交流电机的绕组

合集下载

交流绕组 练习题 1

交流绕组 练习题 1
(6)整数槽双层叠绕组最大并联支路数等于___,整数 槽单层绕组最大并联支路数等于_____。
(7)若采用短距方法来消除相电动势中v次谐波,线圈 的节距y1=_τ。
(8)三相绕组的基波合成磁动势幅值为每相基波脉振磁 动势的_倍。
(9)交流电机的同步转速指__其值为__。 (10)交流电机三相绕组基波合成旋转磁动势的旋转方
A漏磁通B.主磁通C.总磁通
(13)三相交流电机的定于合成磁动势为圆形旋转 磁动势,其幅值计算公式中的电流为
A每相电流的最大值 B.每相电流的有效值
C.线电流
D.三相电流的代数和
(1)在分析交流电机的绕组和磁场在空间分布等 问题时,电机的空间角度常用电角度表示,电角 度为p倍的机械角度。()
(2)根据交流线圈节距的长短,交流绕组可分为 整距绕组、短距绕组和长距绕组,长距绕组的端 接线较长,所以电机绕组多采用长距。()
各次谐波磁动势的幅值为
FC3 Fc1 / 3, Fc5 Fc1 / 5
2)单层整距线圈组的磁动势
fq Fq1 sin t sin x Fq3 sin t sin 3x Fq5 sint sin 5x
式中, Fqv是线圈组的基波和v次谐波磁动势幅值, Fqv= qFcvKqv=0.9q(NcKqv/v)I; qFcv是q个线圈磁动势的代 数和,v=1,3,5,7,…为磁动势的基波和谐波次数;Kqv 是绕组的分布系数,Kqv=sin[q(vα/2)]/[ qsin(vα/2],v=1, 3,5,7,…。
1)计算每极每相槽数q=Z/(2pm)(槽)和 槽距角a=PX360°/Z1(电角度)。
2)根据槽距角画出各相量,标出P对极(P个重 叠相量)下的槽号,再根据q值分极分相。
(5)绕组展开图 分析槽电动势星形图的目的是为了画出绕组

电机学-交流绕组和电动势

电机学-交流绕组和电动势
交流电机的绕组和电动势
§8-1 交流绕组的基本概念
➢交流绕组的定义
感应交流电的绕组叫交流绕组
同步电机电枢绕组和异步电机定子、转子绕组结构相同, 因此统称为“交流电机绕组”,简称为交流绕组。
交流电机的绕组和电动势
§8-1 交流绕组的基本概念
➢对交流绕组的要求 1)良好的导电性能; 2)一定导体数下,获得较大的基波电动势和基波磁动势; 3)在三相绕组中,对基波而言,三相电动势必须对称,即三相 的幅值相等而相位互差120度电角度,并且三相的阻抗也要求相 等; 4)电动势和磁动势波形力求接近正弦波,为此要求电动势和磁 动势中的谐波分量尽量小; 5)用铜量少,绝缘性能和机械强度可靠,散热条件好; 6)制造工艺简单,检修方便。
8
9
10
S2
11 12 13
A
18
17 16 15 14
动势最大,应将第一个N极下的7、8槽也划
Y
24 12
13 1
14 2
归A相,作为X相带。因为7、8槽与l、2槽
23 11
Z 3 15
相隔一个极距,它们可分别构成整距线圈,
22 10
4 16
第二对极下13、14槽为A相带,19、20槽则 C
为X相带。
§8-2 三相单层绕组
➢三相单层集中整距绕组
槽电势星形图:连成的绕组能否得到三
1
相对称电动势呢?可以作三相绕组电动
势相量的方法来说明。因槽间角 1 60 6 电角度,若规定导体电动势穿进纸面为
60°
2
正,则图8- 4(a)所示瞬间1槽导体电动势
为正的最大,当转子转过 1角后,2槽导
体电动势才最大,因此2槽导体电动势落 5

交流电机绕组的基本理论

交流电机绕组的基本理论

Y.Q.Xiong 2010-06 第4章 交流电机绕组的基本理论
15
相绕组磁动势及 其基波分量动画
基波表达式 f1(t, ) Fm1 sin t cos
基波振幅
Fm1

0.9
NkN1I p
串联匝数
N


2 pqNc a
pqN c a
(双层绕组) (单层绕组)
电机学 Electric Machinery
华中科技大学 电气与电子工程学院
熊永前
2010.06
Y.Q.Xiong 2010-06 第4章 交流电机绕组的基本理论
1
4.3 交流绕组磁动势
1. 单相绕组磁动势
(1) 单层集中相绕组的磁动势
Z=6,p=1,三相单层绕组。q=1,相当于集中绕组,每相只 有1个整距线圈。
磁动势空间矢量的长度代 表幅值的大小,矢量的位 置代表幅值所处的空间位 置。
将各线圈的基波磁动势矢
量相加得到分布相绕组磁
动势基波矢量。
Y.Q.Xiong 2010-06 第4章 交流电机绕组的基本理论
8
考虑到一般情况,对于q个线 圈,合成磁动势基波是q个依 次位移α1度的正弦波叠加而成 。
采用磁动势迭加原理,三个线圈分别产生矩形波磁动势。
将三个矩形波叠加起来,得到阶梯波脉振磁动势。
Y.Q.Xiong 2010-06 第4章 交流电机绕组的基本理论
7
用迭加原理求合成磁动势
三个线圈分别产生矩形波 磁动势。磁动势波形一样 ,依次位移槽距电角α1度 。
各线圈磁动势的基波分量 为空间分布正弦波,和时 间相量相似,可以用空间 矢量来表示。

f y (t, ) Fy cos 1,3,5,

第06章-交流电机的旋转磁场理论

第06章-交流电机的旋转磁场理论

-11-
第六章 交流电机的旋转磁场理论
二、旋转磁场的基本特点
1)三相对称绕组通入三相对称电流所产生的三相基波合成 磁动势是一个旋转行波, 合成磁动势的幅值是单相电枢绕组脉
振磁动势幅值的3/2倍。同理可以证明,对于m相对称绕组通入 m相对称电流,所产生的基波合成磁动势也是一个旋转行波, 其幅值为每相脉振幅值的m/2倍。
-13-
第六章 交流电机的旋转磁场理论
第三节 交流电机的主磁通和漏磁通
一、主磁通
当交流电机的定子绕组通入三相对称电流时, 便在气隙中
建立基波旋转磁动势,同时产生相应的基波旋转磁场。 与基波
旋转磁场相对应的磁通称为主磁通,用m表示。由于旋转磁场
是沿气隙圆周的行波,而气隙的长度是非常小的, 所以相应的
-8-
第六章 交流电机的旋转磁场理论
图6-3说明 Fs (x,t) 是一个幅 值恒定、正弦分布的行波。
由于 Fs (x,t) 又 表示三相电
枢绕组基波合成磁动势沿气隙圆
F sm
F ( x, t) s
v1
et
周的空间分布,所以它是一个沿
气隙圆周旋转的行波,其相对于
定子的速度是
v1
e
π
(6-8)
0
FA1( x, t ) FB1 ( x, t ) FC1 ( x, t )
Fm
1
c
oset
c
os
πx
Fm
1
c
os
(et
2π 3
)
Fm 1
cos(et
2π 3
)
cos(πx
cos(πx
2π ) 3 2π ) 3
(6-5)
式中,Fm1是每相磁动势基波分量的幅值,其精确的计算需要考 虑绕组分布及短距等因素。

交流电机的绕组和电动势(3)

交流电机的绕组和电动势(3)

A
X
(2)当q为奇数,每个相带的槽不能均分。
举例:Z=36,2p=4,m=3。(q=3)
槽号 相带 第一对极 第二对极
A 1,2,3 19,20,21
Z 4,5,6 22,23,24
B 7,8,9 25,26,27
X 10,11,12 28,29,30
C 13,14,15 31,32,33
Y 16,17,18 34,35,36
特点:两个线圈的节距不相等,同一相线圈端部不交叠,布
置和嵌线方便,常用于小型两极异步电机。
4)交叉式绕组: 欲将电机绕组连成链式结构:
(1)当q=偶数,可把每个相带的槽分成两半连成链式绕组。
S1
N1
S2
N2
AZ B X CY A Z B XC Y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
S1
N1
S2
N2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 2

尾头
尾头
尾头

A
X
三相单层交叉式绕组展开图(A相)
每对极下依次按“二大一小”交叉排列,这种绕组称为单层
N1
S2
N2
AZ B
XC Y AZ B XC Y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
ZA
B
C
X

交流电机绕组的基本理论3

交流电机绕组的基本理论3
三相合成的三次谐波磁动势
f3 fa3 fb3 fc3 0
三相合成的三次谐波磁动势为零
这个结论可推广到=6k-3的谐波次数
21
五次谐波磁势
(2)五次谐波磁动势的极对数是基波的五倍, 三相绕组各 自建立的五次谐波磁动势表达式
fa5 F5 cos 5 cos t

1 2
F 5
k y1
cos

2

sin( y1

900 )
7
3、 单相绕组磁势的统一表达式
• 为了统一表示相绕组的磁势,引入每相电流I、每相串联
匝数N 等概念
I Ic a ;
N 2 pqNc (双层绕组); a
N pqNc (单层绕组) a
将单层绕组磁势公式 F1 0.9Ic (qNc )kq1ky1
cos(


t

480 0
)
14
• 三相合成磁势为
f1 fa fb fc 3 F1 cos( t )
2
• 三相对称交流绕组通过三相 对称电流时将产生旋转磁势
15
关于旋转磁势的进一步讨论
• 三相对称交流绕组通过三相对称交流电流时,三个反向旋 转磁势在空间错开120电角度相互抵消,三个正向旋转磁势 在空间同相位,合成一个圆形旋转磁势
26

sinq 2
q sin
2
5
(2)双层短距绕组的磁势
• 双层整距绕组可以等 效为两个整距单层绕组
• 双层短距绕组的磁势可 以等效为两个错开的单层 整距绕组的磁势在空间的 叠加,错开的角度等于短 距角
6
• 双层短距绕组的磁势振幅为

电机绕组理论

电机绕组理论

第五节 交流绕组的感应电动势 一、正弦分布磁场下的绕组电动势
Bx Bm sin e1 Bxlv Bmlv sint 2E1 sint
t 时空转换
f pn 电频率与机械转速 60
E1
2 2
f
(2
Bml
)
2.22
f
1
(二)整距线圈感应电动势
Ec1 4.44 fNc1
(三)短距线圈的电动势
第五章 交流电机的绕组和电动势 第一节 交流电机的工作原理 一、工作原理 Key words:同步旋转,切割磁力线 ,失步,
感应,异步,旋转磁场
二、旋转磁场
A
Y Z
C
B
X
iA Im sin t
iB Im sin t 120 iC Im sin t 240
n1
60 f p
机械角度与电角度
一、三相单层集中整距绕组
每相只有一个集中整距线圈, 定子上每个槽里只放一个线 圈边
二、三相单层分布整距绕组
所有的线圈是同一节距又是整 距的。
A
Y Z
C
B
X
三、单层绕组的特点
(一)每个槽内只有一个线圈边,没有层间绝缘,槽 利用率较高。
(二)整个绕组的线圈个数等于总槽数的一半。节省 绕线和嵌线的工时,并且嵌线比较方便。
由超前相的绕组轴线移向滞后相的绕组轴线。
出现三相绕组或三相电流不对称的情况时,可以证明三 相基波合成磁动势将成为一个正弦分布、幅值变化、 非恒速推移的椭圆形旋转磁动势。
二、三相绕组的高次谐波合成磁动势 (一)3次谐波
f A3 fB3
F 3 F 3
cos 3 cost
cos 3 120 cos

电机学 交流电机的绕组及其感应电动势

电机学  交流电机的绕组及其感应电动势

交流绕组概述
作用:
– 通入电流→磁场(电动机) – 磁场与定子绕组切割→电势→电流(发电机)
分类(类型)
– 相数:单相、三相 – 层数:
单层:同心式、交叉式、链式 双层:叠绕组、波绕组
– 宽度:整距、短距 – 分布性:分布绕组、集中绕组
交流绕组的基本概念
绕组:按一定规律排列和连接的线圈的总称 ①要求磁势和电势的波形为正弦波形; ②要求磁势和电势三相对称,三相电压对称; ③电力系统都有统一的标准频率,我国规定工业标准
构造方法和步骤(举例:Z=24,2p=4,整距,m=3) •分极分相:
将总槽数按给定的极数均匀分开(N,S极相邻分布)并标记假设的感应电势方向; 将每个极域的槽数按三相均匀分开。三相在空间错开120电角度。 •连线圈和线圈组: 根据给定的线圈节距连线圈(上层边与下层边合一个线圈) 以上层边所在槽号标记线圈编号。 将同一极域内属于同一相的某两个圈边连成一个线圈(共有q个线圈,为什么?) 将同一极域内属于同一相的q个线圈连成一个线圈组(共有多少个线圈组?) 以上连接应符合电势相加原则 •连相绕组: 将属于同一相的2p个线圈组连成一相绕组,并标记首尾端。 串联与并联,电势相加原则。 按照同样的方法构造其他两相。 •连三相绕组 将三个构造好的单相绕组连成完整的三相绕组 △接法或者Y接法
整矩绕组:跨距y=τ=6,每个元件的上层边与下层边相距6
a规相个件律8槽。个为。同元l例理-72如件‘--8第2’分,-l槽83成’的-,9’4上,7个层4--1元边130应‘’件,-8与.-组..第1相4,7连’槽,,各的1共下元3计-层1件有边92‘组接-41个成的4元-一2连件个0’接。元,
每个极面下每相占有的槽数。已知总槽数Z、极对数p和 相数m为,则

电机学 交流绕组 练习题 1

电机学 交流绕组 练习题 1

(5)交流绕组的绕组系数总是小于1。() (6)三相对称交流绕组中无3及3的倍数次谐波电 动势。()
(1)高次谐波电动势主要影响电动势的___。 (2)单相绕组的基波磁动势幅值为__,幅值的位置在_。 (3)交流单相绕组的V次谐波磁动势是__,其磁极对数 为基波磁动势的____倍。 (4)将一台三相交流电机的三相绕组串联通入交流电, 其产生的合成磁动势为__。 (5)三相对称绕组通过三相对称电流,电流相序为顺时 针( A—B-C-A),其中 lA=10 sinωt A,当 IA=10A时,三相基波合成旋转磁动势的幅位应位于_; 当IA=-5A时,其幅值位于____。 (6)整数槽双层叠绕组最大并联支路数等于___,整数 槽单层绕组最大并联支路数等于_____。 (7)若采用短距方法来消除相电动势中v次谐波,线圈 的节距y1=_τ 。
(5)绕组展开图 分析槽电动势星形图的目的是为了画出绕组 展开图,绕组展开图是分析电机绕组中各线圈联 结规律的有效途径。 绕组展开图的绘制步骤: 1)分极分相,将总槽数按给定的极数分开,并 将槽依次编号,每个极的槽数按三相均匀分开, 空间差120°。 2)连接线圈,线圈的两个有效边连接时相距一个 极距,每极下q个线圈组成一个线圈组。单层绕 组每相有P个线圈组,双层绕组每根有2p个线圈 组。 3)连接相绕组,将属于同一相的线圈组连成一 相绕组,并标记首尾端。 4)连接三相绕组。
式中, f是频率,单位为 Hz; Ф1是每极 基波磁通,单位为 Wb; q是每极每相槽 数; Nc是每个线圈匝数;N1是每相每条 支路线圈的总匝数,如果a为支路数,则单 层 绕 组 N1=pqNc / a 匝 , 双 层 绕 组 N1=2pqNc/a匝。Ky1是短距系数,对于 整距线圈Ky1=1,对于短距线圈 Ky1= sin(y/τ X 90°);Kq1是分布系数,对 于集中绕组Kq1=1,对于分布绕组Kq1= sin(qα/2)/[qsin(α/2)」;Kw1是 绕组系数, Kw1= Ky1Kq1。

交流电机的绕组、磁通势和电动势

交流电机的绕组、磁通势和电动势
机。
绕组的连接方式
01
02
03
04
并联
将两个或多个绕组并联连接, 以增加电机输出电流。
串联
将两个或多个绕组串联连接, 以增加电机输出电压。
星形连接
将绕组的三个末端连接在一起 ,形成一个中性点,通常用于
三相电机。
三角形连接
将三相电机的三个绕组首尾相 接,形成一个闭合回路,通常
用于高压电机。
02 交流电机磁通势
作用。
转矩产生
02
反电动势与电源电动势的相互作用产生转矩,驱动电机旋转。
调速控制
03
通过改变电源电动势的相位和大小,可以调节电机的转速,实
现调速控制。
THANKS FOR WATCHING
感谢您的观看
基于磁路的分析
通过对电机磁路的建模和分析,可以计算出磁通 势的大小和分布。这种方法需要建立磁路的数学 模型,并进行求解。
实验测量
通过实验测量电机的磁场强度和分布,可以间接 得到磁通势的大小和分布。这种方法需要专业的 测量设备和实验条件。
03 交流电机电动势
电动势的概念
电动势是描述电源将 其他形式的能量转换 为电能的能力的物理 量。
电动势的方向规定为 电源内部电流的方向, 即从负极指向正极。
在电路中,电动势表 示为电压源或电压降 落。
电动势的计算方法
欧姆定律
E=IR,其中E为电动势,I为电流, R为电阻。
基尔霍夫定律
在电路中,电动势的代数和等于零 ,即∑E=0。
叠加原理
在多个电源共同作用的电路中,每 个电源产生的电动势单独作用,然 后求和。
电动势的分类与特性
直流电动势
方向和大小保持不变的电动势 ,如电池提供的电源。

三相交流绕组

三相交流绕组

2
二、交流绕组的分类
按相数分
单相 三相
按每极每相槽数分
整数槽 分数槽 同心式 交叉式 链式
叠绕 波绕
单层 按槽内层数分 双层
本章主要介绍三相整数槽绕组。
3
4-2 三相双层绕组
对于10kw以上的三相交流电机,其定子绕组一般均采用双 层绕组。 双层绕组每个槽内有上、下 两个线圈边,分别称为上层 边和下层边。一个线圈的一 个边放在某槽的上层,另一 个边则放在下层,相隔的槽 数称为节距,用y1表示。 在双层绕组中线圈数正好等于槽数。
m3 p 360 2 360 20 Q 36
8
返回
9
1、绘槽电动势星形图
若气隙中有一正弦分布的旋转磁场,则槽内导体的感应电动 大小相等,相位依次相差一个槽距角。
14
13 12 15 16 17
18
11
1
10 2
9
3 8 7 6 5 4
10
2、划分相带 (每极下每相所占有的区域称为相带) 以A相为例,A相在每极下应占有3个槽,整个定子中A相 共有12个槽,为使合成电动势最大,在第一个N极下取1、 2、3三个槽作为A相带,在第一个S极下取10、11、12三 个槽作为X相带。1、2、3三个槽向量间夹角最小,合成 电动势最大,而10、11、12三个槽分别与1、2、3三个 槽相差一个极距,即180度电角度,这两个线圈组(极 相组)反接以后合成电动势代数相加,其合成电动势最 大。
23
一路串联
24
4-3 三相单层绕组
单层绕组每槽只有一个线圈边,所以线圈数等于槽数的一半。这种绕 组下线方便,槽利用率高(无层间绝缘)。分同心式、链式和交叉式, 本节介绍单层绕组连接规律,现分别说明如下:

交流电机绕组的基本理论1

交流电机绕组的基本理论1
2p
Z为定子槽数 p 为磁极对数
2.线圈节距 y1:线圈两个有效边之间所跨过的槽数。
y1 = τ 整距绕组(单层绕组采用) y1 < τ 短距绕组(双层绕组采用) y1 > τ 长距绕组(端部连线长,一般不采用)
14Leabharlann 3. 每极每相槽数q 每个极下每相占有的槽数。 已知总槽数Z、极对数p和相数m,则
26
在第一个N极下取1、 2、3三个槽作为A相 带,在第一个S极下 取10、11、12三个 槽作为X相带,第二 对极下19、20、21 作为A相带,28、29、 30作为X相带。
27
相带 第一对极
各个相带槽号分布
A
Z
B
X
C
Y
1,2,3
4,5,6
7,8,9 10,11,12 13,14,15 16,17,18
29
联相绕组
• 将属于同一相的2p个线圈组联成一相绕组,并标记首尾端 • 依照电势相加原则进行连接,最大并联支路数amax=2p
a=1
30
由于N极下的极相组A与S极下的极相组X的电动势 方向相反,电流方向也相反,因此应将极相组A和极相 组X 反向串联。
由于每相的极相组数等于极数,所以双层叠绕组的 最大并联支路数等于2p。
链式绕组
19
双层叠绕组
20
单层叠绕组的构成
例:已知一交流电机槽数Z=36,极数2p=4,并联支路 数a=1,绘制三相单层绕组展开图。
1. 绘制槽电动势星形图
q = Z = 36 = 3 2 pm 2× 2× 3
α1
=
p × 3600 Z
=
2 × 3600 36
= 20°
600相带

交流电机的电枢绕组

交流电机的电枢绕组
• 串联与并联:电势相 加原则。 •最大并联支路数a=p 。
交流绕组的形式
等元件式整距叠绕组 单层绕组 同心式绕组 链式绕组 交叉链式绕组 交流绕组 双层叠绕组 双层绕组 双层波绕组
等元件式整距单层叠绕组
同心式绕组
链式绕组
交叉链式绕组
双层叠绕组
单层叠绕组的构成
实例:Z=24(槽)、m=3(相)、2p=4(极)的单层叠绕组 基本步骤: 1. 分极分相: • 将总槽数按给定的极数均匀分开(N、S极相邻分布)并标 记假设的感应电势方向。 • 将每个极域的槽数按三相均匀分开。三相在空间错开120电 角度。 每极每相槽数
• 电机的机对数为p时,气隙 圆周的角度数为p ×360电角 度。
单层绕组和双层绕组
• 单层绕组一个槽中只放一个元件边; • 双层绕组一个槽中放两个元件边。
★槽距角,相数,每极每相槽数
• 一个槽所占的电角度数称为槽距角,用α表示;
• 每个极域内每相所占的槽数称为每极每相槽数,用q表示。
Z q 2 pm
对交流绕组的要求
(1)交流绕组通电后, 必须形成规定的磁场极数;
(2)多相绕组必须对称, 不仅要求m相绕组的匝数N、跨距y1、线 径及在圆周上的分布情况相同, 而且m相绕组的轴线在空间上互差 3600/m电角度。
(3)交流绕组通过电流所建立的磁场在空间的分布为正弦分布,且 旋转磁场在交流绕组中感应电动势必须随时间按正弦规律变化。 采 用分布绕组和短距绕组。 (4)在一定的导体数之下, 建立的磁场最强而且感应电动势最大。 因此线圈的跨距y1尽可能接近极距, 而且对于三相绕组尽可能采用 600相带。(每个极距内属于同一相的槽在圆周上连续所占有的电角 度区域称为相带)。 (5)用铜少;下线方便;强度好。

华中科技大学_电机学__第四章_交流电机绕组(完美解析)

华中科技大学_电机学__第四章_交流电机绕组(完美解析)
将属于同一相的p个线圈组串、并联成一相绕组,并标记首尾端
◎ 并联支路数a:一相绕组中并联支路的个数,即因各个线圈组 的感应电动势相等,可以采用串、并联方式将q个线圈组连接,形 成a条并联支路。 ◎ 单层绕组每相最大并联支路数 amax = p
a=1
A1 A
X1
A2
X2 X
a=2
26
④ 画出三相绕组:
每极磁通 1
2

Bm1l
1 f 2
导体感应电动势
Ec1 2.22 f1
44
2. 线圈电动势与短距系数
线圈电动势有效值
y1 π E y1 N c Ec1 2 sin( ) 2
将一对极下属于同一 相的某两个导体连接 ,构成一个线圈 将一对极下属于同一 相的q个线圈连接,构 成一个线圈组

A1
X1
A2
X2
24
线圈组:每相绕组中, 相邻的线圈串联在一起,称为一个线 圈组。一个线圈组中的线圈个数为每极每相槽数q。 线圈组 线圈组
A1
X1
A2
X2
线圈
25
④ 构成一相绕组:
A相绕组整体右移120°得B相绕组,整体右移240 °得C相绕组
27
总结:单层叠绕组构造方法和步骤
画槽电动势星形图
分极分相:
将总槽数按极数均匀分开,N、S极相邻分布 将每个极的槽数按三相均匀分开,三相在空间错开120°电角度
构成线圈和线圈组:
将一对极下属于同一相的某两个圈边连接,构成一个线圈 将一对极下属于同一相的q个线圈连接,构成一个线圈组
构成一相绕组:
将属于同一相的2p个线圈组连成一相绕组,并标记首尾端 根据并联支路数将线圈组串联、并联或串并联,均符合电势相加原则

第4章 交流电机绕组-1

第4章 交流电机绕组-1
(1)三相合成磁动势的基波是一个幅值恒定不变的旋转波(式4-35);(2)当 某相电流达到最大值,旋转磁动势的幅值就将转到该相绕组的轴线处(P192); (3)旋转磁动势基波旋转电角速度等于交流电流角频率,即旋转磁动势的转速 就是同步转速n1;(4)如果三相电流的正序的,则磁动势波旋转方向是从U相位 置转向V相,然后转到W位置,如果三相电流是负序的,则其旋转方向为由U相到 W相再到V相,因此,如果要改变三相异步电动机旋转磁动势及磁场的旋转方向, 只要改变通入电流的相序即可.(5)三相合成基波磁动势波长等于2τ ,磁极对 数为电动机的极对数p.
第4章交流电机的绕组
电机及电力拖动基础 P136/3-10a=Y,y2
page #
第4章交流电机的绕组
电机及电力拖动基础
P136/3-10a=D,y1
page #
第4章交流电机的绕组
电机及电力拖动基础
page #
1. 2. 3.
Y,y2 Y,d3 D,y3
第4章交流电机的绕组
电机及电力拖动基础
X
C
Y
第4章交流电机的绕组
电机及电力拖动基础
Z =24=6 极距τ = 2p 4
page #
C B X X B CY AZ Z
AY
单层绕组(整距 单层绕组 整距) 整距
第4章交流电机的绕组
电机及电力拖动基础
A相绕组展开图 相绕组展开图
page #
1
3
5
7
9
11 13
15 17
19 21
23
A Z B X C Y A Z B X C Y X A A X
第4章交流电机的绕组
k N1 = k y1 k q1

交流电机的绕组电动势和磁动势习题答案

交流电机的绕组电动势和磁动势习题答案

第三篇 交流绕组的电动势和磁动势一、填空题:1. 已知一台三相交流电机,Q =36,2p =4,采用双层短距叠绕组,y 1=5/6τ,则绕组的每极每相槽数q =__________,槽距角α=__________,基波节距因数K p 1=__________,基波分布因数K d 1=__________,绕组基波因数k dp 1=__________。

已知三相交流电机,Q =54,2p =6,绕组为三相双层叠绕组,其q = 槽,τ= 槽,若y 1=7/9τ,则k p 1= ,k d 1= ,k dp 1=__________。

3;20︒;0.9659;0.9659;0.9333;9;0.9397;0.9659;0.9082. 单相绕组通以正弦电流产生 磁动势,其基波磁动势最大幅值为F φ1= ,波幅位于 。

脉振;119.0dp k pI N ;该相绕组的轴线上 3. 单层分布绕组每相有 个线圈组,每个线圈组由 个线圈串联而成,最大并联支路数a max = ,每相串联匝数N 1= 。

双层分布绕组每相有 个线圈组,每个线圈组由 个线圈串联而成,最大并联支路数a max = ,每相串联匝数N 1= 。

p ; q ;p ;1k pqN N a= 2p ; q ;2p ;12k pqN N a =4. 一个整距线圈的两个有效边,在空间相距的电角度为_______,若电机的极对数为p ,则在空间相距的机械角度为_______。

180︒;180p︒ 5. 一个在空间作余弦分布的脉振磁动势可以分解为两个旋转磁动势,两个磁动势的幅值为原脉振磁动势最大振幅的_________,转速相等,均为n 1=_________,转向_________。

一半;160f p;相反 6. 一个三相对称交流绕组,2p =2,通入f =50Hz 的三相对称交流电流,其合成基波磁动势为 ,其幅值 F 1= ,转速n 1= 。

圆形旋转磁动势;111.35dp N Ik ;3000/min r7. 若消除相电动势中的v 次谐波,在采用短距方法时,应使线圈节距y 1= τ。

交流电动机绕组课件

交流电动机绕组课件

• 1)正串联结:即极相组的尾端接首端,

首端接尾端。[庶极接线](隐极)
什么是庶极接线?
每相绕组的极相组数等于极对 数,因而每极相组的线圈数为正
常(显极)接法的两倍;
• 2)反串联结:即极相组的尾端接尾端,

首端接首端。[显极接线]
• 13、相带;是指每极下一相所占的宽度。每极 每相槽数所占的区域称为一个相带。通常情况 下,三相异步电动机每个磁极下可按相数分为 三个相带,因一个磁极对应的电角度为180° ,


• 定子绕组是三相异步电动机的主要组 成部分,是电机结构的核心。在电动机检 修工作中主要是对电机电气部分进行检修, 而绕组就是组成电气部分的最重要部分。 所以只有掌握三相异步电动机绕组的主要 结构才能很好的完成电机检修工作,提高 检修水平。
第一节 交流电动机绕组联接图
• 一、分类 • (一)、按绕组相数分类: • 单相: 220V~110V • 两相: 220V~380V • 三相: 220V~380V • (二)、按槽内绕组层数分类: • 单层,双层绕组,单、双层绕组。单层绕组电
222\322\232\223\222\322\232\223\ 每相有6组2把一组有极相组,2个3把一组的
极相组,该绕组为分数槽。
• 二、有关术语

1、线圈:线圈也称绕组元件,是构成
绕组的最基本单元。它是用绝缘导线按一定的
形状绕制而成的。可由一匝或多匝,一根或多
根并绕而成。

2、线圈组:(极相组):由多个线圈

主要应用于4、 6、8 极电机,节距

均为1~6(槽)。
• 例:y-160M-6,7.5kw,36(槽),单层链式, 节距为1~6,

第四章交流电机绕组的基本理论

第四章交流电机绕组的基本理论
线圈组数 = 线圈个数/ q
《电机学》 第四章 交流电机绕组的基本理论
例:Z=24,2p=4
=Z/2p
q Z 2 pm
1
p 360 0 Z
《电机学》 第四章 交流电机绕组的基本理论
单层绕组和双层绕组: 单层绕组一个槽中只放一个元件边 双层绕组一个槽中放两个元件边。
《电机学》 第四章 交流电机绕组的基本理论
(称60º相带)。A、B、C
三相带中心线依此互差
120º ,X相带中心线与A相
带中心线互差180º ,将X
相带与A相带电动势反向
串联起来得A相电动势。
同理得到B、C相电动势。
A和X相带内的全部导体属于A相,B和Y 相带的全部导体为B相……
各相电动势大于120º相带 时的值。
《电机学》 第四章 交流电机绕组的基本理论
《电机学》 第四章 交流电机绕组的基本理论
2、用槽电动势星形图分相以保证三相感应电动势对称
电角度:
2p=2
一周360º(2π)----机械角度——空间角度 一对极一周360º----电角度 ——空间角度
转子铁心的横截面是一个圆,其几何角度为360º。 从电磁角度看,一对N,S极构成一个磁场周期,即1对极为360º 电角度。
《电机学》 第四章 交流电机绕组的基本理论
2p=4
机械角度=360º 电角度=p×360º=720º
电角度=p×机械角度
两对N,S极构成2个感应电势周期
《电机学》 第四章 交流电机绕组的基本理论
电枢上各槽内导体按正弦规律变化的电动势分别用相量表 示,这些相量构成一个辐射星形图,称槽电势星形图。
13(31)14(32)
15(33)C相 16(34)

第4章-交流电机绕组的基本理论

第4章-交流电机绕组的基本理论
第四章 交流绕组的基本理论
交流旋转电机可以分为同步电机和异步电机两类。同 步电机和感应电机虽然励磁方式和运行特性有很大的差 别,但电机内部发生的电磁现象和机电能量转换的原理 却基本上是相同的,存在共性的问题,本章所要论述的 是:交流电机绕组的连接规律、正弦分布磁场下绕组的 电动势、非正弦分布磁场下的谐波电动势及其抑制和通 有正弦电流时绕组产生的磁动势。这些问题为后文研究 感应电机和同步电机的运行性能提供基础。
2006年3月20日星期一
武汉大学电气工程学院应黎明
τ
τ
τ
y1
y1
y1
y1 =τ 整距线圈
y1 <τ 短距线圈
y1 >τ 长距线圈
2006年3月20日星期一
武汉大学电气工程学院应黎明
2. 单层绕组: 三相交流绕组由于每槽中只包含一个 线圈边,所以其线圈数为槽数的一半。三相单层绕 组比较适合于10KW以下的小型交流异步电机中, 很少在大、中型电机中采用。
叠绕组 波绕组
{单相绕组
按相数分 两相绕组
三相绕组
多相绕组
{ 每极每相槽数 整数槽 分数槽绕组
2006年3月20日星期一
武汉大学电气工程学院应黎明
4.1.3 相关绕组概念的介绍
1. 极对数:指 电机主磁极 的对数,通 常用p表示。
2006年3月20日星期一
武汉大学电气工程学院应黎明
2. 机械角度: 一个圆周真 正的空间角 度为机械角 度360°
武汉大学电气工程学院应黎明
每极磁通为:1 Bav l Bav
Ec1
Ec1m 2

Bm1lv 2

2 fBm1l

2

Bm1

第四章_交流电机绕组的基本理论

第四章_交流电机绕组的基本理论
一. 特点: Z ,一般为整距绕 1. 每个槽内只有一个线圈边,其极距 2p 组。 2. 线圈个数=Q1 /2 3. 线圈组个数= Q1 /2q 4. 每相线圈组的个数= p (60°相带时) 5. 每个线圈匝数NC = 每槽导体数 6. 每个线圈组的匝数q NC 7. 每相串联匝数N=每相总的串联匝数/பைடு நூலகம் = p q NC / a = 定子 总导体数/2ma(即每条支路的匝数) 8. 一般用于10KW以下的小型交流电机
三、单相绕组的磁动势 相电流为Iφ 、每相串联匝数N、绕组并联支路数a、则单相 磁动势为: Nk w1 Fm1 0.9 I p
Nkw1 f1 ( x, t ) Fm1 sin t cos x 0.9 I sin t cos x p
单相脉动磁动势的分解
f 1 ( x, t ) Fm1 sin t cos x 1 1
3 f c ( x, t ) Fcm1 sin t cos x Fcm3 sin t cos x Fcm sin t cos x
其中: x 用电角度表示的空间距离。 ④基波磁动势的幅值: 4 2 Fcm1 N c I 0.9 N c I 2 ⑤ν次谐波磁势的幅值: 1 Fcm 0.9 N c I
首 尾
X
N
1 23
S
101112
N
1920 21
S
282930
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
三相双层叠绕组的A相绕组的展开图 (Z = 36 , 2P = 4 , a = 1)
4.4 正弦磁场下交流绕组的感应电动势
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 三相异步电动机
4.1三相异步电动机的基本工作原理与结构
4.1.2三相异步电动机的基本工作原理 三、异步电机的三种运行状态 根据转差率的大小和正负,异步电机有三种运行状态 状态
实现 转速 转差率 电磁转矩 能量关系
电动机
定子绕组接对 称电源
电磁制场反方向旋转 旋转
0 n n1
0 s 1
驱动 电能转变为机 械能
n0 s 1
制动
n n1
s0
制动
电能和机械能变 机械能转变为电 成内能 能
第4章 三相异步电动机
4.1三相异步电动机的基本工作原理与结构
4.1.3 型号和额定值 一、型号 例:
第4章 三相异步电动机
4.1三相异步电动机的基本工作原理与结构
第4章 三相异步电动机
4.3交流电机绕组的感应电动势
4.3.3 一相绕组的基波感应电动势
二、短距绕组、分布绕组对电动势波形的影响 对V次谐波:
y 0 k y sin( 90 )、k q q sin 2 改善电动势波形的方法:
sin
q 2 、E
p
4.44fNk y kq
第4章 三相异步电动机
三相异步电机主要用作电动机,拖动各种生产机械。结构简单、 制造、使用和维护方便,运行可靠,成本低,效率高,得以广泛应 用。但是,功率因数低、起动和调速性能差。
4.1 三相异步电动机的基本工作原理和结构
4.2 交流电机的绕组 4.3 交流电机绕组的感应电动势 4.4 交流电机绕组的磁动势 4.5 三相异步电动机的空载运行 4.6 三相异步电动机的负载运行
4.7三相异步电动机的等效电路和相量图. 4.8三相异步电动机的功率平衡、转矩平衡
第4章 三相异步电动机
4.1三相异步电动机的基本工作原理与结构
4.1.1三相异步电动机的基本结构 一、定子部分: 1、定子铁心:由导磁性能很好的硅钢片叠成——导磁部分。 2、定子绕组:放在定子铁心内圆槽内——导电部分。 3、机座:固定定子铁心及端盖,具有较强的机械强度和刚度。 二、转子部分: 1、转子铁心:由硅钢片叠成,也是磁路的一部分。 2、转子绕组: 1)笼型转子:转子铁心的每个槽内插入一根裸 导条,形成一个多相对称短路绕组。2)绕线转子:转子绕组 为三相对称绕组,嵌放在转子铁心槽内。 三、气隙:异步电动机的气隙是均匀的。大小为机械条件所能允 许达到的最小值。
第4章 三相异步电动机
4.3交流电机绕组的感应电动势
4.3.2 线圈组的感应电动势及分布系数 一组线圈由q个线圈组成,若q个线圈为集中绕组时,各线圈电动势 大小相等、相位相同,线圈组电动势为: Eq1(q1) 4.44 fqNc k y11 若q个线圈为分布绕组,放在q个槽内,各线圈电动势大小相同,相位 相差α电角度,电动势为: Eq1(q1) 4.44 fqNc k y1kq11 4.44 fqNc kw11 q Eq1( q 1) sin 2 基波分布系数 kq1 Eq1( q 1) q sin 2 基波绕组系数: w1 k y1kq1 k
双层短距分布绕组的基波磁动势为两个等效绕组基波磁动势的 相量和,用短距系数计及绕组短距的影响:
Fp1 2Fq1k y1 0.9(2qNc )k y1kq1I c
第4章 三相异步电动机
4.4交流电机绕组的磁动势
4.4.1 单相绕组的磁动势 二、单相脉动磁动势 3、相绕组的磁动势 每个极下的磁动势和磁阻构成一条分支磁路。若电机有p对磁 极,就有p条并联的对称分支磁路,所以一相绕组的基波磁动势 就是该绕组在一对磁极下线圈所产生的基波磁动势,若每相电流 为Ip: Nk w1 f p1 ( x, t ) Fp1 sin t cos x 0.9 I p sin t cos x p 单相绕组的磁动势是在空间按余弦规律分布,幅值大小随时 间按正弦规律变化的脉动磁动势。

U1
n

W2 V1

U2
第4章 三相异步电动机
4.1三相异步电动机的基本工作原理与结构
4.1.2三相异步电动机的基本工作原理 二、转差率 同步电机的转速 1转子转速n之差(n1 n)和同步转速n1的比值称 n 为转差率s : n1 n s n1 转差率是异步电机的一个基本物理量,它反映电机的各种运行情况. n n 转子未转动时, 0, s 1; 电机理想空载时, n1 , s 0. 作为电动机,转速在 0 ~ n1范围内变化,转差率在0~1范围内变。 负载越大,转速越低,转差率越大;反之,转差率越小。转差率 的大小能够反映电机的转速大小或负载大小。电机的转速为: n (1 s)n1 正常运行时,转差率一般在0.01~0.06之间,即电机转速接近同步速。
第4章 三相异步电动机
4.3交流电机绕组的感应电动势
4.3.3 一相绕组的基波感应电动势
一、一相绕组的基波电动势
一绕组有2a条支路,一条支路由若干个线圈组路串联组成。一相 绕组的基波电动势为一条支路的基波电动势
E p1 4.44 fNkw11
对单层绕组: 对双层绕组:
pqN c N 2a
N 2 pqN c 2a
额定功率因数cos N 额定频率f N 额定效率 N
第4章 三相异步电动机
4.2交流电机的绕组
4.2.1 交流绕组的基本知识 一、基本要求和分类 从设计制造和运行性能方面对交流绕组的要求: 1)三相绕组对称; 2)力求获得最大的电动势和磁动势; 3)绕组的电动势和磁动势的波形力求接近正弦; 4)节省用铜量; 5)绕组的绝缘和机械强度可靠,散热条件好; 6)工艺简单、便于制造、安装和检修。
第4章 三相异步电动机
4.2交流电机的绕组
4.2.2 三相单层绕组
二、单层交叉式绕组
单层交叉式绕组由线圈数和节距不相同的两种线圈组构成, 同一组线圈的形状、几何尺寸和节距均相同,各线圈组的端部互 相交叉。 交叉式绕组由两大 一小线圈交叉布置。线 圈端部连线较短,有利 于节省材料,并且省铜。 广泛用于q>1的且为奇 数的小型三相异步电动 机。
4.4.1 单相绕组的磁动势 一、整距集中绕组的磁动势 矩形波磁动势可能分解为基波和一系列高次谐波: 3 f c ( x, t ) Fc1 sin t cos x Fc 3 sin t cos x ... Fc sin t cos x ... 基波磁动势为: f c1 ( x, t ) Fc1 sin t cos x 基波磁动势最大值为: 4 2 Fc1 N c I c 0.9 N c I c 2 整距绕组基波磁动势在空间按余弦 分布,幅值位于绕组轴线,空间每 一点的磁动势大小按正弦规律变 化——仍然为脉动磁动势。
3、电角度
电角度 p 机械角度
第4章 三相异步电动机
4.2交流电机的绕组
4.2.1 交流绕组的基本知识 二、交流绕组的基本概念 4、槽距角 相邻两个槽之间的电角度。 p 3600 Z q 5、每极每相槽数 每一个极面下每相所占的槽数为 Z q 2 pm 6、相带 每个极面下的导体平均分给各相,则每一相绕组在每个极 面下所占的范围,用电角度表示称为相带。
4.1.3 型号和额定值
额定电流I N (A)
在额定运行状态下流 额定功率 N (kW ) 入定子绕组的线电流. 额定电压U N (kV或V ) P 额定条件下转轴上 输出的机械功率。 二、额定值 额定运行状态时加在 定子绕组上的线电压.
额定转速nN (r / min) 额定运行时电 动机的转速.
额定值关系有: P 3U N I N cos NN N
4.2.3 三相双层绕组
双层绕组每个槽内放上、下两层线圈的有效边,线圈的每一个 有效边放在某一槽的上层,另一个有效边则放置在相隔为y 的另一 槽的下层。 双层绕组分双层叠绕组(如图2a=1)和双层波绕组(略)。
第4章 三相异步电动机
4.2交流电机的绕组
4.2.3 三相双层绕组 双层绕组的特点: 1)线圈数等于槽数;
第4章 三相异步电动机
4.4交流电机绕组的磁动势
4.4.1 单相绕组的磁动势 二、单相脉动磁动势 1、整距分布绕组的磁动势 每个绕组由q 个线圈串联构成,依次在定子圆周空间错开槽距角 α,绕组的基波磁动势为q个线圈基波磁动势的空间矢量和:
Fq1 qFc1kq1
2、一组双层短距分布绕组的基波磁动势
第4章 三相异步电动机
4.2交流电机的绕组
4.2.2 三相单层绕组
三、单层同心式绕组 同心式绕组由几个几何尺寸和节距不等的线圈连成同心形状 的线圈组构成。
同心式绕组端部连 线较长,适用于q=4、 6、8等偶数的2极小型 三相异步电动机。
第4章 三相异步电动机
4.2交流电机的绕组
4.2.2 三相单层绕组
第4章 三相异步电动机
4.2交流电机的绕组
4.2.1 交流绕组的基本知识 二、交流绕组的基本概念 1、极距 两个相邻磁极轴线之间沿定子铁心内表面的距离。若定子的 槽数为Z,磁极对数为p,则极距: Z 2p 2、线圈节距 y 一个线圈的两个有效边之间所跨的距离称为线圈的节距。
. y 的绕组为整距绕组 y 的绕组为整距绕组 .
Et1 4.44 f1 每个整距线匝的电动势: 每个整距线圈的电动势: Ey1( y ) 4.44 fNc1 三、短距线圈的电动势 每个短距线匝的电动势: Ey1( y ) 4.44 fNc1k y1 E y1( y ) y k y1 sin( 900 ) 基波短距系数: E y1( y )
第4章 三相异步电动机
4.1三相异步电动机的基本工作原理与结构
4.1.2三相异步电动机的基本工作原理 一、基本工作原理 1、电生磁:三相对称绕组通往 三相对称电流产生圆形旋转磁 场。
相关文档
最新文档