最新 小学奥数举一反三(六年级)
小学奥数举一反三六年级
第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算; 解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算;定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的;新定义的算式中有括号的,要先算括号里面的;但它在没有转化前,是不适合于各种运算定律的;二、精讲精练例题1假设ab=a+b+a-b,求135和1354;思路导航这题的新运算被定义为:ab 等于a 和b 两数之和加上两数之差;这里的“”就代表一种新运算;在定义新运算中同样规定了要先算小括号里的;因此,在1354中,就要先算小括号里的54;练习1:1.将新运算“”定义为:ab=a+b ×a-b.;求279;2.设ab=a2+2b,那么求106和528;3.设ab=3a -b ×1/2,求2512105;例题2设p 、q 是两个数,规定:p △q=4×q-p+q ÷2;求3△4△6;思路导航根据定义先算4△6;在这里“△”是新的运算符号;练习2:1.设p 、q 是两个数,规定p △q =4×q -p+q ÷2,求5△6△4; 2.设p 、q 是两个数,规定p △q =p2+p -q ×2;求30△5△3; 3.设M 、N 是两个数,规定MN =M/N+N/M,求1020-1/4; 例题3如果15=1+11+111+1111+11111,24=2+22+222+2222,33=3+33+333,42=4+44,那么74=________;2102=________;思路导航经过观察,可以发现本题的新运算“”被定义为;因此练习3:3△4△6=3△4×6-4+6÷2 =3△19=4×19-3+19÷2 =76-11 =6574=7+77+777+7777=8638 2102=210+210210=210420135=13+5+13-5=18+8=26 54=5+4+5-4=101354=1310=13+10+13-10=261.如果15=1+11+111+1111+11111,24=2+22+222+2222,33=3+33+333,……那么44=________;2.规定, 那么85=________;3.如果21=1/2,32=1/33,43=1/444,那么63÷26=________;例题4规定②=1×2×3,③=2×3×4 ,④=3×4×5,⑤=4×5×6,……如果1/⑥-1/⑦ =1/⑦×A,那么,A 是几思路导航这题的新运算被定义为: = a -1×a ×a +1,据此,可以求出1/⑥-1/⑦ =1/5×6×7-1/6×7×8,这里的分母都比较大,不易直接求出结果;根据1/⑥-1/⑦ =1/⑦×A,可得出A = 1/⑥-1/⑦÷1/⑦ = 1/⑥-1/⑦×⑦ = ⑦/⑥ -1;即练习4:1.规定:②=1×2×3,③=2×3×4,④=3×4×5,⑤=4×5×6,……如果1/⑧-1/⑨=1/⑨×A,那么A=________;2.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,⑥=5×6×7,……如果1/⑩+1/⑾=1/⑾×□,那么□=________;3.如果1※2=1+2,2※3=2+3+4,……5※6=5+6+7+8+9+10,那么x ※3=54中,x =________;例题5设a ⊙b=4a -2b+1/2ab,求z ⊙4⊙1=34中的未知数x;思路导航先求出小括号中的4⊙1=4×4-2×1+1/2×4×1=16,再根据x ⊙16=4x -2×16+1/2×x ×16 = 12x -32,然后解方程12x -32 = 34,求出x 的值;列算式为练习5:1.设a ⊙b=3a -2b,已知x ⊙4⊙1=7求x; 2.对两个整数a 和b 定义新运算“△”:a △b= ,求6△4+9△8; 3.对任意两个整数x 和y 定于新运算,“”:xy = 其中m 是一个确定的整数;如果12=1,那么312=________;A =1/⑥-1/⑦÷1/⑦ =1/⑥-1/⑦×⑦ = ⑦/⑥-1 =6×7×8/5×6×7-1 = 1又3/5-1 = 3/54⊙1=4×4-2×1+1/2×4×1=16 x ⊙16=4x -2×16+1/2×x ×16 =12x -32 12x -32 = 34 12x= 66 x =第2讲简便运算一一、知识要点根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的四则混合运算化繁为简,化难为易;二、精讲精练例题1计算思路导航先去掉小括号,使和相加凑整,再运用减法的性质:a-b-c = a-b+c,使运算过程简便;所以原式=+--=13-+=13-11=2练习1:计算下面各题;1.-2 又8/17+-1又9/172. 7又5/9-+1又5/9-1又1/53. -7又7/8-6又17/20-4. 13又7/13-4又1/4+3又7/13-例题2计算333387又1/2×79+790×66661又1/4思路导航可把分数化成小数后,利用积的变化规律和乘法分配律使计算简便;所以:原式=×79+790×=×790+790×=+×790=100000×790=练习2:计算下面各题:1. ×1又1/4+125%+1又1/2÷4/52. 975×+9又3/4×76-3. 9又2/5×425+÷1/604. ×+×例题3计算:36×+×思路导航此题表面看没有什么简便算法,仔细观察数的特征后可知:36 = ×30;这样一转化,就可以运用乘法分配律了;所以原式=×30×+×=×30×+×=×+=×100=120练习3:计算:1. 45×+×2. 52×+×7783. 48×+×4. 72×-×例题4计算:3又3/5×25又2/5+×6又2/5思路导航虽然3又3/5与6又2/5的和为10,但是与它们相乘的另一个因数不同,因此,我们不难想到把分成和两部分;当出现×时,我们又可以将看成8×,这样计算就简便多了;所以原式=3又3/5×25又2/5++×=3又3/5×25又2/5+×+×=+×+×8×=254+80=334练习4:计算下面各题:1.×+×2.139×137/138+137×1/1383.×+×例题5计算×+×+×思路导航先分组提取公因数,再第二次提取公因数,使计算简便;所以原式=×++×=×+×=+×=100×=6760练习5:1.×+×+×2.235×++235×-135×3.×735-3/8×5730+×第3讲简便运算二一、知识要点计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算,这种思考方法在四则运算中用处很大;二、精讲精练例题1计算:1234+2341+3412+4123思路导航整体观察全式,可以发现题中的4个四位数均由数1,2,3,4组成,且4个数字在每个数位上各出现一次,于是有原式=1×1111+2×1111+3×1111+4×1111=1+2+3+4×1111=10×1111=11110练习1:1.23456+34562+45623+56234+623452.45678+56784+67845+78456+845673.++++例题2计算:2又4/5×+×+×28思路导航我们可以先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配律来简算;所以原式=×+×+×8×=×++×=×+×=×+=×10=888练习2:计算下面各题:1.99999×77778+33333×666662.×-345×-123×3.77×13+255×999+510例题3计算1993×1994-1/1993+1992×1994思路导航仔细观察分子、分母中各数的特点,就会发现分子中1993×1994可变形为1992+1×1994=1992×1994+1994,同时发现1994-1 = 1993,这样就可以把原式转化成分子与分母相同,从而简化运算;所以原式=1992+1×1994-1/1993+1992×1994=1992×1994+1994-1/1993+1992×1994=1练习3:计算下面各题:1.362+548×361/362×548-1862.1988+1989×1987/1988×1989-13.204+584×1991/1992×584―380―1/143例题4有一串数1,4,9,16,25,36…….它们是按一定的规律排列的,那么其中第2000个数与2001个数相差多少思路导航这串数中第2000个数是20002,而第2001个数是20012,它们相差:20012-20002,即20012-20002=2001×2000-20002+2001=2000×2001-2000+2001=2000+2001=4001练习4:计算:1.19912-19902 2.99992+19999 3.999×274+6274例题5计算:9又2/7+7又2/9÷5/7+5/9思路导航在本题中,被除数提取公因数65,除数提取公因数5,再把1/7与1/9的和作为一个数来参与运算,会使计算简便得多;原式=65/7+65/9÷5/7+5/9=65×1/7+1/9÷5×1/7+1/9=65÷5=13练习5:计算下面各题:1.8/9+1又3/7+6/11÷3/11+5/7+4/92.3又7/11+1又12/13÷1又5/11+10/133.96又63/73+36又24/25÷32又21/73+12又8/25第4讲简便运算三一、知识要点在进行分数运算时,除了牢记运算定律、性质外,还要仔细审题,仔细观察运算符号和数字特点,合理地把参加运算的数拆开或者合并进行重新组合,使其变成符合运算定律的模式,以便于口算,从而简化运算;二、精讲精练例题1计算:1错误!×37 2 27×错误!1 原式=1-错误!×37=1×37-错误!×37=37-错误!=36错误!练习1用简便方法计算下面各题:1. 错误!×82. 错误!×1263. 35×错误!4. 73×错误!5. 错误!×1999例题2=72×错误!+错误!×错误!=9+错误!=9错误!练习2计算下面各题:1. 64错误!×错误!2. 22错误!×错误!3. 错误!×57错误!4. 41错误!×错误!+51错误!×错误!例题3=错误!×9+41=错误!×50=30练习3计算下面各题:1. 错误!×39+错误!×272. 错误!×35+错误!×173. 错误!×5+错误!×5+错误!×10例题4=错误!+错误!+错误!×错误!=错误!×错误!计算下面各题:1.错误!×错误!+错误!×错误! 2. 错误!×错误!+错误!×错误! +错误!×错误!3.错误!×79错误!+50×错误!+错误!×错误! 4. 错误!×错误!+错误!×错误!+错误!×3错误!例题5计算:1166错误!÷41 2 1998÷1998错误!解:1原式=164+2错误!÷41=164÷41+错误!÷41练习5计算下面各题:1. 54错误!÷172. 238÷238错误!3. 163错误!÷41错误!第5讲简便运算四一、知识要点前面我们介绍了运用定律和性质以及数的特点进行巧算和简算的一些方法,下面再向同学们介绍怎样用拆分法也叫裂项法、拆项法进行分数的简便运算;运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目的;一般地,形如错误!的分数可以拆成错误!-错误!;形如错误!的分数可以拆成错误!×错误!-错误!,形如错误!的分数可以拆成错误!+错误!等等;同学们可以结合例题思考其中的规律;二、精讲精练例题1。
小学奥数举一反三六年级(全)
第一周 定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“∆、#、*、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a 2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -12×b ,求(25*12)*(10*5)。
例题2。
设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6). 3△(4△6).=3△【4×6-(4+6)÷2】 =3△19=4×19-(3+19)÷2 =76-11 =65 练习21. 设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2. 设p 、q 是两个数,规定p △q =p 2+(p -q )×2。
求30△(5△3)。
3. 设M 、N 是两个数,规定M*N =M N +N M ,求10*20-14。
例题3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
那么7*4=?,210*2=?7*4=7+77+777+7777=8638 210*2=210+210210=2104201. 如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,…..那么,4*4=?,18*3=?2. 规定a*b=a+aa+aaa+aaa+aaaa ……..a,那么8*5=?(b-1)个a 3. 如果2*1=12 ,3*2=133 ,4*3=1444 ,那么(6*3)÷(2*6)=?。
小学奥数(六年级)举一反三
目录目录 (1)专题1 简便运算 (2)专题2 比的应用 (5)专题3 行程问题 (8)专题4 工程问题 (11)专题5 面积计算 (14)专题6 周长、表面积和体积 (17)专题7 “牛吃草”问题 (20)专题8 浓度应用题 (23)专题9 流水行船题 (25)专题10 行程问题2 (28)专题11 工程问题2 (30)专题12 方程问题 (5)附件:小学数学基础知识整理 (33)专题1 简便运算专题简析根据算式的结构和数的特征,灵活运用运算法则、定律、性质和某些公式,可以把一些较复杂的分数小数四则混合运算化繁为简、化难为易。
计算过程中,我们先整体地分析算式的特点,然后进行一定的转化,创造条件运用乘法分配率—提取公因式来简算,这种思考方法在四则运算中用处很大。
简便运算中,常用的方法有:找朋友,凑整法,提取公因式,分数裂项,最高的境界是抵消。
王牌例题1计算:4.75-9.63+(8.25-1.37)举一反三11. 6.73-2817+(3.27-1917) 2. 759-(3.8+159)-115王牌例题2计算:99999×11111举一反三21. 9999999999×11111111112. 66666×33333王牌例题3计算:36×1.09+1.2×67.3举一反三31. 45×2.08+1.5×37.6 2. 52×11.1+2.56×778 王牌例题4计算:112⨯+123⨯+134⨯+145⨯+…+1910⨯(提示:112⨯=1-12)举一反三41.123⨯+134⨯+145⨯+…+199100⨯2.113⨯+135⨯+157⨯+179⨯+…+19799⨯王牌例题5计算:81.5×15.8+81.5×51.8+67.6×18.5举一反三51. 53.5×35.3+53.5×43.2+78.5×46.52. 235×12.1+235×42.2-135×54.3王牌例题6计算:1234+2341+3412+4123举一反三61. 23456+34562+45623+56234+62345 王牌例题7计算:199319941 199319921994⨯-+⨯举一反三71. 548361362 362548186⨯+⨯-✈智力冲浪1. 45678+56784+67845+78456+845672. 72×2.09-1.8×73.63.113⨯+135⨯+157⨯+179⨯+…+1197199⨯4. 201220142013 201320141⨯+⨯-5. 124.68+324.68+524.68+724.68+924.68专题2 方程问题专题简析解答这类问题时,一定要耐心、细心,千万不要粗心。
六年级奥数全(举一反三)
第一章 数与计算第一单元 同余问题1. 知识前提。
(1) 整除:如果整数a 除以自然数b ,所得的商恰好是整数而没有余数(余数是0),我们就称a 能被b 整除或b 能整除a 。
(2) 乘方的意义:求n 个相同因数的乘积的运算,叫做乘方,乘方的结果叫做幂。
n 个相同因数a 相乘,即n aa aa ∙个,记做n a 。
其中a 叫做底,n 叫做指数,na 读做a 的n 次方。
(3) 幂的运算法则:① 同底数的幂相乘,底数不变,指数相加。
即m n m na a a +∙=。
② 幂的乘方,底数不变,指数相乘。
即 ()mn nm aa =。
③ 积的乘方,等于把积的每一个因数分别乘方,再把所得的幂相乘。
即()nn nab a b =∙。
2. 同余如果两个整数的a 、b 除以同一个自然数m 所得的余数相同,那么就说a 、b 对于m 是同余的,记为a h (mod m )。
我们把m 称为模。
如果a 、b 对于m 是同余的,那么a 与b 的差能被m 整除;反之,如果a 与b 的差能被M 整除,那么a 、b 对于m 是同余的。
3. 规律、方法应用。
(1) 反身性规律:a 和a 对于m 同余。
(2) 对称性规律:a 和b 对于m 同余,那么b 和a 对于m 同余。
(3) 传递性规律:如果a 和b 对于m 同余,b 和c 对于m 同余,那么a 和c 对于m 同余。
(4) 同余的加减法、乘法规律:如果a 和b 对于m 同余,c 和d 对于m 同余,那么a +c ,和b +d ,a -c 和b -d ,a c 和bd 对于m 同余。
(5) 同余的乘方规律:如果a 和b 对于m 同余,那么na 和nb 也对于m 同余。
(6) 同余的连加规律:1a 和1b 对于m 同余,2a 和2b 对于m 同余,3a 和3b 对于m 同余……n a 和n b 对于m 同余,那么123n a a a a +++和123n b b b b +++也对于m 同余。
小学奥数举一反三(六年级)1-20
小学奥数举一反三(六年级)1-20六年级数学奥数举一反三(上册)第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q 是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q 是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=M/N+N/M,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学奥数举一反三(六年级)全word百度文库
小学奥数举一反三(六年级)全word百度文库一、拓展提优试题1.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).2.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.3.某次数学竞赛,甲、乙、丙3人中只有一人获奖,甲说:“我获奖了.”乙说:“我没获奖.”丙说:“甲没有获奖.”他们的话中只有一句是真话,则获奖的是.4.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.5.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.6.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.7.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.8.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC =CD=3厘米,则EF=厘米.9.若一个十位数是99的倍数,则a+b=.10.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.11.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.12.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.13.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.14.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.15.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?(2)当A转动一圈时,C转动了几圈?【参考答案】一、拓展提优试题1.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.2.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.3.解:由分析可知:假设甲说的是真话,那乙说的也是真话,所以不成立;假设乙说的是真话,那甲说的也是真话,也不成立;所以只能是丙说的是真话,乙说的是假话,即:乙得奖了;故答案为:乙.4.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.5.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.6.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.7.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.8.解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.9.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.10.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.11.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.12.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.13.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.14.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100015.解:(1)如图,答:当A匀速顺时针转动,C是顺时针转动.(2)A:B:C=15:10:5=3:2:1答:当A转动一圈时,C转动了3圈.。
小学六年级奥数举一反三
小学六年级奥数举一反三一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义’从而解答某些算式的一种运算。
解答定义新运算’关键是要正确地理解新定义的算式含义’然后严格按照新定义的计算程序’将数值代入’转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式’它使用的是一些特殊的运算符号’如;某、△、⊙等’这是与四则运算中的“+、-、某、÷”不同。
新定义的算式中有括号的’要先算括号里面的。
但它在没有转化前’是不适合于各种运算定律的。
二、精讲精练[例题1]假设a某b=(a+b)+(a-b)’求13某5和13某[5某4]。
[思路导航]这题新运算被定义为;a某b等于a和b两数之和加上两数之差。
这里“某”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此’在13某[5某4]中’就要先算小括号里的[5某4]。
练习1;1’将新运算“某”定义为;a某b=(a+b)某(a-b)’。
求27某9。
2’设a某b=a2+2b’那么求10某6和5某[2某8]。
3’设a某b=3a-b某1/2’求[25某12]某[10某5]。
[例题2]设p、q是两个数’规定;p△q=4某q-(p+q)÷2。
求3△(4△6)。
[思路导航]根据定义先算4△6。
在这里“△”是新的运算符号。
练习2;1.设p、q是两个数’规定p△q=4某q-[p+q]÷2’求5△[6△4]。
2.设p、q是两个数’规定p△q=p2+[p-q]某2。
求30△[5△3]。
3.设M、N是两个数’规定M某N=M/N+N/M’求10某20-1/4。
[例题3]如果1某5=1+11+111+1111+11111’2某4=2+22+222+2222’2/263某3=3+33+333’4某2=4+44’那么7某4=________;210某2=________。
[思路导航]经过观察’可以发现本题的新运算“某”被定义为。
因此练习3;1.如果1某5=1+11+111+1111+11111’2某4=2+22+222+2222’3某3=3+33+333’……那么4某4=________。
六年级举一反三b版奥数题及答案
六年级举一反三b版奥数题及答案六年级奥数题目通常涉及一些基础的数学概念和技巧,比如分数、比例、几何、数列等。
以下是一些典型的六年级奥数题目及答案:1. 题目:一个长方体的长、宽、高分别为20厘米、15厘米和10厘米。
如果将这个长方体的长缩短5厘米,宽增加5厘米,高度不变,那么新长方体的体积是原来的多少倍?答案:首先计算原长方体的体积:20cm × 15cm × 10cm = 3000立方厘米。
然后计算新长方体的长、宽、高分别为15cm、20cm和10cm,体积为:15cm × 20cm × 10cm = 3000立方厘米。
新长方体的体积与原长方体的体积相同,所以是1倍。
2. 题目:一个数列的前三项是2、5、10,从第四项开始,每一项都是其前三项的和。
求这个数列的第10项。
答案:根据题意,数列为2、5、10、17、29、50、87、152、265、457。
第10项是457。
3. 题目:一个班级有40名学生,其中3/5的学生喜欢数学,2/3的学生喜欢英语。
如果喜欢数学和英语的学生人数之和是31人,那么既不喜欢数学也不喜欢英语的学生有多少人?答案:喜欢数学的学生有40 × 3/5 = 24人,喜欢英语的学生有40 × 2/3 = 26.67人,取整数为26人。
喜欢数学和英语的学生有24 + 26 - 31 = 19人。
因此,既不喜欢数学也不喜欢英语的学生有40 - 19 = 21人。
4. 题目:一个水池有A、B两个进水管,单独打开A管注满水池需要3小时,单独打开B管需要5小时。
如果A、B两管同时打开,需要多少时间才能注满水池?答案: A管每小时注水1/3池,B管每小时注水1/5池。
两管同时打开,每小时注水量为1/3 + 1/5 = 8/15池。
所以,注满水池需要的时间是1 ÷ (8/15) = 15/8 = 1.875小时,即1小时52.5分钟。
小学奥数六年级举一反三--面积计算
小学奥数举一反三面积计算(一)一、知识要点计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。
这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。
有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。
二、精讲精练【例题1】已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=2/3BC,求阴影部分的面积。
【思路导航】阴影部分为两个三角形,但三角形AEF的面积无法直接计算。
由于AE=ED,连接DF,可知S△AEF=S△EDF(等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF的面积。
因为BD=2/3BC,所以S△BDF=2S△DCF。
又因为AE=ED,所以S△ABF=S△BDF=2S△DCF。
因此,S△ABC=5 S△DCF。
由于S△ABC=8平方厘米,所以S△DCF=8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。
练习1:1.如图,AE=ED,BC=3BD,S△ABC=30平方厘米。
求阴影部分的面积。
2.如图所示,AE=ED,DC=1/3BD,S△ABC=21平方厘米。
求阴影部分的面积。
3.如图所示,DE=1/2AE,BD=2DC,S△EBD=5平方厘米。
求三角形ABC的面积。
【例题2】两条对角线把梯形ABCD分割成四个三角形,如图所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S△BOC是S△DOC的2倍,且高相等,可知:BO=2DO;从S△ABD与S△ACD相等(等底等高)可知:S△ABO等于6,而△ABO与△AOD的高相等,底是△AOD的2倍。
小学六年级奥数举一反三140文档资料
19
【练习3】
20
【例题4】
计算:33 ×252 +37.9×62
55
5
原式=33 ×252 +(25.4+12.5)×6.4 55
32 =3 ×25 +25.4×6.4+12.5×6.4
原式=1×1111+2×1111+3×1111+4×1111 =(1+2+3+4)×1111 =10×1111 =11110
27
【练习1】 1.23456+34562+45623+56234+62345
2.45678+56784+67845+78456+84567
3.124.68+324.68+524.68+724.68+924.68
10
【例题5】设a⊙b=4a-2b+1/2ab,求z⊙(4⊙1)=34中的 未知数x。 【思路导航】先求出小括号中的4⊙1=4×4-2×1+1/2×4×1 =16,再根据x⊙16=4x-2×16+1/2×x×16 = 12x-32, 然后解方程4⊙1=4×4-2×1+1/2×4×1=16 x⊙16=4x-2×16+1/2×x×16 =12x-32 12x-32 = 34 12x= 66 x=5.512x-32 = 34,求出x的值。列算式为
3
【 练 习 1 】 1. 将 新 运 算 “ *” 定 义 为 : a*b=(a+b)×(a-b). 。 求 27*9。
小学六年级奥数举一反三单选题100道及答案解析
小学六年级奥数举一反三单选题100道及答案解析1. 甲、乙两车同时从A、B 两地相对开出,4 小时后相遇,甲车再开3 小时到达B 地。
已知甲车每小时比乙车快20 千米,则A、B 两地相距()千米。
A. 560B. 720C. 960D. 1120答案:C解析:相遇后甲3 小时行的路程等于相遇前乙4 小时行的路程,甲乙时间比是3:4,速度比是4:3。
甲比乙快一份,一份是20 千米/小时,甲速度是80 千米/小时,全程80×(4 + 3)= 560 千米。
2. 一个圆柱和一个圆锥的底面半径之比是2:3,体积之比是3:2,它们高的比是()A. 1:3B. 3:4C. 9:8D. 8:9答案:D解析:圆柱体积= 底面积×高,圆锥体积= 1/3×底面积×高。
设圆柱底面半径2r,圆锥底面半径3r,圆柱高h1,圆锥高h2,根据体积比列出方程:(π×(2r)²×h1) : (1/3×π×(3r)²×h2) = 3 : 2,解得h1 : h2 = 8 : 9。
3. 一件商品,先提价20%,再降价20%,现在的价格与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价20%后价格为100×(1 + 20%) = 120 元,再降价20%,价格为120×(1 - 20%) = 96 元,所以价格降低了。
4. 把一个棱长为6 厘米的正方体木块削成一个最大的圆锥,圆锥的体积是()立方厘米。
A. 56.52B. 169.56C. 226.08D. 无法确定答案:A解析:圆锥底面直径和高都是 6 厘米,体积= 1/3×π×(6÷2)²×6 ≈56.52 立方厘米。
5. 有含糖15%的糖水20 千克,要使糖水的浓度为20%,需加糖()千克。
小学奥数六年级概率举一反三完整版
小学奥数六年级概率举一反三完整版概率的基本概念概率是描述随机事件发生可能性的一种数学工具。
在小学奥数六年级中,学生需要了解以下几个基本概念:1. 随机事件:指具有不确定性的事件,例如掷硬币的结果是正面还是反面。
2. 样本空间:指所有可能结果的集合,例如掷硬币的样本空间为{正面,反面}。
3. 事件:样本空间中的一个子集,例如掷硬币得到正面的事件。
概率的表示方式概率可以用不同的表示方式来描述:1. 用分数表示:概率是一个介于0和1之间的分数,表示事件发生的可能性大小。
例如,掷硬币得到正面的概率可以表示为1/2。
2. 用百分数表示:概率也可以用百分数来表示,例如掷硬币得到正面的概率可以表示为50%。
概率的计算方法小学奥数六年级中,可以使用以下几种方法计算概率:1. 等可能原则:如果所有可能结果出现的机会是相等的,那么事件发生的概率可以通过事件包含的有利结果数目除以样本空间中元素总数来计算。
2. 实验法:通过大量的实验得出事件发生的概率,例如反复掷硬币并记录正面朝上的次数和总次数,计算出正面朝上的概率。
3. 事件频率法:在一定的条件下,通过观察事件发生的频率来估计概率,例如计算某个地区老鼠的颜色比例可以通过观察抓到的老鼠中各种颜色的比例来估计。
举一反三小学奥数六年级中的概率也涉及到举一反三的运用,即通过已知的概率问题提供的解题思路,应用于其他类似的问题。
通过多做练,学生可以培养自己的举一反三的能力,将所学概率知识灵活应用于实际问题中。
总结通过学习小学奥数六年级概率的基本概念和计算方法,学生可以提升自己在解决概率问题上的能力。
同时,培养举一反三的能力也是很重要的,它可以帮助学生更好地应用所学概率知识解决各种实际问题。
小学六年级奥数:举一反三
定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
【word直接打印】小学奥数举一反三(六年级)全图文百度文库
【word直接打印】小学奥数举一反三(六年级)全图文百度文库一、拓展提优试题1.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.2.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.3.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.4.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.5.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.6.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.7.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.8.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.9.如图所示的“鱼”形图案中共有个三角形.10.已知自然数N的个位数字是0,且有8个约数,则N最小是.11.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.12.甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的,丙花的钱是乙的,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲元,分给乙元.13.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.14.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)15.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.【参考答案】一、拓展提优试题1.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.2.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.3.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.4.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.5.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.6.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.7.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.8.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.9.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.10.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.11.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.12.解:丙花钱是甲的×=甲:乙:丙=1::=13:12:8(13+12+8)÷3=11每份:9÷(11﹣8)=3(元)甲:(13﹣11)×3=6(元)乙:(12﹣11)×3=3(元)答:分给甲6元,分给乙3元.故答案为:6,3.13.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.14.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.15.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.。
小学奥数举一反三(六年级)
第10讲假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
六年级小学生奥数举一反三练习题
六年级小学生奥数举一反三练习题L六年级小学生奥数举一反三练习题篇一股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10. 65元的价格买进一种科技股票3000股,6月26日以每月13. 86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?答案10. 65^1%=0. 1065 (元)10. 65⅛%=0. 213 (元)10. 1065+0. 213=0. 3195 (元)0. 3195+10. 65=10. 9695 (元)13. 86^1%=0. 1386 (元)13. 86⅛%=0o 2772 (元)0. 1386+0. 2772=0. 415813.86+0.4158=14. 2758 (元)14. 2758-10. 9695=3. 3063 (元)答:老王卖出这种股票一共赚了 3.3063元。
2.六年级小学生奥数举一反三练习题篇二一列火车通过360米长的铁路桥用了24秒钟,用同样的速度通过216米长的铁路桥用16秒钟,这列火车长米。
分析:这道题让我们求火车的长度。
我们知道:车长二车速X通过时间-桥长。
其中“通过时间”和“桥长”都是已知条件。
我们就要先求出这道题的解题关键: 车速。
通过审题我们知道这列火车通过不同长度的两个桥用了不同的时间。
所以我们可以利用这两个桥的长度差和通过时间差求出车速。
解答:解:车速:(360-216) ÷(24-16)=144÷8=18 (米),火车长度:18X24-360=72 (米),或18X16-216=72 (米)。
答:这列火车长72米。
故答案为:72o3.六年级小学生奥数举一反三练习题篇三甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8: 7: 5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果, 甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40) ÷20=5人甲村需要的人数:8X5=40人,多出劳力人数:60-40二20人乙村需要的人数:7X5=35人,多出劳力人数:40-35二5人丙村需要的人数:5X5=25人或20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54X20=1080元4.六年级小学生奥数举一反三练习题篇四有一户人家,共有三个人:爸爸、妈妈和他们的独生儿子。