完全平方公式教案精品
《完全平方公式》教案【通用七篇】
《完全平方公式》教案【通用七篇】(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!《完全平方公式》教案【通用七篇】《完全平方公式》教案篇1一、教学目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2.并初步运用;难点是完全平方公式的运用。
完全平方公式教案【优秀3篇】
完全平方公式教案【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!完全平方公式教案【优秀3篇】作为一名教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
1.6.1完全平方公式.(教案)
一、教学内容
本节课选自教科书1.6.1节,主要教学内容为完全平方公式。内容包括:
(1)完全平方公式的推导:a²+b²+2ab=(a+b)²,a²-b²=(a+b)(a-b);
(2)完全平方公式的应用:解决平方差问题,简化计算过程;
(3)完全平方公式的拓展:多项式的完全平方公式及其应用。
突破方法:通过对比、归纳、总结,让学生掌握多项式完全平方公式的特点,如x²±2xy+y²=(x±y)²,以及拓展到更多类似公式。
(注:由于字数限制,此处未能达到2000字,但已尽量详细列出教学难点与重点。在实际教案中,可根据需要进一步拓展相关内容。)
四、教学流程
(Hale Waihona Puke )导入新课(用时5分钟)同学们,今天我们将要学习的是《完全平方公式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算两个数的平方和或平方差的情况?”(如:计算正方形和长方形的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索完全平方公式的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式的推导和应用这两个重点。对于难点部分,如多项式的完全平方公式,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与完全平方公式相关的实际问题,如计算平面直角坐标系中两点间的距离。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际测量和计算来验证完全平方公式在解决实际问题中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
6 第2课时 完全平方公式的运用 一等奖创新教案
6 第2课时完全平方公式的运用一等奖创新教案6.完全平方公式(二)教学设计一、课题:1.6(2)完全平方公式的运用二、学情分析学生的知识技能基础:学生通过对本章前几节课的学习,已经学习了幂的运算、整式的乘法、平方差公式,完全平方公式,这些基础知识的学习为本节课的学习奠定了基础.学生活动经验基础:在平方差公式和完全平方公式的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.三、教学任务分析整式是初中数学研究范围内的一块重要内容,整式的运算又是整式中的一大主干,乘法公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,乘法公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且乘法公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.四、教学目标分析:1.知识与技能:熟记完全平方公式,并能说出公式的结构特征,能够运用完全平方公式进行一些数的简便运算,会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算.2.过程与方法:能够运用完全平方公式解决简单的实际问题,并在活动当中培养学生数学建模的意识及应用数学解决实际问题的能力,感悟换元变换的思想方法,提高灵活应用乘法公式的能力,体会符号运算对解决问题的作用,进一步发展学生的符号感.3.情感与态度:在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感受数学的内在美.教学重点:灵活运用完全平方公式、平方差公式、多项式乘法等进行运算.教学难点:几个公式的综合运用.五、授课类型:新授课六、教具:多媒体电子白板七、教学设计分析本节课设计了个6教学环节:情境引入、知识回顾、探索新知、目标检测、课堂小结、延伸迁移教学中应坚持的几个理念:1、教学要紧紧围绕两个学习目标来进行,公式的运用不能简单地以老师讲解为主,要充分体现学生的主体作用,给学生足够的探索新知的时间,先让学生自己探究,然后再小组合作交流,最后学生再归纳出如何巧妙使用公式的方法.2、突破教学重点,教师要有多种预案,要顺其自然,引领学生用自己的办法去解决问题.八、教学过程设计第一环节情景引入活动内容:出示幻灯片,提出问题.(教师提问学生解答的方式进行)有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块糖,……(1) 第一天有a 个男孩一起去了老人家,老人一共给了这些孩子多少块糖?(2) 第二天有b 个女孩一起去了老人家,老人一共给了这些孩子多少块糖?(3) 第三天这(a + b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数一样吗?你能用所学过的公式解释吗?设计意图:通过分糖问题激发学生学习兴趣和探知欲,同时引出今天的课题,而且让学生体会a +b 与(a+b) 的不同,从而更加巩固完全平方公式,并且也为以后运用公式变形解决问题埋下伏笔.第二环节复习回顾1.平方差公式:2.完全平方公式:(教师提问,学生回答,并单独提问学生分析两个公式的区别)设计意图:通过对两个公式的复习,引发学生对两个公式结构的辨析,为下面两个公式的灵活运用打下坚实的基础.3.利用完全平方公式计算(1)(2x+3y) (2)(2x-3y) (3)(-2x+3y) (4)(-2x-3y)设计意图:通过几道简单题的训练,让学生熟练完全平方公式,并且通过几个运算结果的比较,让学生总结出结果的符号规律.第三环节探索新知—完全平方公式的运用例1.思考:怎样计算1022,992更简便呢?(1) 102 ;(2) 99 .(学生自己做,教师找错误的运用白板展示,进一步矫正学生运用公式时可能出现的错误,让学生在辨析中熟练公式).设计意图:让学生体会完全平方公式在一些数的简便运算中的作用,并且让学生感悟出公式中的字母可以代表数字.例2. 运用乘法公式计算:(1) (x+2y-3)(x-2y+3) (2)(x+3) -(x-3)(3) (2x-y) -4(x-y)(x+2y)(找三个学生演板,其他学生自己做,然后再四人学习小组合作交流不同做法,兵教兵,会的给不会的教会,最后学生归纳一题多法,和不同方法的优劣.)设计意图:这几个例题是本节课的重点,也是难点,是对几个公式的综合运用的考察,公式中这几个题先通过学生自己的探究考察了学生综合运用公式的能力,同时也通过一题多法的探讨,让学生体会可以通过适当添加括号,变成符合公示的结构形式,可以巧妙的使计算更加简便.也让学生再次体会公式中的字母原来还可以代表单项式,多想式,甚至扩充到任何一个代数式.让学生在解题之前应注意观察思考,选择不同的方法会有不同的效果,要学会优化选择.第四环节课堂检测—完全平方公式的运用(变式训练1)计算10.2(变式训练2)计算(x-2y-3)(x-2y+3)(变式训练3)计算(x-2y) -(x+2y) .(学生独立完成)设计意图:当堂检测,及时反馈学习效果.通过完成练习使学生进一步提升公式的综合运用能力第五环节课堂小结你知道了什么?你学会了什么?你还有哪些疑惑?(请学生发言总结)设计意图:课堂总结,发展潜能第六环节延伸迁移利用公式的变形进行代数式的化简和求值已知a+b=7,ab=10,求a2+b2,(a-b)2的值.思考:若把题中的条件a+b=7换成a-b=7,怎么计算呢?(课后思考)设计意图:拓宽学生思路,让学生体会运用公式的变形也可以进行计算.九、教学反思1. 本节课始终遵循课程标准所提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展”的理念.2.教学中,采用“动脑想,动手写,会观察,齐讨论,得结论”的学习方法.这样做,充分体现学生的主体性,让教师退在幕后,极大的调动了学生的学习兴趣和探知欲,增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径,思考问题的方法,使学生真正成为教学的主体;这样做,使学生“学”有所“思”,“思”有所“得”,这样做,体现了素质教育下塑造“创新”型人才的优势.最后,结合本节课教学内容,选择具有典型性,由浅入深的例题,让学生认知内化,形成能力.通过发展提高,培养学生迁移创新精神,有助于智力的发展.整节课学生亮点非常多,尤其对两个公式结构的探讨,学生错题的辨析,一题多法的探讨,课堂小结的知识归纳,以及学生提出的困惑的解答都让课堂增色很多.不足之处是例二中第三小题的设计难度过大,导致没有时间在课堂上进行变式训练的检测,有些遗憾.。
完全平方公式优秀教案
完全平方公式优秀教案
一、教学目标
1、认识完全平方公式的概念;
2、掌握完全平方公式的使用;
3、正确应用完全平方公式解方程组。
二、教学准备
1、讲义;
2、黑板、白板;
3、实验用草稿纸和毛笔。
三、教学过程
(1)板书讲解:
(a)完全平方公式的定义:一元二次方程的完全平方公式有三种形式,分别为:
ax2 + bx + c = 0;
x2 + bx = c;
x2 + c = 0;
其中a、b、c为实数,且b2 - 4ac ≥ 0。
(b)完全平方公式的求解:
① 将二次方程化为完全平方公式;
②利用完全平方公式将问题分解为两个相等的完全平方;
③ 把每一个完全平方分解为两个和式;
④ 将每个和式求出根,最后得到结果。
(2)解题演示:
接下来,我就利用以上四步法来解一道完全平方公式的方程组。
让我们来看看方程:x2 + 2x = 8。
解:
① 将二次方程化为完全平方式:
x2 + 2x = 8
② 利用完全平方公式将问题分解为两个相等的完全平方:
x2 + 2x = 8
(x + 1)2 = 9
③ 把每一个完全平方分解为两个和式:
x + 1 = 3
x + 1 = -3
④ 将每个和式求出根,最后得到结果:
x = 2, -4 。
(3)习题训练:
最后,进行习题训练,教师根据学生的实际上课情况,提供适量的习题。
完全平方公式的教案市公开课一等奖教案省赛课金奖教案
完全平方公式的教案一、教学目标1. 知识目标:学生能够理解并掌握完全平方公式的概念和运用。
2. 能力目标:学生能够根据给定的代数表达式应用完全平方公式进行运算和化简。
3. 情感目标:通过实际应用完全平方公式解决问题,培养学生的逻辑思维和解决问题的能力。
二、教学重难点1. 教学重点:(1) 掌握完全平方公式的定义和相关概念;(2) 能够运用完全平方公式解决实际问题。
2. 教学难点:能够灵活运用完全平方公式进行化简和求解。
三、教学内容与过程1. 导入与热身(1) 引导学生回顾之前学过的平方和平方根概念,复习二次方的定义。
(2) 师生互动,激发学生对完全平方公式的兴趣和求知欲。
2. 学习完全平方公式(1) 给出完全平方公式的定义:对于任意实数a和b,有(a + b)² = a² + 2ab + b²。
(2) 教师通过具体例子进行解析和讲解,帮助学生理解完全平方公式的含义和运用方法。
3. 完全平方公式的运用(1) 教师通过具体例子演示如何运用完全平方公式来化简代数表达式。
(2) 学生在教师指导下,进行练习并交流思路,加深对完全平方公式的理解和应用能力。
4. 完全平方公式的应用(1) 教师设计一些实际生活问题,让学生尝试应用完全平方公式解决问题。
(2) 学生根据问题进行思考和讨论,找出合适的解决方法,并运用完全平方公式进行计算和求解。
5. 总结与归纳(1) 教师与学生共同总结完全平方公式的要点和运用技巧。
(2) 学生对完全平方公式进行总结归纳,并记录下来以便复习和巩固。
6. 课后作业(1) 学生自主完成课后练习题,巩固完全平方公式的应用能力。
(2) 学生撰写一篇关于完全平方公式的应用体会和心得体会。
四、教学评价与反思1. 教学评价使用观察和记录法,记录学生在课堂中的表现和参与情况。
2. 教师及时反馈学生的问题和困惑,并提供适当的解决方法和指导。
3. 教师进行教学反思,总结本节课的优点和不足,并进行教学改进。
《完全平方公式》教案
《完全平方公式》教案第一章:引言1.1 教学目标让学生了解完全平方公式的概念和意义。
引导学生通过实际例子发现完全平方公式的规律。
1.2 教学内容完全平方公式的定义和表达式。
完全平方公式的推导和证明。
1.3 教学方法使用图表和动画辅助学生理解和记忆完全平方公式。
1.4 教学评估设计一些练习题,让学生应用完全平方公式进行计算。
观察学生在练习中的表现,及时给予指导和帮助。
第二章:完全平方公式的推导和证明2.1 教学目标让学生理解完全平方公式的推导过程。
引导学生通过证明理解完全平方公式的正确性。
2.2 教学内容完全平方公式的推导方法。
完全平方公式的证明过程。
2.3 教学方法使用图表和动画演示完全平方公式的推导过程。
引导学生通过逻辑推理和数学证明理解完全平方公式的正确性。
2.4 教学评估设计一些证明题,让学生运用完全平方公式进行证明。
观察学生在证明过程中的思路和推理是否清晰。
第三章:完全平方公式的应用3.1 教学目标让学生能够运用完全平方公式解决实际问题。
引导学生通过完全平方公式简化计算过程。
3.2 教学内容完全平方公式在实际问题中的应用。
完全平方公式在简化计算过程中的作用。
3.3 教学方法通过实际例子引导学生运用完全平方公式解决问题。
使用图表和动画演示完全平方公式在计算过程中的应用。
3.4 教学评估设计一些应用题,让学生运用完全平方公式进行计算和解决问题。
观察学生在解题过程中的思路和计算是否准确。
第四章:完全平方公式的扩展4.1 教学目标让学生了解完全平方公式的扩展形式。
引导学生通过完全平方公式的扩展形式解决更复杂的问题。
4.2 教学内容完全平方公式的扩展形式。
完全平方公式的扩展形式在解决问题中的应用。
4.3 教学方法通过实际例子引导学生了解完全平方公式的扩展形式。
使用图表和动画演示完全平方公式的扩展形式在解决问题中的应用。
4.4 教学评估设计一些扩展题,让学生运用完全平方公式的扩展形式进行计算和解决问题。
完全平方公式一等奖教学设计
完全平方公式一等奖教学设计完全平方公式一等奖教学设计第 1 篇目标:1、这一章的学习,使学生掌握二元一次方程组的解法。
2、学会解决实际问题,分析问题能力有所提高。
重点:这一章的知识点,数学方法思想。
难点:实际应用问题中的等量关系。
方法讲练结合、探索交流课型新授课教具投影仪全章小结四人一小组,互相交流学习这一章的感觉,主要学习了哪些知识。
还有不懂的方面?感到困难的部分是什么?方案<一> 基本练习题1、下列各组x,y的值是不是二元一次方程组的解?(1)(2)(3)2、根据下表中所给的x值以及x与y的关系式,求出相应的y值,然后填入表内:xy=4xy=10-x根据上表找出二元一次方程组的的解。
3、已知二元一次方程组的解求a,b的值。
4、解二元一次方程(1)(2)方案〈二〉1.根据已知条件,求出y的值,分别填入下列各图中,并找出方程组的解。
2.写出一个二元一次方程,使得都是它的解,并且求出x=3时的方程的解。
3.已知三角形的周长是18cm,其中两边的和等于第三边的2倍,而这两边的差等与第三边的,求这个三角形的各边长。
设三边的长分别是xcm,ycm,zcm那么你会解这个方程组吗?方案〈三〉1、有甲、乙两种铜银合金,甲种含银25%,乙种含银37.5%,现在要熔成含银30%的合金100千克,这两种合金各取多少千克?2、甲、乙两地之间路程为20km,a,b两人同时相对而行,2小时后相遇,相遇后a就返回甲地,b仍向甲地前进,a 回到甲地时,b离甲地还有2km,求a,b两人速度。
3、小亮在匀速行驶的汽车里,注意到公路里程碑上的数是两位数;1h后看到里程碑上的数与第一次看到的两位数恰好颠倒了数字顺序;再过1h后,第三次看到的里程碑上的数字又恰好是第一次见到的数字的两位数的数字之间添加一个0的三位数,这3块里程碑上的数各是多少?教学素材:a组题:1.已知x+y+(x-y+3)2=0,求x,y的值。
2.若3m-2n-7=0,则6n-9m-6是多少?3.解方程组(1)(2)4、用白铁皮做盒子,每张铁皮可生产12个盒身或18个盒盖,现有49张铁皮,怎样安排生产盒身和盒盖的铁皮张数,才使生产的盒身与盒盖配套(一张铁皮只能生产一种产品,一个盒身配两个盒盖)?5、给定两数5与3,编一道通过列出二元一次方程组来求解的应用题,并使得这个方程的解就是这两个数。
初中数学《完全平方公式》教学设计范文(精选7篇)
初中数学《完全平方公式》教学设计初中数学《完全平方公式》教学设计范文(精选7篇)作为一名教师,编写教学设计是必不可少的,借助教学设计可以提高教学效率和教学质量。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的初中数学《完全平方公式》教学设计范文,欢迎阅读,希望大家能够喜欢。
初中数学《完全平方公式》教学设计篇1学习目标:1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。
2、会推导完全平方公式,了解公式的几何背景,会用公式计算。
3、数形结合的数学思想和方法。
学习重点:会推导完全平方公式,并能运用公式进行简单的计算。
学习难点:掌握完全平方公式的结构特征,理解公式中a、b的广泛含义。
学习过程:一、学习准备1、利用多项式乘以多项式计算:(a+b)2 (a—b)22、这两个特殊形式的多项式乘法结果称为完全平方公式。
尝试用自己的语言叙述完全平方公式:3、完全平方公式的几何意义:阅读课本64页,完成填空。
4、完全平方公式的结构特征:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2左边是形式,右边有三项,其中两项是形式,另一项是()注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△25、两个完全平方公式的转化:(a—b)2= 2=()2+2()+()2=()二、合作探究1、利用乘法公式计算:(3a+2b)2 (2)(—4x2—1)2分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b2、利用乘法公式计算:992 (2)()2分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化()2,()2可以转化为()2。
3、利用完全平方公式计算:(a+b+c)2 (2)(a—b)3三、学习对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?四、自我测试1、下列计算是否正确,若不正确,请订正;(1)(—1+3a)2=9a2—6a+1(2)(3x2—)2=9x4—(3)(xy+4)2=x2y2+16(4)(a2b—2)2=a2b2—2a2b+42、利用乘法公式计算:(1)(3x+1)2(2)(a—3b)2(3)(—2x+ )2(4)(—3m—4n)23、利用乘法公式计算:99924、先化简,再求值;( m—3n)2—( m+3n)2+2,其中m=2,n=3五、思维拓展1、如果x2—kx+81是一个完全平方公式,则k的值是()2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是()3、已知(x+y)2=9,(x—y)2=5 ,求xy的值4、x+y=4 ,x—y=10 ,那么xy=()5、已知x— =4,则x2+ =()初中数学《完全平方公式》教学设计篇2一、教材分析:(一)教材的地位与作用本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。
完全平方公式(教案)
完全平方公式(一)教案武冈三中 姚立云教学目标:1、知识目标:理解公式的推导过程,了解公式的几何背景,能正确应用公 式进行简单的计算。
2、能力目标:渗透化归及数形结合的思想方法,培养学生的发现能力,灵 活运用公式的能力和解决实际问题的能力。
3、情感目标:培养学生敢于挑战,勇于探索的精神和善于观察、大胆创新 的思维品质。
教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行 简单的计算。
教学难点:理解公式中字母的含义,公式的正确运用。
教 具:拼图版、电脑教学设计:一、创设情境,导入新课小组活动:做拼图游戏材料:边长为a 的正方形1个,边长为b 的正方形1个,长为a 、宽为b 的长方形4个。
要求:使用上述材料部分或全部拼出一个大正方形。
二、探索与发现1、学生展示所拼图形,利用面积相等得到公式:2222)(b ab a b a ++=+2、引导学生利用多项式乘以多项式推导2222)(b ab a b a ++=+3、引入课题:完全平方公式4、师生互动师:公式的左边结构特征是什么?生:两个数的和的平方。
师:公式的右边结构特征是什么?生:是一个三项式,其中两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的两倍。
师生共同归纳:两数和的平方,等于它们的平方和加上它们乘积的2倍(简记:首平方尾平方积的2倍中间放)师:你能运用公式2222)(b ab a b a ++=+计算2)(b a -吗?生:可以,把2)(b a -看成2)]([b a -+即可。
师:非常棒,你能把过程写出来吗?生:能。
2222222)()(2)]([)(b ab a b b a a b a b a +-=-+-⋅+=-+=-5、例题分析利用电子白板放映例:运用完全平方公式计算(1)2)2(y x + (2)2)2(y x -解:(1)2222244)2()2(2)2(y xy x y y x x y x ++=+⋅⋅+=+2222)(b ab a b a ++=+(2)22222244)2()2(2)]2([)2(y xy x y y x x y x y x +-=-+-⋅⋅+=-+=- 2222)(b ab a b a ++=+6、基础练习利用电子白板放映(1)判断正误,并改正①222)(y x y x +=+②222)(y x y x -=-③222)(y xy x y x ++=+④ 2222)(y xy x y x ++=-(2)你会填空吗?①__________________2)3(222++=+⋅⋅+=+a a a②____________5________2____)53(22++=+⋅⋅+=+a③______________________2____][)3(2222+-=+⋅⋅+=+=-x x x y x④____________________2______)11000(100122=+⋅⋅+=+=⑤____________________2________]1000[99822=+⋅⋅+=+=(3)利用完全平方公式计算,你一定行!①2)32(y x + ②2)2(y x +-③2)(y x -- ④2)3243(y x - 教师巡视,批阅完成快的学生作业,最后集体点评。
数学公开课教案完全平方公式教学设计
数学公开课优秀教案——完全平方公式教学设计教学目标:1. 理解完全平方公式的含义及推导过程。
2. 能够运用完全平方公式进行计算和化简。
3. 培养学生的逻辑思维能力和团队协作能力。
教学重点:1. 完全平方公式的推导过程。
2. 完全平方公式的运用。
教学难点:1. 完全平方公式的灵活运用。
教学准备:1. PPT课件2. 黑板3. 教学卡片4. 练习题教学过程:一、导入(5分钟)1. 利用PPT课件,展示生活中的完全平方现象,如平方根、平方数等,引导学生关注完全平方概念。
2. 提问:同学们,你们知道什么是完全平方吗?完全平方有哪些特点?二、探究(15分钟)1. 引导学生通过小组合作,探讨完全平方公式的推导过程。
2. 学生汇报推导过程,教师点评并总结完全平方公式:(a±b)²= a²±2ab + b²。
三、例题解析(10分钟)1. 利用PPT课件,展示典型例题,引导学生运用完全平方公式进行解答。
2. 学生独立解答,教师巡回指导,解答过程中强调完全平方公式的运用。
四、巩固练习(10分钟)1. 发放练习题,让学生运用完全平方公式进行计算。
2. 学生互相检查,教师选取部分答案进行讲解。
五、课堂小结(5分钟)1. 引导学生总结本节课所学内容,完全平方公式的含义、推导过程及运用。
2. 强调完全平方公式在实际生活中的应用价值。
教学反思:本节课通过生活中的完全平方现象导入,激发学生的学习兴趣。
在探究环节,引导学生通过小组合作,自主推导完全平方公式,培养学生的团队协作能力和逻辑思维能力。
在例题解析和巩固练习环节,注重完全平方公式的运用,让学生在实际计算中掌握完全平方公式的运用方法。
整个教学过程,注重师生互动,充分发挥学生的主体作用,达到了预期的教学目标。
六、拓展与应用(10分钟)1. 利用PPT课件,展示完全平方公式的拓展应用,如完全平方与平方根的关系、完全平方在几何中的应用等。
初三数学《完全平方公式》教学优质教案范文
初三数学《完全平方公式》教学优质教案范文一、教学内容本节课我们将学习人教版初中数学教材九年级上册第二章《一元二次方程》中第三节《完全平方公式》。
具体内容包括:理解完全平方公式结构特点,掌握完全平方公式推导和应用,解决实际问题。
二、教学目标1. 知识目标:让学生掌握完全平方公式结构特点,能够熟练运用公式解决相关问题。
2. 能力目标:培养学生逻辑思维能力和解决问题能力,提高数学运算技巧。
3. 情感目标:激发学生学习兴趣,培养学生合作精神和探究意识。
三、教学难点与重点教学难点:完全平方公式推导和应用。
教学重点:完全平方公式结构特点及其应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 导入:通过一个实际问题引入完全平方公式,让学生思考如何求解一个数平方。
实践情景:小明篮球弹跳高度为h,每次弹跳后上升高度是h/2,问小明第n次弹跳后,篮球上升总高度是多少?2. 新课导入:引导学生观察平方数规律,发现完全平方公式结构特点。
a. 展示平方数表,让学生观察平方数规律。
b. 学生小组讨论,推导完全平方公式。
3. 例题讲解:通过讲解典型例题,让学生掌握完全平方公式应用。
例题1:计算(3x + 4y)^2。
例题2:已知a^2 + 2ab + b^2 = 64,求a + b值。
4. 随堂练习:让学生独立完成练习题,巩固所学知识。
练习题1:计算(2x 3y)^2。
练习题2:已知x^2 2xy + y^2 = 25,求x y值。
六、板书设计1. 完全平方公式2. 内容:a. 完全平方公式结构特点:a^2 + 2ab + b^2 = (a + b)^2b. 完全平方公式推导过程c. 完全平方公式应用七、作业设计1. 作业题目:a. 计算(5x + 6y)^2。
b. 已知x^2 6xy + 9y^2 = 64,求x 3y值。
答案:a. (5x + 6y)^2 = 25x^2 + 60xy + 36y^2b. x 3y = ±82. 课后思考题:探究完全平方公式其他应用,如解一元二次方程等。
人教版数学八年级上册14.2.2完全平方公式(第二课时)优秀教学案例
小组合作教学策略是指在教学过程中,教师将学生分成若干小组,让学生在小组内进行合作、交流和分享。在本节课的教学中,我设计了多个小组合作活动,以促进学生对完全平方公式的理解和应用。
例如,在完全平方公式的推导过程中,我让学生分组进行讨论,分享各自的思考和发现。在解决实际问题的环节,我让学生分组进行练习,相互检查、相互帮助。通过小组合作,培养学生团队合作意识,提高学生的交流能力和合作能力。
在教学内容上,我突出了以下几个方面:
1.通过生活情境,让学生感受完全平方公式的实际应用,从而理解完全平方公式的内涵。
2.引导学生通过自主探究,发现完全平方公式的推导过程,培养学生的逻辑思维能力。
3.组织学生进行合作交流,分享学习心得,提高学生的团队协作能力。
4.通过对完全平方公式的总结提升,使学生能够灵活运用完全平方公式解决实际问题。
在知识方面,学生需要掌握完全平方公式的定义、推导过程和应用。能够运用完全平方公式解决简单的数学问题,如求解二次方程的根、计算平面几何图形的面积等。通过练习题目的设计,使学生能够在实际问题中运用完全平方公式,提高学生的知识应用能力。
在技能方面,学生需要培养观察、分析、归纳、推理等数学基本技能。能够通过自主探究、合作交流等途径,发现完全平方公式的规律,提高学生的逻辑思维能力。同时,学生需要学会运用完全平方公式解决实际问题,提高学生的实践能力。
(三)学生小组讨论
在学生小组讨论环节,我设计了一系列具有启发性的问题,引导学生进行思考和探究。例如,我提出了以下问题:
1.你认为完全平方公式的应用范围是什么?
2.你能举例说明完全平方公式在实际问题中的应用吗?
3.你认为完全平方公式与其他数学公式有何联系和区别?
学生分组讨论这些问题,分享自己的思考和发现。通过小组讨论,培养学生团队合作意识,提高学生的交流能力和合作能力。
2023最新-《完全平方公式》教案优秀7篇
《完全平方公式》教案优秀7篇(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:它山之石可以攻玉,下面为您精心整理了7篇《《完全平方公式》教案》,希望能够满足亲的需求。
《完全平方公式》教案篇一新疆乌鲁木齐市第54中学于莲凤一、教学内容:本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时—— 完全平方公式。
二、教材分析:完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结,体现了从一般到特殊的思想方法。
完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配方法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。
本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。
完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。
使学生了解到完全平方公式是有力的数学工具。
重点:掌握完全平方公式,会运用公式进行简单的计算。
难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。
三、教学目标(1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。
(2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。
(3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。
(4)体验完全平方公式可以简化运算从而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。
四、学情分析与教法学法学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。
数学教案完全平方公式
数学教案完全平方公式一、教学目标1、知识与技能目标学生能够理解完全平方公式的结构特征。
熟练掌握完全平方公式,并能正确运用公式进行整式的乘法运算。
2、过程与方法目标通过对公式的推导和分析,培养学生的逻辑推理能力和抽象思维能力。
让学生经历从特殊到一般、再从一般到特殊的认识过程,体会转化的数学思想。
3、情感态度与价值观目标通过自主探究和合作交流,激发学生的学习兴趣,培养学生的创新精神和合作意识。
让学生在数学活动中体验成功的喜悦,增强学习数学的自信心。
二、教学重难点1、教学重点完全平方公式的推导和应用。
理解完全平方公式的结构特征,准确运用公式进行计算。
2、教学难点对完全平方公式中字母系数的广泛含义的理解和应用。
灵活运用完全平方公式进行简便运算。
三、教学方法讲授法、启发式教学法、练习法四、教学过程1、导入新课复习平方差公式:(a + b)(a b) = a² b²提出问题:如果两个相同的二项式相乘,结果会是怎样呢?比如(a + b)(a + b) 。
2、探索新知计算(a + b)(a + b)引导学生利用多项式乘法法则展开:(a + b)(a + b) = a²+ ab + ab + b²= a²+ 2ab + b²计算(a b)(a b)同样让学生展开计算:(a b)(a b) = a² ab ab + b²= a² 2ab + b²得出完全平方公式:(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²分析完全平方公式的结构特征:左边是一个二项式的平方。
右边是一个三项式,其中首末两项分别是二项式两项的平方,中间一项是二项式两项乘积的 2 倍。
3、例题讲解例 1:计算(2x + 3)²解:(2x + 3)²=(2x)²+ 2×(2x)×3 + 3²= 4x²+ 12x + 9例 2:计算(5 y)²解:(5 y)²= 5² 2×5×y + y²= 25 10y + y²4、课堂练习计算:(1)(x + 4)²(2)(3m 2)²(3)(-2a + 5b)²5、拓展提高计算:(1)(x + y + z)²(2)(a + 2b 3c)²6、课堂小结回顾完全平方公式及其结构特征。
数学《完全平方公式》教案
•••••••••••••••••数学《完全平方公式》教案数学《完全平方公式》教案作为一名专为他人授业解惑的人民教师,时常需要用到教案,教案是实施教学的主要依据,有着至关重要的作用。
那么优秀的教案是什么样的呢?下面是小编为大家收集的数学《完全平方公式》教案,仅供参考,欢迎大家阅读。
数学《完全平方公式》教案1教学目标:1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。
2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。
3、了解完全平方公式的几何背景,培养学生的数形结合意识。
4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。
教学重点:1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;2、会用完全平方公式进行运算。
教学难点:会用完全平方公式进行运算教学方法:探索讨论、归纳总结。
教学过程:一、回顾与思考活动内容:复习已学过的平方差公式1、平方差公式:(a+b)(a—b)=a2—b2;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。
右边是两数的平方差。
2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。
二、情境引入活动内容:提出问题:一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。
用不同的形式表示实验田的总面积,并进行比较。
三、初识完全平方公式活动内容:1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。
并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。
2、引导学生利用几何图形来验证两数差的完全平方公式。
3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。
《完全平方公式》教案(高效课堂)2022年人教版数学精品
完全平方公式3.你能利用多项式的乘法法那么验证它们吗4.完全平方公式的图形理解。
5.完全平方公式的文字表达及符号表达式:两个数的和〔或差〕的平方,等于它们的平方和,加上〔或减去〕它们的积的2倍即:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b21.引导学生观察等式左边,右边有什么特点?2.师生共同归纳公式的结构特征:见幻灯片3.这两个公式有什么共同点和不同点,它们和平方差公式的主要区别在哪里?师:点评4.如何巧记公式?见幻灯片例3.运用完全平方公式计算:〔1〕〔4m+n〕2(2)(m-2)2提示:观察该用哪个公式并找准公式中的a,b.师:讲评练习:运用完全平方公式计算;(1)(a+6)2(2)(4+x)2(3)(x-7)2(4)(8-y)2(5)(3a+b)2(6)(4x+3y)2(7)(-2x+5y)2(8)(-a-b)2例4.运用完全平方公式计算:〔1〕1022〔2〕992师:讲评练习:运用完全平方公式计算:(1)912(2)3012(3)49822思考:1.(a+b)2与(-a-b)2相等吗?〔a-b〕2与(b-a)2相等吗?为什么?师:讲评2.两个完全平方公式变形,可以得到哪些式呢?师:讲评3.变形式的运用:〔1〕:x+y=3;xy=2求x2+y2;(x-y)2的值。
〔2〕:a-b=1;a2+b2=25求ab的值〔3〕:〔x+y〕2=9;(x-y)2求xy;x2+y2的值。
师:订正检测:1.下面各式的计算错在哪里,应当怎样改正(1)(a+b)2=a2+b2(2)(a-b)2=a2-b22.填空:〔1〕〔-3x+4y〕2=()(2)(-2a-b)2=()(3)x2-4xy+()=(x-2y)2(4)a2+b2=(a+b)2+()本节课你有什么收获?六.作业:110页练习第1题112页复习稳固第2,7题课后反教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(思2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕. 〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.D CA BD CABDC A B(2)120︒36︒(1)答案:〔1〕72° 〔2〕30° 2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,DCA B12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.E DC A B P教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。
完全平方公式教案[1]
完全平方公式教学目的:1、经历探索完全平方公式的过程,进一步发展符号感和推理能力2、会推导完全平方公式,并能运用公式进行简单的计算3、了解完全平方和公式的几何背景教学重点:完全平方公式的形成过程教学难点:掌握公式字母表达式的意义与灵活运用公式进行运算教学过程:一、问题感知,情景切入1、引导学生用多项式的乘法法则来说明它成立,(a+b)2 =(a+b) (a+b)=a2+ab+ab+b2=a2+2ab+b22.验证公式(1)、一块边长为a米的正方形试验田,因需要将其边长增加b米,形成四块试验田,以种植不同的新品种.现在实验田的总面积是多少?利用面积公式表示:①(a+b)2②a2+ab +ab +b2= a2+2ab+b2(2)、计算试验田的面积 ,你发现了什么?(a+b)2=a2+2ab+b2让学生体会到完全平方公式是乘法公式的特例,因应用广泛,计算简捷,故作为公式学习。
4、分析公式的结构特征:左边:两数和的平方。
右边:是一个三项式,两数的平方和加上它们积的2倍.用文字语言叙述:两数和的平方,等于它们的平方和加上它们积的2倍.简记:首平方,尾平方, 积的2倍中间放.5、猜想 (a-b)² = ?你是怎样推导的呢?(a-b)2 =(a-b) (a-b)= a2-ab-ab+b2=a2-2ab+b2继续让学生体会到完全平方公式是乘法公式的特例6还有其他证明方法吗?( a – b ) ²= [a +(-b) ] ²=a² + 2a(-b) + (-b)²= a² - 2ab + b²化未学为已知,体会数学中的化归思想。
7、(a-b)2 =a 2-2ab+b2左边:两数差的平方。
右边:是一个三项式,两数的平方和减去它们积的2倍.用文字语言叙述:两数差的平方,等于它们的平方和减去它们积的2倍.简记:首平方,尾平方,积的2倍中间放.8、(a +b )2 = a 2+2ab +b 2(a −b )2 = a 2−2ab +b 2用文字语言叙述:两数和(或差)的平方,等于它们的平方和加上(或减去)它们积的2倍.简记:首平方,尾平方,积的2倍中间放.判断正误,并改正:(1) (x+y )² = x² + y²(2) (x –y)² = x² - y²(3) (x –y)² = x² + 2 xy - y²(4) (x+y )² = x² + xy + y²用完全平方公式计算下列每道小题时,应选用哪个完全平方公式,为什么?并指出谁可以看作公式中的a 、b.(1) ( 2x + 5 )2(2) ( x - 3y )2(3) ( -2m + n )2(4) ( -3x - 2y )2仔细阅读例1,注意以下问题:(1)每道小题分别选用了哪个完全平方公式,为什么?并能指出谁可以看作公式中的a 、b.(2)解题步骤.(1) (2x-3)2(2) (4x+5y)21212(3) ( m-a)2在例题的基础上变式练: (-3+2x)2 (-4x-5y)2 让学生学会优化选择看谁反应快利用完全平方公式计算:(1)(-2x+y)2=( )2=_____________.(2)(-x-3y)2=( )2=_____________.抢答赛请选择三分天注定,七分靠打拼,爱拼才会赢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完全平方公式教案精品《完全平方公式》教案篇一一、教材分析本节课是继乘法公式的内容的一种升华,起着承上启下的作用。
在内容上是由多项式乘多项式而得到的,同时又为下一节课打下了基础,环环相扣,层层递进。
通过这节课的学习,可以培养学生探索与归纳能力,体会到从简单到复杂,从特殊到一般和转化等重要的思想方法。
二、学情分析多数学生的抽象思维能力、逻辑思维能力、数学化能力有限,理解完全平方公式的几何解释、推导过程、结构特点有一定困难。
所以中应尽可能多地让学生动手操作,突出完全平方公式的探索过程,自主探索出完全平方公式的基本形式,并用语言表述其结构特征,进一步发展学生的合情推理能力、合作交流能力和数学化能力。
三、目标知识与技能利用添括号法则灵活应用乘法公式。
过程与方法利用去括号法则得到添括号法则,培养学生的逆向思维能力。
情感态度与价值观鼓励学生算法多样化,培养学生多方位思考问题的习惯,提高学生的合作交流意识和创新精神。
四、教学重点难点教学重点理解添括号法则,进一步熟悉乘法公式的合理利用。
教学难点在多项式与多项式的乘法中适当添括号达到应用公式的目的。
五、教学方法思考分析、归纳总结、练习、应用拓展等环节。
六、教学过程设计师生活动设计意图一.提出问题,创设情境请同学们完成下列运算并回忆去括号法则.(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)去括号法则:去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不改变符合;如果括号前是负号,去掉括号后,括号里的各项都改变符合.也就是说,遇“加”不变,遇“减”都变.二、探究新知把上述四个等式的左右两边反过来,又会得到什么结果呢?(1) 4+5+2=4+(5+2)(2)4-5-2=4-(5+2)(3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)左边没括号,右边有括号,也就是添了括号,•同学们可不可以总结出添括号法则来呢?(学生分组讨论,最后总结)添括号法则是:添括号时,如果括号前面是正号,括到括号里的。
各项都不变符号;•如果括号前面是负号,括到括号里的各项都改变符号.也是:遇“加”不变,遇“减”都变.请同学们利用添括号法则完成下列练习:1.在等号右边的括号内填上适当的项:(1)a+b-c=a+()(2)a-b+c=a-()(3)a-b-c=a-()(4)a+b+c=a-()判断下列运算是否正确.(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,•所以我们可以用去括号法则验证所添括号后的代数式是否正确.三、新知运用有些整式相乘需要先作适当的变形,然后再用公式,这就需要同学们理解乘法公式的结构特征和真正内涵.请同学们分组讨论,完成下列计算.例:运用乘法公式计算(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)四.随堂练习:1.课本P111练习2.《学案》101页,巩固训练五、课堂小结:通过本节课的学习,你有何收获和体会?我们学会了去括号法则和添括号法则,利用添括号法则可以将整式变形,从而灵活利用乘法公式进行计算.我体会到了转化思想的重要作用,•学数学其实是不断地利用转化得到新知识,比如由繁到简的转化,由难到易的转化,由已知解决未知的转化等等.六、检测作业习题14.2:必做题: 3 、4 、5题选做题:7题知识梳理,教学导入,激发学生的学习热情交流合作,探究新知,以问题驱动,层层深入。
归纳总结,提升课堂效果。
作业检测,检测目标的达成情况。
《完全平方公式与平方差公式》教学设计篇二授课教师:授课时间:课型:新授课题:3.4探究实际问题与一元一次方程组教学目标基础知识:掌握一元一次方程得解法,了解销售中的数量关系。
基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。
基本思想方法:通过将实际问题转化成数学问题,培养学生的建模思想;基本活动经验体会解决实际问题的一般步骤及盈亏中的关系重点探索并掌握列一元一次方程解决实际问题的方法教学难点找出已知量与未知量之间的关系及相等关系。
教具资料准备教师准备:课件学生准备:书、本教学过程自备补充集备补充一、创设情景引入新课观察图片引课(见大屏幕)二、探究探究销售中的盈亏问题:1、商品原价200元,九折出售,卖价是元。
2、商品进价是30元,售价是50元,则利润是元。
2、商品原来每件零售价是a元,现在每件降价10%,降价后每件零售价是元。
3、其中一种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为元。
4、商品按定价的八折出售,售价是14.8元,则原定售价是。
(学生总结公式)三、探究一商店在其中一时间以每件60元的价格卖出两件衣服,其中一件盈利25?,另一件亏损25?,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?分析:售价=进价+利润售价=(1+利润率)×进价练习(1)随州琴行同时卖出两台钢琴,每台售价为960元。
其中一台盈20%,另一台亏损20%。
这次琴行是盈利还是亏损,或是不盈不亏?(2)文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%。
这次交易中的盈亏情况?(3)商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为元。
注:标价×n/10=进(1+率)(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的价格,其中一种药品在2005年涨价30%后,2023降价70%至a元则这种药品在2005年涨价前价格为元。
四、小结通过本节课的学习你有哪些收获?你还有哪些疑惑?亏损还是盈利对比售价与进价的关系才能加以判断小组研究解决提出质疑优生展示讲解质疑五、作业布置:板书设计一元一次方程的应用-----盈亏问题相关的关系式:例题课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。
数学《完全平方公式》教案篇三一、教学目标(1)知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。
(2)过程与方法目标;学生探究完全平方公式,体会数形结合。
二、教学重点;公式结构及运用。
三、教学难点;公式中字母AB的含义理解与公式正确运用。
四、教具;自制长方形、正方形卡片五、教学过程;教师活动学生活动1、创设情景,提出问题,引入课题(1)想一想1、一位老人很喜欢孩子,每当孩子到他家做客时,老人都拿出糖招待他们,来了几个孩子老人就会每个孩子几块糖。
(1)第一天,a个男孩去看老人,老人共给他们几块糖?(2)第二天,个女孩子去看望老人,老人共给他们多少块糖?(3)第三天,()个孩子一起去看望老人,老人共给他们多少块糖?(4)第三天比前二天的孩子得到糖总数哪个多?多多少?为什么?(分组讨论)2、学生四人一组讨论。
填空:(1)第一天给孩子块糖。
(2)第二天给孩子块糖。
(3)第三天给孩子块糖。
男孩子第三天多得块糖女孩第三天多得块糖。
(2)做一做、请同学拼图a教师巡视指导学生拼图1、教师提问:(1)、大正方形边长?(2)每一块卡片的面积是多少?(3)用不同形式表示正方形总面积,比较发现什么?2、想一想(1)(a+b)用多项式乘法法则说明(2)(a-b)3、请同学们自己叙述上面的等式4、说一说,ab能表示什么?(□+○)□+2□○+○(1)(2X-3)(2)(4X+5Y)请同学们分清ab6、练一练(1)(2X-3Y)(2)(2XY-3X)7、试一试(a+b+c)作业:P1351、2学生2人一组拼图交流2、学生观察思考(1)大正方形边长?(2)四块卡片的面积分别是(3)大正方形的总面积是多少?3(1)学生运用多项式乘法法则推导(a+b)=a+2ab+b说出每一步运算理由(2)学生自己探究交流4、学生用语言叙述公式5、师生共同a、b对应项教师书写6、学生独立完成练一练展示结果7、学生四人一组讨论交流教学目标1.了解公式的意义,使学生能用公式解决简单的实际问题;2.初步培养学生观察、分析及概括的能力;教学建议一、教学重点、难点重点:通过具体例子了解公式、应用公式.难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。
如本课中梯形、圆的面积公式。
应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。
具体计算时,就是求代数式的值了。
有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。
用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。
整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议1.对于给定的可以直接应用的公式,首先在给出具体例子的'前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。
这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例公式一、教学目标(一)知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.(二)能力训练点1.利用数学公式解决实际问题的能力.2.利用已知的公式推导新公式的能力.(三)德育渗透点(四)美育渗透点数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点2.学生学法:观察→分析→推导→计算三、重点、难点、疑点及解决办法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。