,而两个互质的数的公倍数等于它们的积,即[0,b]=a×b.记这3个连续的自然数为a,a+1,a+2.有[a,a+1,a+2]=[a,a+1,a+1,a+2]=[[a,a+1],[a+1,a+2]]=[a×(a+1),(a+1)×(a+2)]=(a+1)×[a,a+2].因为a,a+2同奇同偶,当a,a+2均是偶数时,a,a+2的最大公约数为2,则它们的最小公倍数为()22a a⨯+;当a,a+2均是奇数时,a,a+2互质,则它们的最小公倍数为a×(a+2).所以(a+1)×[a,a+2]=()()()()21212a aa aa a a a⨯+⎧+⨯⎪⎨⎪+⨯⨯+⎩为偶数为奇数.即[a,a+1,a+2]为a(a+1)(a+2)或()()122a a a++若三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半;若三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积.13.甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少?【分析与解】 对90分解质因数:90=2×3×3×5.因为5126,所以5甲,即甲中不含因数5,于是乙必含因数5. 因为2105,所以2乙,即乙中不含因数2,于是甲必含2×2. 因为9105,所以9乙,即乙最多含有一个因数3.第一种情况:当乙只含一个因数3时,乙=3×5=15,由[甲,乙]=90=2×32×5,则甲=2×32=18; 第一种情况:当乙不含因数3时,乙=5,由[甲,乙]=90=2×32×5,则甲=2×32=18,综上所需,甲为18.评注:两个数的最小公倍数含有两数的所有质因子,并且这些质因数的个数为两数中此质因数的最大值.如a=2×33×52×7,b=23×32×5×7×11,则A 、B 的最小公倍数含有质因子2,3,5,7,11,并且它们的个数为a 、b 中含有此质因子较多的那个数的个数.即依次含有3个,3个,2个,1个,1个,即[a,b]=23×33×52×7×11.14.a>b>c 是3个整数.a,b,c 的最大公约数是15;a,b 的最大公约数是75;a,b 的最小公倍数是450;b,c 的最小公倍数是1050.那么c 是多少?【分析与解】 由(a,b)=75=3×52,[a,b]=450=32×2×52=75×3×2,又a ﹥b 所以45075a b =⎧⎨=⎩或225150a b =⎧⎨=⎩ [b,c]=1050=2×3×52×7. 当 45075a b =⎧⎨=⎩ 时有 ()()[][]450,75,75,15,75,1050c c b c c ⎧==⎪⎨==⎪⎩,因为两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积,所以(75,c)×[75,c]=75×c=15×1050,得c=210,但是c>b,不满足;当225150a b =⎧⎨=⎩时有()()[][]225150,75,15,150,1050c c b c c ⎧==⎪⎨==⎪⎩,,则c=105,c ﹤b,满足,即225150105a b c =⎧⎪=⎨⎪=⎩为满足条件的为一解.那么c 是105.15.有4个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少? 【分析与解】 设这4个不同的自然数为A 、B 、C 、D ,有A+B+C+D=1111.将1111分解质因数:1111=11×101,显然A 、B 、C 、D 的最大公约数最大可能为101,记此时A=101a ,B=101b,C=101c,D=101d,有a+b+c+d=11,当a+b+c+d=1+2+3+5时满足,即这4个数的公约数可以取到101.综上所述,这4个不同的自然数,它们的最大公约数最大能是101.评注:我们把此题稍做改动:“有5个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少?”,大家不妨自己试试.。
约数个数计算公式(一)
约数个数计算公式(一)
约数个数计算公式
约数个数计算公式是用来计算一个正整数的约数个数的公式。
通过使用这个公式,我们可以方便地确定一个数的所有约数的个数,进
而进行相关计算。
概述
约数是指能够整除给定正整数的所有整数。
例如,对于整数10来说,它的约数为1、2、5和10,一共有4个约数。
那么约数个数计算
公式就是用来算出给定正整数的所有约数的个数的公式。
公式
给定正整数n,其约数个数计算公式如下:
约数个数 = (p1 + 1) * (p2 + 1) * ... * (pk + 1)
其中,p1、p2、…、pk是n的所有质因数。
举例说明
以正整数36为例,我们来使用约数个数计算公式计算其约数个数。
1.分解质因数:36 = 2^2 * 3^2
2.根据公式,计算约数个数:(2 + 1) * (2 + 1) = 3 * 3 = 9
因此,正整数36的约数个数为9个。
我们可以验证一下:36的
所有约数为1、2、3、4、6、9、12、18和36,共有9个。
其他应用
约数个数计算公式在数论和组合数学中有着广泛的应用。
它可以
用来求解整数的因子分解、找到所有满足某个条件的整数等等。
在计
算机编程中,这个公式也经常被用来解决相关问题,比如设计某种算
法或优化程序性能等。
总结
通过使用约数个数计算公式,我们可以方便地计算出给定正整数
的约数个数。
这个公式的应用范围广泛,不仅在数学领域有重要意义,也在计算机编程中有实际应用。
掌握了这个公式,我们能够更高效地
解决与约数个数相关的问题。
探索数的约数学习什么是约数及如何判断一个数是另一个数的约数
探索数的约数学习什么是约数及如何判断一个数是另一个数的约数数的约数是指可以整除该数的正整数。
当一个数m被另一个数n整除时,我们可以说m是n的约数。
简言之,如果一个数m对另一个数n取余等于0,那么m就是n的约数。
以数学符号表示,如果m能被n整除,我们可以写作m | n 或者n % m = 0。
为了更好地理解约数,我们可以从以下几个方面来探索数的约数。
一、正整数的约数对于给定的正整数n,我们需要找到所有能整除n的正整数m。
这些m就是n的约数。
例如,对于正整数12,它的约数有1、2、3、4、6和12。
二、如何判断一个数是另一个数的约数判断一个数m是否是另一个数n的约数,只需计算n对m取余的结果。
如果n % m = 0,那么m就是n的约数;否则,m不是n的约数。
三、约数的性质1. 一个数的所有约数都是它本身的约数,例如12的所有约数包括1、2、3、4、6和12。
2. 一个数的所有约数都是1的约数,因为任何数除以1的结果都是它本身。
3. 一个数的最小正约数是1,最大约数是它本身。
4. 一个数的约数总是成对出现的,即如果m是n的约数,那么n/m 也是n的约数。
5. 一个数的约数个数是有限的,约数的个数与这个数的所有质因数有关。
如果一个数有k个不同的质因数,那么它的约数个数为2^k。
例如,12的约数个数为2^2 = 4,因为12可以分解为2*2*3,共有4个不同的质因数。
四、约数的应用1. 约数可以用于寻找一个数的因数,如对于一个合数n,它的最小正约数即为它的最小质因数。
2. 约数还可以用于解决实际问题。
例如,在计算机科学中,数的约数可以用于判断一个数是否为完全数、亲和数和素数,以及用于其他数论问题的求解。
在数学中,约数是一个重要的概念,它帮助我们理解和解决许多与数相关的问题。
通过探索数的约数,我们可以更好地理解数论和算术的基本原理,提高我们的数学思维能力。
总结:数的约数是指可以整除该数的正整数,通过计算一个数对另一个数取余的结果,我们可以判断一个数是否为另一个数的约数。
掌握简单的约数的计算
掌握简单的约数的计算作为数学的基础知识,约数的计算在我们日常生活和学习中都非常常见。
掌握简单的约数计算方法,不仅可以帮助我们解决实际问题,还能为我们的数学学习打下坚实的基础。
本文将介绍如何简单地计算约数,帮助读者掌握这一重要的数学技巧。
一、什么是约数约数,顾名思义,即能够整除某个数的数。
比如,2、3、4、6都是12的约数,因为它们能够整除12。
而5、7、8就不是12的约数。
二、约数计算的方法1. 因数分解法因数分解法是计算约数最常用的方法之一。
它的基本思想是将待计算的正整数分解为素数的乘积,然后通过组合这些素数的所有可能性,得到其所有的约数。
例如,我们要计算数值为30的约数,首先将30进行因数分解:30=2×3×5。
然后,我们可以通过组合2、3、5的各种可能,得到30的所有约数:1、2、3、5、6、10、15、30。
这些数都可以整除30,所以它们都是30的约数。
2. 列举法列举法是计算约数的另一种常用方法。
采用列举法时,我们从1开始,逐个列举出能够整除待计算数的整数,直到达到待计算数本身为止。
以数值为24的约数计算为例,我们从1开始逐一列举:1、2、3、4、6、8、12、24。
我们可以发现,以上这些整数都能够整除24,因此它们都是24的约数。
三、如何判断一个数是否为另一个数的约数判断一个数是否为另一个数的约数,只需要看这个数是否能够整除另一个数,即是否能够被另一个数整除而没有余数。
例如,我们要判断数值为45的约数。
我们可以逐个尝试用数值为45的整数去除以其他整数,如果能整除而没有余数,那么被试数即为45的约数。
反之,如果无法整除或者有余数,那么被试数则不是45的约数。
四、约数的应用掌握简单的约数计算方法,我们在实际生活中会发现很多应用场景。
以下是一些约数的常见应用。
1. 最大公约数最大公约数是指两个或多个整数共有的约数中最大的一个。
通过计算两个数的约数,我们可以找到它们的最大公约数。
小学五年级竞赛 第六讲 约数的个数与约数和定理
第六讲约数的个数与约数和定理一、课前热身:1、20有多少个约数吗?这些约数的和是多少?2、大于0的自然数,如果满足所有约数之和等于它自身的2倍,则这样的数称为完美数或完全数.比如,6的所有约数为1,2,3,6,它们的和=1+2+3+6=12,而且6是最小的完美数.是否有无限多个完美数的问题至今仍然是困扰人类的难题之一.研究完美数可以从计算自然数的所有约数之和开始,321的所有因数之和为.二、典例精析:3、已知300=2×2×3×5×5,则300一共有多少个不同的约数?这些约数的和是多少?4、2009的平方的约数有多少个?5、一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个.那么,这个正整数是多少?6、已知a有8个约数,b有9个约数,且a、b的最大公约数是12,试求a、b的值.7、设数A共有9个不同约数,B共有6个不同约数,C共有8个不同约数,这三个数中的任何两个都互不整除,求三个数之积的最小值.8、自然数A的所有约数两两求和,又得到若干个自然数,在这些新的数中,其中最小的为4,最大的为876,求A的值.9、把360的所有约数从小到大排列,第4个数是4,那么倒数第4个数是多少?10、整数n一共有10个因数,这些因数从小到大排列,第8个是。
那么整数n的最大值是多少?三、竞赛真题:11、(2010•华罗庚金杯)恰有20个因数的最小自然数是()A.120 B.240 C.360 D.43212、(2012•希望杯)已知自然数N的个位数字是0,且有8个约数,则N最小是。
13、(2017•华罗庚金杯)已知自然数n有10个约数,2n有20个约数,3n 有15个约数,那么6n有个约数。
14、(2011•希望杯)如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么1000以内最大的“希望数”是。
15、(2016•华罗庚金杯)两个正方形的面积之差为2016平方厘米,如果这样的一对正方形的边长都是整数厘米,那么满足上述条件的所有正方形共有多少对?四、课后练习:16、144的全部约数有多少个?这些约数的和是多少?17、某个自然数有12个约数,并且它的所有的约数的和为195,问这个数是多少?18、一个自然数恰有48个约数,并且其中有10个连续的自然数,那么这个数的最小值是。
数的约数与倍数
数的约数与倍数数学是一门非常重要的学科,而数的约数与倍数是数学中的基础概念之一。
在我们的日常生活中,约数和倍数也是经常出现的。
本文将介绍数的约数与倍数的概念、性质以及一些有趣的应用。
一、数的约数在数学中,我们将一个整数a除以另一个整数b(b≠0)所得的商q为整数,余数r为0时,称a能被b整除,或者说b是a的约数。
简单来说,约数就是能够整除某个数的数。
举个例子来说,对于数10,它的约数有1、2、5、10。
因为1、2、5、以及10都能整除10。
每一个整数都有两个特殊的约数,即1和它本身。
这是因为任何整数除以1等于它本身。
我们将这两个约数称为“最小约数”和“最大约数”。
如果一个整数除了1和它本身之外没有其他的约数,那么我们称这个整数为“质数”。
相应地,如果一个整数除了1和它本身之外还有其他的约数,那么我们称这个整数为“合数”。
二、数的倍数与约数相对应的是倍数。
一个整数a除以另一个整数b(b≠0)所得的商q为整数,余数r为0时,称a能被b整除,或者说a是b的倍数。
简单来说,倍数就是某个数的整数倍。
比如,数6的倍数有1、2、3、6、12、18等等。
这是因为他们都是6的整数倍。
每一个整数都是1的倍数和它本身的倍数。
我们将这两个倍数称为“最小倍数”和“最大倍数”。
三、约数和倍数的性质1.性质一:关系对称性如果整数a是整数b的约数,那么b也是a的约数。
同样地,如果整数a是整数b的倍数,那么b也是a的倍数。
2.性质二:关系传递性如果整数a是整数b的约数,而整数b又是整数c的约数,那么整数a也是整数c的约数。
同样地,如果整数a是整数b的倍数,而整数b又是整数c的倍数,那么整数a也是整数c的倍数。
3.性质三:最小公倍数和最大公约数对于两个正整数a和b,a×b的乘积等于它们的最大公约数gcd(a,b)和最小公倍数lcm(a,b)的积,即a×b = gcd(a,b) × lcm(a,b)。
四、约数与倍数的应用1.约数和倍数在分解因式的过程中扮演着重要的角色。
奥数知识点约数个数与约数和定理
奥数知识点约数个数与约数和定理
奥数知识点约数个数与约数和定理
两数乘积为2800,而且已知其中一数的约数个数比另一数的约数个数多1。
那么这两个数分别是()、()。
考点:约数个数与约数和定理。
分析:先把2800分解质因数,找出属于完全平方数的约数的`个数,再进一步分析,找出符合题意的答案。
解答:解:任何一个正整数,其约数应该是成对出现的,这意味着,一般情况下,一个正整数应该有偶数个约数;但正整数是完全平方数时,就会有奇数个约数;
根据题意:“两个数的乘积等于2800,其中一个数的约数个数比另一个数的约数多1”,这表明:这两个数中有一个是完全平方数;
由于:2800=2×2×2×2×5×5×7,其属于完全平方数的约数有五个:22=4、42=16、52=25、102=100、202=200,
分别进行分析:2800=4×700,各有3个和16个约数,不符合题意,=7×400,各有2个和15个约数,不符合题意,
2008=16×175,各有5个和6个约数,符合题意,=25×112,各有3个和10个约数,不符合题意,=28×100,各有6个和9个约数,不符合题意。
故答案为:16,175。
点评:
解决此题关键是先将2800分解质因数,再逐步找出符合条件的数。
【奥数知识点约数个数与约数和定理】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个整数的约数个数与约数和的计算方法,两数的最大公约数与最小公倍数之间的关系,分数的最小公倍数.涉及一个整数的约数,以及若干整数最大公约数与最小公倍数的问题,其中质因数分解发挥着重要作用.1.数360的约数有多少个这些约数的和是多少【分析与解】 360分解质因数:360=2×2×2×3×3×5=23×32×5;360的约数可以且只能是2a×3b×5c,(其中a,b,c均是整数,且a为0~3,6为0~2,c为0~1).因为a、b、c的取值是相互独立的,由计数问题的乘法原理知,约数的个数为(3+1)×(2+1)×(1+1)=24.我们先只改动关于质因数3的约数,可以是l,3,32,它们的和为(1+3+32),所以所有360约数的和为(1+3+32)×2y×5w;我们再来确定关于质因数2的约数,可以是l,2,22,23,它们的和为(1+2+22+23),所以所有360约数的和为(1+3+32)×(1+2+22+23)×5w;最后确定关于质因数5的约数,可以是1,5,它们的和为(1+5),所以所有360的约数的和为(1+3+32)×(1+2+22+23)×(1+5).于是,我们计算出值:13×15×6=1170.所以,360所有约数的和为1170.评注:我们在本题中分析了约数个数、约数和的求法.下面我们给出一般结论:I.一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)Ⅱ.约数的和是在严格分解质因数后,将M的每个质因数最高次幂的所有约数的和相乘所得到的积.如:21000=23×3×53×7,所以21000所有约数的和为(1+2+22+23)×(1+3)×(1+5+52+53)×(1+7)=74880.2.一个数是5个2,3个3,6个5,1个7的连乘积.这个数有许多约数是两位数,那么在这些两位数的约数中,最大的是多少【分析与解】设这个数为A,有A=25×33×56×7,99=3×3×11,98=2×7×7,97均不是A的约数,而96=25×3为A的约数,所以96为其最大的两位数约数.3.写出从360到630的自然数中有奇数个约数的数.【分析与解】一个合数的约数的个数是在严格分解质因数之后,将每个质因数的指数(次数)加1后所得的乘积.如:1400严格分解质因数后为23×52×7,所以它的约数有(3+1)×(2+1)×(1+1)=4×3×2=24个.(包括1和它自身)如果某个自然数有奇数个约数,那么这个数的所有质因子的个数均为偶数个.这样它们加1后均是奇数,所得的乘积才能是奇数.而所有质因数的个数均是偶数个的数为完全平方数.即完全平方数(除0外)有奇数个约数,反过来,有奇数个约数的数一定是完全平方数.由以上分析知,我们所求的为360~630之间有多少个完全平方数18×18=324,19×19=361,25×25=625,26×26=676,所以在360~630之间的完全平方数为192,202,212,222,232,242,252.即360到630的自然数中有奇数个约数的数为361,400,441,484,529,576,625.4.今有语文课本42册,数学课本112册,自然课本70册,平均分成若干堆,每堆中这3种课本的数量分别相等.那么最多可分多少堆【分析与解】显然堆数是42的约数,是112的约数,是70的约数.即为42,112,70的公约数,有(42,112,70)=14.所以,最多可以分成14堆.5.加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成6个零件,第二道工序每名工人每小时可完成10个零件,第三道工序每名工人每小时可完成15个零件.要使加工生产均衡,三道工序最少共需要多少名工人【分析与解】为了使生产均衡,则每道工序每小时生产的零件个数应相等,设第一、二、三道工序上分别有A、B、C个工人,有6A=10B=15C=k,那么k的最小值为6,10,15的最小公倍数,即[6,10,15]=30.所以A=5,B=3,C=2,则三道工序最少共需要5+3+2=10名工人.6.有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚【分析与解】设在x分钟后3人再次相聚,甲走了120x米,乙走了lOOx米,丙走了70x米,他们3人之间的路程差均是跑道长度的整数倍.即120x-100x,120x-70x,lOOx-70x均是300的倍数,那么300就是20x,50x,30x的公约数.有(20x,50x,30x):300,而(20x,50x,30x)=x(20,50,30)=lOx,所以x=30.即在30分钟后,3人又可以相聚.条圆形跑道,圆心都在操场中的旗杆处,甲、乙、内3人分别在里圈、中圈、外圈沿同样的方向跑步.开始时,3人都在旗杆的正东方向,里圈跑道长15千米,中圈跑道长14千米,外圈跑道长38千米.甲每小时跑312千米,乙每小时跑4千米,丙每小时跑5千米.问他们同时出发,几小时后,3人第一次同时回到出发点【分析与解】甲跑完一圈需11235235÷=小时,乙跑一圈需114416÷=小时,丙跑一圈需335840÷=则他们同时回到出发点时都跑了整数圈,所以经历的时间为235,116,340的倍数,即它们的公倍数.而213,,351640⎡⎤⎢⎥⎣⎦[]()2,1,335,16,4=661==.所以,6小时后,3人第一次同时回到出发点.评注:求一组分数的最小公倍数,先将这些分数化为最简分数,将分子的最小公倍数作为新分数的分子,将分母的最大公约数作为新分数的分母,这样得到的新分数即为所求的最小公倍数;求一组分数的最大公约数,先将这些分数化为最简分数,将分子的最大公约数作为新分数的分子,将分母的最小公倍数作为新分数的分母,这样得到的新分数即为所求的最大公约数.8.甲数和乙数的最大公约数是6最小公倍数是90.如果甲数是18,那么乙数是多少【分析与解】有两个数的最大公约数与最小公倍数的乘积等于这两数的乘积.有它们的最大公约数与最小公倍数的乘积为6×90=540,则乙数为540÷18=30.,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有10个约数,那么A,B两数的和等于多少【分析与解】方法一:由题意知A可以写成3×52×a,B可以写成3×52×6,其中a、b为整数且只含质因子3、5.即A:31+x×52+y,B=31+m×52+n,其中x、Y、m、n均为自然数(可以为0)由A有12个约数,所以[(1+x)+1]×[ (2+y)+1]=(2+x)×(3+y)=12,所以21,01x x y y ==⎧⎧⎨⎨==⎩⎩04x y =⎧⎨=⎩或.对应A 为31+2×52=675,31+1×52+1=1125,或31+0×52+4=46875;由B 有10个约数,所以[(1+m)+1]×[(2+n)+l]=(2+m)×(3+n):10,所以02m n =⎧⎨=⎩.对应B 为31+0×52+2=1875.只有(675,1875)=75,所以A=675,B=1875. 那么A,B 两数的和为675+1875=2550. 方法二:由题中条件知A 、B 中有一个数质因数中出现了两次5,多于一次3,那么,先假设它出现了N 次3,则约数有:(2+1)×(N+1):3×(N+1)个12与10其中只有12是3的倍数,所以3(N+1)=12,易知N=3,这个数是A ,即A=33×52=675.那么B 的质数中出现了一次3,多于两次5,则出现了M 次5,则有:(1+1)×(M+1)=2(M+1)=10,M==3×54=1875.那么A,B 两数的和为675+1875=2550.10.有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693.这两个自然数的差等于多少【分析与解】 设这两数为a,b,记a=(a,b)q1,b=(a,b)q2. 它们的和为:a+b=(a,b)ql+(a,b)q2=(a,b)(q1+q2)=297………① 它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)qlq2+(a,b)=(a,b)(qlq2+1)=693,且(q1,q2)=1.………………………………………………………………②综合①、②知(a,b)是297,693的公约数,而(297,693)=99,所以(a,b)可以是99,33,1l,9,3,1.第一种情况:(a,b)=99,则(q1+q2)=3,(qlq2+1)=7,即qlq2=6=2×3,无满足条件的ql,q2;第二种情况:(a,b)=33,则(q1+q2)=9,(q1q2+1)=21,即q1q2=20=22×5,则ql=5,q2=4时满足,a=(a,b)q 1=33×5=165,b=(a,b)q 2=33×4=132,则a-b=165-132=33;第三种情况:(a,b)=11,则(q1+q2)=27,(q1q2+1)=63,即q q2=62=2×31,无满足条件的q1,q2;一一验证第四种情况,第五种情况,第六种情况没有满足条件的q1q2. 所以,这个两个自然数的差为33.11.两个不同自然数的和是60,它们的最大公约数与最小公倍数的和也是60.问这样的自然数共有多少组【分析与解】 设这两数为a,b,记a=(a,b)q1,b=(a,b)q2.它们的和为:a+b=(a,b)q1+(a,b)q2=(a,b)(ql+q 2)=60…………① 它们的最大公约数与最小公倍数的和为:[a,b]+(a,b)=(a,b)q1q2+(a,b)=(a,b)(q1q2+1)=60,且(q1,q2)=1…………………………………………………………………②联立①、②有(ql+q2)=(q1q2+1),即ql+q2-qlq2=1,(ql-1)(1-q2)=0,所以ql=1或q2=1.即说明一个数是另一个数的倍数,不妨记a=kb(k 为非零整数),有()[]60,60a b kb b a b b a b kb +=+=⎧⎪⎨+=+=+=⎪⎩a,b ,即()160k b +=确定,则k 确定,则kb即a 确定60的约数有2,3,4,5,6,10,12,15,20,30,60这11个,b 可以等于2,3,4,5,6,10.12,15,20,30这10个数,除了60,因为如果6=60,则(k+1)=1,而k 为非零整数.对应的a 、b 有10组可能的值,即这样的自然数有10组.进一步,列出有(a,b)为(58,2),(57,3),(56,4),(55,5),(54,6),(50,10),(48,12),(45,15),(40,20),(30,30).评注:如果两个自然数的和等于这两个数最大公约数与最小公倍数的和,那么这两个数存在倍数关系.个连续的自然数的最小公倍数是9828,那么这3个自然数的和等于多少【分析与解】 若三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半;若三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积. 则当a,a+1,a+2中有2个偶数时,a(a+1)(a+2)=9828×2, 当a,a+1,a+2中有1个偶数时,a(a+1)(a+2)=9828.对9828分解质因数:9828=2×2×3×3×3×7×13,我们注意,13是其最大的质因数,验证不存在3个连续的自然数的积为9828.则这三个自然数的积只能是9828×2,此时这三个数中存在两个偶数,有9828×2=2×2×2×3×3×3×7×13.13×2=26,有26,27,28三个数的积为9828×2,所以这三个连续的自然数为26,27,28,其中有两个偶数,满足题意.所以,这三个数的和为26+27+28=81.评注:我们知道两个连续的自然数互质,而两个互质的数的公倍数等于它们的积,即[0,b]=a ×b.记这3个连续的自然数为a,a+1,a+2. 有[a,a+1,a+2]=[a,a+1,a+1,a+2]=[[a,a+1],[a+1,a+2]]=[a ×(a+1),(a +1)×(a+2)]=(a +1)×[a,a+2].因为a,a+2同奇同偶,当a,a+2均是偶数时,a,a+2的最大公约数为2,则它们的最小公倍数为()22a a ⨯+;当a,a+2均是奇数时,a,a+2互质,则它们的最小公倍数为a ×(a+2).所以(a+1)×[a,a+2]=()()()()21212a a a a a a a a ⨯+⎧+⨯⎪⎨⎪+⨯⨯+⎩为偶数为奇数. 即[a,a+1,a+2]为a(a+1)(a+2)或()()122a a a ++若三个连续的自然数中存在两个偶数,那么它们的最小公倍数为三个数乘积的一半;若三个连续的自然数中只存在一个偶数,那么它们的最小公倍数为三个数的乘积.13.甲、乙两数的最小公倍数是90,乙、丙两数的最小公倍数是105,甲、丙两数的最小公倍数是126,那么甲数是多少【分析与解】 对90分解质因数:90=2×3×3×5.因为5126,所以5甲,即甲中不含因数5,于是乙必含因数5. 因为2105,所以2乙,即乙中不含因数2,于是甲必含2×2. 因为9105,所以9乙,即乙最多含有一个因数3.第一种情况:当乙只含一个因数3时,乙=3×5=15,由[甲,乙]=90=2×32×5,则甲=2×32=18;第一种情况:当乙不含因数3时,乙=5,由[甲,乙]=90=2×32×5,则甲=2×32=18, 综上所需,甲为18.评注:两个数的最小公倍数含有两数的所有质因子,并且这些质因数的个数为两数中此质因数的最大值.如a=2×33×52×7,b=23×32×5×7×11,则A 、B 的最小公倍数含有质因子2,3,5,7,11,并且它们的个数为a 、b 中含有此质因子较多的那个数的个数.即依次含有3个,3个,2个,1个,1个,即[a,b]=23×33×52×7×11.>b>c 是3个整数.a,b,c 的最大公约数是15;a,b 的最大公约数是75;a,b 的最小公倍数是450;b,c 的最小公倍数是1050.那么c 是多少【分析与解】 由(a,b)=75=3×52,[a,b]=450=32×2×52=75×3×2,又a ﹥b所以45075ab=⎧⎨=⎩或225150ab=⎧⎨=⎩[b,c]=1050=2×3×52×7.当45075ab=⎧⎨=⎩时有()()[][]450,75,75,15,75,1050c cb c c⎧==⎪⎨==⎪⎩,因为两个数的最大公约数与最小公倍数的乘积等于这两个数的乘积,所以(75,c)×[75,c]=75×c=15×1050,得c=210,但是c>b,不满足;当225150ab=⎧⎨=⎩时有()()[][]225150,75,15,150,1050c cb c c⎧==⎪⎨==⎪⎩,,则c=105,c﹤b,满足,即225150105abc=⎧⎪=⎨⎪=⎩为满足条件的为一解.那么c是105.15.有4个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少【分析与解】设这4个不同的自然数为A、B、C、D,有A+B+C+D=1111.将1111分解质因数:1111=11×101,显然A、B、C、D的最大公约数最大可能为101,记此时A=101a,B=101b,C=101c,D=101d,有a+b+c+d=11,当a+b+c+d=1+2+3+5时满足,即这4个数的公约数可以取到101.综上所述,这4个不同的自然数,它们的最大公约数最大能是101.评注:我们把此题稍做改动:“有5个不同的自然数,它们的和是1111,它们的最大公约数最大能是多少”,大家不妨自己试试.。