除草剂作用机理汇总

合集下载

生物上除草剂除草的原理

生物上除草剂除草的原理

生物上除草剂除草的原理
除草剂是一种化学物质,可以控制或杀死杂草。

除草剂的原理取决于其成分和作用方式。

以下是几种常见的除草剂原理:
1. 非选择性除草剂:这类除草剂不区分杂草和作物,可以杀死所有植物。

其主要成分是草甘膦(Glyphosate),该化学物质会干扰植物的氨基酸合成途径。

这会导致植物无法生产所需的蛋白质,最终导致植物死亡。

2. 选择性除草剂:这类除草剂可以选择性地杀死杂草而不伤害作物植株。

其原理可以基于不同的作用方式,例如:
- 模拟植物生长激素:这类除草剂含有类似植物生长激素的化学物质。

当杂草吸收了这些化学物质后,会出现异常生长、变形和死亡。

- 干扰植物植物光合作用:某些除草剂可以干扰杂草的光合作用,破坏植物的叶绿素合成和能量产生过程,导致植物无法生存和生长。

3. 土壤消毒剂:这类除草剂通常应用于不需要种植作物的地区,如停车场或建筑工地的边缘。

它们通过破坏土壤中的微生物和植物残骸来阻断杂草的生长。

一些土壤消毒剂也可以使用热水或蒸汽来杀死杂草和其他植物。

总结起来,除草剂通过干扰植物正常的生理过程、代谢途径或生长发育来达到除草的目的。

具体使用哪种除草剂取决于目标是控制杂草还是保护作物,以及应用
的环境和使用者的需求。

除草剂原理

除草剂原理

除草剂原理
除草剂,又称除草药,是一种能够杀灭或抑制杂草生长的化学药剂。

其原理是
通过影响杂草的生长和代谢,最终导致其死亡。

除草剂的使用可以有效地控制杂草,保护农作物的生长,提高农作物的产量。

下面我们就来详细了解一下除草剂的原理。

首先,除草剂的作用机制主要有两种,一种是通过影响杂草的生长激素,另一
种是通过影响杂草的光合作用。

对于影响生长激素的除草剂,其原理是通过模拟植物生长激素的作用,干扰杂草的生长和发育,最终导致杂草死亡。

而影响光合作用的除草剂,则是通过抑制杂草的光合作用,阻断其能量来源,使杂草无法维持生存。

其次,除草剂的选择应根据不同的杂草种类和生长环境来进行。

对于不同的杂草,选择不同的除草剂,可以取得更好的除草效果。

同时,除草剂的使用也需要考虑到环境因素,比如气温、湿度等,这些因素都会影响除草剂的喷洒效果。

除草剂的喷洒方法也是影响除草效果的重要因素之一。

一般来说,除草剂的喷
洒应在杂草生长期内进行,这样可以最大限度地提高除草效果。

此外,除草剂的喷洒应注意避免对农作物造成伤害,可以通过选择合适的喷洒器具和调整喷洒时间来减少对农作物的影响。

最后,除草剂的使用需要严格按照说明书上的使用方法来进行,避免过量使用
或者错误使用导致不良后果。

同时,对于不同的农作物和生长环境,也需要选择合适的除草剂种类和使用方法,以达到最佳的除草效果。

总的来说,除草剂的原理是通过影响杂草的生长和代谢,最终导致其死亡。


草剂的选择、喷洒和使用方法都会影响除草效果,因此在使用除草剂时需要根据实际情况进行合理选择和操作,以取得最佳的除草效果。

除草剂的原理

除草剂的原理

除草剂的原理
除草剂,又称除草药,是一种用于防除杂草的化学药剂。

它可以有效地控制或杀死一些对农作物有害的杂草,从而保障农作物的生长。

那么,除草剂是如何起作用的呢?
首先,除草剂的原理是通过影响杂草的生长和代谢来实现除草的目的。

它可以干扰杂草的生长素合成,阻碍杂草的细胞分裂和伸长,从而导致杂草停止生长甚至死亡。

除草剂的作用机制主要分为以下几种类型:
1. 抑制光合作用,除草剂中的活性成分可以干扰杂草的光合作用,影响其对光能的吸收和利用,导致杂草无法进行正常的光合作用,最终导致杂草枯萎死亡。

2. 干扰生长素合成,除草剂中的化学物质可以影响杂草的生长素合成,阻碍其生长和发育,使杂草无法正常生长,最终死亡。

3. 破坏细胞膜,除草剂中的活性成分可以破坏杂草的细胞膜,导致细胞内容物外渗,细胞死亡,从而实现除草的效果。

除草剂的原理是通过以上几种作用机制来影响杂草的生长和代谢,从而达到除草的效果。

但是,除草剂也需要谨慎使用,因为除草剂对农作物和环境也会产生一定的影响。

因此,在使用除草剂时,需要根据农作物的生长期和杂草的种类选择合适的除草剂,严格按照使用说明进行使用,避免对农作物和环境造成不良影响。

总的来说,除草剂的原理是通过影响杂草的生长和代谢来实现除草的目的,它可以通过抑制光合作用、干扰生长素合成和破坏细胞膜等作用机制来达到除草的效果。

在使用除草剂时,需要注意选择合适的除草剂,严格按照使用说明进行使用,以确保除草剂的有效性和安全性。

除草剂的作用

除草剂的作用

除草剂的作用
除草剂经过植物的根、茎、叶或芽吸收后会干扰和破坏之屋内的某些生理生化过程,抑制生长发育,最后造成死亡。

杀死杂草的机理主要有以下几种:
1、抑制光合作用:光合作用是绿色植物赖以生存的基础,而许多除草剂能强烈地抑制杂草的光合作用而促使杂草死亡。

2、抑制能量代谢:许多除草剂能搅乱或中断杂草呼吸过程中的氧化磷酸化过程,使得早操不能利用能量而中毒四强死亡。

3、搅乱植物的激素平衡:急速型除草剂进入植物体内后,打破了原有的急速平衡,是受害株同时表现为刺激与抑制的状态,表现为扭曲畸形,形成瘤状物,填塞疏导组织而致全株死亡。

4、代谢颉颃作用:有些除草剂进入植物体内后,常与植株内其重要作用的成分或结构相似的物质发生颉颃作用,从而停止其正常生命活动。

5、失绿:有些除草剂本身不影响光合作用但对植株内叶绿素的形成有强烈的抑制作用或对已形成的叶绿体其分解作用,使杂草失绿变黄,不能进行光合作用而死亡。

除草剂的作用机理

除草剂的作用机理

除草剂的作用机理除草剂(herbicide)是一种用于控制或杀死杂草的化学物质。

除草剂的作用机理取决于其种类和化学成分。

不同的除草剂通过不同的作用机制对杂草产生影响。

下面将介绍一些常见的除草剂作用机理。

非选择性除草剂是广谱杂草控制剂,可以杀死各种类型的植物,包括作物和杂草。

它的作用机理通常是通过抑制植物的生长和发育过程来实现。

a. 草甘膦(Glyphosate)是一种常用的非选择性除草剂。

它通过抑制植物中的类氨基酸磷酸化酶(EPSP酶)来起作用。

该酶在植物体内起着调节氨基酸合成的重要作用。

草甘膦的使用会导致植物无法合成足够的氨基酸,最终导致植物无法生长。

b. 百草枯(Paraquat)是另一种非选择性除草剂。

它通过直接与植物的叶绿体中的电子传递链相互作用,引起氧化应激,造成细胞膜脂质过氧化。

这会导致植物细胞膜的损伤,导致植物死亡。

选择性除草剂是专门设计用于杀死杂草而对作物没有或只有轻微影响的化学物质。

a. 拉草酮(Lactofen)是一种广泛用于大豆田等作物的选择性除草剂。

它通过影响植物叶绿素的合成来起作用。

拉草酮被吸收到植物细胞中,然后在光合体系II中与植物叶绿素结合,导致光合作用的光反应受阻,最终导致植物的死亡。

b. 但草除(Fluazifop-P-butyl)是一种常用于玉米田和其他谷类作物的选择性除草剂。

它通过抑制植物草酸的合成来起作用。

草酸是一种重要的能量转移分子,参与植物细胞的代谢过程。

但草除通过干扰草酸合成的途径而导致植物死亡。

微生物除草剂是一种利用微生物生物体来控制杂草生长的方法。

常见的微生物除草剂是利用细菌和真菌的作用来控制杂草。

a. 菌核菌(Xanthomonas campestris pv. Poae)是一种常见的细菌,用于控制泽泻科的杂草。

它产生一种可能抑制泽泻科杂草的化合物,从而阻止其发芽和生长。

b. 拮抗性真菌(Antagonistic fungus)是一种产生具有杀灭杂草活性的化合物的真菌。

除草剂除草原理

除草剂除草原理

除草剂除草原理除草剂是一种专门用于杀灭杂草的化学药剂。

它的原理主要体现在以下几个方面。

首先,除草剂可以通过影响杂草的生理代谢过程来实现除草的目的。

这类除草剂往往会影响杂草的光合作用、呼吸作用、酶活性等生理过程,使其无法正常进行代谢,最终导致杂草死亡。

例如,某些除草剂可以干扰杂草的光合作用,阻断光合电子传递链的正常运作,造成能量无法产生以支持生物体正常生长。

另外,某些除草剂还可以影响杂草的呼吸作用,通过干扰细胞呼吸过程中的关键酶的活性来阻碍能量的生成和利用,进而引起杂草死亡。

其次,除草剂可以通过扰乱杂草的生长过程来实现除草的效果。

这类除草剂往往针对杂草的种子萌发、幼苗发育等生长阶段进行干预,以抑制杂草的生长。

比如,某些除草剂可以阻断杂草种子的萌发,干扰种子萌发所需的水分吸收和营养物质转运。

另外,某些除草剂也可以通过抑制杂草的细胞分裂和伸长过程来阻断杂草幼苗的发育,从而遏制杂草的生长。

第三,除草剂还可以通过影响植物体内的激素平衡来实现除草的效果。

植物激素在植物的生长和发育过程中发挥着重要的调控作用,而某些除草剂可以干扰杂草体内激素的合成、分泌或感受,影响激素信号的传导,从而引起杂草的异常生长和死亡。

例如,某些除草剂可以抑制杂草体内的生长素的合成,导致杂草幼苗不能正常伸长和生长,最终死亡。

除草剂的选择和使用要根据不同杂草的特点和生长习性来确定,以达到最好的除草效果。

此外,在使用除草剂时需要注意剂量的控制,避免过量使用造成环境污染和生态破坏。

同时,还应注意使用除草剂的时间和天气条件,以充分发挥除草剂的效果。

最后,在使用除草剂后,要采取合适的善后措施,包括清理杂草和及时排水,以防止除草剂残留和对周围环境的影响。

除草剂的基本作用原理

除草剂的基本作用原理

除草剂的基本作用原理
除草剂作为现代农业中不可或缺的一部分,在杂草控制方面扮演着重要的角色。

以下是除草剂发挥作用的几种基本原理:
干扰光合作用:许多除草剂通过干扰植物的光合作用来发挥作用。

它们可能直接抑制叶绿素或其他参与光合作用的酶的合成,或者在光合作用过程中产生有害的副产品,从而破坏植物的光合作用过程。

由于光合作用是植物生长和发育的基础,这种干扰会导致植物死亡。

抑制蛋白质合成:除草剂也可能抑制蛋白质的合成。

蛋白质是细胞功能的关键组成部分,其合成受到抑制会导致细胞功能失调,进一步导致植物死亡。

干扰激素平衡:一些除草剂通过干扰植物的激素平衡来发挥作用。

植物激素如生长素和脱落酸等对植物的生长和发育起着重要的调节作用。

除草剂可能模拟或拮抗这些激素,导致植物出现异常生长或发育,最终死亡。

抑制细胞分裂:细胞分裂是植物生长和繁殖的基础。

除草剂通过抑制细胞分裂的过程,从而阻止植物的生长。

这通常会导致植物在萌发和早期生长阶段死亡。

改变细胞膜透性:某些除草剂可以改变细胞膜的透性,破坏细胞的正常功能。

细胞膜是细胞的重要结构,负责维持细胞内外的物质交换。

当细胞膜的透性被改变时,细胞内的
平衡被打破,可能导致细胞死亡。

这些作用机制是除草剂发挥效用的基础,每种机制都有其特定的除草剂,根据杂草的种类和生长环境选择合适的除草剂是有效控制杂草的关键。

然而,需要注意的是,不当使用除草剂可能会对非目标植物和环境造成影响,因此在实际应用中应遵循科学的指导和使用规范。

制作农作物除草剂的原理

制作农作物除草剂的原理

制作农作物除草剂的原理
农作物除草剂的原理基于阻断杂草的生长和抑制其对农作物的竞争。

主要的原理包括以下几个方面:
1. 阻断光合作用:农作物除草剂中的某些成分可以抑制或阻断杂草的光合作用,使其无法利用阳光进行光合,从而导致杂草无法合成所需的能量和营养物质,最终导致杂草死亡。

2. 干扰植物生长调节物质:农作物除草剂中的某些成分可以干扰杂草内部的生长调节物质(如植物生长素和赤霉素等),破坏杂草的正常生长和发育,使其无法维持生命活动和生长。

3. 抑制蛋白质合成:农作物除草剂中的一些成分可以抑制杂草细胞内蛋白质的合成过程,破坏杂草细胞的正常功能和代谢过程,从而导致杂草的生长受到严重抑制。

4. 干扰细胞膜和细胞壁:农作物除草剂中的某些成分可以干扰杂草细胞膜和细胞壁的结构和功能,破坏细胞的完整性,导致细胞内外物质的流失,最终导致杂草细胞死亡。

总之,农作物除草剂通过各种机制抑制杂草的生长,并减少其对农作物的竞争,从而提高农作物产量。

注意,合理使用农作物除草剂非常重要,以避免对农作物
和环境造成不良影响。

除草剂的原理

除草剂的原理

除草剂的原理
除草剂是一种用于去除杂草的化学物质,它的原理是通过抑制杂草生长和繁殖的过程,从而达到除去杂草的效果。

除草剂通常是由一种或多种活性成分组成,这些成分可以通过影响杂草体内的生物过程来实现除草的作用。

除草剂的活性成分可以通过各种途径进入杂草体内,如通过叶片表面吸收、根部吸收或经由杂草叶片的切割等,然后在杂草体内发挥作用。

一般来说,除草剂会以一种或多种方式影响杂草体内的细胞代谢或生理功能,从而导致它们的生长受到抑制。

具体来说,除草剂的作用机制可以分为以下几个方面:
1. 光合作用抑制:除草剂的某些成分可以干扰杂草叶绿素对光合作用的利用,从而降低杂草的能量供应和生长速度。

2. 细胞分裂抑制:一些除草剂的成分可以阻碍杂草细胞的分裂过程,从而阻止其生长和增殖。

3. 蛋白质合成抑制:除草剂中的活性成分可以干扰杂草体内蛋白质的合成过程,使其无法正常生长和发育。

4. 激素调节:部分除草剂通过模拟或阻断杂草体内的激素信号传导,影响杂草的生长、繁殖和营养摄取。

需要注意的是,除草剂一般只对杂草有杀灭或控制作用,对于其他作物或有益植物应谨慎使用。

正确使用除草剂需要遵循相
关的使用说明和安全操作规范,以避免对环境和人体健康造成不良影响。

除草剂类型及作用机理

除草剂类型及作用机理

除草剂类型及作用机理自1979年氯磺隆开发成功以来,世界除草剂工业便进入了超高效时代,特别是磺酰脲类、咪唑啉酮类、磺酰胺类、嘧啶水杨酸类等系列超高活性品种的问世,给除草剂新品种开发及化学除草带来了新的革命性变化。

一、除草剂类型按化学结构分类,除草剂可分为苯氧乙酸类、酰胺类、二苯醚类、取代脲类、均三氮苯类和五氯酚钠等。

按作用方式,除草剂可分为选择性和灭生性两类。

选择性除草剂,是指有选择性地杀死田间杂草,而不伤害作物的一类除草剂。

例如,2,4-D,2-甲-4-氨能杀死双子叶杂草,而对禾本科作物无害;西玛津能杀死玉米地里杂草,而对玉米无害;敌稗能杀死稗草而不伤害禾苗等。

灭生性除草剂也叫非选择性除草剂。

这类除草剂能杀死地里所有植物。

例如,五氯酚钠和亚砷酸钠等属于这类。

按药剂在植物体内移动的情况,可将除草剂分为内吸性除草剂和触杀性除草剂。

例如,2,4-D,西玛津、敌草隆和扑草净等属于内吸性除草剂;除草醚、五氯酚钠等属于触杀性除草剂。

二、主要的除草剂及其作用机理1.苯氧乙酸类主要包括2,4-D,2-甲-4-氯苯氧乙酸和它们的钠盐、胺盐等,这是生长素类除草剂,在低浓度下,具有促进植物生长的作用,在高浓度下能杀死双子叶植物,但对单子叶植物影响很小。

这类药剂可促进植物体内核酸和蛋白质的合成,使细胞过度分裂和伸长,组织因过度生长呈畸形,从而阻碍物质运输,导致植物死亡。

2.磺酰脲类自杜邦公司于1979年开发成功氯磺隆之后,磺酰脲类除草剂就得到迅速发展,磺酰基所连苯环,可改变成各类杂环,三嗪环亦可改变成嘧啶环衍生物,先后开发了一系列各具特色的超高效除草剂,到目前已有30多个品种问世,其中杜邦公司开发的占一半以上。

磺酰脲类除草剂的最大特点是高活性,使用剂量通常在5-100g/hm²。

该类除草剂具有极低的哺乳毒性和良好的环境特性。

但进入90年代,磺酰脲类除草剂在其应用过程中已遇到一些难题,最突出的是残留药害和杂草的抗性问题。

水稻除草剂机理

水稻除草剂机理

水稻除草剂机理
水稻除草剂的作用机理主要包括以下几种:
1. 光合作用抑制:一些除草剂能够干扰植物的光合作用,这是植物通过吸收光能将二氧化碳和水转化为有机物的过程,是植物生长的能量来源。

通过抑制光合作用,这些除草剂可以阻止杂草的生长,从而达到除草的目的。

2. 乙酰乳酸合成酶(ALS)抑制剂:ALS是一种在植物体内参与氨基酸合成的关键酶。

一些除草剂能够抑制ALS的活性,从而阻止杂草体内缬氨酸、亮氨酸等氨基酸的合成,导致杂草无法正常生长并最终死亡。

然而,如果使用不当,ALS抑制剂也可能对水稻造成伤害。

3. 磺酰脲类除草剂:磺酰脲类除草剂主要通过根系被吸收,在杂草植株体内迅速转移,抑制杂草的生长。

它们的作用机理是通过抑制杂草体内的生化反应,导致缬氨酸、亮氨酸的合成受阻。

水稻能分解该药剂,对水稻生长几乎没有影响。

4. 二氯喹啉草酮:二氯喹啉草酮是一种新型水稻田具有双重作用机制的除草剂,同时兼有土壤和茎叶处理活性。

它对水稻田稗草、马唐、丁香蓼、鳢肠等效果较好,对抗五氟磺草胺的稗草防除突出。

其作用机理是抑制HPPD (对-羟苯基丙酮酸双氧化酶)活性。

总的来说,水稻除草剂的作用机理多种多样,但都是为了达到控制或杀死杂草的目的,以保护水稻的生长和产量。

在使用除草剂时,应根据具体情况选择合适的除草剂种类和使用方法,以确保既能有效控制杂草,又能最大限度地减少对水稻和环境的影响。

3节除草剂吸收作用机理

3节除草剂吸收作用机理

当于光反应Ⅱ的作用。通常用抑制50%希尔反应所需的浓度,来比较除
草剂抑制光合作用的强度。 通常抑制希尔反应的除草剂在分子结构上有亚胺基、羰基、肟基,
这些基团容易与光反应中酶的蛋白质形成氢键,而使酶失去活性,使植 物丧失了光合作用的机能,如敌草隆。
光合系统Ⅱ
O
Cl
Cl
H C

N
H
O

N (CH3) 2
类,三嗪酮类和二苯醚类等。
(2)有些除草剂是抑制光合磷酸化反应,如苯氟磺胺属解 偶联剂,它不抑制电子传递,但影响磷酸化作用,抑制ATP 的形成(如图7-16中的②部位)。像二硝基苯酚类、2,6二硝基苯胺(氟乐灵等),卤代苯腈类(溴苯腈与碘苯腈 等)与N-苯基氨基甲酸酯类(灭草灵等),它们兼具抑制 磷酸化与电子传递作用(图①与② 部位)。此外,如1, 2,3-硫吡唑基-苯脲类属于能转换抑制剂,直接作用于氧
(三)质外—共质体系输导转移
有些除草剂可以同时在两个体系,即共质体系与质外体 系中转移,例如茅草枯,毒莠定,麦草畏等。
三、除草剂的作用机制
除草剂进入植物体后引起杂草死亡,其作用机制与杀 虫剂、杀菌剂的作用机制有相似之处,即干扰与破坏了生 物体的正常生理生化反应,即都干扰呼吸作用的机制。 但它们又都有独特的作用机制,例如由于神经系统为 昆虫所特有,许多杀虫剂便有抑制昆虫神经系统的机制, 如有机磷杀虫剂。
光合作用、植物激素为植物所特有,因而除草剂的作
用机制中以抑制光合作用与干扰植物激素为主要内容。 除草剂的作用机制如下:
(一)抑制光合作用
由于光合作用是植物所特有的生理功能,动物 不存在,因此这类药剂对人畜是无毒的。 植物借光合作用获得营养来维持生命,一旦光 合作用受到抑制时,植物就会因饥饿而死亡,这类 药剂主要为取代脲类(敌草隆)、三氮苯类(西玛 津等)。

除草剂的类群及作用机理

除草剂的类群及作用机理

呼吸系统的电子传递链位于线粒体的内膜上 。NADH+和FADH2的氧化还原反应使氢离子 释放到线粒体双层膜间隙内,使膜间隙和线 粒体内腔之间形成氢离子浓度差。与叶绿体 一样,此浓度差导致ATP的形成。
地乐酚(dinoseb) 二硝酚(DNOC) 敌草腈(dichlobenil) Perfluidone
diquat dibromide salt 乙氧氟草醚(oxyfluorfen)
2. 作用于呼吸系统的除草剂
生物体内的氧化作用主 要是通过脱氢来实现的 。代谢物在脱氢酶的作 用下脱落的氢原子不能 直接与氧结合成水,而 需要经一系列传递体的 传递把氢原子传递给分 子氧结合成水。这样由 递氢体和递电子体按一 定顺序排列成的整个体 系称为呼吸链,又称电 子传递链或电子传递体 系。
三氟消草醚(fluorodifen)
光合磷酸化是由ADP和Pi生成ATP的过程。如果 电子传递及由此形成的跨膜电位不存在,磷酸化 反应就不能发生。
已证实胺类除草剂中的perfluidone和二苯醚类除 草剂中的除草醚(nitrofen)和精吡氟草灵( fluazifop-butyl)能够渗入类囊体膜,使氢离子 浓度梯度消失,光合磷酸化无法进行。
nitrofen),乙氧氟草醚(oxyfluorfen) 羟基苄腈(hydroxylbenzonitrile):碘苯腈(ioxynil), 溴苯腈(
bromoxynil) 苯脲(N-phenylurea):敌草隆(diuron), 灭草隆(monouron), 异
丙隆(isoproturon), 绿麦隆(chlortoluron) 三嗪(s-triazine):阿特拉津(atrazine), 西玛津(simazine) 三嗪酮(triazinone):嗪草酮(metribuzin), 苯嗪草酮(metamitron

除灵除草剂的作用原理

除灵除草剂的作用原理

除灵除草剂的作用原理除灵除草剂是一种被广泛应用于农业和园艺领域的化学药剂,用于控制和消除杂草和有害植物。

其作用原理涉及多个方面,包括透过吸收、接触或破坏植物细胞等方式,从而达到除草的效果。

以下将详细解释常见除灵除草剂的作用原理。

植物生长激素拮抗剂某些除草剂是植物生长激素拮抗剂,通过模拟或拮抗植物生长激素的作用来抑制植物生长。

植物生长激素对植物生物体的生长和发育起着重要作用,包括促进细胞分裂、伸长和分化等。

通过调节植物生长激素的水平,除草剂可以干扰植物正常生理过程,从而抑制杂草生长。

环酮醚类除草剂环酮醚类除草剂主要通过抑制植物的两个关键酶,即EPSP合酶和GFAT合酶,来阻断植物的芳香氨基酸合成途径。

芳香氨基酸是植物体内生物合成蛋白质的基础,包括酪氨酸、苯丙氨酸和色氨酸,这些蛋白质在植物体内起着非常重要的作用。

当这些途径被阻断,植物无法合成足够的蛋白质来维持正常的生活活动,从而导致植物死亡。

光合作用抑制剂光合作用抑制剂是一类通过抑制植物叶绿素合成或破坏叶绿体结构的除草剂。

叶绿素是植物中光合作用的重要组成部分,它能够吸收太阳光能并参与光合作用。

通过阻断叶绿素的合成或破坏叶绿体结构,除草剂可以干扰植物的光合作用,从而阻碍其能量和物质代谢,并最终导致植物死亡。

土壤杀草剂土壤杀草剂主要通过在土壤中释放毒性物质,抑制杂草的生长。

这些杀草剂在土壤中迅速分解并产生有毒代谢物质,抑制植物细胞的正常生理过程。

这些代谢产物可以在土壤中长时间存留,并对周围的植物造成毒害作用。

接触性除草剂接触性除草剂是通过直接接触植物体表面,进而进入植物体内部而抑制植物生长和发育的除草剂。

这种类型的除草剂通常会影响植物细胞的膜透性,导致细胞液体的泄漏和细胞脱水。

同时,接触性除草剂还可以通过干扰植物体内的蛋白质和酶的生理活性来抑制植物生长。

综上所述,除灵除草剂的作用原理涉及植物生长激素拮抗、环酮醚类、光合作用抑制、土壤杀草和接触性等方式。

除草剂的作用机理

除草剂的作用机理

除草剂的作用机理除草剂的作用机理比较复杂,许多除草剂的作用机理至今尚未十分清楚。

这是因为它们的作用不仅受防治对象影响,同时还受环境条件的干扰;许多除草剂的杀草作用并不限于某一因素,有时是几种因素同时发生,形成一个多种复杂的过程。

无论触杀型或是内吸传导型除草剂,当被植物吸收后,必须对植物的正常生理生化过程进行某种干扰作用,才能把植物杀死。

植物的生长发育是植物体内许多生理生化过程协调统一的表现,当除草剂干扰了其中某一环节时,就会使植物的生理生化过程失去平衡,从而导致植物的生长发育受到抑制或死亡。

除草剂对植物干扰、破坏的作用机理可以归纳为以下几个主要方面:一、抑制光合作用:绿色植物是靠光合作用来获得的养分,光合作用是植物体内各种生理生化活动的物质基础,是植物特有的生理机制。

生物界活动所消耗的物质和能量主要是由光合作用来积累,所有动植物的细胞结构及生存所必需的复杂分子,都来源于光合作用的产物及环境中的微生物。

光合作用在温血动物体内并不发生,因此抑制光合作用的除草剂对温血动物的毒性很低。

光合作用是绿色植物利用光能将所吸收的二氧化碳同化为有机物并释放出氧的过程,植物在进行光合作用时,可将光能转变成化学能:hυCO2+H2O C6H12O2 + 6O2叶绿体这一反应过程是由一系列复杂的生物物理及生物化学过程来完成的。

一般把发生在叶绿体内的光合作用分成光反应和暗反应两大阶段。

叶绿体内的光合作用可分成下列几个步骤:(1)叶绿体内的色素(通常由叶绿素a及b所组成)被吸收的光量子所激活。

(2)将贮藏在“激活了的色素”中的能量,在光系统I及Ⅱ中经过一系列的电子传递,转变成化学能,在水光解过程中,将氧化型辅酶Ⅱ(NADP+)还原成还原型辅酶Ⅱ(NADPH):hυNADP+ + H2O NADPH + 1/2O2十H+与此反应相偶联的是ADP与无机磷酸盐(Pi)形成ATP:hυADP + Pi ATP(3)将贮存在NADPH及ATP中的能量,消耗在后面不直接依赖光的反应,即固定和还原二氧化碳的反应——暗反应。

除草剂作用机理汇总

除草剂作用机理汇总
吡唑特、吡草酮、苄草唑
异恶唑草酮、异恶氯草酮
细胞分 裂
细胞分裂、微管组装抑制剂与 细胞膜破坏剂
二硝基苯胺类
二甲戊乐灵、地乐胺、氟乐灵
叶绿素
乙羧氟草醚、乙氧氟草醚、氟磺胺草
卟啉原氧化酶抑制剂 (Protox),抑制叶绿素合成。
二苯醚类
醚、氟呋草醚、氟酯肟草醚、氟草醚 酯、氟萘草酯、乳氟禾草灵、氯氟草

是一种合成激素抑制剂。用于水稻直播田,水稻2-4叶期,稗草2-3叶期施药最佳,主要通过抑制稗草生长点, 使其心叶不能抽出从而达到防除稗草的目的。本剂溶于水,能被土壤微生物降解。 杀草谱广,不仅防除一年生阔叶。个别品种还能有效的防除多年生杂草和木本杂草。可以被植物叶片与根迅速 吸收,并在体内迅速传导,具有植物激素的作用,单位面积用药量小。在土壤中的稳定性强,故持效期长。 用于禾本科作物 内吸传导,根茎叶都可吸收,阻碍植物激素的正常活动。小麦4叶前和拔节后禁止施用,安全 临界期为小麦拔节期。注意漂移药害。 最大优点是:①水溶液的贮存稳定强,不易挥发与光解;②与其它除草剂的物理相容性好,利于开发混合制 剂;③弱酸性除草剂,便于植物吸收。植物分生组织失绿白 化,造成植物死亡。 防除稗草、若干莎草科杂草及多年生阔叶杂草。对羟基丙酮酸酯双氧化酶(HPPD)抑制剂,能阻止植物体中的4羟基丙酮酸向脲黑酸的转变,从而导致无法合成质体醌和生育酚,进而间接抑制了类胡萝卜素的生物合成,使 植物产生白化症状,直至最终死亡。 一种选择性内吸型苗前除草剂,主要用于玉米、甘蔗等旱作物田防除苘麻、藜、地肤 、猪毛菜、龙葵、反枝苋、柳叶刺蓼、鬼针草、马齿苋、繁缕、香薷、苍耳、铁苋菜 、水棘针、酸模叶蓼、婆婆纳等多种一年生阔叶杂草,对马唐、稗草、牛筋草、千金子、大狗尾草和狗尾草等 一些一年生禾本科杂草也有较好的防效。 土壤处理剂,主要杀灭杂草的幼芽,因而多在作物播种前或播种后出苗前施,此除草剂典型作用特性是抑制次 生根生长,对芽也有明显的抑制作用,对单子叶的效果好些 。除草机制只要是抑制细胞的有丝分裂与分化,破坏核分裂,被认为是一种核毒剂,使根尖呈鳞片状。易挥发 和易光解是此类除草剂的冲突特征,因此在田间喷药后必须尽快耙地拌土。

除草剂分类及机理

除草剂分类及机理


根据作用机制分
● ●
生长调节剂
光合作用抑制剂 ●氨基酸生物合成抑制剂 ●脂肪生物合成抑制剂 ●细胞分裂抑制剂
生长调节剂:


抑制植物内源激素,植株中毒后表现为扭曲、 变弯、致畸。 特点:效果快、价格低、杀草广谱 缺点:不死根,杀不死草 代表:2,4-滴丁酯、2甲4氯钠盐、麦草畏、 使它隆、二氯喹啉酸
光合作用抑制剂:



光合系统Ⅰ:此类多数是触杀型、灭生性除草剂。联吡啶 类:百草枯。植株中毒后斑点性失绿、黄化、枯萎死亡。 光合系统Ⅱ:此类多数具有较强的选择性,要根据适用作 物和适宜的施药时期用药。 莠去津、扑草净、苯达松、异丙隆。不抑制发芽、出苗, 在植物出苗见光后才产生中毒症状,根都不会死。植株中 毒后从叶尖,叶脉先失绿,干枯,死亡。 辅助系统:二苯醚、乙氧氟草醚、磺草酮。抑制原卟啉氧 化酶,对植物造成触杀性药害,破坏膜的结构与功能,造 成局部组织坏死与干枯,随着植株生长,药害逐渐消失。 植株中毒后失绿、白化、干枯、死亡、叶片半透明。
在植物体内是尿黑酸形成中质体醌与生育酚维生素hppd催化4羟苯基丙酮酸转变为尿黑酸是一种复杂的机制它包括底物jeffordcadby1981在转变作用中两个分子氧渗入尿黑酸的此外hppd在酪氨酸降解中也起作用于它具有异戊烯苯醌的芳基前体亦即作为保护光合细胞的重要载体的质体醌与生育酚除草剂抑制hppd导致阻碍4羟苯基丙酮酸向尿黑酸的转变并间接抑制类胡萝卜素的生物合成结果促使植物分生组织产生白化症状最终死亡
细胞分裂抑制剂:

氟乐灵,典型的细胞有丝分裂抑制剂。 特点:幼芽生长抑制剂,不生次根,根 尖肿胀成棒头状。
除草剂的作用模式

除草剂是通过干扰和抑制植物的代谢过程而造 成杂草死亡,这些代谢过程往往由不同的酶系 统所诱导。除草剂的作用靶标多是不同的酶系 统,通过对靶标酶的抑制,最终干扰植物的代 谢作用。同一代谢过程是由一系列生物化学反 应组成,其各个反应阶段又由不同的酶诱导。 因此,不同类型除草剂可能抑制同一代谢反应, 但是,它们的作用位点(靶标酶)存在着明显差 异。

除草剂的作用机理

除草剂的作用机理

除草剂的作用机理2003-03-15 16:08:00 来源:除草剂被植物根、芽吸收后,作用于特定位点,干扰植物的生理、生化代谢反应,导致植物生长受抑制或死亡。

除草剂对植物的影响分初生作用和次生作用。

初生作用是指除草剂对植物生理生化反应的最早影响,即在除草剂处理初期对靶标酶或蛋白质的直接作用。

由于初生作用而导致的连锁反应,进一步影响到植物的其它生理生化代谢,被称着次生作用。

(一)抑制光合作用光合作用包括光反应和暗反应。

在光反应中,通过电子传递链将光能转化成化学能储藏在ATP;在暗反应中,利用光反应获得的能量,通过Calvin-Benson途径(C3植物)或Hatch-Slack-KortschaK途径(C4植物)将CO2还原成碳水化合物。

除草剂主要通过以下途径来抑制光合作用:抑制光合电子传递链、分流光合电子传递链的电子、抑制光合磷酸化、抑制色素的合成和抑制水光解。

1.抑制光合电子传递链约有30%的除草剂是光合电子传递抑制剂,如三氮苯类、取代脲类、尿嘧啶类、双氨基甲酸酯类、酰胺类、二苯醚类、二硝基苯胺类。

作用位点在光合系统II和光合系统I之间,即QA和PQ之间的电子传递体B蛋白,除草剂与该蛋白结合后,改变它的结构,抑制电子从QA 传递到PQ,使得光合系统处于过度的激发态,能量溢出到氧或其它邻近的分子,发生光氧化作用,最终导致毒害。

2.分流光合电子传递链的电子联吡啶类除草剂百草枯和敌草快等是光合电子传递链分流剂。

它们作用于光合系统I,截获电子传递链中的电子,而被还原,阻止铁氧化还原蛋白的还原即其后的反应。

这类除草剂杀死植物并不是直接由于截获光合系统I的电子造成的,而是由于还原态的百草枯和敌草快自动氧化过程中产生过氧根阴离子导致生物膜中未饱和脂肪酸产生过氧化作用,破坏生物膜的半透性,造成细胞的死亡。

3.抑制光合磷酸化到目前为止,还没有商品化的除草剂的初生作用是直接抑制光合磷酸化的。

但有些电子传递抑制剂如二苯醚类、联吡啶类和敌稗等,在高浓度下也能抑制光合磷酸化,使得ATP合成停止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

除草剂作用机理汇总
除草剂,也被称为除草药或草甘膦,是用于控制和杀灭杂草的化学药剂。

它们可以通过多种机制产生除草效果。

以下是除草剂的一些常见作用机理:
1.阻断植物生长素合成:植物生长素是一种植物激素,对植物生长发育具有重要作用。

一些除草剂可以阻断植物生长素的合成,从而抑制植物细胞分裂和伸长,导致植物停止生长并最终死亡。

2.阻断叶绿素合成:叶绿素是植物进行光合作用所必需的色素。

一些除草剂可以抑制叶绿素的合成,导致植物叶片变黄,无法进行光合作用,最终死亡。

4.阻断氨基酸或脂肪酸合成:氨基酸和脂肪酸是植物生长和发育所必需的物质。

一些除草剂可以阻断植物氨基酸或脂肪酸的合成,导致植物无法正常生长和发育,最终死亡。

5.干扰细胞壁合成:细胞壁是植物细胞的保护和支持结构。

一些除草剂可以干扰细胞壁的合成,导致植物细胞壁脆弱,无法正常发育和扩张,最终死亡。

6.干扰DNA或RNA合成:DNA和RNA是植物基因表达的关键分子。

一些除草剂可以干扰DNA或RNA的合成,从而阻碍植物基因的转录和翻译过程,最终导致植物无法正常生长和发育。

7.干扰脯氨酸合成途径:脯氨酸是一种重要的植物非蛋白质氨基酸,对植物的生长和抗逆性具有重要作用。

一些除草剂可以干扰植物脯氨酸的合成途径,导致脯氨酸积累不足,限制植物生长和适应环境的能力。

需要注意的是,不同类型的除草剂可能具有多种以上作用机理的复合效果。

此外,除草剂的作用机理也可能因植物种类、生长阶段、剂量以及应用方法等因素而有所差异。

因此,在使用除草剂时,应根据具体情况选择合适的剂型和使用方法,并遵循相关的使用说明和安全操作规程。

相关文档
最新文档