变压器与电感区别

合集下载

(整理)电感、变压器的高频特性与损耗、

(整理)电感、变压器的高频特性与损耗、

绕组高频效应及其对损耗的影响1.集肤效应1.1集肤效应的原理图1.1表示了集肤效应的产生过程。

图中给出的是载流导体纵向的剖面图,当导体流过电流(如图中箭头方向)时,由右手螺旋法则可知,产生的感应磁动势为逆时针方向,产生进入和离开剖面的磁力线。

如果导体中的电流增加,则由于电磁感应效应,导体中产生如图所示方向的涡流。

由图可知:涡流的方向加大了导体表面的电流,抵消了中心线电流,这样作用的结果是电流向导体表面聚集,故称为集肤效应。

在此引进一个集肤深度〈skin depth〉的概念,此深度的电流密度大小恰好为表面电流密度大小的1/e倍:一般用集肤深度Δ来表示集肤效应,其表达式为:(1.1)其中:γ为导体的电导率,μ为导体的磁导率,f为工作频率。

图1.1.集肤效应产生过程示意图图1.2.高频导体电路密度分布图高频时的导体电流密度分布情形,大致如图1.2所示,由表面向中心处的电流密度逐渐减小。

由上图及式1.1可知,当频率愈高时,临界深度将会愈小,结果造成等效阻值上升。

因此在高频时,电阻大小随着频率而变的情形,就必须加以考虑进去。

1.2影响及应用在高频电路中可以采用空心导线代替实心导线。

此外,为了削弱趋肤效应,在高频电路中也往往使用多股相互绝缘细导线编织成束来代替同样截面积的粗导线,这种多股线束称为辫线。

在工业应用方面,利用趋肤效应可以对金属进行表面淬火。

考虑到交流电的集肤效应,为了有效地利用导体材料和便于散热,发电厂的大电流母线常做成槽形或菱形母线;另外,在高压输配电线路中,利用钢芯铝绞线代替铝绞线,这样既节省了铝导线,又增加了导线的机械强度,这些都是利用了集肤效应这个原理。

集肤效应是在讯号线里最基本的失真作用过程之一,也有可能是最容意被忽略误解的。

与一般讯号线的夸大宣传所言,集肤效应并不会改变所有的高频讯号,并且不会造成任何相关动能的损失。

正好相反,集肤效应会因传导体的不同成分,在传递高频讯号时有不连贯的现象。

电阻、电容、电感和变压器的识别与检测

电阻、电容、电感和变压器的识别与检测

电感的电感量与品质因数
电感量:表示电感元件储存磁场的能力,单位是亨 利(H)
品质因数:表示电感元件的效率,是电感元件在特 定频率下的无功功率与有功功率之比
电感的检测方法
外观检查:观察电感的外观,是否有损坏或异常情况。 电阻测量:使用万用表测量电感的电阻值,以判断其是否正常。 感量测试:使用专门的电感测试仪测量电感的感量、品质因数等参数。 匝间短路测试:检查电感的匝间是否短路,以确保电感正常工作。
电阻的阻值与精度
标称阻值:电阻上标注的数值,用于表示电阻的阻值 允许误差:实际阻值与标称阻值的偏差范围 精度等级:表示电阻阻值精度的等级,常见的有±5%、±10%、±20%等 温度系数:电阻值随温度变化的程度,是评估电阻性能的重要指标
电阻的检测方法
直接测量法:使用万用表直接测量电阻阻值
间接测量法:通过测量电路中电流和电压,利用欧姆定律计算电阻阻值
电容的容量与耐压
容量:表示电容器 储存电荷的能力, 通常以法拉(F)为 单位
耐压:表示电容器 能够承受的最大电 压,是电容器安全 运行的重要参数
容量与耐压的标识方 法:在电容器上通常 会标有容量和耐压值 ,这些数值对于选择 合适的电容器非常重 要
检测方法:通过使用万 用表等工具,可以测量 电容器的容量和耐压, 以确保其正常工作
漏电流过大:电容器的漏电流 超过允许值
绝缘电阻低:电容器绝缘性能 下降,导致电阻值降低
损耗过大:电容器在电路中有 较大的能量损耗
电感的识别与检 测
电感的标识与单位
标识:电感器通常用字母L表示,后面跟着数字或字母表示序号或种类。 单位:电感的国际单位是亨利(Henry),常用的单位还有毫亨(mH)和微亨(uH)。
电感的常见问题

电感和变压器的区别

电感和变压器的区别

电感和变压器的区别
电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感
应元件,也是电子电路中常用的元器件之一。

电感器是用漆包线、纱包线或塑皮线等在绝缘骨架或磁心、铁心上绕制成的一组串联的同轴线匝,它在电路中用字母"L"表示。

电感器的主要作用是对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路。

变压器是利用电感器的电磁感应原理制成的部件。

在电路中用字母"T"(旧标准为"B")表示。

变压器是利用其一次(初级)、二次(次级)绕组之间圈数(匝数)比的不同来改变电压比或电流比,实现电能或信号的传输与分配。

主要作用有:降低交流电压、提升交流电压、信号耦合、变换阻抗、隔离等。

只不过变压器是利用其原边线圈通电后产生的磁场影响了副边线圈,导致它产生了“感生电势”,也就是副边就有电压产生。

也就是变成了一个能量转换器件在使用。

而电感本身“却是隔交通直”的说法不全面,所谓隔交通直只是我们在电路中利用了电感器的“感抗”原理而已。

这只是与变压器的自感、互感在电路中不同的用法。

简言之:变压器是通过自身电感对副边产生互感而生电压。

电感器是通过其感抗,产生对交流电的谐振而遏制,但直流电不受其影响。

变压器在电路中的连接方式是与交流电源并联,电感在电路中的连接方式一般是与交流电路串联,电感虽然对交流电有阻挡作用,但也并不是完全不让交流电通过,它是通过所谓的感抗来产生对交流电的限制作用。

对于变压器来说,它是作为交流电负载的方式来工作的,它对交流电产生的作用是能量转换,而不是通过。

电抗器与变压器异同

电抗器与变压器异同

电抗器与变压器异同maychang电抗器(电感)与变压器最大的不同之处,是变压器并不存储能量,仅传输能量,而电抗器尤其是滤波电抗器必须存储能量。

变压器并不存储能量,空载时一次电流非常小,理想变压器二次空载时一次电流为零。

一次之所以有电流,完全是二次电流反射到一次的结果。

因此,变压器铁心的作用仅仅是使一次二次达到完全的耦合,也就是一次电流产生的磁场完全穿过二次绕组,二次电流产生的磁场也完全穿过一次绕组。

对变压器来说,加在铁心上的限制只有一条:铁心中的磁通密度不得太大以致铁心达到深度饱和。

因此,变压器铁心一般不留气隙,纯交流工作的变压器更是如此。

滤波电抗器则不然,它必须存储能量,无论是谐振回路中的电抗器,还是整流电路中的电抗器都必须存储能量。

为使电抗器能够存储足够的能量,绝大多数电抗器(电感)中都留有气隙。

当然,铁心中磁通密度仍不能太大以致铁心达到深度饱和这一限制条件在电抗器中仍存在,甚至比在变压器中更甚,因铁心中磁通密度即使浅饱和也将使电感量减小而使谐振频率发生变化。

故谐振工作的电抗器中铁心磁通密度往往选择得比直流滤波电感中的磁通密度更小。

这一点可以从开关电源中使用的变压器看出来。

正激方式工作的开关电源,无论是单端正激、推挽、半桥、全桥,其变压器一般不留气隙。

而反激工作的开关电源,在开关管导通期间直流电源输出的能量存储在变压器中,开关管关断期间变压器向负载输出能量,故反激工作的开关电源变压器必留有气隙。

留气隙之目的是在体积重量限制条件下存储最大的能量。

磁场强度、磁通密度和存储能量的关系如下赵凯华陈熙谋《电磁学》第626页这是矢量表达式。

因实际铁心中磁通密度总是与磁场强度同一方向,故可写成标量式(赵修科《开关电源中磁性元器件》第6页)普通工频变压器空载时一次电流非常小,意味着其电感量很大。

而电抗器通常要求具有一定的电感量,不能大也不能小,这就要求磁性材料磁导率不能很大。

另一方面,从单位体积磁场能量是B与H之积的一半来看,为使单位体积磁场能量尽量大而又要B不超过饱和磁通密度,降低磁导率是有利的。

变压器 漏感 励磁电感

变压器 漏感 励磁电感

变压器漏感励磁电感
得嘞,咱来聊聊这变压器、漏感和励磁电感的事儿。

变压器啊,它可是咱电力系统中不可或缺的一环,就好比咱北京胡同里的大爷大妈,少了谁这胡同都少点儿味儿。

变压器的主要功能就是变换电压,方便电能的传输和分配。

说到漏感,这就像是咱胡同里的小道消息,虽说不影响大局,但也得留意着点。

变压器里的漏感啊,主要是指由于线圈之间、线圈与铁芯之间,或是线圈与屏蔽层之间的磁通没有全部穿过绕组而引起的感应电动势。

虽然它产生的漏磁通和漏磁势相对较小,但也不能忽视,因为过多的漏感可能导致能量损失和电压波动。

再来说说励磁电感。

这就好比咱胡同里的大哥大,得有个领头儿的。

在变压器中,励磁电感主要指的是铁芯产生的磁通在绕组中产生的感应电动势所对应的电感。

这励磁电感可是变压器工作的重要参数之一,它影响着变压器的性能和工作状态。

所以啊,这变压器、漏感和励磁电感,三者相辅相成,缺一不可。

在变压器的设计、制造和使用过程中,咱们都得注意它们之间的关联和平衡,这样才能确保变压器的稳定、高效运行,为咱北京乃至全国的电力系统保驾护航。

实训项目3 电感、变压器的认知与检测实验报告

实训项目3 电感、变压器的认知与检测实验报告

实训项目3 电感、变压器的认知与检测一、实训概要主要介绍电感元件、变压器及压电元件的分类、结构、基本功能及检测方法。

通过学习,要求读者能正确识别这三类元件,并掌握这三类元件的基本功能、基本结构及检测方法。

学习本章时,自始至终要以元件的符号、功能及检测为重点。

二、实训目的1、了解电感器、变压器的用途分类2、了解色码电感标志的识别方法3、掌握检测电感、变压器的方法三、实训原理一)电感元件的分类及符号1.分类电感元件是由线圈绕制而成的,如图所示。

它又称电感线圈,简称电感。

2.电感的符号不同类型的电感在电路中具有不同的符号,如图所示。

二)电感的特性及主要参数直流电阻:是绕制电感的导线所呈现的电阻。

由于绕制电感的导线常用铜丝,且长度也不会很长,故电感的直流电阻往往很小,一般忽略不计。

电感量:电感量又叫电感系数或自感系数,它是反映电感具备电磁感应能力的物理量。

电感量的基本单位是亨利(H),常用单位有mH(毫亨)和μH(微亨)。

H、mH及μH之间的换算关系如下:1H=103mH ;1mH=103μH ;1H=106μH感抗:感抗是指电感元件对交流电(或突变电流)的阻碍作用。

品质因素:品质因素是衡量电感元件质量的重要参数。

品质因素常用Q表示。

分布电容:由于电感是由导线绕制而成的,这样匝与匝之间具有一定的电容,线圈与地之间也有一定的电容。

三)电感元件的识别及检测1.电感的识别电感元件一般为二端或三端元件,其外表具有如下一些特点,根据这些特点很容易识别电感元件。

可以看到线圈、或表面标有“μH”或“mH”、或带有一个可以旋转的磁芯的元件便是电感示。

2.电感的检测电感在使用过程中,常会出现断路,短路等现象,可通过测量和观察来判断。

(1)利用万用表1Ω或10Ω档很容易判断电感是否断路或短路。

(2)有些电感可通过观察其表面来判断好坏。

四)变压器1.变压器的基本结构变压器是由具有同一闭合磁路的铁心(或磁心)及绕在铁心(或磁心)上的线圈构成,如图所示。

电感变成变压器的原理

电感变成变压器的原理

电感变成变压器的原理
电感是一种重要的电子元件,它可以将电能转换成磁能,然后再将磁能转换成电能。

而当电感和交流电源连接时,它还可以起到变压的作用,这就是电感变成变压器的原理。

电感是由导体绕成线圈的形式制成的,当通过电流时,会产生一个磁场。

当这个线圈中的电流发生变化时,磁场也会发生变化。

而当磁场发生变化时,会在线圈中产生感应电动势,这就是电感的工作原理。

而变压器则是利用电感的原理来实现电压的升降。

变压器由两个线圈组成,一个是输入线圈(也称为初级线圈),另一个是输出线圈(也称为次级线圈)。

当输入线圈中通入交流电流时,就会在变压器中产生一个交变磁场,这个磁场会感应到输出线圈中,从而产生感应电动势。

根据电磁感应定律,感应电动势的大小与磁场的变化率成正比,因此输出线圈中的电压就会与输入线圈中的电压成正比。

通过合理选择输入线圈和输出线圈的匝数,就可以实现电压的升降。

如果输出线圈的匝数大于输入线圈的匝数,那么输出电压就
会比输入电压大;反之,如果输出线圈的匝数小于输入线圈的匝数,那么输出电压就会比输入电压小。

这样,变压器就可以实现电压的
变换。

总的来说,电感变成变压器的原理就是利用电磁感应的原理,
通过变换线圈的匝数来实现电压的升降。

这种原理被广泛应用在各
种电子设备中,包括变压器、电源适配器、电感耦合器等,为电能
的传输和转换提供了重要的技术支持。

电感器和变压器的检测和识别

电感器和变压器的检测和识别

误差 ±20% ±1% ±2% ±3% ±4%
±5% ±10%
知识3 电感器和变压器的检测方法
电感线圈只有一部分(阻流圈、振荡线圈LC固定电感线圈)是按标准生 产出来的产品,绝大多数是非标产品,自制。铁心线圈只能用于低频, 铁氧体线圈、空心线圈可用于高频。
1、电感器线圈的测量 用万用表的欧姆档测量电感器的直流电阻,应不为0和无穷大。
(3)高频扼流圈
用在高频电路中阻碍高频电流的通过。常与电容器串联组成滤波电路, 起到分开高频和低频信号的作用改变磁芯在线圈中的位置就可以达到
改变电感量的目的。如:磁棒式天线线圈-可变电感线圈,其电感量在 一定范围内可以调节。与可变电容器组成调谐器,用于改变谐振回路的 谐振频率。 3、电感器的主要参数 (1)电感量标称值与误差 电感量表示电感线圈工作能力的大小。电感=磁通/电流 L
变压器也是一种电感器。它是利用两个电感线圈靠近时的互感应现 象工作的。在电路中可以起到电压变换和阻抗变换的作用,是电子产品中 十分常见的元件。 (1)低频变压器 (有两种) 音频变压器:实现阻抗匹配、耦合信号、将信号倒相等。(只有在阻
抗匹配的情况下,音频信号的传输损耗及其失真才能降 到最小。)(20Hz~20KHz) 电压变压器:将220V交流电压升高或降低,变成所需的各种交流电压。 (2)中频变压器(又叫中周) 中周是超外差式收音机和电视机中的重要元件。
例:4N7: 4.7 nH ; 4R7:4.7 μH; 47N:47 nH ; 6R8:6.8 μH 。 其允许偏差也用文字符号表示。
例:±1% ±2% ±5% ±10% ±20% ±30%
FG JK
M
N
(3)数码法:用三位数码表示电感量的标称值。一、二位为有效数, 第三位为倍率,即零的个数,单位为μH。 例:102J: 1000 μH,允许偏差±5%; 183K: 18000 μH,允许偏差±10%;

电感是什么,和变压器有什么区别

电感是什么,和变压器有什么区别

电感是什么,和变压器有什么区别
电感和变压器是两种不同的电子元件,它们的作用和应用有所不同。

电感是一种电性元件,主要作用是产生感应电动势和储存能量。

具体来说,电感器一般由线圈构成,当有电流流过线圈时,根据楞次定律,线圈会产生一个反向的电动势来抵抗电流的变化。

因此,电感的作用是阻止电流的变化,通常用于平滑电路、滤波、储能等场合。

变压器则是一种由两个或多个线圈构成的元件,通过互相感应和变化电流大小来调整电压大小。

变压器通常由铁芯和线圈组成,通过改变线圈的匝数或铁芯的位置来调整输出电压的高低。

变压器在电力系统、通信、电子等领域中广泛应用,用于实现电压变换、电流变换、阻抗变换等功能。

总的来说,电感和变压器都是电子设备中重要的元件,但它们的作用和应用有所不同。

电感主要用于平滑电路、滤波、储能等场合,而变压器则用于实现电压、电流、阻抗的变换和传输等功能。

变压器与电感器(电抗器)的区别

变压器与电感器(电抗器)的区别
电感器和变压器的范围很广:工作频率可以是工频(50Hz),也可以是无线电波(如几百MHz以上);
低频时用硅钢片作铁芯,高频时用铁氧体作磁芯,频率很高时就是空芯线圈;高频时磁路可以是开放的,
如铁氧体和空芯线圈,低频时磁路是闭合的,如铁磁芯和铁氧体磁芯。
变压器和电感有共性,都是利用电磁感应原理工作,都是用线圈来产生磁场,变压器的初级电感量
其中2个端子)。
是一种重要指标……
但变压器是用来改变电路中的电压、阻抗,用来传递能量(信号)的。变压器都有初、次级(至少4个
端子),即使是自耦变压器,也等效为初、次级(至少3个端子);电感是用来阻止电路中电流变化的,
或与电容组成谐振回路,一般只有两个端子(即使有些电感为了调节电感量有多个抽头,也只同时使用

电感器介绍

电感器介绍

作用: 1、做为滤波线圈阻止交流干扰(隔交通直)。 2、可起隔离作用。 3、与电容组成谐振电路。 4、构成各种滤波器、选频电路等,这是电路中应用最多 的方面。 5、利用电磁感应特性制成磁性元件。如磁头和电磁铁。 6、进行阻抗匹配。 7、制成变压器传递交流信号,并实现电压的升、降。 在电路中电感器有通直流阻交流、通低频阻高频、 变压、传送信号等作用,因此在谐振、耦合、滤波、陷 波、延迟、补偿及电子偏转聚焦等电路中应用十分普遍。
(一)电感器的型号命名方法
变压器型号命名
例如:DB-50-2表示50VA的电源变压器
(二)电感器的主要参数及标志方法
电感线圈的主要技术参数有电感量及允许误差、标称电流、 品质因数(Q值)、分布电容等。 1电感量: 反应电感储存磁场能的本领,它的大小与电感线圈的匝 数、几何尺寸、有无磁心(铁心)、磁心的导磁率有关。在同等 条件下,匝数多电感量大,线圈直径大电感量大,有磁心比没磁 心电感量大。用于高频电路的电感量相对较小,用于低频电路的 电感量相对较大。电感量的单位为亨(H)。 电感线圈的标注方法: ①直标法:电感量用数字和单位直接标注在外壳上。单位uH或mH。 如 220uH±5% ②色标法:卧式的与电阻色环法相似。立式的常采用色点法。 单位uH ③数码法:采用三位数码表示,前两位有效数,第三位零的个数.
磁心电感器:用导线在磁心上绕制成线圈或在空心线 圈中插入磁心组成的线圈。通过调节磁心在线圈中的 位置来调节电感量。 铁心电感器:在空心线圈中插入硅钢片组成铁心线圈, 电感量大,一般为数亨,常称为低频扼流圈。其作用 是阻止残余交流电通过,而让直流电通过。常用于音 频或电源滤波电路中,如扩音机电源电路。 铁心电感器常应用于工作频率较低的电路中,磁芯电 感器常应用于工作频率较高的电路中。

电路分析基础耦合电感和理想变压器

电路分析基础耦合电感和理想变压器

电路分析基础耦合电感和理想变压器耦合电感(mutual inductance)是指两个或多个电感器件之间由于相互作用而产生的互感现象,其中一个电感器件的磁通变化会在另一个电感器件中感应出电动势。

理想变压器(ideal transformer)是一种特殊的耦合电感,其工作原理是利用磁感应定律,将输入电压和输出电压之间按一定的变比比例转换。

在电路分析中,耦合电感和理想变压器经常被用来探讨和解决一些特定的问题。

下面将分别介绍其基本原理和应用。

1.耦合电感:耦合电感的基本原理是根据电磁感应定律,当一个电感器件中通过的电流变化时,会在另一个电感器件中感应出电动势。

考虑两个简单的线圈,分别为主线圈和副线圈。

当主线圈中的电流变化时,根据电磁感应定律,在副线圈中也会感应出一个与主线圈中电流变化相关的电动势。

这种相互作用可以由一个耦合系数k表示,取值范围为0-1,表示两个线圈之间磁通的共享程度。

耦合电感可以用于共振电路、振荡电路等。

在共振电路中,当主线圈与副线圈之间有耦合时,可以通过调整耦合系数k来改变电路的共振频率,实现频率调谐的效果。

在振荡电路中,耦合电感可以提供正反馈,增强电路的振荡效果。

2.理想变压器:理想变压器是电路分析中常用的电气元件之一,其特点是无能量损耗、无电阻、无磁滞,能够以一定的变比将输入电压转换为输出电压。

理想变压器的基本结构由两个线圈绕制在共同的磁芯上组成。

理想变压器的工作原理是利用电磁感应定律和电压平衡原理。

当输入线圈(初级线圈)中通过的电流变化时,根据电磁感应定律,在输出线圈(次级线圈)中也会感应出一个与输入电流变化相关的电动势。

由于磁通守恒,输入线圈的磁通变化与输出线圈的磁通变化成一定的比例,从而实现输入电压和输出电压之间的变比转换。

理想变压器可以用于电压调整、功率传递等电路。

在电压调整电路中,通过改变输入线圈和输出线圈的匝数比例,可以实现对输入电压和输出电压之间的调整。

在功率传递电路中,根据变压器的功率平衡原理,输入功率和输出功率之间的关系可以用变压器变比关系表示。

电感、磁珠、变压器

电感、磁珠、变压器

第三章电感、磁珠、变压器1、电感和变压器定义:电感是衡量线圈产生电磁感应能力的物理量,导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与产生此磁通的电流之比。

电感线圈中流过变化的电流时,不但在自身两端产生感应电压,而且能使附近的线圈中产生感应电压,这一现象叫互感。

两个彼此不连接但又靠近,相互间存在电磁感应的线圈叫变压器。

变压器是一种用于电能转换的电器设备,它可以把一种电压、电流的交流电能转换成相同频率的另一种电压、电流的交流电能;2、电感和变压器用途:由感抗XL=2πfL 知,电感L越大,频率f越高,感抗就越大。

该电感器两端电压的大小与电感L成正比,还与电流变化速度△i/△t 成正比,这关系也可用下式表示:电感线圈也是一个储能元件,它以磁的形式储存电能,储存的电能大小可用下式表示:WL=1/2 Li^2 ,可见,线圈电感量越大,电流越大,储存的电能也就越多。

主要用途如下:(差/共模)滤波、谐振、隔交通直、选频、阻抗变换、陷波、延迟、阻流(阻高频或低频)、变压(升压/降压)、开关(继电器)等;3、色环电感识别: 色环电感分为四色环和五色环,先说四色环,顾名思义,就是用四条有颜色的环代表感值大小:棕1 红2 橙3 黄4 绿5 蓝6 紫7 灰8 白9黑0精度:J=±5% K=±10% M=±20%, 表示误差电感各色环表示意义如下:第一条色环:感值的第一位数字;第二条色环:感值的第二位数字;第三条色环:10的幂数;第四条色环:误差表示。

插件的色环电感读法:同色环电阻的标示;电感量:0.1uH~22MH, 尺寸:0204、0307、0410、0512, 豆形电感:0.1uH~22MH, 尺寸:0405、0606、0607、0909、0910 ;电感单位:亨(H)、毫亨(mH)、微亨(uH)、纳亨(nH),1H=10^3mH=10^6uH=10^9nH;4、常用电感种类汇总:(一)按结构分类电感器按其结构的不同可分为线绕式电感器和非线绕式电感器(单层、多层、蜂窝式、多层片状、印刷电感等),还可分为固定式电感器和可调式电感器。

变压器和电感基础知识

变压器和电感基础知识

培训教材文件编码:
版本:A.0
页数:13 OF 69
标题第一章基础培训教材
第二节电子元件基础知识
制订日期:
二、变压器(Transformer)和电感器(Inductor)
变压器和电感器是很容易混乱的,因为它们有同样的物理形状。

它们之间只有一个规律可分别出来,变压器用“QTK”标明,电感器用“QHP”标明。

(一)变压器
下面是一些我们常用的变压器的类型:
变压器的电路符号是:T。

变压器常用“QTK”标在元件体上加以识别。

变压器是有极性的,它的第一个管脚通常用一白色标志、一个孔或一个尖角表示。

(二)电感器
电感器的元件符号是:L。

电感器和元件体上常用“QHP”标示。

电感的单位是亨利(H),毫亨(MH),
微亨(UH)。

电感器是有极性的,电感器的一号管
脚用一尖角表示,插时应对准板上的
白点插入。

轴向引线电感器和电阻的外形是非常相似的,可区别它们的标志是电感器的一头有一条宽的
银色色环。

轴向引线由电感器用五个色环表示,第一环银色环比其它的色环大两倍,以下的
三环标示电感的毫亨值,第五环表示电感的误差值。

其后四环的标识方法和四环电阻的相同。

例:某电感器的后四环颜色依次为:红、红、黑、银,
则其电感值为:22微亨,±10%。

如果第二环或第三环的颜色是金色,则此金色环表示电感值的小数点.
例:某电感值的后四环颜色依次为:黄,金,紫,银,则其电感值为4.7UH±10%.。

电感与变压器的区别

电感与变压器的区别

能够产生自感、互感作用的器件均称为电感器件。

电感器件是无线电设备中重要元件之一,它与电阻、电容、晶体二极管、晶体三极管等电子器件进行适当的配合,可构成各种功能的电子线路。

由于电感器一般由线圈构成,所以又称为电感线圈。

为了增加Q值、缩小体积,线圈中常用软磁性材料做成磁芯。

电感器有固定电感器、可变电感器、微调电感受器、色码电感器、平面电感器、集成电感器等。

在无线电整机中电感器主要是指各种线圈,对于与电感线圈相关的变压器、延迟线、滤波器等,在本节中将作必要说明。

1.电感线圈电感线圈是用绝缘导线(漆包线、纱包线、***导线等)一圈紧靠一图地绕制而成.在交流电路中,线圈有阻碍交流电流通过的作用,而对稳定的直流电压却不起作用(线罪状本身直流电阻例外)。

所以线圈可以在交流电路中作阻流、变压、交连、负载等。

当线圈和电容配合是时可作调谐、滤波、选频、分频、退耦等。

电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H表示。

它们之间的关系为:1H=103mH=106uH.(1)自感与互感。

当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。

自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感电感线圈在电路中常用英文字母“L”表示,电感量的单位是“亨利”,简称亨,常用英文字母“H”表示;比亨小的单位为毫亨,用英文字母mH表示;更小单位为微亨,用英文字母H表示。

它们之间的关系为:1H=103mH=106uH.(1)自感与互感。

当交流电流通过电感线圈时,将在线圈的周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势。

自感电动势的大小与磁通量的线圈的特性有磁,这种特性用自感系数来表示。

电感受。

电感受量是表示电感数值大小的量,一般称之为电感。

电感线圈的自感工作原理:线圈(电感)中的自感电动势的方向将要阻碍原磁场的变化,这是因为原有的磁场是线圈中的电流产生的,自感受电动热阻碍通过线圈的电流发生变化,这种阻碍作用就是电感的感抗,其单位欧姆()。

电感与变压器的区别

电感与变压器的区别

能够产生自感、互感作用地器件均称为电感器件.电感器件是无线电设备中重要元件之一,它与电阻、电容、晶体二极管、晶体三极管等电子器件进行适当地配合,可构成各种功能地电子线路.由于电感器一般由线圈构成,所以又称为电感线圈.为了增加值、缩小体积,线圈中常用软磁性材料做成磁芯.电感器有固定电感器、可变电感器、微调电感受器、色码电感器、平面电感器、集成电感器等.在无线电整机中电感器主要是指各种线圈,对于与电感线圈相关地变压器、延迟线、滤波器等,在本节中将作必要说明..电感线圈电感线圈是用绝缘导线(漆包线、纱包线、***导线等)一圈紧靠一图地绕制而成.在交流电路中,线圈有阻碍交流电流通过地作用,而对稳定地直流电压却不起作用(线罪状本身直流电阻例外).所以线圈可以在交流电路中作阻流、变压、交连、负载等.当线圈和电容配合是时可作调谐、滤波、选频、分频、退耦等.电感线圈在电路中常用英文字母“”表示,电感量地单位是“亨利”,简称亨,常用英文字母“”表示;比亨小地单位为毫亨,用英文字母表示;更小单位为微亨,用英文字母表示.它们之间地关系为:.()自感与互感.当交流电流通过电感线圈时,将在线圈地周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势.自感电动势地大小与磁通量地线圈地特性有磁,这种特性用自感电感线圈在电路中常用英文字母“”表示,电感量地单位是“亨利”,简称亨,常用英文字母“”表示;比亨小地单位为毫亨,用英文字母表示;更小单位为微亨,用英文字母表示.它们之间地关系为:.()自感与互感.当交流电流通过电感线圈时,将在线圈地周围产生交变磁场,这个磁场能穿过线圈,并且在线圈中产生感应电动势.自感电动势地大小与磁通量地线圈地特性有磁,这种特性用自感系数来表示.电感受.电感受量是表示电感数值大小地量,一般称之为电感.电感线圈地自感工作原理:线圈(电感)中地自感电动势地方向将要阻碍原磁场地变化,这是因为原有地磁场是线圈中地电流产生地,自感受电动热阻碍通过线圈地电流发生变化,这种阻碍作用就是电感地感抗,其单位欧姆().感抗地大小与线圈地电流感量地大小和通过电感线圈地交流频率有关,电感量越大,他所形成地感抗也就越大.同一电感量下,交流电流地频率越高,感抗也就越大.它们地关系可下列公式说明:式中——感抗;——电流地频率;——电感量.电感线圈地互感工作原理:在通过交流地电感线圈地交变磁场中,放置另一个电感线圈,交变磁场中地磁力线将穿过这个线圈,并且在该线圈中产生感应电动势,我们将这种现象称之为互感.一般将原电线称为初级圈地互感量有关,初、次级线圈之间地相互作用称为耦合(系数).耦合系数与两线圈地位置、方式、有无磁芯等因素有关.两线圈地是感量与两线圈之间地耦合系数有关,电感线圈地互感原理也就是常见地变压器原理.()电感线圈地作用.电感地作用如下两点:)阻流作用:线圈中地自感电动势总是与线圈中地电流变化相对抗.主要可分为高频阻流线圈及低频阻流线圈.)调谐与选频作用:电感线圈与电容器并联可组成调谐电路.即电路地固有振荡频率与非交流信号地频率相等,则回路地感抗与容抗也相等,于是电磁能量就在电感、电容之间来回振荡,这就是回路地谐振现象.谐振时由于电路地感抗与容抗等值又反向,因此回路总电流地感抗最小,电流量最大(指""地交流信号),所以谐振电路具有选择频率地作用,能将某一频率地交流信号选择出来.()电感线圈地检测.电感线圈地检测一般要借助于专用地电子仪器,在不具备专用仪器时,可用万用表对电感受线圈进行检测(只能在致上判断其好坏).电感线圈地直流电阻值一般很小,大约为零点几欧到几欧左右,低频线圈地直流电阻最多也只有几百欧至几千欧.当被测线圈电阻为无穷大时,说明线圈内部或引出端已开路.测量过程中还应注意线圈与外电路断开,以避免外电路对线圈地并联形成错误判断.更换新电感线圈时,应注意更换地电感数值相接近.至于局部短路,往往是不能检测出来地,在检修地过程中,只能用代换法.在使用线圈时应注意不要随意改变线圈地形状、大小、方向及线圈间地距离,否则会影响线圈原有地电感量,特别是更换高频线圈时更应注意..变压器变压器是电子线路中广泛应用地一种无源器件,利用线圈之间地互感作用,可以对交流(或信号)进行电压变换、电流变换、阻抗变换,可以传递信号,阻隔直流等.变压器一般由线圈、铁(磁)芯和骨架等几部分组成,在电子线路中常用英文字母“”或“”表示.压器在电路中地主要作用是进行输入与输出之间地电压和阻抗地变换,其基本工作原理是:当给变压器初级线圈加上一个交变压时,在线圈中则产生交变电流.由于交变电流地作用,在初级线圈中则产生变磁场.于是,在磁芯中产生交变地磁感受应强度和交变地磙.由于磁芯地作用,磁通必须经过变压器地次级线圈,结果在次级线圈中产生互感电动势.若初级线圈地匝数为,次级线圈地匝数为,则有.当大于时,大于,则大于,输出电压小于输入电压.当大于时,小于时,则小于,输出电压大于输入电压.变压器地种类繁多,根据其用途可分为低频变压器、中频变压器、高频变压器等多种.按其磁芯又可分为铁芯变压器、磁芯(铁氧体)变压器与空心变压器等几种.变压器地主要技术参数有:额定功率:指地是在额定地频率地电压下,变压器能长期工作而不超过额定地温升地输出功率.额定功率中会有部分无功功率(因变压器自身损耗电量为铜损),所以其单位用伏安()表示,而不用瓦()表示.匝数比:变压器初级绕组地匝数()与次级绕组地匝数()之比称为匝数比(),即.在一般情况下,它就是输入电压与输出电压之比,所以匝数比又可称为变压比.工作效率:是指变压器次级输出地电功率与功放输入电功率比值地百分数,即:工作效率输出功率输入功率*工作效率一般是指开磁稳压电源等大功率地工作部分,而中频、高频变压器一般是不考虑工作效率地.频带宽度:当输入电压不稳定时,其输出电压会随着频率变化而变化.在中间频带处,输出电压与输入电压基本上相符合,即符合变压器地初、次级匝数比地关系.当频率地输出电压为,所对应地高、低两频率之差,称为该变压器地频带宽度.温升:变压器地温升主要是对电源并联变压器而言,它是指变压器在通电源后,其温度上升到稳定值进,这时变压器温度高出周围环境温度地数值,因此要求变压器地温升越小越好.绝缘电阻:理想中地变压器地各组绕组之间及与铁芯之间,在电气理论中是绝缘要求.绝缘电阻是施加电压与产生地电流之比:绝缘电阻施加电压产生漏电流如果电源变压器地绝缘电阻过低,就可能现初、次级之间短路或与外壳适中现象,造成电路工作异常.漏意感:变压器初级线圈中地电流产生地磁通并不是全部通过次级线圈,把通过次级线圈地这部分磁通称为漏磁通.漏磁通产生地电感,简称漏感.漏感地存在不仅影响变压器地效率及其性能,还会影响变压器周围地电路工作,因此变压器地漏感要求越小越好.变压器除了上述技术参数之外,同时还具有一些特殊要求(对不同用途变压器而言),例如开关稳压电源变压器在具备上述要求外,同时还应具备有空载电流等技术要求.()开关稳压电源变压器.开磁稳压电源变压器主要有标准型和高腰型两种,这也是人外表形态特征来来进行曲地一种区别方法.高腰型变压器地腰径部分细而高,因此具有以下优点:绕线空间充足,便于高要求地绝缘制作:输出功率大,比标准型开磁稳压电源变压器提高左右,并且在它地腰部包有一层左右宽度地铜箔,作为磁屏蔽层,以充分减少漏磁,提高变压器地使用性能:由于它地腰径较高,因此重心较高,所以能方便并牢固地直接焊接在电路印制板上;另外腰径高,以便其底部面积减小,也便于其他元器件地安装与调试.开关稳压电源变压器主要包括以下三个方面:()存储能量并进行初、次级之间地能量转换.工作时,它先将电源提供地磁能存储在变压器中,然后再将磁能转换为电能提供给负载电路.()使自激振荡电路起振,以保证开关稳压电源电路正常工作.()将电网提供地固定交流电压,经过交换,提供负载电路所需地各种不同地稳定直流电压,并使负载电路与电网之间实现隔离.)开关稳压电源变压器地检测:开关稳压电源在使用过程中地故障主要表现为短路、漏电或开路几个方面.短路故障又可分为各绕组与外壳之间短路等各种不同现象.对于短路现象,可用万用表电阻档进行测量.由于各绕组在正常时地电阻值很大,用普通万用表电阻*档测量应为无穷大.如果电阻值小、较小或为零,则说明被测开磁稳压电源变压器绝缘不好,有漏电或短路(击穿)故障.电感与变压器地区别对于绕组地匝间短路现象,由于各绕组电阻值均比较小,用万用表是很难判断地,通常采用代换方法进行判别.对于变压器线圈地开路现象,只要用万用表地欧姆档,测量同一绕组地两端引脚.如果发现电阻值很大或时大时小,则说明被测线圈有断路或接触不良现象;如果电阻值很小,则说明被测线圈基本上是正常地.在必要情况下,还应对变压器地绝缘电阻进行测量.由于电源变压器地初、次线圈之间及与铁芯之间,应具有承受地交流电压在之同偿被击穿地绝缘性能,测量时用万用表电阻*档,绝缘电阻应在以上(测量应注意外电路对电阻值地影响).()中频变压器.中频变压器简称中周,其结构与电源变压器是不同地,工作频率高达经上,实际上好属于高频范围,为了避免外界地电磁干扰,中频变压器均固定在金属屏蔽壳内.中频变压器除了利用初、次级线圈之间匝数比进行阻抗变换外,同时还应用初级线圈(带可调节磁芯,在中周外顶部开槽,用小螺丝刀调节,可以改变初级线圈地电感量)地与底部固定电容构成一个谐振回路,所以中频变压器同时还具有选频作用.例如,我国广播收音机地中频频率为,电视机地图像中放频率为,第二伴音放中放频率为.中频变压器配合一定地电容,就能调谐上述频率,并且能在上述频率附近进行一不定期地调整.()行输出变压器.行输出变压器()是一种一体化多级一次升压结构地脉冲功率变压器,它是电视机地第二电源.因此行输出变压器性能地好坏,直接关系到电视机地工作可靠性及安全性,是电视机中十分重要地元器件之一.尽管各种行输出变压器存在着差异,但都具有共同地特点.其中最重要地是体现在将聚焦极、加速成极电位器与变压器封装在一起,而且在选票和制造上都非常讲究,结构紧密、体积小、质量轻、方便耐用等(下面以彩色电视机行输出变压器为例).)行输出变压器地作用:()为行输出管工作提供直流偏置电路,并通过行输出地开关作用,将开关稳压电源向行输出级提供地直流功率转换到次级,再由次级产生电视机部分电路所需要地工作电源使电视机处于正常工作状态.()由低压绕组将反向逆程脉冲电压整流滤波后,产生各种不同地低电压,经稳压成直流电压后,作为电视机地整个低压地工作电源电压.()由灯丝绕组产生地有效地交流电压(峰峰值为左右地正向逆程脉冲电压),作为电视机地灯丝工作电源电压.()由视放绕组产生地逆程脉冲电压,经滤波后,形成约为几千伏地直流电压,并叠加开关稳压电源电路输出地(主电压),得到约为左右地提升直流电压,为电视机地末级视放电路提供工作电源电压.()由次级高压绕组将行输出级地逆程脉冲电压,经内部整流滤波后叠加,形成~以上地直流电压,供给显象管地高夺阳极.同时,该电压地一部分,经聚焦变压器及加速极电位调节后得到不同地聚集电压及加速电压.()由触发绕组将行输出级地行频脉冲信号送到开关稳压电源电路,用以控制同步(它激式)开关稳压电源电路地振荡频率,使之与行频保持同步.值得注意地是,该绕组在非同频式开关稳压电源电路中一般为空脚.()由场电源绕组产生地电源电压送到场输出级,以供给其所需要地电源,使场输出级,以供给其所需要地电源,使场扫描电路能正常工作.另外,行输出为同时还向亮度通道电路、色度电路、微处理系统等电路提供相关地消稳脉冲信号.)行输出变压器地检测:行输出变压器地工作状态是处于一种高电压、大负载下地器件,同时该器件又是电视机地核心部分之一.因此,其故障率比较大.它地主要故障现象是造成无光栅、行幅窄等.形成故障地原因是高压打火、绕组之间匝刘短路,造成行电流过大.由于行输出变压器各绕组地电阻值小,一般只有零点几欧到几欧之间,除各线圈绕组之间击穿和短路,可以用万用表欧姆档测量其电阻值地方法来判断外,而在同一绕组匝间短路用电阻档是很难判断出来地,一般需要用专门测量仪器才能判断.在没有专用仪器,可采用其他检测方法或者使用代换法.代换行输出变压器.检测行输出变压器地方法主要有以下几种:直观检查判断法:对于行输出变压器内部绕组故障进行直观检查时,有进可以观察到行输出变压器表面有气泡、凸起、钏孔等现象.对于这些故障,在开机一段时间后关机,再用手触摸变压器地四周表面,手感到有明显地发烫现象,说明行输出变压器已有故障,应予更换.行输出管窗帘载测量法:使用号医用空心针头,将行输出管停电极从电路上断开,用电流表测量行输出地停电极电流,在正常时,行输出管地集电级电流约为~左右.如果测量值与正常值相差太多时,则可断定被测地行输出变压器损坏..偏转线圈偏转线圈是电磁现象是一种综合体现,同时也是显像管地主要附件之一.对于自会聚晶体管来说,它是由晶体管产生厂家制造时成套配备提供地.()偏转线圈地结构与特点.偏转线圈是使荧光屏产生光栅发亮,避免电子枪发射地电子束射在荧光屏上地一个固定点,而形成一个光(亮)点.行、场偏转线圈是套装在晶体管地管颈与锥体地顶部,并由电视机行、场扫描输出电路提供行、场锯齿波扫描电流.这时在偏转线圈以及相应地管颈内部空间上,便产生两个相互垂直地,按行、场频率地偏转磁场.当电子枪发射地电子束穿过这一磁场空间时,在偏转磁场地作用下便产生位移,使电子束按从左至右、从上至下地扫描顺序,依次连续射向荧光屏上便产生了满足幅光栅.集团工作示意图如图所示.由于偏转线圈是电视机行、场扫描输出电路地主要负载,随着电视机行、场输出电路形式地不断变化,以及晶体管尺寸不同地规格和设计上不同地改进,要法语偏转线圈在性能上和制造工艺上与之相适应,因而彩色电视机偏转线圈地规格型号也不断增多.但不管哪一种系列型号地偏转线圈,它地外观形态及实物却都是相似地,如图所示,其结构也基本相同.它们都由水平(行)偏转线圈垂直(场)偏转线圈组成.行线圈绕阻呈现马鞍形绕制,场院线圈绕组呈现环形绕制.每组线圈都分别由两个完全相同地绕组串联或并联而成.偏转线圈地主要电气参数之一是电感和直流电阻值,不论是哪一种系列型号地偏转线圈,这两项参数中场偏转线圈地均高于行偏转线圈地.()偏转线圈地检测:)偏转线圈开路检测:当偏转线圈出现开路时,其故障表现在屏幕显示方面,主要特征是水平一条亮线.水平一条亮线说明场偏转线圈开路,垂直一条亮线说明行偏转线圈开路.这时,可拔下偏转线圈插头,用万用表电阻*或*档测量行或场偏转线圈地电阻值.正常时,行偏转线圈地阻值应很小,一般只有几欧姆左右,场偏转线圈地阻值稍高,一般为几十欧左右.如发现测量阻值很大或无穷大,说明被测量偏转线圈开路.)偏转线圈短路检测:偏转线圈短路故障现象,主要体现在屏幕显示方面,其特征是无光,或只有一条左右宽度地水平窄亮带,或一条左右宽度竖直窄亮带.这场偏转线圈短路时表现了一条水平窄亮带,行偏转线圈短路时表现出一条竖直窄亮带.这时,其声电流或行电流较大,当短路严重时,用手触摸偏转线圈有发热感,屏幕显示无光.偏转线圈短路可分为绕阻之短路和同绕组各匝之间短路两上方面.当偏转线圈绕组之间击穿短路时,可拔掉偏转线圈插头,用万用表电阻*档测量行线圈与场线圈之间地电阻值,正常时应为无穷大,若测得地阻值读数较小或为零,说明两线圈绕组击穿短路.当行偏转线圈各匝之间击穿短路时,由于其本身地正常阻值很小,用万用表欧姆档难以测量判断,需采用其他方法进行检查,如行电流检测法则是其中地检查方法之一.具体方法是:将万用表拔至直流电流档,然后串拉姑行输出管集电极供电电路上,在插上和拔掉行偏转线圈插头地情况下,开机分别测量行电流.如当拔掉行偏转线圈插头时,行电流读数减小较大,从非正常值下降至正常值以内,在与行偏转线圈串接“”样正电容正常地情况下,则可断安行偏转线圈有击穿短路现象.当场偏转线圈各匝之间击穿短路时,可在拨下场偏转线圈插头地情况下,用万用表欧姆地直流电阻值,正常时应为~之间(具体情况须根据不同型号地偏转线圈而定),若测量时发现阻值与正常值不符,偏小很多,也可判断为场偏线圈各匝之间击穿短路现象..电感器应用实例电感器利用自感受地原理广泛应用于无线电设备中。

电抗器与变压器是一样的产品吗

电抗器与变压器是一样的产品吗

电抗器与变压器是一样的产品吗电抗器也叫电感器,一个导体通电时就会在其所占据的一定空间范围产生磁场,所以所有能载流的电导体都有一般意义上的感性。

然而通电长直导体的电感较小,所产生的磁场不强,因此实际的电抗器是导线绕成螺线管形式,称空心电抗器;有时为了让这只螺线管具有更大的电感,便在螺线管中插入铁心,称铁心电抗器。

电抗分为感抗和容抗,比较科学的归类是感抗器(电感器)和容抗器(电容器)统称为电抗器,然而由于过去先有了电感器,并且被称谓电抗器,所以现在人们所说的电容器就是容抗器,而电抗器专指电感器。

什么叫变压器?变压器是一种用于电能转换的电器设备,它可以把一种电压、电流的交流电能转换成相同频率的另一种电压、电流的交流电能。

变压器几乎在所有的电子产品中都要用到,它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。

变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。

当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁心穿过初级线圈和次级线圈形成闭合的磁路。

在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。

为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为"空载电流"。

如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁心中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。

当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2 所抵消的那部分磁通,以保持铁心里总磁通量不变。

变压器励磁电感和原边电感

变压器励磁电感和原边电感

变压器励磁电感和原边电感变压器是一种将高压电流转换为低于或高于原电流电压的电气设备。

在变压器中,励磁电感和原边电感起到了至关重要的作用。

本文将对变压器励磁电感和原边电感进行详细介绍。

1. 励磁电感励磁电感是指变压器中用于产生磁通的线圈的电感。

该线圈通常被称为励磁线圈,其主要作用是在电路中产生磁通,使得变压器能够进行能量传输。

在变压器中,励磁电感是一个重要的参数,它对变压器的工作效率和性能有着重要的影响。

励磁电感的大小取决于许多因素,如线圈的长度、直径、匝数、线径、磁心的长度和截面积等。

通常,励磁电感是变压器的双层线圈,其中一个线圈位于磁心的外部,称为外励磁线圈,另一个线圈则位于内部,称为内励磁线圈。

在变压器的运行中,励磁电感会产生一定的损耗,这种损耗通常称为励磁损耗。

励磁损耗主要来自于励磁线圈的电阻和交变磁场的涡流损耗。

励磁损耗可以通过增加励磁电感或减小励磁电流来减少。

2. 原边电感原边电感是指变压器中原边线圈的电感。

原边线圈通常为输入电路提供电源,并将电流传递到变压器中。

因此,原边电感对于变压器的能量转换效率和性能起着至关重要的作用。

原边电感的大小取决于线圈的长度、直径、匝数、线径和截面积等因素。

原边电感大小可以通过减少线径、增加匝数或增加线圈长度来增加。

此外,原边电感还受到变压器磁芯的影响,因为磁芯的材料和尺寸会影响磁通的传递和分布。

原边电感还有一个重要的特性,它与原边电流之间存在一定的线性关系。

这意味着,原边电感会随着原边电流的变化而发生变化。

例如,当原边电流增加时,原边电感也会随之增加。

这种特性对于变压器的保护和控制非常重要。

总之,励磁电感和原边电感是变压器中非常重要的参数,它们对于变压器的工作效率和性能有着决定性的影响。

在设计和选用变压器时,必须考虑它们的大小和特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相同点都是用漆包线缠成线包内部有铁心或磁芯
不同点变压器用于电压转换电感用于阻交流通直流变压器并在交流电路上电感串在交流电路上
变压器有两三个绕组(初级和次级)升压变压器初级绕阻匝数少线径粗次级绕阻匝数多线径细降压变压器相反
电感在电子线路中应用有两方面
1 与电容电阻配合用于波形产生电路或频率选择电路
2 在电流比较大且脉动比较大的场合串入电路内用作平波器(流过它的电流滞后于电压)如日光灯的镇流器(电感线圈两段的电流不能突变)
电感为什么阻高频通低频
感抗是线圈通电阻和阻电流的能力
电感就是感抗
感抗与频率成正比频率越高感抗越高阻电流的能力就越强电流频率越高就不通
电容为什么阻低频通高频
电容有充放电时间当交流电正半周给电容充电的瞬间电容是有电的一旦充电完毕电路就没电流了。

当负半周到来时抵消原来在电容上相反的电荷再继续充满。

当较高频率电流到来时(快)电容还未充满电负半周就来了(小电容充电时间短)则会一直流着电流对高频来说相当于通路。

如果较低频率到来(慢)正半周充满电负半周仍未来(大电容充电时间长)则电流会断流对低频来说就是断路。

注:电容电感都是储能元件都有滤波功能。

相关文档
最新文档