7_工程力学材料力学第三章_剪切与挤压分析
合集下载
工程力学_剪切和挤压专题

bs
Fb Ab
50 103 40 100
12.5
MPa
例8-20 图示接头,承受轴向载荷F作用,试校核接头的强度。
已知:载荷F=80kN,板宽b=80mm,板厚δ=10mm,铆钉直
径d=16mm,许用应力[σ]=160MPa,许用切应力[τ] =120MPa
,许用挤压应力[σbs] =340MPa。板件与铆钉的材料相等。
1
主要内容 §1 剪切和挤压的力学模型 §2 抗剪和抗挤压强度条件及其应用
❖明确连接件的两种破坏形式:剪切破坏和挤 压破坏,以及破坏的特点。
❖能够较准确地区分剪切面和挤压面。 ❖学会运用抗剪强度条件和抗挤压强度条件进行
连接件的强度计算。
§1 剪切和挤压的力学模型 一、剪切
哪个零件容易发生破坏,破坏的基本形式 又是什么呢?
1.增加连接件数量,加大承载面积
增加挤压面面积
增加连接件数量
2.增加连接件剪切面数量,加大承载面积
一个剪切面
增加剪切面
例8-18 图示木榫接头,F=50 kN,试求接头的剪切与挤压应力。
40 100
F
F
100 100
100
F
F
解:(1) 剪切实用计算公式
FQ 50103 5 MPa
As 100100 (2) 挤压实用计算公式
2.在进行三类强度计算前,应先确定计算类别,再根据强度 条件进行计算。特别应注意剪切面与挤压面的计算,在确定 剪切面时,连接件存在有两个剪切面的情形称为双剪切。每 个剪切面上的有效载荷仅为原载荷的1/2。
3.应遵循以下的解题步骤:首先用截面法求内力,再用强度 条件进行相关计算。
三、提高连接件强度的主要措施
7 工程力学材料力学第三章 剪切与挤压

键的剪切和挤压强度均满足要求。
29
[例3] 如图螺钉,已知:[]=0.6[],求其d:h的合理比值。
h d h F d
剪切面
解
FN 4 F A d 2 FS F AS dh
当,分别达到[],[]时, 材料的利用最合理
M F
28
F
m
2. 校核键的强度。 键的剪切面积A=b l=b(L-b)
键的挤压面积为A j y=hl/2=h(L-b)/2
τ =A = jy
FQ
F jy
7561.7 M P a =17.4MPa<[τ 14 45 14
]
7561.7 σ jy= =4.5 45 14 MPa=54.2MPa<[σ ] A
F F
4
一般地,杆件受到一对大小相等、方向相反、作用 线相距很近并垂直杆轴的外力作用,两力间的横截 面将沿力的方向发生相对错动,这种变形称为剪切 变形。 发生相对错动的截面称为剪切面。
F
剪切面
Q
剪力 F
F
剪切面
5
2. 实例
键 连 接
m
榫齿 连接
铆钉(或螺栓)连接
连接件
在构件连接处起连接作 用的部件。(如:螺栓、 销钉、键、铆钉、木榫接 头、焊接接头等。)
F 4F 0.6 2 得 d : h 2.4 dh d
30
[例4]木榫接头如图所示,a = b =12cm,h=35cm,c=4.5cm,
P=40KN,试求接头的剪应力和挤压应力。 解::受力分析如图∶ 剪切面和剪力为∶ 挤压面和挤压力为:
P P
Q Pbs P
:剪应力和挤压应力
2、设计尺寸:As
29
[例3] 如图螺钉,已知:[]=0.6[],求其d:h的合理比值。
h d h F d
剪切面
解
FN 4 F A d 2 FS F AS dh
当,分别达到[],[]时, 材料的利用最合理
M F
28
F
m
2. 校核键的强度。 键的剪切面积A=b l=b(L-b)
键的挤压面积为A j y=hl/2=h(L-b)/2
τ =A = jy
FQ
F jy
7561.7 M P a =17.4MPa<[τ 14 45 14
]
7561.7 σ jy= =4.5 45 14 MPa=54.2MPa<[σ ] A
F F
4
一般地,杆件受到一对大小相等、方向相反、作用 线相距很近并垂直杆轴的外力作用,两力间的横截 面将沿力的方向发生相对错动,这种变形称为剪切 变形。 发生相对错动的截面称为剪切面。
F
剪切面
Q
剪力 F
F
剪切面
5
2. 实例
键 连 接
m
榫齿 连接
铆钉(或螺栓)连接
连接件
在构件连接处起连接作 用的部件。(如:螺栓、 销钉、键、铆钉、木榫接 头、焊接接头等。)
F 4F 0.6 2 得 d : h 2.4 dh d
30
[例4]木榫接头如图所示,a = b =12cm,h=35cm,c=4.5cm,
P=40KN,试求接头的剪应力和挤压应力。 解::受力分析如图∶ 剪切面和剪力为∶ 挤压面和挤压力为:
P P
Q Pbs P
:剪应力和挤压应力
2、设计尺寸:As
材料力学—剪切和挤压

P pA pD 4
2
785kN
n
4P nd
2 2
[ ] 62.5
4P
d [ ]
取 n = 64
D
2 连接筒壁和角铁铆钉个数 (1)剪切强度条件
n 4P nd
2 2
[ ] 35.7
4P
d t t
d [ ]
P ntd P td [ bs ]
(2)挤压强度条件
n [ bs ] 24.5
取 n = 36
p
t
N = 2(64+36) = 200(个)
ቤተ መጻሕፍቲ ባይዱP y Q x P y Q´ P x
Σy=0
P - Q´ = 0 Q´= P (数值上)
(实质上)
Q dA
A
Q和 Q´称为剪力。
2 剪应力和剪切强度条件
假设τ均布
Q dA dA A
A A
τ
dA
Q A
“名义”剪应力
剪应力强度条件
Q A
[ ]
[τ]--许用剪应力 [τ] =(0.6-0.8)[σ] (塑性材料) [τ] =(0.8-1.0)[σ] (脆性材料) 3 剪切破坏条件
Q A b
τb=(0.6-0.8)σb
§3.3 挤压实用计算 1 挤压的概念 受力特点: 变形特点: 挤压面:连接件和被连接 件之间相互压紧的面。
P P
第三章
剪切和挤压
§3.1剪切的概念 受力特点:作用于杆件上的外力是一 对大小相等、方向相反、作用线靠得 很近的集中力. 变形特点:杆件沿剪切面发生相对错动.
P
2
785kN
n
4P nd
2 2
[ ] 62.5
4P
d [ ]
取 n = 64
D
2 连接筒壁和角铁铆钉个数 (1)剪切强度条件
n 4P nd
2 2
[ ] 35.7
4P
d t t
d [ ]
P ntd P td [ bs ]
(2)挤压强度条件
n [ bs ] 24.5
取 n = 36
p
t
N = 2(64+36) = 200(个)
ቤተ መጻሕፍቲ ባይዱP y Q x P y Q´ P x
Σy=0
P - Q´ = 0 Q´= P (数值上)
(实质上)
Q dA
A
Q和 Q´称为剪力。
2 剪应力和剪切强度条件
假设τ均布
Q dA dA A
A A
τ
dA
Q A
“名义”剪应力
剪应力强度条件
Q A
[ ]
[τ]--许用剪应力 [τ] =(0.6-0.8)[σ] (塑性材料) [τ] =(0.8-1.0)[σ] (脆性材料) 3 剪切破坏条件
Q A b
τb=(0.6-0.8)σb
§3.3 挤压实用计算 1 挤压的概念 受力特点: 变形特点: 挤压面:连接件和被连接 件之间相互压紧的面。
P P
第三章
剪切和挤压
§3.1剪切的概念 受力特点:作用于杆件上的外力是一 对大小相等、方向相反、作用线靠得 很近的集中力. 变形特点:杆件沿剪切面发生相对错动.
P
材料力学:第三章 剪切

F 挤压面上应力分布也是复杂的
F
实用计算中,名义挤压应力公式
bs
Fbs Abs
Fbs
Fbs
Abs d
——挤压面的计算面积
挤压强度条件:
bs
Fbs Abs
bs
挤压强度条件同样可解三类问题 bs 常由实验方法确定
例: 已知: =2 mm,b =15 mm,d =4 mm,[ =100 MPa, [] bs =300 MPa,[ ]=160 MPa。 试求:[F]
第三章 剪 切
一. 剪切的概念和实例 二. 剪切的实用计算 三. 挤压的实用计算
一. 剪切的概念和实例 工程实际中用到各种各样的连接,如: 铆钉
销轴
平键 榫连接
(剪切)受力特点: 作用在构件两侧面上的外力合力大小相 等、方向相反且作用线相距很近。
变形特点: 构件沿两力作用线之间的某一截面产生相 对错动或错动趋势。
F F
剪切面上的内力 Fs (用截面法求)
实用计算中假设切应力在剪切
F
m m
面(m-m截面)上是均匀分布的 F
名义切应力计算公式:
F
m
m
FS
FS m
m
F
Fs
A
剪切强度条件:
Fs
A
——名义许用切应力
由实验方法确定
剪切强度条件同样可解三类问题
三. 挤压的实用计算
挤压力不是内力,而是外力
解: 1、剪切强度
4F πd 2
[
]
F πd 2[ ] 1.257 kN
4
2、挤压强度
bs
F
d
[ ]bs
F d[ ]bs 2.40KN
3、钢板拉伸强度 F
材料力学课件 第三章 剪切与挤压

铆钉直径 d =16mm,钢板的尺寸为 b =100mm,d =10mm,F = 90kN, 铆钉的许用应力是 [] =120MPa, [bs] =200MPa,钢板的许用拉应力
[]=160MPa. 试校核铆钉接头的强度.
d
d
F
F
第三章
d
F
剪切与挤压
d
F
F
b
F
第三章
F/4 F F/4
剪切与挤压
第三章
3.1 剪切与挤压的概念 剪切变形
剪切与挤压
螺栓
1.工程实例 (1) 螺栓连接
F
F 铆钉
(2) 铆钉连接
F F
第三章
(3) 键块联接
剪切与挤压
(4) 销轴联接
F
齿轮 m
键
d
轴
B
d1
A
d d1
F
第三章
2.受力特点 以铆钉为例
剪切与挤压
(合力) F
构件受两组大小相等、方向相
反、作用线相互很近的平行力系
F 2
挤压面
F
F 2
这两部分的挤压力相等,故应取长度 为d的中间段进行挤压强度校核. FS
FS
bs
F F 150MPa bs Abs td
故销钉是安全的.
第三章
D
剪切与挤压
思考题 (1)销钉的剪切面面积 A
h
(2)销钉的挤压面面积 Abs
d
F
第三章
D
挤压面
剪切与挤压
(3)校核钢板的拉伸强度 剪切面 F/4 F/4 F/4
F
F/4
F
+
3F/4 F/4
第三章
[]=160MPa. 试校核铆钉接头的强度.
d
d
F
F
第三章
d
F
剪切与挤压
d
F
F
b
F
第三章
F/4 F F/4
剪切与挤压
第三章
3.1 剪切与挤压的概念 剪切变形
剪切与挤压
螺栓
1.工程实例 (1) 螺栓连接
F
F 铆钉
(2) 铆钉连接
F F
第三章
(3) 键块联接
剪切与挤压
(4) 销轴联接
F
齿轮 m
键
d
轴
B
d1
A
d d1
F
第三章
2.受力特点 以铆钉为例
剪切与挤压
(合力) F
构件受两组大小相等、方向相
反、作用线相互很近的平行力系
F 2
挤压面
F
F 2
这两部分的挤压力相等,故应取长度 为d的中间段进行挤压强度校核. FS
FS
bs
F F 150MPa bs Abs td
故销钉是安全的.
第三章
D
剪切与挤压
思考题 (1)销钉的剪切面面积 A
h
(2)销钉的挤压面面积 Abs
d
F
第三章
D
挤压面
剪切与挤压
(3)校核钢板的拉伸强度 剪切面 F/4 F/4 F/4
F
F/4
F
+
3F/4 F/4
第三章
精品课件-材料力学-西电社 材力 第3章_剪切与挤压

bs
F Abs
F dt2
bs
d
t2
F
bs
15103 N 12mm 100 N /
mm
2
12 .5mm
d 12 .6 mm
根据标准,选取销钉直径
d 14 mm
返回
例题 3-2 已知:d=70mm, 键的尺寸为 b h l=20 12 100mm,力偶m= 2 kN·m, 键的 [t]=60 MPa, [sbs]=100 MPa。 求:校核键的强度。
第3章 剪切与挤压
第3章 剪切与挤压
§3.1 剪切与挤压的概念 §3.2 剪切的实用计算 §3.3 挤压的实用计算 §3.4 连接件的强度计算
§3.1 剪切与挤压的概念 返回总目录
一、工程实例
二、受力特点 外力等值、反向、作用线相距很近
三、变形特点 构件两部分沿剪切面相对错动
返回
四、破坏的主要形式
[t]=60MPa, [ bs]=100MPa, t 1= 8mm, t 2=12mm, F=15kN。 试:设计插销直径
解: 1. 按剪切强度设计
销钉有两个剪切面,是双
剪切问题
Fs
F 2
FS A
F2 πd 2 4
2F πd 2
d 2Fπ 2 15103 N π 60 N mm2
12.6mm
产生塑性变形。
三、挤压应力及强度条件 假设挤压面上应力均匀分布。
bs
Fbs Abs
[ bs ]
挤压面的 实际挤压面在垂直于挤 计算面积 压力平面上的投影面积
圆截面杆: Abs dt
平
键:Abs 1 hl
2
返回
应力分布并不均匀
§3.4 连接件的强度计算 返回总目录
剪切和挤压工程力学

成正比(图3-7)。这就是材料的剪切胡克定律
τ=Gγ
(3.5)
式(3.5)中,比例常数G与材料有关,称为材料的切变模量,是 表示材料抵抗剪切变形能力的物理量,它的单位与应力的单 位相同,常用GPa,其数值可由实验测得。一般钢材的G约为 80GPa,铸铁约为45GPa。
下一页 返回
3.3 剪切虎克定律 切应力互等定律
上一页 下一页 返回
3.3 剪切虎克定律 切应力互等定律
(τdy·dz)·dx= (τ´dy·dx)·dz
得
τ=τ´
(3.6)
为了明确切应力的作用方向,对其作如下号规定:使单元体 产生顺时针方向转动趋势的切应力为正,反之为负。则式 (3.6)应改写为
τ=-τ´
(3.7)
式(3.7)表明,单元体互相垂直两个平面上的切应力必定是同 时成对存在,且大小相等,方向都垂直指向或背离两个平面 的交线。这一关系称为切应力互等定理。
上一页 下一页 返回
6.2 剪切和挤压实用计算
当挤压面为平面时,挤压面面积即为实际接触面面积;当为 圆柱面时,挤压面面积等于半圆柱面的正投影面积,如图3-6
所示,Ajy=dl。
为了保证构件具有足够的挤压强度而正常工作,必须满足工
作挤压应力不超过许用挤压应力的条件。即挤压的强度条件
为
jy
F jy A jy
在承受剪切的构件中,发生相对错动的截面称为剪切面。剪
切面上与截面相切的内力称为剪力,用FQ表示 (图3-3d),其
大小可用截面法通过列平衡方程求出。 构件中只有一个剪切面的剪切称为单剪,如图3-3中的铆钉。
构件中有两个剪切面的剪切则称为双剪,拖车挂钩中螺栓所 受的剪切(图3-4)即是双剪的实例。
τ=Gγ
(3.5)
式(3.5)中,比例常数G与材料有关,称为材料的切变模量,是 表示材料抵抗剪切变形能力的物理量,它的单位与应力的单 位相同,常用GPa,其数值可由实验测得。一般钢材的G约为 80GPa,铸铁约为45GPa。
下一页 返回
3.3 剪切虎克定律 切应力互等定律
上一页 下一页 返回
3.3 剪切虎克定律 切应力互等定律
(τdy·dz)·dx= (τ´dy·dx)·dz
得
τ=τ´
(3.6)
为了明确切应力的作用方向,对其作如下号规定:使单元体 产生顺时针方向转动趋势的切应力为正,反之为负。则式 (3.6)应改写为
τ=-τ´
(3.7)
式(3.7)表明,单元体互相垂直两个平面上的切应力必定是同 时成对存在,且大小相等,方向都垂直指向或背离两个平面 的交线。这一关系称为切应力互等定理。
上一页 下一页 返回
6.2 剪切和挤压实用计算
当挤压面为平面时,挤压面面积即为实际接触面面积;当为 圆柱面时,挤压面面积等于半圆柱面的正投影面积,如图3-6
所示,Ajy=dl。
为了保证构件具有足够的挤压强度而正常工作,必须满足工
作挤压应力不超过许用挤压应力的条件。即挤压的强度条件
为
jy
F jy A jy
在承受剪切的构件中,发生相对错动的截面称为剪切面。剪
切面上与截面相切的内力称为剪力,用FQ表示 (图3-3d),其
大小可用截面法通过列平衡方程求出。 构件中只有一个剪切面的剪切称为单剪,如图3-3中的铆钉。
构件中有两个剪切面的剪切则称为双剪,拖车挂钩中螺栓所 受的剪切(图3-4)即是双剪的实例。
6材料力学第三章剪切与挤压

塑性材料,许用挤压应力与材料拉伸许用应力 的关系:
[σbs]=(1.7-2.0)σ
23
应用
挤压强度条件也可以解决强度计算的三类问题。当 联接件与被联接件的材料不同时,应对挤压强度较 低的构件进行强度计算。
1、校核强度: ; bs bs
2、设计尺寸:
As
Q
;Abs
Pbs
bs
3、设计外载: Q As ;Pbs Abs bs
h d F
d h
剪切面
解
FN A
4F
d 2
FS
F
AS dh
当 , 分 别 达 到 [] , [] 时 , 材料的利用最合理
F 0.6 4F 得 d : h 2.4
dh
d 2
30
[例4]木榫接头如图所示,a = b =12cm,h=35cm,c=4.5cm, P=40KN,试求接头的剪应力和挤压应力。
F = 2M / d = 2 x 181481 / 48 = 7561.7 N
键联接的破坏可能是键沿m—m截面被切断或键与键槽 工作面间的挤压破坏。剪切和挤压强度必须同时校核。
用截面法可求得切力和挤压力 :FQ=F j y=F=7561.7N
m
Fm
M
F
28
2. 校核键的强度。 键的剪切面积A=b l=b(L-b)
足够。σjy=Pjy/Ajy=P/n1/dt=156MPa<[σjy]故挤压强度 (3) 由拉伸强度条件计算钢板的宽度b
如由图于(c2),t1>由t,轴可力知图钢可板知的截抗面拉Ⅰ强-度Ⅰ较低,其受力情况
σ=N/A=P/(b-d)t≤[σ b≥P/(t[σ])+d=47.3mm 取b=48mm。
工程力学上课课件:剪切与挤压共31页文档

拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
剪的圆孔最小直d和最大厚度t 。
解 1)确定圆孔的最小直径。 冲剪的孔径等于冲头的直径,冲头
冲头
工作时需满足抗压强度条件,即
凸模
FN 4F
A d2
d
4F
4401030
4403m 4 m
故取最小直径为35mm。
t t
F 工件
d
d
2)求钢板得最大厚度。钢板剪切面上的剪力FQ=F, 剪切面的面积为dt。为能冲断圆孔,需满足下列条件
(2)若铆钉按图示排列,所需板宽b为多少?
F
F
解: 可能造成的破坏:
(1)因铆钉被剪断而使铆接被破坏; (2)铆钉和板在钉孔之间相互挤压过大,而使铆接被破坏; (3)因板有钉孔,在截面被削弱处被拉断。
可采用假设的计算方法: 假定每个铆钉所受的力都是一样的。
(1)铆钉剪切计算
F/2n
F/n
Q
F/2n
如图,上钢板孔左侧与铆钉上部左侧,下钢板右侧与铆钉 下部右侧相互挤压。
发生挤压的接触面称为挤压面。挤压面上的压力称为挤
压力,用Fjy表示。相应的应力称为挤压应力,用jy表示。
jy
F jy A jy
必须指出,挤压与压缩不同。挤压力作用在构件的表面, 挤压应力也只分布在挤压面附近区域,且挤压变形情况比较 复杂。当挤压应力较大时,挤压面附近区域将发生显著的塑 性变形而被压溃,此时发生挤压破坏。
三、剪应变 剪切胡克定律
构件在发生剪切变形时,截面沿外力的方向产生相对错 动。在构件受剪部位的某处取一小立方体——单元体,在剪 力的作用下,单元体将变成平行六面体,其左右两截面发生
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
剪的圆孔最小直d和最大厚度t 。
解 1)确定圆孔的最小直径。 冲剪的孔径等于冲头的直径,冲头
冲头
工作时需满足抗压强度条件,即
凸模
FN 4F
A d2
d
4F
4401030
4403m 4 m
故取最小直径为35mm。
t t
F 工件
d
d
2)求钢板得最大厚度。钢板剪切面上的剪力FQ=F, 剪切面的面积为dt。为能冲断圆孔,需满足下列条件
(2)若铆钉按图示排列,所需板宽b为多少?
F
F
解: 可能造成的破坏:
(1)因铆钉被剪断而使铆接被破坏; (2)铆钉和板在钉孔之间相互挤压过大,而使铆接被破坏; (3)因板有钉孔,在截面被削弱处被拉断。
可采用假设的计算方法: 假定每个铆钉所受的力都是一样的。
(1)铆钉剪切计算
F/2n
F/n
Q
F/2n
如图,上钢板孔左侧与铆钉上部左侧,下钢板右侧与铆钉 下部右侧相互挤压。
发生挤压的接触面称为挤压面。挤压面上的压力称为挤
压力,用Fjy表示。相应的应力称为挤压应力,用jy表示。
jy
F jy A jy
必须指出,挤压与压缩不同。挤压力作用在构件的表面, 挤压应力也只分布在挤压面附近区域,且挤压变形情况比较 复杂。当挤压应力较大时,挤压面附近区域将发生显著的塑 性变形而被压溃,此时发生挤压破坏。
三、剪应变 剪切胡克定律
构件在发生剪切变形时,截面沿外力的方向产生相对错 动。在构件受剪部位的某处取一小立方体——单元体,在剪 力的作用下,单元体将变成平行六面体,其左右两截面发生
材料力学课件 第三章剪切与挤压

第三章 剪 切与挤压
§3-1 概述 §3-2 剪切的实用计算 §3-3 挤压的实用计算 §3-4 连接件的强度计算
案例:螺栓的剪切与挤压 如图所示为采用ABAQUS软件模拟的螺栓连接两块钢板 ,固定成一块钢板。两块钢板通过螺栓相互传递作用力 ,作用力沿搭接方向垂直于螺栓。这种螺栓可能有2种破 坏形式:①螺栓沿横截面剪断,称为剪切破坏,如图3.1 (a)所示;②螺栓与板中孔壁相互挤压而在螺栓杆表面 或孔壁柱面的局部范围内发生显著的塑性变形,称为挤 压破坏,如图3.1(b)所示。
(a)剪切云图
(b)挤压云图
§3-1 概述 在建筑工程中,由于剪切变形而破坏的结构很多,例如, 在2008年5月12日14时28分在四川汶川爆发的里氏8.0级特大 地震中,某学校的教室窗间墙发生严重剪切破坏,如图所示。
在机械加工中,钢筋或钢板在剪切机上被剪断,见图所 示
(a)剪切机
(b)剪切机剪切 钢板示意图
[ bs ]
危险截面即为铆钉孔所处的位置,危险截面面积A=t(b-d) ,且此处的轴力为P;则得拉应力
P 24 103 28.9MPa [ ]
t(b d ) 10 (100 17)
以上三方面的强度条件均满足,所以此铆接头是安全的。
方法二(有限元计算法)
经有限元建模,可得钢板及铆接头的应力分布规律及状态 ,如图所示。由图可见,该题中钢板及铆接头的强度均满 足要求。
实用计算假设:假设剪应力在整个剪切面上均匀分布,等于剪 切面上的平均应力。
(合力) P
n
Q n
1、剪切面--AQ : 错动面。 剪力--Q: 剪切面上的内力。
n
P
2、名义剪应力--:
(合力)
Q
AQ
剪切面 3、剪切强度条件(准则):
§3-1 概述 §3-2 剪切的实用计算 §3-3 挤压的实用计算 §3-4 连接件的强度计算
案例:螺栓的剪切与挤压 如图所示为采用ABAQUS软件模拟的螺栓连接两块钢板 ,固定成一块钢板。两块钢板通过螺栓相互传递作用力 ,作用力沿搭接方向垂直于螺栓。这种螺栓可能有2种破 坏形式:①螺栓沿横截面剪断,称为剪切破坏,如图3.1 (a)所示;②螺栓与板中孔壁相互挤压而在螺栓杆表面 或孔壁柱面的局部范围内发生显著的塑性变形,称为挤 压破坏,如图3.1(b)所示。
(a)剪切云图
(b)挤压云图
§3-1 概述 在建筑工程中,由于剪切变形而破坏的结构很多,例如, 在2008年5月12日14时28分在四川汶川爆发的里氏8.0级特大 地震中,某学校的教室窗间墙发生严重剪切破坏,如图所示。
在机械加工中,钢筋或钢板在剪切机上被剪断,见图所 示
(a)剪切机
(b)剪切机剪切 钢板示意图
[ bs ]
危险截面即为铆钉孔所处的位置,危险截面面积A=t(b-d) ,且此处的轴力为P;则得拉应力
P 24 103 28.9MPa [ ]
t(b d ) 10 (100 17)
以上三方面的强度条件均满足,所以此铆接头是安全的。
方法二(有限元计算法)
经有限元建模,可得钢板及铆接头的应力分布规律及状态 ,如图所示。由图可见,该题中钢板及铆接头的强度均满 足要求。
实用计算假设:假设剪应力在整个剪切面上均匀分布,等于剪 切面上的平均应力。
(合力) P
n
Q n
1、剪切面--AQ : 错动面。 剪力--Q: 剪切面上的内力。
n
P
2、名义剪应力--:
(合力)
Q
AQ
剪切面 3、剪切强度条件(准则):
剪切与挤压(工程力学课件)

解:(1)确定圆孔的最小直径d。
解得
考虑生产实际情况,圆整取最小直径为35mm。
剪切
解: (2)确定钢板的最大厚度t。
解得
挤压
挤压
1. 挤压的基本概念
➢ 连接件在发生剪切变形的同时,在传力的接触面上,由于局部受到压力 作用,致使接触面处的局部区域产生塑性变形,这种现象称为挤压。
构件上产生挤压变形的接触面称 为挤压面。挤压面上的压力称为 挤压力,用Fjy表示。一般情况下, 挤压面垂直于挤压力的作用线。 挤压面为下半个圆周面
d h
挤压
4.计算实例
例: 如图7.7所示拉杆,用四 个直径相同的铆钉固定在格板 上,拉杆与铆钉的材料相同, 试校核铆钉与拉杆的强度。已 知载荷F=80kN,板宽b= 80mm,板厚t=10mm,铆钉直 径d=16mm,许用切应力[τ]= 100MPa,许用挤压应力[σjy]= 100MPa,许用拉应力[σ]= 160MPa。
jy
F jy A jy
35.7 103 80 5
89.3MPa [ jy ]
所以键的剪切和挤压强度均满足要求。
可以看出:键的剪切强度一般有较大的储备,而挤压强度的储 备较少,因此工程上通常对键只作挤压强度计算。
剪切与挤压的工程实例与计算
例二:图示拖车挂钩用插销联接,已知挂钩厚度=10mm, [] =100MPa, [jy]=200MPa,拉力F=56kN,试设计插销的直径d。
剪切
2.剪切的实用计算——剪力
剪切面
Q
F
Q
Q
剪切
剪切面
F
Q
将螺栓从剪切面截开,由力的平衡,有:
Q为剪切内力,即剪应力在剪切面上的合力,我们称之为剪力
剪切
解得
考虑生产实际情况,圆整取最小直径为35mm。
剪切
解: (2)确定钢板的最大厚度t。
解得
挤压
挤压
1. 挤压的基本概念
➢ 连接件在发生剪切变形的同时,在传力的接触面上,由于局部受到压力 作用,致使接触面处的局部区域产生塑性变形,这种现象称为挤压。
构件上产生挤压变形的接触面称 为挤压面。挤压面上的压力称为 挤压力,用Fjy表示。一般情况下, 挤压面垂直于挤压力的作用线。 挤压面为下半个圆周面
d h
挤压
4.计算实例
例: 如图7.7所示拉杆,用四 个直径相同的铆钉固定在格板 上,拉杆与铆钉的材料相同, 试校核铆钉与拉杆的强度。已 知载荷F=80kN,板宽b= 80mm,板厚t=10mm,铆钉直 径d=16mm,许用切应力[τ]= 100MPa,许用挤压应力[σjy]= 100MPa,许用拉应力[σ]= 160MPa。
jy
F jy A jy
35.7 103 80 5
89.3MPa [ jy ]
所以键的剪切和挤压强度均满足要求。
可以看出:键的剪切强度一般有较大的储备,而挤压强度的储 备较少,因此工程上通常对键只作挤压强度计算。
剪切与挤压的工程实例与计算
例二:图示拖车挂钩用插销联接,已知挂钩厚度=10mm, [] =100MPa, [jy]=200MPa,拉力F=56kN,试设计插销的直径d。
剪切
2.剪切的实用计算——剪力
剪切面
Q
F
Q
Q
剪切
剪切面
F
Q
将螺栓从剪切面截开,由力的平衡,有:
Q为剪切内力,即剪应力在剪切面上的合力,我们称之为剪力
剪切
材料力学第三章剪切

σ jy
Pjy A jy
pbL / 2 td
pbL 2td
2.0 0.06 0.15 2 0.012 0.015
50(MPa)
21
例3 如图所示为铆接接头,板厚t=2mm,板宽b=15mm, 板端部长a=8mm,铆钉直径d=4mm,拉力P=1.25kN,材料 的许用剪切应力[τ]=100MPa,许用挤压应力[σjy] =300MPa, 拉伸许用应力[σ]=160MPa。试校核此接头的 强度。
t
t
P
P
P
P
d
(a)
(b)
22 P
P
b
P
P
22
a
(c)
22
1、接头强度分析 2、铆钉的剪切与挤压强度计算
QP
τ Q 1.25 10 3 99.5N / mm 2 99.5MPa [τ]
A 42
4 Pjy P ; Ajy d t
σ jy
Pjy A jy
1.25103 42
4
概 述(续)
简单典型 —— 1个螺栓、2个被联接的构件
Q Q
先研究螺栓的受力情况
5
概 述(续)
Q
Q
螺栓受力特点
1、 横截面 mn, pq 上 有作用力 Q —— 象剪刀一样,试图把螺栓从该截面处剪开称Q为剪力
(Shear force),引起切应力( Shear stress) 2、杆段①、②、③ 受到被联接构件的挤压(Bearing)引起挤
P
P
P
P
2
2
t
t
P
2t2
Q
Q
材料力学第3章-连接件的剪切与挤压假定计算

挤压假定计算
第3章 连接件强度的工程假定计算
01
03
02
挤压接触面上的应力分布同样也是比较复杂的。因此在工程计算中,也是采用简化方法,即假定挤压应力在有效挤压面上均匀分布。有效挤压面简称挤压面(bearing surface),它是指挤压面面积在垂直于总挤压力作用线平面上的投影。若连接件直径为d,连接板厚度为,则有效挤压面面积为d。
剪切假定计算
返回总目录
第3章 连接件强度的工程假定计算
01.
返回
02.
第3章 连接件强度的工程假定计算
一个剪切面 剪切面 剪切假定计算
第3章 连接件强度的工程假定计算
剪切面 二个剪切面 剪切假定计算
第3章 连接件强度的工程假定计算
设计准则
剪切假定计算
挤压假定计算
挤压假定计算
第3章 连接件强度的工程假定计算
01
03
02
有效挤压面 连接件直径为d,连接板厚度为,则有效挤压面面积为d。 挤压假定计算 第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
设计准则 挤压假定计算
焊缝假定计算
返回总目录
01
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
Grand Canyon
大自然的剪切效应
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
大自然的剪切效应
Grand Canyon
第3章 连接件强度的工程假定计算
结论与讨论
注意综合应用基本概念与基本理论 处理工程构件的强度问题
第3章 连接件强度的工程假定计算
01
03
02
挤压接触面上的应力分布同样也是比较复杂的。因此在工程计算中,也是采用简化方法,即假定挤压应力在有效挤压面上均匀分布。有效挤压面简称挤压面(bearing surface),它是指挤压面面积在垂直于总挤压力作用线平面上的投影。若连接件直径为d,连接板厚度为,则有效挤压面面积为d。
剪切假定计算
返回总目录
第3章 连接件强度的工程假定计算
01.
返回
02.
第3章 连接件强度的工程假定计算
一个剪切面 剪切面 剪切假定计算
第3章 连接件强度的工程假定计算
剪切面 二个剪切面 剪切假定计算
第3章 连接件强度的工程假定计算
设计准则
剪切假定计算
挤压假定计算
挤压假定计算
第3章 连接件强度的工程假定计算
01
03
02
有效挤压面 连接件直径为d,连接板厚度为,则有效挤压面面积为d。 挤压假定计算 第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
设计准则 挤压假定计算
焊缝假定计算
返回总目录
01
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
Grand Canyon
大自然的剪切效应
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
第3章 连接件强度的工程假定计算
大自然的剪切效应
Grand Canyon
第3章 连接件强度的工程假定计算
结论与讨论
注意综合应用基本概念与基本理论 处理工程构件的强度问题
材料力学 第3章剪切、挤压与扭转

解:①计算外力偶矩
Me2
Me3 Me1 Me4
Me1
9.549
P1 n
500
2
3
9.549
15.93(kN m)
300
n
1
4
Me2
Me3
9.549
P2 n
9.549 150 4.78 (kN m) 300
Me 4
9.549
P4 n
9.549
200 300
6. 37
挤压面
D
h
d
剪切面
π(D2 d 2 )
Abs
4
hF
d
F A πdh
挤压面 17
[例3.1] 已知铝板厚度为t,极限剪切强度为τb ,为了冲成图 示形状的孔,试求冲床的最小冲力。
解: 剪切面为∶
A (6 4 2 )at
将铝板冲成图示形状,则需满足:
F A
b
F A b
根据平衡方程可以总结出计算任一横截面上扭矩 T的规则。
或:
T Mei左 T Mei右
任一横截面上的扭矩T,等于该截面左侧(或右侧) 轴上所有的外力偶矩的代数和。
外力偶矩代数值的“+” “-” 仍按右手螺旋法则确
定。
40
例 :求截面1-1的扭矩。 1
1
n
3M 2 M 9 M 4M
T1 Mei右 9M 4M 5M 或: T1 Mei左 3M 2M 5M
剪切面
F
剪切面积为
d 2 A
d d1
4
材料力学 剪切和挤压分析

许用挤压应力 [ sbs ] = 250MPa,试选择平键,并校核强度。 Me
Fuzhou University
材料力学课件
Me
b h
F
F
O
d Me
解:取轴键组合为研究对象进行受力分析
根据轴径、转递的力偶矩查设计手册,
得到键的尺寸 16*10*45(宽*高*长)
Mo 0
Fd /2Me 0 F 2Me / d 28.8kN
—— 剪切与挤压失效
Fuzhou University
材料力学课件
F
F
联接可能的失效形式:
—— 剪切与挤压失效
注意到联接构件部位尺寸很小,受力又很
复杂,若进行精确分析十分困难,工程中 采用的是实用计算法。
Fuzhou University
材料力学课件
二、剪切与挤压的实用计算
F
t/2 t t/2
每钉受力均为P/4
d
b
P
P/4 P/4
剪切:
Fs
P 4
As d 2 4
Fs
As
t
P
99.5MPa [ ]
Fuzhou University
材料力学课件
挤压:
Fb
P 4
Abs t d
d P/4
s bs
Fb Abs
125MPa [s bs ]
b
P
t
P
P/4
Fuzhou University
材料力学课件
F
m
剪切面
m
F
F
FS
联接可能的失效形式:
① 铆钉 被剪断 圆柱承压面压溃(松动)
Fuzhou University
Fuzhou University
材料力学课件
Me
b h
F
F
O
d Me
解:取轴键组合为研究对象进行受力分析
根据轴径、转递的力偶矩查设计手册,
得到键的尺寸 16*10*45(宽*高*长)
Mo 0
Fd /2Me 0 F 2Me / d 28.8kN
—— 剪切与挤压失效
Fuzhou University
材料力学课件
F
F
联接可能的失效形式:
—— 剪切与挤压失效
注意到联接构件部位尺寸很小,受力又很
复杂,若进行精确分析十分困难,工程中 采用的是实用计算法。
Fuzhou University
材料力学课件
二、剪切与挤压的实用计算
F
t/2 t t/2
每钉受力均为P/4
d
b
P
P/4 P/4
剪切:
Fs
P 4
As d 2 4
Fs
As
t
P
99.5MPa [ ]
Fuzhou University
材料力学课件
挤压:
Fb
P 4
Abs t d
d P/4
s bs
Fb Abs
125MPa [s bs ]
b
P
t
P
P/4
Fuzhou University
材料力学课件
F
m
剪切面
m
F
F
FS
联接可能的失效形式:
① 铆钉 被剪断 圆柱承压面压溃(松动)
Fuzhou University
第3章剪切和挤压

第3章 剪切和挤压
材料力学
本章主要内容
§3-1 剪切与挤压的概念 §3-2 剪切和挤压的强度计算
材料力学
§3-1 剪切与挤压的概念
剪切的工程实例
材料力学
剪切件简化如下图
材料力学
铆钉连接
螺栓连接
销轴连接
材料力学
平键连接
焊接连接
榫连接
材料力学
§3-2 剪切和挤压的强度计算
一.剪切的强度计算
F F
F
假设应力在挤压面上是均匀分布的
F
得实用挤压应力公式
bs
Fbs Abs
*注意挤压面面积的计算 Fbs
Fbs
Abs d
挤压强度条件:
bs
Fbs Abs
bs
bs 常由实验方法确定
材料力学
切应力强度条件:
Fs
A
挤压强度条件:
bs
Fbs Abs
bs
塑性材料: 0.5 0.7 bs 1.5 2.5
F
m
m
F
剪切受力特点:作用在构件两侧面上的外 力合力大小相等、方向相反且作用线很近。
变形特点:位于两力之间的截面发生相 对错动。假设切应力在剪切面m-m截面)上是均匀分布的
F
m
m
FS
FS m
m
F
得切应力计算公式: Fs
A
切应力强度条件: Fs
A
常由实验方法确定
材料力学
二.挤压的强度计算
FN F A (b 2d )
50 103
(0.15 2 0.017) 0.01
43.1106 43.1MPa [ ]
材料力学
d
b
材料力学
本章主要内容
§3-1 剪切与挤压的概念 §3-2 剪切和挤压的强度计算
材料力学
§3-1 剪切与挤压的概念
剪切的工程实例
材料力学
剪切件简化如下图
材料力学
铆钉连接
螺栓连接
销轴连接
材料力学
平键连接
焊接连接
榫连接
材料力学
§3-2 剪切和挤压的强度计算
一.剪切的强度计算
F F
F
假设应力在挤压面上是均匀分布的
F
得实用挤压应力公式
bs
Fbs Abs
*注意挤压面面积的计算 Fbs
Fbs
Abs d
挤压强度条件:
bs
Fbs Abs
bs
bs 常由实验方法确定
材料力学
切应力强度条件:
Fs
A
挤压强度条件:
bs
Fbs Abs
bs
塑性材料: 0.5 0.7 bs 1.5 2.5
F
m
m
F
剪切受力特点:作用在构件两侧面上的外 力合力大小相等、方向相反且作用线很近。
变形特点:位于两力之间的截面发生相 对错动。假设切应力在剪切面m-m截面)上是均匀分布的
F
m
m
FS
FS m
m
F
得切应力计算公式: Fs
A
切应力强度条件: Fs
A
常由实验方法确定
材料力学
二.挤压的强度计算
FN F A (b 2d )
50 103
(0.15 2 0.017) 0.01
43.1106 43.1MPa [ ]
材料力学
d
b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h d F
d h
剪切面
解
FN A
4F
d 2
FS
F
AS dh
当 , 分 别 达 到 [] , [] 时 , 材料的利用最合理
F 0.6 4F 得 d : h 2.4
dh
d 2
26
[例4]木榫接头如图所示,a = b =12cm,h=35cm,c=4.5cm, P=40KN,试求接头的剪应力和挤压应力。
发生相对错动的截面称为剪切面
剪切面
Q
剪力 F
F
F
剪切面
5
2. 实例
键 连 接
m
铆钉(或螺栓)连接
榫齿 连接
连接件
在构件连接处起连接作 用的部件。(如:螺栓、 销钉、键、铆钉、木榫接 头、焊接接头等。)
6
p
p
铆钉
铆钉
7
螺栓
螺栓
8
单剪切:只有一个剪切面。 剪切面
9
双剪切:有两个剪切面。
剪切面 剪切面
有效挤压面积
②挤压面为弧面,取受力面对半径的投 影面
21
F F
挤压面积:挤压面在垂直于挤压力的平面上的正投影
22
在有些情况下,构件在剪切破坏之前可能首先发 生挤压破坏,所以需要建立挤压强度条件。
3. 挤压强度条件: ( bs )max
Pbs Abs
bs
(许用挤压应力)
4.挤压许用应力:由模拟实验测定
工程力学
Engineering Mechanics
第四章 剪切与挤压
剪切面
2
§ 3-1 § 3-2
§ 3-3
剪切的概念与实例 剪切的实用计算
挤压的实用计算
3
3-1 剪切的概念与实例
1. 剪切的概念
F
在力不很大时,两力作用线之间的一
F
微段,由于错动而发生歪斜,原来的
矩形各个直角都改变了一个角度 。
24
[例1 ] 图示装置常用来确定胶接处的抗剪强度,如已知破 坏时的荷载为10kN,试求胶接处的极限剪(切)应力。
F
F
①
①
FS
FS
10mm
②③ 胶缝
解:
F FS 2 5kN
As 0.03 0.01 310 4 m2
u
FS As
5103 3104
16.7106 Pa
16.7MPa
25
[例3] 如图螺钉,已知:[]=0.6[],求其d:h的合理比值。
剪切的强度计算 步骤: (1)根据构件的受力,确定剪切面。 (2)利用截面法求出剪切面上的剪力 FQ。
(3)采用实用计算方法,计算剪切面上的切应力 。
假设剪切面上,切应力均匀分布(名义切应力)。
Q
A
(4)建立剪切强度条件。
Q
A
16
双剪(两个剪切面)试验
压头 试件
F
FS
FS
u
2A
工程上通常采用以实验等为基础的实用计算法来计 算,即假设剪应力在剪切面上是均匀分布的,所以剪应 力的计算公式为:
F
名义切应力 Q F
A
(工作应力)
14
剪切实用计算 的强度条件
Q [ ] 剪切许用应力
A
剪切许用应力
[ ] m
n
危险剪应力 剪切安全系数
对材料做剪切试验,可测得剪断时的切应力值 15
19
挤压计算对联接件与被联接件都需进行
FF
F
F
挤压面
压溃(塑性变形)
t t
D
︰︰︰︰A︰︰︰︰︰C
B
20
2.挤压应力
挤压应力在挤压面上的分布规律也是比较复杂的,工程
上同样采用实用计算法来计算,即假设挤压应力在挤压面上
是均匀分布的,则挤压应力:
d
bs
Pbs Abs
挤压力
t Pbs
Abs=td
①挤压面为平面,实际挤压面就是该面
内力(应力)分布相同或相似。
F
Q=P
F
A
安全销
P
12
首先用截面法求A截面的内力,将铆钉沿A截 面假想的截开,分为两部分,并取其中任一部分 为研究对象,根据静力平衡条件,在剪切面内必 有一个与该截面相切的内力Q,称为剪力。
上刀刃
P
n
下刀刃 n
剪切面 P
∑Fx=0,Q-P=0 解得 Q=P
P Q
剪力
13
10
如果剪力 Q 过大,杆
件将沿着剪切面被剪断 而发生剪切破坏。 为了使构件不发生剪切 破坏,需要建立剪切强 度条件。即进行剪切的 实用计算。
剪切面
螺栓
11
3-2 剪切的实用计算
实用计算(假定计算): 1、假定剪切面上内力或应力的分布规律。 2、在确定危险应力试验时,尽量使试件的受力状况与物体的
塑性材料,许用挤压应力与材料拉伸许用应力 的关系:
[σbs]=(1.7-2.0)σ
23
应用
挤压强度条件也可以解决强度计算的三类问题。当 联接件与被联接件的材料不同时,应对挤压强度较 低的构件进行强度计算。
1、校核强度: ; bs bs
2、设计尺寸:
As
Q
;Abs
Pbs
bs
3、设计外载: Q As ;Pbs Abs bs
这种变形形式称为剪切变形, 称为
F
切应变或角应变。
受力特点:构件受到了一对大小相等,
F
方向相反,作用线平行且相距很近的
外力。一对力偶臂很小的力偶作用。
变形特点:在力作用线之间的横截面 产生了相对错动。
4
一般地,杆件受到一对大小相等、方向相反、作用 线相距很近并垂直杆轴的外力作用,两力间的横截 面将沿力的方向发生相对错动,这种变形称为剪切 变形。
18
3-3 挤压的实用计算
1. 挤压的概念
连接件受剪切时,两构件接触面上相互压紧,产生局部
压缩的现象,称为挤压。挤压力与挤压面相互垂直。 如果
挤压力过大,联接件或被联接件在挤压面附近产生明显的塑
性变形,使联接件被压扁或钉孔称为长圆形,造成联接松动
,称为挤压破坏。 F
局部受压的表面称为挤压面。
F
作用在挤压面上的压力称为挤压力。
解::受力分析如图∶
剪切面和剪力为∶
Q Pbs P
挤压面和挤压力为:
P
P
b
:剪应力和挤压应力
Q P 40 107 0.952 MPa
As bh 12 35
As
Abs
bs
Pbs Abs
P cb
40 4.5 12
10 7
7.4MPa
27
u / n
17
• 工程中常用材料的许用剪应力,可从有关规范 中查得,也可按下面的经验公式确定。
• 一般工程规范规定,对于塑性性能较好的钢材, 剪切许用应力[τ]可由拉伸许用应力[σ]按下式确 定: [τ]=(0.6 – 0.8) [σ]
• 对脆性材料,有: [τ]=(0.8 – 1.0) [σ]