磁性壳聚糖微球ppt课件

合集下载

关于壳聚糖的溶解性以及应用PPT讲稿

关于壳聚糖的溶解性以及应用PPT讲稿
• 壳聚糖是一种阳离子型天然多糖,能与DNA形成聚电介质,因此壳聚
糖可用作基因转移工具。
• 3.1 在医药领域的应用
• 壳聚糖可以用来制备伤口覆盖膜,具有很
好的生物相容性和抗病毒性,并能促进创 面的愈合。例如,用壳聚糖制成的口腔溃 疡膜,疗效可靠,无不良反应。
• 壳聚糖及衍生物在人体内可生物降解,并
相类似,分子呈直链状,极性强,易结晶,但由于熔点高于其自身分 解温度,故不易得到非晶态的壳聚糖。
• 在特定的条件下,壳聚糖能发生水解、烷
基化、酰基化、羧甲基化、磺化、硝化、 卤化、氧化、还原、缩合和络合等化学反 应,可生成各种具有不同性能的壳聚糖衍 生物,从而扩大了壳聚糖的应用范围。
• 其结构为下图所示:
• 自1859年,法国人Rouget首先得到壳聚糖
后,这种天然高分子的生物官能性和相容 性、血液相容性、安全性、微生物降解性 等优良性能被各行各业广泛关注,在医药、
• 3.3 在生化领域的应用
• 壳 聚糖具有生物降解的特性,可制成可降解的薄膜。壳聚糖的游离氨
基,对各种蛋白质的亲和力非常高,可用来作为固定化酶、抗原、抗 体等的载体。改性甲壳素固定化酶不影响酶的活性,且有很高的催化 能力,可重复使用。
• 壳聚糖的外观是白色或淡黄色半透明状固体,但壳聚糖不溶于水和碱
溶液,也不溶于硫酸和磷酸。溶于质量分数为1%的乙酸溶液后形成 透明豁稠的壳聚糖胶体溶液是最重பைடு நூலகம்的性质之一。
• 壳聚糖无毒、无害,具有良好的保湿性、润湿性,但吸湿性较强,遇
水易分解。其吸湿性仅次于甘油,优于山梨醇和聚乙二醇。
• 壳聚糖的相对分子质量为10万到30万之间。壳聚糖分子结构与纤维素
• 方法:将壳聚糖用高温浓碱浸泡,然后洗

微球PPT参考幻灯片

微球PPT参考幻灯片
若使药物溶解和/或分散在高分子材料基质中,形 成骨架型(matrix type)的微小球状实体则称——
微球(microsphere)。
2020/2/27
6
微囊和微球 微粒(microparticles) 1m –250m 微米级
微囊 (microcapsule) 微球(microspheres)
2020/2/27
23
二、白蛋白微球的制备
喷雾干燥法
将药物与白蛋白溶液经喷嘴喷入干燥器内,同时送 入干燥室的干燥的热空气流是雾滴中的水分尽快迅 速蒸发,干燥即得微球。经热变性处理,可得缓释 微球。
2020/2/27
24
乳化—化学交联固化法
1 乳滴形成
白蛋白水溶液分散于另一与其不相溶的油相,
加适量乳化剂,形成W/O型分散体。
球和速尿2Eudragit 微球的体外释药均符合 Higuchi′s 方程。
2020/2/27
16
零级释放速率方程
• 如果微球作为药物储库,在释放过程中微球内的浓度几 乎恒定,可以用式(3) 表示:
• 式(3) 中Qn 为微球含药量, S 为微球的释药面积, n 为微球扩散厚度,Cm 为微球内的药物浓度, C 为时间t 时药物在释放介质中的浓度,当Cm > C 时,则等式右边 各参数均为常数,用K 表示,积分得:Q = Kt
生物降解微球:蛋白质(明胶、白蛋白、血纤维蛋白原)、
糖类(淀粉、葡聚糖、壳聚糖等)、合成聚合物类等为载体 基质制得的微球。
生物不可降解微球:乙基纤维素、聚酰胺、聚苯乙烯等为
载体材料制得的微球
2020/2/27
19
微球的制备
明胶微球的制备 白蛋白微球的制备 淀粉微球的制备 聚酯微球的制备 影响微球粒径的因素

壳聚糖磁性载药微球的研究及性能分析讲解

壳聚糖磁性载药微球的研究及性能分析讲解

本科学生毕业论文壳聚糖磁性载药微球的研究及性能分析院系名称:材料与化学工程学院专业班级:应用化学10-1班学生姓名:唐宇佳指导教师:王晓丹职称:讲师黑龙江工程学院二○一四年六月The Graduation Thesis for Bachelor's Degree Magnetic Chitosan Microspheres Research and Performance AnalysisCandidate:Tang YujiaSpecialty : Applied ChemistryClass : 10-1Supervisor:Lecture Wang XiaodanHeilongjiang Institute of Technology2014-06·Harbin摘要近些年随着人们的生活水平及科技的提高,普通的药物已经不能满足人类的需求,因此在此基础上科学家们研究了新型的药物。

壳聚糖(Chitosan)能使血液迅速地被凝固,我们通常用它来止血。

由于它具有生物相容性所以还可以用它作为填埋伤口,其还能摧毁细菌、加快伤口的好转、吞噬分泌物、不受水的干扰等作用,磁流体是利用Fe3+和Fe2+以在碱性的条件下制取的。

以壳聚糖、姜黄素、磁流体为原料采用复乳化交联法获得磁性载药壳聚糖微球。

最后对磁性壳聚糖载药微球的磁性、形貌、药物缓释进行研究。

实验表明,最佳反应条件是壳聚糖醋酸溶液的浓度为 1.5%,适量的姜黄素和磁流体,乳化剂的量是壳聚糖醋酸溶液的20%,液体石蜡为200%,交联剂为50%,转速300r/min,反应温度在60℃时反应2h得粒径均匀的黄色的沉淀,即壳聚糖磁性载药微球,其外貌光滑,粒径在10~20μm之间,能在较长的时间里进行药物缓释,时间长达6小时以上。

关键词:壳聚糖;磁流体;姜黄素;载药微球;药物缓释ABSTRACTIn recent years with the improvement of people's living standards and technology,common drugs have been unable to meet human needs,therefore,on this basis,scientists have studied the novel drug.Chitosan blood can be rapidly solidified,we usually use it to stop the bleeding. Because of its biocompatible so you can use it as a landfill wounds,It can also destroy bacteria and accelerate wound improved,swallowed secretions,interference and other effects from water,MHD is the use of Fe3+and Fe2+under alkaline conditions in preparation for.Chitosan,curcumin,magnetic fluid as raw materials using a complex emulsion cross linking method to obtain magnetic chitosan microspheres containing the drug,finally,the magnetic Chitosan microspheres magnetic morphology,drug delivery research.Experiments show that The optimal reaction conditions for the concentration of chitosan was 1.5% acetic acid solution and the right amount of curcumin and magnetic fluids,the amount of emulsifier is 20% of chitosan acetic acid solution,liquid paraffin was 200%,crosslinking agent is 50%,the speed of 300 r/min,the reaction temperature of the reaction have a uniform particle size of the yellow precipitate 2h at 60℃,the chitosan magnetic carrier drug microsphere is.Its appearance is smooth,particle size between 10~20μm,the drug release can be a long time,he time up to more than six hours.Key words: Chitosan; magnetic fluid; curcumin; microspheres; drug deliver目录摘要 (I)Abstract (II)第1章绪论 (1)1.1本课题的选题背景 (1)1.2研究目的及意义 (1)1.3国内外研究现状 (2)1.3.1国外研究现状 (2)1.3.2国内研究现状 (3)1.4壳聚糖载药微球微球的简介 (4)1.4.1载药微球 (4)1.4.2壳聚糖简介 (5)1.4.3壳聚糖应用 (5)1.5主要研究内容 (7)第2章壳聚糖空白微球的制备 (8)2.1实验药品与仪器 (8)2.1.1实验药品 (8)2.1.2实验仪器 (8)2.2空白微球 (8)2.2.1壳聚糖空白微球的制备 (8)2.3试验方法 (10)2.3.1实验内容 (10)2.3.2样品的表征 (10)2.4结果与讨论 (11)2.4.1反应温度对产物性能的影响 (11)2.4.2对产物性能的影响 (11)2.4.3联时间的影响 (11)2.5本章小结 (12)第3章壳聚糖磁性载药微球的制备 (13)3.1壳聚糖磁性载药微球的合成 (13)3.2.1磁性微球 (13)3.2.2磁流体 (13)3.2.3姜黄素 (14)3.3实验药品与仪器 (14)3.3.1实验药品 (14)3.3.2实验仪器 (14)3.4技术路线 (15)3.5壳聚糖磁性载药微球的合成 (15)3.5.1实验内容 (15)3.5.2样品的性质与表征 (16)3.6壳聚糖磁性载药微球的药物释放 (17)3.6.1标准曲线的建立 (17)3.6.2药物缓释 (18)3.7本章小结 (19)结论 (20)参考文献 (21)致谢 (24)附录 (25)第1章绪论1.1本课题的选题背景近些年随着人们的生活水平及科技的提高,普通的药物已经不能满足人类的需求,因此在此基础上科学家们研究了新型的药物,现在各国都对特殊药物载体进行研究,将生命安全和预防疾病等作为研究的主要目的。

磁性壳聚糖微球固定化脂肪酶的研究

磁性壳聚糖微球固定化脂肪酶的研究

磁性壳聚糖微球固定化脂肪酶的研究Study of immobilization of lipase in magnetic chitosan microspheres纵伟刘艳芳赵光远ZONG Wei LIU Yan-fang ZHAO Guang-yuan(郑州轻工业学院食品与生物工程学院,河南郑州450002)(School of Food and Biological Engineering,Zhengzhou University of Light Industry,Zhengzhou,Henan450002,China)摘要:目的:为制备具有高活性的固定化脂肪酶。

方法:以磁性壳聚糖微为载体,用物理吸附法固定化脂肪酶,对影响固定化的各种因素进行考察,确定了最优条件,并比较游离酶和固定化酶的pH和热稳定性,研究固定化酶的使用稳定性;结果:固定化的适宜条件为采用加酶量600U/g,温度5℃,pH7.0,固定时间2h。

固定化酶的pH和热稳定性都优于游离酶,固定化酶连续使用5次,其相对酶活仍为使用前的57.8%,具有较好的操作稳定性。

结论:磁性壳聚糖微球是固定脂肪酶的良好载体。

关键词:磁性壳聚糖微球;固定;脂肪酶Abstract:Objective:To produced the immobilized lipase with higher activity; Methods:Lipase(EC3.1.1.3)was immobilized in magnetic chitosan microspheres by physical adsorption.In this article.different factors that influenced the immobilization were investigated,and the optimum conditions were ascertained.Comparative studies of pH and thermal stability between free lipase and immobilized lipase were also conducted;Results:The optimum factors of immobilization were as follows:600U/g lipase was added to the solution at pH7.0,5℃for2h.In comparison with free lipase,the pH and thermal stability of immobilized lipase was increased.To use in hydrolyzation of oil,the immobilized enzyme activity remained activity of 57.8%after5repeated hydrolyzation.Conclusion:Magnetic chitosan microspheres was a kind of good support for immobilized enzyme. Keywords:Magnetic chitosan microspheres;Immobilization;Lipase——————————基金项目:河南省教育厅杰出科研人才创新工程项目(项目编号:2007KYCX0020)作者简介:纵伟(1965-),男,郑州轻工业学院食品与生物工程学院教授、博士。

壳聚糖磁性纳米材料吸附铜离子的研究概要PPT课件

壳聚糖磁性纳米材料吸附铜离子的研究概要PPT课件
第1页/共19页
合成磁性壳聚糖纳米吸附材料的方法
✓(Wang等研究)通过共沉淀法,其制备方法是在壳聚糖的存在下,加入沉淀剂 NaOH沉淀二价铁盐和三 价铁盐得到的磁性壳聚糖纳米粒子,对Cu2+的吸附容量为21.5mg/g 。 ✓(Zhou等研究)在壳聚糖包覆的磁性纳米粒子表面修饰 -酮戊二酸( -KA-CCMNPs) ,进一步提高了对 Cu2+的吸附,吸附量可达到96.15mg/g。 ✓。 。 。 。
表面。
第13页/共19页
实验结果与讨论 磁性纳米颗粒的磁性分析
图8 Fe3O4(a)和壳聚糖磁性纳米颗粒(b)的磁滞回线曲线 壳聚糖磁性纳米复合材料的饱和磁化强度是21.5emug-1,纯的磁性纳米颗粒的磁化强度是 83.2emug-1,表明复合纳米材料中所含的磁性物质约为纯磁性纳米颗粒的25%(重量) 2、此外还可从图中分析的到壳聚糖磁性纳米复合材料具有超顺磁性。 3、饱和磁化强度的降低,一方面与壳聚糖磁性纳米颗粒中掺杂高聚物的量有关,另一方面,可 能与油酸山梨醇酯(span-80)覆盖在Fe3O4纳米粒子的表面形成一个死层,使表层内部的结晶发 生紊乱。
第16页/共19页
对影响磁性壳聚糖纳米粒子吸附效果的假设
壳聚糖虽然具有对重金属的吸附容量很大,但是相对于传统的吸附量有待于提高?问题就来了,如何提高固有 的吸附量: 1、通过内因提高:提高键合率,提高基团活性; 2、外因提高:提高壳聚糖附着的稳定性(通过减少丢失减少浪费),使溶液处于一个合适的外部环境中,温 度,PH,重金属的浓度等。 •覆盖的初步设想 控制实验铁纳米材料的粒径与表面修饰剂分子的大小比例,通过两分子的比例计算,算出最大的表面覆盖比, 结合实验其他条件调配出最大的吸附比的配方。 •加深对壳聚糖键合的认识 壳聚糖键合到Fe3O4的理论原理,羧甲基化。 a、提高键合率处于合适的范围,b、在键合的基础上使提高已键合基团的活性,变换样品的pH等其他条件, 考察键合于Fe3O4上的壳聚糖基团的活性的变化。

微球的制备课件ppt

微球的制备课件ppt
微球
2021/3/10
1
微球(microspheres)
含义:指药物分散或吸附在高分子、聚合物 基质中而形成的微粒分散体系。
微球多数产品为灭菌的冻干流通性粉末。 微球是一种微小球状实体的固体骨架物。 大小在1-300微米,甚至更大。 微球和微囊统称微粒(microparticles)
2021/3/10
2021/3/10
31
方法:将药物分散于基质材料的溶液中,加 入加入交联剂固化成凝胶状,再分散成微粒 分散系。
例:丝裂霉素C微球 按1:100(质量比) 比例取丝裂霉素C和褐藻胶,先将褐藻胶用 蒸馏水于80℃溶解成均一粘稠液体,浓度为 6%,再依次加入丝裂霉素C和0.1%氯化钙 溶液适量混匀,此混合液在交联固化剂
2021/3/10
9
2.缓释与控释性 属长效制剂,减少给药次数,消除药物峰谷
现象。
3.栓塞性 微球直接经动脉管导入,阻塞在肿瘤血管,
断绝养分,抑杀癌细胞,为双重抗肿瘤制剂。
4.掩盖药物不良气味
2021/3/10
10
5.提高药物的稳定性,易氧化的胡萝卜素、 对水敏感的阿司匹林、易挥发的挥发油、樟 脑混合物。
6
按靶向性分类
1.普通注射微球
经静脉或腹腔注射后粒径在2微米以下的微 粒被网状内皮系统吞噬,而达到肝、脾等部 位。
粒径在7-12微米的可被肺摄取,主要浓集 于肺。
2021/3/10
7
2.栓塞性微球
注射大于12微米的微球,可滞留于肿瘤部位 的血管内发挥作用,提高药物浓度,增强药 物作用时间。
3.磁性微球
在制备过程中将磁性微粒包入其中,用二度 空间磁场在体外定位,使其具有靶向性。
2021/3/10

壳聚糖ppt课件

壳聚糖ppt课件
2019 13
四 壳聚糖抑菌性能影响因素、机 理及应用
1 壳聚糖的抑菌性能影响因素
(1) 分子量对壳聚糖抑菌性能的影响:
壳聚糖分子量对其抑菌性能的影响初步认为与不同 分子量壳聚糖的不同作用机理及细菌的不同结构与特性有关。
(2)浓度对壳聚糖抑菌活性的影响:
水溶性壳聚糖的抗菌活性随其浓度的增加而增加, 且它的抗真菌活性强于抗细菌活性。
2019 9
3 水溶性甲壳素的热性质
水溶性甲壳素的玻璃化转变温度( Tg)是 219.6℃。而脱乙酰度为95.8l%的壳聚糖的玻璃 化温度是202.6℃。水溶性甲壳素的玻璃化转变温 度高于壳聚糖,主要是因为水溶性甲壳素含有较多 的乙酰基,分子间的作用较壳聚糖强,分子运动更 困难。从水溶性甲壳素和壳聚糖的热失重结果分析, 二者在60℃附近开始脱水,水溶性壳聚糖脱去总重 的4.61%,而壳聚糖脱去了3.69%,说明水溶性甲 壳素的亲水性更好,在环境条件下样品含水量高, 与水的作用更强。
(3)壳聚糖在农业中的应用
可做种子处理剂、生物农药
2019 17
(4)壳聚糖在医疗卫生中的应用
壳聚糖可用于伤口填料物质,具有杀菌、促进伤口 愈合、吸收伤口渗出物、不易脱水收缩,减少疤痕的生 成等作用。
(5)壳聚糖在环保中的应用
利用壳聚糖的抗菌性,可将壳聚糖用于生化水处理 方面。
(6)壳聚糖在化妆品中的应用
2019
-
19
6 金福生-壳聚糖抗菌成膜喷雾剂
简介:今福生是一种喷雾型分子级隐形敷料,喷洒在皮
肤、黏膜患处及损伤表面,通过全新的物理及生物双重抗 菌机制,隔离、杀灭病原微生物,同时促进组织修复与再 生。 作用机理:物理及生物双重抗菌机理。 使用范围:普通外科、皮肤科、妇产科、烧伤科、整形 美容外科、肛肠科、褥疮的预防与治疗、预防医院内感染 等。

磁性壳聚糖微球

磁性壳聚糖微球
磁性壳聚糖微球结构的特殊性使其兼有磁性无机物与壳聚糖聚合物的特点 它既可以通过 共聚 表面改性等化学反应在微球表面引入多种反应性功能基(如羟基 羧基 醛基 氨基等) 也可通过共价键来固定酶 细胞 抗体等生物活性物质 在外加磁场作用下进行快速运动和分 离 因此在固定化酶 细胞分离 免疫诊断及肿瘤靶向治疗 重金属离子的吸附 外源凝集素 和蛋白质的分离和提纯 DNA 的分离等方面均有广泛的应用 3.2.1 固定化酶 固定化酶是指利用物理吸附或化学结合法将自由酶固定到载体上 以提高酶的 操作稳定性和反复回收利用酶的技术 常用的酶固定方法有 吸附法 包埋法 共价结合法和 交联法 何炳林等[8]以壳聚糖作为载体 用吸附法对脲酶进行固定化研究 并讨论了不同条件 对固定化的影响 结果表明 磁性壳聚糖对脲酶的固载量与磁性壳聚糖的粒径 交联度及酶溶 液的离子强度成反比 固定化脲酶和自由酶的最适温度为 80ºC 和 70ºC 固定化脲酶和自由酶 的米氏常数 Km 分别为 0.00546mol/L 和 0.0190 mol/L 而且 他们还以环氧氯丙烷活化的磁性壳 聚糖作为载体 以共价结合法对脲酶进行固定化研究[9] 结果表明 在 25ºC 时 活化磁性壳聚 糖微球对脲酶的固定化在 2h 时就达到了最大值 固定化脲酶和自由酶的米氏常数 Km分别为 0.042 mol/L 和 0.0080 mol/L 这说明 用磁性壳聚糖微球作为固定化酶的载体可以使固定化酶的分离 简单易行 而用活化法得到的固定化酶则对底物的吸附作用更强 作用效果更好 若在生产上 应用磁性壳聚糖微球固定化酶 不但可以反复回收利用自由酶 还可以实现生产工艺和检验操 作的连续化和工业化 3.2.2 细胞分离 从生物过程中经济地分离出微生物对生物产品的回收和污水的净化都具有重要 意义 一般分离的方法有机械分离和活性污泥分离 机械分离又可分为离心分离和过滤分离 但离心分离需要消耗许多能量 而阻塞使得过滤变得非常麻烦 活性污泥处理过程虽然是最大 的生物过程 但这种分离方法有一个很大的缺点 需要很长的停留时间和大尺寸的沉清槽 Hiroyuki 等[3]以磁性壳聚糖微球作为载体,利用磁力和壳聚糖对微生物的吸附能力从培养基中分 离出大肠杆菌 实验结果证明 磁性壳聚糖微球对细胞具有很强的吸收能力 大肠杆菌只要 1min 就能以沉淀形式被吸收 每克的磁性壳聚糖微球大约可以吸收 1g 的大肠杆菌 而且在 pH3.0 7.0 内吸收率可高达 90%以上 即使不同微生物同时在污泥中共存 它仍然显示出高度的吸附 能力 加入磁性壳聚糖后 活性污泥处理过程只需要很少的能量和很短的操作时间 3.2.3 肿瘤靶向治疗 用化学疗法治疗恶性肿瘤经常不尽人意 这是因为传送到肿瘤部位的抗癌 药物不够 通过用磁性壳聚糖微球作为载体固载抗癌药物 利用磁性壳聚糖微球中的阳离子结 合荷负电的糖肫聚糖(GAG) 肝素 脑血管中的细胞 对脑瘤进行靶向治疗是一种新的方法 如 Hassan 等[10]通过溶剂蒸发法 用戊二醛交联制备担载抗癌药物(OX)的磁性壳聚糖亚微粒,并 对该物质的形成条件与功能进行实验研究 结果证明 磁性壳聚糖微球内部残余抗癌药物越多

免疫磁性微球的研究现状PPT教学课件

免疫磁性微球的研究现状PPT教学课件


变动所引起的句法和协韵的变化。如《浣溪沙》
上下阕的末
句,原为七言一句,句末协韵。乐曲
摊开后,就破七字为十
字,成为七言、三言两句,
改于三言末协韵,名《摊破浣溪
沙》。
婉约与豪放
明张綖:“少游多婉约,子瞻多豪放,当以婉约为主。”清王士 禎加以补充道:“仆谓婉约以易安为宗,豪放惟幼安称首”。(见《 花草蒙拾》)这些从宏观角度概括宋词中两种主要艺术风格,而以秦 观、李清照和苏轼、辛弃疾分别为其代表作者。
教授专题报告
免疫磁性微球(Immunomagnctic beads,IMB) 是免疫学和磁载体技术 免疫生物磁性微球 结合而发展起来的一类新型材料。IMB是包被有单克隆抗体的磁性微球,可 与含有相应抗原的靶物质特异性地结合形成新的复合物。通过磁场时,这 种复合物可被滞留,与其它组分相分离,该过程称为免疫磁性分离法 (Immunomagnctic Separation)。免疫磁性分离简便易行,分离纯度高,保 留靶物质活性,且高效、快速、低毒,可广泛应用于细胞分离和提纯、免 疫检测、核酸分析和基因工程、作靶向释药的载体等领域。
一般称为“
换头”,或称“过变”。
重头:唐宋词中上下片声
调全同的,叫“重头”。
减字:唐宋曲子词中的术语。词的句度和声韵,都须按
谱填
写,不能变换。但当时的音乐家的声腔方面,
仍可自由伸缩
,因旧曲为新声。如《木兰花》原
为七言八句,后将第一三
五七句各减去三字,称
为《减字木兰花》,押韵也有改变。
摊破:又名“摊声”。唐宋曲子词中的术语。指乐曲节拍
词初名曲、曲子、曲子词。简称“词”,又名乐府、近体乐府 、乐章、琴趣,还被称作诗余、歌曲、长短句。归纳起来,这许多 名称主要是分别说明词与音乐的密切关系及其与传统诗歌不同的形 式特征。

壳聚糖基分子印迹磁性微凝胶的制备及释药特性ppt实用资料

壳聚糖基分子印迹磁性微凝胶的制备及释药特性ppt实用资料
(Molar ratio of caffeine/glucosamine:1/10; Molar ratio of genipin/glucosamine:1/2) 结果与讨论
——X射线衍射分析 Fe3O4@SiO2@MIH (c)
背景 ——分子印迹技术
背景 ——分子印迹技术
Effect of template amount on release rate. 结果与讨论
——扫描电镜分析 以具有良好生物相容性、降解性的壳聚糖为功能聚合物母体,以从栀子果实中提取的京尼平为交联剂,扩大了功能单体和交联剂的选 择范围; 壳聚糖基分子印迹磁性微凝胶的制备及释药特性 结果与讨论
——X射线衍射分析 Release rate of theophylline (Molar ratio of caffeine/gl-ucosamine:1/10; Molar ratio of genipin/glucosamine:1/2; Loading: 10
印迹过程多在有机溶剂中完成,对分子印迹材料的 选择吸附性研究较多。
背景 ——超顺磁性材料
超顺磁性:不会出现磁滞,剩磁和矫顽力 都为零
应用:靶向药物输送、生物传感器、核磁 共振成像(MRI)对比增强、快速分离、 痕量特定目标物质的浓缩
课题的提出
分子印迹技术 超顺磁性 药物控制释放
反相乳液法 分子印迹磁性微凝胶 原料:壳聚糖、京尼平、咖啡因
mg/g dry gels)
Caffeine/Glucosamine
实验部分
60
——印迹和非印迹磁性微凝胶的制备
壳聚糖基分子印迹磁性微凝胶的制备及释药特性
感谢创新化学实验与研究 项目对本研究工作的资助 !
壳聚糖基分子印迹磁性微凝胶 的制备及释药特性

壳聚糖、甲壳素应用PPT课件

壳聚糖、甲壳素应用PPT课件

涂依
戊二醛为交联剂, 以涂覆的方法制备了壳聚糖 /羧甲基壳聚糖双层复合 膜, 羧甲基壳聚糖的分子量不同, 研究对比不同分子量羧甲基壳聚糖 双层复合膜的创伤修复效果。实验结果表明: 制备的双层复合膜对创伤 都有一定的修复效果,但是羧甲基壳聚糖的分子量越小,创伤修复效 果越好
余丕军
通过观察胶原蛋白 - 壳聚糖( 80: 20) 复合纳米纤维膜修复 SD 大鼠背部全层皮
营养药物载体 针对壳聚糖微球作为药物载体的研究已经有很多,但其作为营养药物载体的研究则比较少。目前,
壳聚糖微球在营养物运送方面的研究主要是作为维生素载体。
8
甲壳素生物质转化为高附加值化合物
随着全球石油、天然气等传统化石资源逐渐枯竭,人们正在努力寻求新的替代能源。生物质是 一种天然可再生资源,数量巨大,价格低廉,丰富的生物质资源有望成为未来获取燃料和高附加值 化学品的主要来源。新加坡国立大学的颜宁教授等提出了甲壳素生物质精炼的概念,同时指出甲壳 素生物质来源丰富,应该像纤维素生物质一样被充分利用,使其转化成为具有较高价值的化学品。
表面释放
壳聚糖微球 溶蚀释放
扩散释放
7
壳聚糖微球在药物载体中的应用
普通药物载体 壳聚糖微球作为普通药物的载 体,能提高药 物稳定性,保持药物长期活性。目前已有多种药物可通
过壳聚糖微球缓释,如四环素、奈普生、阿司匹林等。药物经过壳聚糖微球负载后缓释作用十分明显, 释放时间与原药相比都显著地延长。
生物大分子药物载体 用 壳聚糖微球作为多肽、蛋白质类药物的载体,不仅可以保护药物免受消化道酶的破坏及pH值的
肤缺损创面的作用, 修复后14d 实验组创面已经基本对合; 而仅用油纱及干纱布
包扎并在创伤外缘打包固定的对照组创面对合不整齐, 创面较实验组大。证实

中小学优质课件免疫磁性微球的研究现状课件.ppt

中小学优质课件免疫磁性微球的研究现状课件.ppt
教授专题报告
免疫磁性微球(Immunomagnctic beads,IMB) 是免疫学和磁载体技术 免疫生物磁性微球 结合而发展起来的一类新型材料。IMB是包被有单克隆抗体的磁性微球,可 与含有相应抗原的靶物质特异性地结合形成新的复合物。通过磁场时,这 种复合物可被滞留,与其它组分相分离,该过程称为免疫磁性分离法 (Immunomagnctic Separation)。免疫磁性分离简便易行,分离纯度高,保 留靶物质活性,且高效、快速、低毒,可广泛应用于细胞分离和提纯、免 疫检测、核酸分析和基因工程、作靶向释药的载体等领域。
基本技术路线:制成磁性材料的微球,再在微球表面引入活性基团, 通过载体表面偶联反应可将抗体结合到载体上,形成免疫磁性微球。
优质微载体的性能:• 合适与均一的磁响应强度, • 较小且均一的粒径, • 稳定均一、特异吸附的表面性能。
磁性微载体的制备:
•包埋法:将磁性粒子分散于高分子溶液中,通过雾化、絮凝、沉 积、蒸发等手段得到磁性高分子微球。
由于纳米磁性高分子微球具有以上特性,可根据不同需要,通过共聚, 表面改性,赋予其表面多种特定的反应性功能基,进而结合各种功能物质, 广泛用于有机合成载体、亲和色谱填料、细胞的标记与分离、固定化酶及 细菌、核酸的分离与纯化、生物芯片材料、工业废水净化、靶向释药系统 的载体和免疫分析等。
免疫磁性微球的制备
外加磁场作用力与磁性微球的关系
磁性高分子微球决定了免疫磁性微球的大小和形状。Hirschein得到外加磁 场作用力与磁性微球的关系为:
F=(Xv - Xv0) VH (dH/dX)
其中F为外加磁场作用力;Xv为磁性微球的磁化率; Xv0为介质的磁化率; H为外加磁场;V为磁性微球的体积; dH/dX为磁场强度。

微球的制备 ppt课件

微球的制备  ppt课件
6.防止药物在胃内失活或减少对胃的刺激性, 如尿激酶、红霉素、胰岛素等
7.使液态药物固态化便于应用和贮存
如油类、香料、脂溶性维生素。
ppt课件
11
8.将活细胞或生物活性物质包囊
如胰岛、血红蛋白。在体内生物活性高而具 有很好的生物相容性和稳定性。
ppt课件
12
研究进展: 20世纪70年代——粒径5微米-2毫米的微囊。 20世纪80年代——1-10微米的微粒 第三代——靶向性微球
ppt课件
22
2.)邻苯二甲酸醋酸纤维素(CAP)
在强酸中不溶解,可溶于PH>6的水溶液, 分子中含游离羧基,可单独使用,或与明胶 配合使用。
3.)甲基纤维素(MC)—用于成球材料的 用量10-30g/L,亦可与明胶、羧甲基纤维 素、聚乙烯吡咯烷酮(PVP)等用作复合成 球材料。
ppt课件
最为常用,稳定、无毒,成球性好。
1.)明胶——动物皮骨中的胶原的部分水解 产物,不溶于冷水,能溶于热水、冷却后成 凝胶,最为常用的成球材料之一,可口服或 注射。Fra bibliotekppt课件
19
2.)阿拉伯胶—常与明胶等量配合使用,用 量为20—100g/L
3.)海藻酸盐—多糖类化合物,稀碱从褐藻 中提取,可溶于不同温度水中,常用海藻酸 钠,由于加热可使其断键,破坏其粘度,故 采用膜过滤除菌。
2
ppt课件
3
ppt课件
4
ppt课件
5
分类: 按载体材料生物学特点 1.生物降解微球 白蛋白微球、淀粉微球、明胶微球等 此类微球可口服、注射、栓塞给药。 2.非生物降解微球 聚丙烯酰胺微球、乙基纤维素微球、离子交换树脂

《壳聚糖纤维介绍》课件

《壳聚糖纤维介绍》课件
《壳聚糖纤维介绍》ppt 课件
CONTENTS
目录
• 壳聚糖纤维简介 • 壳聚糖纤维的应用 • 壳聚糖纤维的生产工艺 • 壳聚糖纤维的市场前景 • 总结与展望
CHAPTER
01
壳聚糖纤维简介
什么是壳聚糖纤维
定义
制备方法
壳聚糖纤维是一种由甲壳素脱乙酰化 得到的天然高分子材料制成的纤维。
通常采用溶液纺丝或熔融纺丝的方法 制备壳聚糖纤维。
壳聚糖纤维具有较好的吸附性能,能 够有效地吸附水中的重金属离子、有 机物和色素等污染物,为水处理提供 了一种高效、环保的方法。
壳聚糖纤维在环保领域的应用具有可 持续性和可降解性,符合绿色环保的 理念。
纺织领域的应用
壳聚糖纤维在纺织领域的应用包括制 作功能性纺织品和智能纺织品等。
壳聚糖纤维还可以与其他纤维混纺, 制作出具有多种功能的纺织品,如防 水透气的户外服装、智能调温的保暖 内衣等。
CHAPTER
02
壳聚糖纤维的应用
医疗领域的应用
壳聚糖纤维在医疗领域的应用包括制作医疗敷料、止 血材料、药物载体等。
输标02入题
由于壳聚糖纤维具有抗菌、消炎、促进伤口愈合等特 性,因此被广泛应用于伤口护理和手术止血等方面。
01
03
壳聚糖纤维制成的医疗敷料和止血材料具有良好的透 气性、吸水性和生物相容性,能够提供良好的伤口愈
壳聚糖纤维具有良好的抗菌、防臭、 防霉等性能,可以用于制作内衣、袜 子、床单等贴身纺织品,提高穿着的 舒适度和卫生水平。
CHAPTER
03
壳聚糖纤维的生产工艺
壳聚糖的提取工艺
壳聚糖的提取
从虾蟹壳中提取甲壳素,经过脱乙酰基反应后得到壳聚糖。
提取条件控制

壳聚糖纤维PPT课件

壳聚糖纤维PPT课件
一、壳聚糖纤维的性质
1、壳聚糖的基本性质
壳聚糖,又称甲壳胺,是甲壳素的N-脱乙酰基的产物,是自然界中 的唯一多糖,广泛存在于虾、蟹、蛹及昆虫等动物外壳以及藻类、菌类的细 胞壁中。地球上每年甲壳素的生物合成量仅次于纤维素,达到数十亿吨。
由于原料及生产方法的差异,其相对分子质量从几万到几百万不等。 一般而言,N-乙酰基脱去55%以上就可以称之为壳聚糖,这种脱乙酰度的壳 聚糖能溶于1%乙酸或1%盐酸。
第5页/共29页
二、甲壳素和壳聚糖的制备技术
虾蟹壳
洗涤
晒干
脱钙
4%-6% HCl
洗涤 10% NaOH
甲壳素
洗涤、干燥
脱色
洗涤
脱蛋白
0.5% KMnO4 80OC,10% 草酸
图1 甲壳素的制备工艺流程
第6页/共29页
二、甲壳素和壳聚糖的制备技术
与国内相比,国外生产甲壳素的方法主要是以蟹壳为原料, 用2%NaOH溶液在70℃先提取蟹壳中的蛋白质,然后用过量的亚硫 酸除去甲壳中的钙以获得甲壳素。该方法主要在于回收再利用亚 硫酸,以降低成本。
第26页/共29页
六、结论
可以预见,在不久的将来,壳聚糖纤维的市场需求量将会明显的上升,从而带动 壳聚糖纤维生产技术的革新,最终形成生产→消费→生产的良性循环。而在这场革命中, 谁掌握了新的技术,谁将掌控整个行业领域。
第4页/共29页
二、甲壳素和壳聚糖的制备技术
1、甲壳素的提取
尽管许多甲壳类动物都含有甲壳素,但从虾、蟹壳中提取 更为方便。虾、蟹壳主要由三种物质构成:以碳酸钙为主的无机 盐、蛋白质和甲壳素。
从虾蟹壳中提取甲壳素的流程如下:先将虾蟹壳洗净、晒 干,加入4%-6%的盐酸,常温下浸泡24h,使其中的无机盐转化为 氯化钙而溶解分离,将脱钙后的甲壳用水洗涤干净后加入10%的 NaOH溶液中煮沸6h,以去除蛋白质得到甲壳素的粗产品。将甲壳 素粗产品加入到0.5%的KMnO4溶液中搅拌并浸泡1h后水洗至中性, 然后在800C ,10%的草酸溶液中搅拌1h,使其脱色,再水洗、干 燥得到较高纯度的甲壳素。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、课题的研究内容
2.1 产物是磁性壳聚糖微球。
2.2 不同比例氯霉素和磁性壳聚糖微球的复合。
2.3 对载药后磁性壳聚糖微球进行表征,包括XRD、SEM, TG以及UV等。
3、实验方法

3.3 磁性壳聚糖微球装载氯霉素
3.4 用UV测定微球的缓释效果
(1)拟定PH=7.4 温度为37℃为测试条件( 2)根据标准曲线做出缓释曲线
4、实验结果
4.1 XRD图分析
图3(a)是壳聚糖的XRD图,在18.5°附近有明显 的特征峰。由图可见,XRD中出现7个衍射峰, 其特征参数与Fe3O4标准卡片PDF#65-3107对 应较好,无杂相衍射峰存在
4.2 TG图分析
(a) 纳米Fe3O4的热分析曲线
(b) CS的热分析曲线
(c) Fe3O4@CS热分析曲线
4.4 SEM图
可以看出磁性壳聚糖微球有完整的球形,没有发 生大量的聚集,但是粒子直径不均匀从1um-2um 不等。
ቤተ መጻሕፍቲ ባይዱ
4.6 缓释性能分析
(2)UV图
时间-吸光度图
时间-释放率图
5、结论
(1)溶剂热法 无水三氯化铁为铁源 乙二醇作为溶剂
乳化交联法 交联剂(戊二醛)
(2)XRD Fe3O4 7个特征峰 TG 500℃以下的热稳定性良好 UV 3h 39% 20h 73%
(d) 1:2 Fe3O4@CS负载氯 霉素热分析曲线
4.3 极性和非极性的变化
(a)Fe3O4纳米粒子在水中
(b) 磁性壳聚糖微球在水中
Fe3O4纳米粒子可以稳定地悬浮在极性溶剂(水),如 图(a),但不能稳定在四氯化碳溶液上。然而, Fe3O4纳米粒子复合壳聚糖后观察浮在水面,如图 (b),但稳定悬浮在四氯化碳上。
谢谢
磁性壳聚糖微 球
内容提要
1、课题的研究作用和意义 2、课题的研究内容 3、实验方法 4、实验结果 5、结论
1、课题的研究作用与意义
1.1 传统氯霉素使用方法及缺点
(1)传统使用方法:口服或者静脉注射。
(2)传统提取方法的缺点:会引起致命的再生不良性贫血
1.2 磁性靶向给药的定义
在外加磁场的作用下,引导负载药物在体内定向移动,定位 浓集从而提高药物的靶向性
相关文档
最新文档