2018年全国中考模拟测试卷(二)
2018年中考二模语文答案v8.0
2018年初中学业水平模拟考试(二)语文试题评分标准及参考答案2018.05第一部分积累与运用(32分)一、(12分,每小题2分)1.D(A.jiā-xié B.振耳欲聋-震耳欲聋 C. yú-yū chù-shū)2.B(升腾/腾空:后文是“而起”,故用腾空;飘落/抖落:与上文“浑厚庄重”“飞毯”搭配,用抖落更符合语境;尽管:关联词,表示让步关系,相当于虽然,即使:关联词,表假设关系,此处不表示假设让步,故用尽管)3.C4.D(A精神愉快为主谓短语 B光辉灿烂为并列短语,英雄人物为偏正短语 C非常幽静为偏正短语)5.B(A中引文是局部引用,句号应在引号外;B项,这句话“说得不客气一点”是起补充说明作用的,插在句子中间时,宜在它的前面和后面各用一个破折号;C. “洛杉矶”“东京”“巴黎”“伦敦”后应为逗号;D.激流三部曲应改为双引号)6. A(伯、仲、叔、季)二、(13分)7.(8分,每空1分,添字漏字错字别字均不得分)(1)选贤与能,讲信修睦。
江入大荒流。
(2)受任于败军之际中军置酒饮归客(3)蒹葭萋萋,白露未晞大庇天下寒士俱欢颜。
(4)九万里风鹏正举门前流水尚能西(5)达则兼济天下山回路转不见君,雪上空留马行处。
8.(5分)(1)(2分)鲁智深(鲁达)林冲(2)(1分)鲁智深是嫉恶如仇,看见别人受迫害都不能忍。
(意思对即可)(3)(2分)林冲性格特点从忍到不能再忍,从屈辱到反抗这样一个变化过程。
(每点一分)三、(7分)9.(2分)第②句是病句(1分),应修改为:节目“和诗以歌”,探寻诗歌与音乐的融合(1分)。
10.(2分)①将传统文化提升至全民参与。
②节目体现了时代性(普适性)。
③节目体现了时尚性。
(每少1点扣1分)11.(3分)示例:既有“桃花潭水深千尺,不及汪伦送我情”的深厚情感,又有“山重水复疑无路,柳暗花明又一村”意味深长的哲理,还有“长风破浪会有时,直挂云帆济沧海”的乐观豪迈……(诗词和表达情感要对的上,每句一分)第二部分阅读(38分)四、(16分)(一)(5分)12.(2分)“悠悠”二字既形象地显示出远书、归梦的渺茫无期;也传神地表现出两者都落空时怅然若失(沮丧、伤心、失望、难过都可)的意态。
最新-2018年新课标中考模拟试题(二)(附答案) 精品
2018年新课标中考模拟试题(二)一、单项选择题(每题2分,共16分。
每小题只有一个选项正确。
请把正确选项的字母填在题后的括号内)1.在图1所示的四幅图中,分别表示近视眼成像情况和矫正做法的是 ( )① ② ③ ④A 、②、①B 、③、①C 、②、④D 、③、④2.夏天清晨,小草上常出现晶莹的露珠,太阳出来后,露珠又悄然消失.整个过程的物态变化是( )A 、先液化,后汽化B 、先汽化,后液化C 、先凝华,后升华D 、先升华,后凝华3.在图2四幅中,属于利用热传递改变物体内能的是: ( )4.在去年年底“海啸”灾难救援工作中,医务人员工作时所采取的许多措施和用到的器材中,包含着许多物理知识。
下列说法正确的是 ( )A 、医生用听诊器接听患者心跳和呼吸声音,能升高音调B 、注射时针筒能抽取到药液,是因为药液受到针筒的吸引力作用C 、喷洒消毒液后,过一会儿病房里闻到消毒液的气味,这是扩散现象D 、夹取消毒棉擦伤口的镊子是省力杠杆5.王博在10月的某日早晨,他搭车去省城,发现当日大雾,沿途稍远的树木,道路看不清,接近城镇时,雾越来越小,经过城镇,基本无雾,再行,雾越来越大,形成了“田野有雾、城镇无雾”的现象,这种现象是属于 ( )A 、小镇上空尘埃稀少B 、地球近年升温C 、温室气体排放过多D 、小镇气温较高,形成热岛6. 用一只量筒、水、一根细针做实验,来测木块的某些物理量,下列说法中正确的是 ( )A 、只能测木块的体积B 、只能测木块的浮力C 、只能测木块的体积、质量、密度D 、木块的体积、密度、质量、浮力都能测7. 如图3所示电路中,电源电压保持不变,R 为定值电阻,当在a 、b 两点间接入一个“2.5V 0.5A ”的小灯泡时,恰好正常发光;若换一个“2.5V 0.6A ”的小灯泡, 则这个小灯泡 ( )A 、比正常发光暗些B 、比正常发光亮些C 、仍能正常发光D 、灯丝将会烧断8. 小欣同学尝到了知识归纳整理的甜头,学习物理后,对知识归纳如下,错误的是: ( )C .锯木材锯子发烫D .钻木取火A .双手摩擦能发热B .烧水时水温升高图1 图2 图3图5A 能量转化⎪⎪⎩⎪⎪⎨⎧光和热能白炽电灯:电能转化为弹性势能械能发电机:电能转化成机能热机:热能转化成机械转化成动能机械手表:B 各类仪器的原理⎪⎪⎩⎪⎪⎨⎧于重力密度计:漂浮,浮力等排斥验电器:同种电荷相互液体温度计:热胀冷缩天平:等臂杠杆 C 生活工具原理⎪⎪⎩⎪⎪⎨⎧茶壶:连通器原理扳手:省力杠杆水泵;利用大气压工作照相机:凸透镜成像 D 物理量单位⎪⎪⎩⎪⎪⎨⎧机械效率没有单位能量和功的单位都是是压强的单位是电功的单位J 2N/m KWh 二、双项选择题(每小题3分,共9分。
2018届中考数学二模试卷(带答案) (2)
2018年中考数学二模试卷一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)1.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)2.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣33.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,74.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a47.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.38.不等式组的解集在数轴上可表示为()A.B.C.D.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形10.计算﹣的结果是()A.﹣B.C.D.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣31212.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为.15.分解因式:1﹣x2=.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A 1B1C1D1E1,则OD:OD1=.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是册,a=册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是,极差是;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)2.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)【考点】点的坐标.【专题】计算题.【分析】满足点在第一象限的条件是:横坐标是正数,纵坐标也是正数,结合选项进行判断即可.【解答】解:因为第一象限的条件是:横坐标是正数,纵坐标也是正数,而各选项中符合纵坐标为正,横坐标也正的只有A(1,2).故选:A.【点评】本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).1.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣3【考点】有理数的减法.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:﹣1﹣2=﹣3,故选D.【点评】本题考查了有理数的减法,将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,7【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故A错误;B、3+4>5,能够组成三角形;故B正确;C、1+1<3,不能组成三角形;故C错误;D、3+4=7,不能组成三角形,故D错误.故选:B.【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,难度适中.4.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【专题】计算题.【分析】先根据勾股定理,求出AC的值,然后再由余弦=邻边÷斜边计算即可.【解答】解:在Rt△ABC中,∵∠C=90°,AB=5,BC=3,∴AC=4,∴cosA==.故选C.【点评】本题考查了锐角三角函数的定义和勾股定理,牢记定义和定理是解题的关键.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D、球体的主视图、左视图、俯视图都是圆形;故本选项正确.故选D.【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a4【考点】同底数幂的除法;幂的乘方与积的乘方;完全平方公式.【分析】根据完全平方公式、幂的乘方和同底数幂的除法计算判断即可.【解答】解:A、(a+b)2=a2+2ab+b2,错误;B、(﹣2a)3=﹣8a3,错误;C、(a2b)3=a6b3,错误;D、(﹣a)6÷(﹣a)2=a4,正确;故选D.【点评】此题考查完全平方公式、幂的乘方和同底数幂的除法,关键是根据法则进行计算.7.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.3【考点】随机事件.【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】首先解出不等式组x的取值范围,然后根据x的取值范围,找出正确答案;【解答】解:不等式组,解①得:x≥﹣1,解②得:x<2,则不等式组的解集是:﹣1≤x<2.故选B.【点评】本题考查了不等式组的解法及在数轴上表示不等式的解集,把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.10.计算﹣的结果是()A.﹣B.C.D.【考点】分式的加减法.【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案.【解答】解:﹣===﹣.故选A.【点评】此题考查了分式的加减运算法则.题目比较简单,注意解题需细心.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣312【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+3=x2,即(x﹣3)(x+1)=0,解得:x=3或x=﹣1,经检验x=3与x=﹣1都为分式方程的解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2【考点】反比例函数综合题.【分析】根据正方形的性质得出AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,进而根据半径为(4﹣2)的圆内切于△ABC,得出CD的长,从而得出DO的长,再利用勾股定理得出DN的长进而得出k的值.【解答】解:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(4﹣2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(4﹣2)2,∴QC2=48﹣32=(4﹣4)2,∴QC=4﹣4,∴CD=4﹣4+(4﹣2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=4,∴DN×NO=4,即:xy=k=4.故选B.【点评】本题考查了反比例函数综合题,涉及正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=4是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为 5.68×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于568000有6位,所以可以确定n=6﹣1=5.【解答】解:568 000=5.68×105.故答案为:5.68×105.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.分解因式:1﹣x2=(1+x)(1﹣x).【考点】因式分解-运用公式法.【专题】因式分解.【分析】分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.【解答】解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).【点评】本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,丁的方差最小,∴成绩最稳定的是丁同学,故答案为:丁.【点评】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2.【考点】位似变换.【分析】根据五边形ABCDE的面积扩大为原来的4倍,利用相似图形面积的比等于相似比的平方,即可得出答案.【解答】解:∵以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2,故答案为:1:2.【点评】此题主要考查位似图形的性质,根据面积的比等于相似比的平方是解决问题的关键.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是m.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设出△EFC的面积为a,根据△AFD∽△CFE和AD=2EC,求出△AFD的面积,根据DF=2FE,求出△DFC的面积,计算得到a=m,得到答案.【解答】解:设△EFC的面积为a,∵E是BC的中点,∴BC=2EC,则AD=2EC,∵AD∥BC,∴△AFD∽△CFE,∴△AFD的面积为4a,∵DF=2FE,∴△DFC的面积为2a,∴△ADC的面积为6a,则四边形ABEF的面积为5a,又∵平行四边形ABCD的面积是m,即12a=m,a=m,∴四边形ABEF的面积m.故答案为:m.【点评】本题考查的是面积的计算,掌握相似三角形的面积比等于相似比的平方是解题的关键,解答时,注意等高的两个三角形的面积比等于底的比.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=4×﹣1﹣+36=2﹣+35.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于直线OM的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C绕点O顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可;(3)根据轴对称的概念作出判断并画出对称轴.【解答】解:(1)△A1B1C1如图;(2)△A2B2C2如图;(3)是轴对称,如图直线l为对称轴.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E 就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.【解答】解:(1)作出∠B的平分线BD;作出AB的中点E.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).【点评】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是100册,a=14册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是14,极差是10;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.【考点】条形统计图;众数;极差;概率公式.【专题】数形结合.【分析】(1)用其他类的册数除以频率即可求出总本数,再减去已知的本书即可求出a的值.(2)根据上题求出的结果将统计图补充完整即可.(3)根据众数与极差的概念直接解答即可.(4)根据概率的求法,用数学与英语书的总本数除以总本数即可解答.【解答】解:(1)总本数=14÷0.14=100本,a=100﹣22﹣20﹣18=12﹣14=14本.(2)如图:(3)数据22,20,18,a,12,14中a=14,所以众数是14,极差是22﹣12=10;(4)(20+18)÷100=0.38,即恰好拿到数学或英语书的概率为0.38.故答案为100,14,14,10.【点评】本题考查的是条形统计图和统计表的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一次每个书包的进价是x元,根据某商店第一次用300元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个可列方程求解.(2)设最低可以打x折,根据若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,可列出不等式求解.【解答】解:(1)设第一次每个书包的进价是x元,﹣20=x=50.经检验得出x=50是原方程的解,且符合题意,答:第一次书包的进价是50元.(2)设最低可以打y折.2400÷(50×1.2)=4080×20+80×0.1y•20﹣2400≥480y≥8故最低打8折.【点评】本题考查理解题意能力,第一问以数量做为等量关系列方程求解,第二问以利润做为不等量关系列不等式求解.24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=,再求出B的坐标是(﹣2,﹣2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围x<﹣2 或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.【解答】解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,如图所示:当x<﹣2 或0<x<1时y1>y2.(3)由图形及题意可得:AC=8,BD=3,∴△ABC的面积S△ABC=AC×BD=×8×3=12.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.以及三角形面积的求法,这里体现了数形结合的思想.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质.【专题】几何综合题;压轴题.【分析】(1)根据菱形的性质得CD=AD,∠CDP=∠ADP,证明△CDP≌△ADP即可;(2)由菱形的性质得CD∥BA,可证△CPD∽△FPB,利用相似比,结合已知DP:PB=1:2,CD=BA,可证A为BF的中点,又PA⊥BF,从而得出PB=PF,已证PA=CP,把问题转化到Rt△PAB中,由勾股定理,列方程求解.【解答】(1)证明:∵四边形ABCD为菱形,∴CD=AD,∠CDP=∠ADP,∴△CDP≌△ADP,∴∠DCP=∠DAP;(2)解:∵四边形ABCD为菱形,∴CD∥BA,CD=BA,∴∠CDP=∠FBP,∠BFP=∠DCP,∴△CPD∽△FPB,∴===,∴CD=BF,CP=PF,∴A为BF的中点,又∵PA⊥BF,∴PB=PF,由(1)可知,PA=CP,∴PA=PB,在Rt△PAB中,PB2=22+(PB)2,解得PB=,则PD=,∴BD=PB+PD=2.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是根据菱形的四边相等,对边平行及菱形的轴对称性解题.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由题意可直接得出点A、B的坐标为A(1,0),B(0,);(2)再根据BC是切线,可求出BC的长,即得出点C的坐标,由待定系数法求出抛物线的解析式;(3)先假设存在,看能否求出符合条件的点D即可.【解答】解:(1)∵MO=MA=1,∠OMA=60°,∴∠ABO=30°,∴OB=,∴A(1,0),B(0,);(2)∵BC是切线,∴∠ABC=90°,∴∠ACB=30°,∴AC=4,∴C(﹣3,0),设抛物线的解析式为y=ax2+bx+c,将点A、B、C代入得,,解得∴抛物线的解析式为y=﹣x2﹣x+;(3)设在对称轴上存在点D,使△BCD是等腰三角形,对称轴为直线x=﹣1,设点D(﹣1,m),分3种情况讨论:①BC=BD;=2,解得m=±+;②BC=CD;=2,解得m=±2;③BD=CD;=,解得:m=0,∴符合条件的点D的坐标为,(﹣1,+),(﹣1,﹣+),(﹣1,2),(﹣1,﹣2),(﹣1,0).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法和等腰三角形判定等知识点,是各地中考的热点和难点,解题时注意数形结合等数学思想的运用,同学们要加强训练,属于中档题.。
2018初中数学中考模拟试卷[2]
2018初中数学中考模拟试卷(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018初中数学中考模拟试卷(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018初中数学中考模拟试卷(word版可编辑修改)的全部内容。
绝密★启用前2018年04月21日lht112的初中数学组卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共6小题)1.如图.将矩形ABCD绕点A旋转至矩形AEFG的位置.此时点D恰好与AF的中点重合。
AE交CD于点H。
若BC=.则HC的长为()A.4 B.C.D.62.在△ABC中.∠BAC=90°。
AB=2AC。
点A(2。
0)、B(0。
4)。
点C在第一象限内.双曲线y=(x>0)经过点C.将△ABC沿y轴向上平移m个单位长度。
使点A恰好落在双曲线上。
则m的值为()A.2 B.C.3 D.3.如图。
四边形ABCD中.AB=4.BC=6.AB⊥BC。
BC⊥CD。
E为AD的中点。
F为线段BE 上的点.且FE=BE.则点F到边CD的距离是( )A.3 B.C.4 D.4.如图。
正方形ABCD中.点E。
F分别在BC.CD上。
△AEF是等边三角形.连接AC 交EF于点G.过点G作GH⊥CE于点H。
若S△EGH=3.则S△ADF=()A.6 B.4 C.3 D.25.如图.若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k.则反比例函数y=(x>0)的图象是()A.B.C.D.6.已知正方形MNOK和正六边形ABCDEF边长均为1。
2018年九年级第二次模拟考试数学试卷
九年级模拟试卷 试第1页 共6页 九年级模拟试卷 第2页 共6页学校 班级 姓名 考号密 封 线 内 不 要 答 题2018年中考模拟试卷(二)科目 数学满分:120分 考试时间:120分钟一、单项选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填入题后的括号内.1.下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A .1B . 2C .3D .42.一种新病毒的直径约为0.00000043毫米,用科学记数法表示为( ) A .0.43×10﹣6B .0.43×106C .4.3×107D .4.3×10﹣73.已知不等式组,其解集在数轴上表示正确的是( )A .B .C .D .4.下列运算正确的是( )A .x 2•x 3=x 6B .x 6÷x 5=xC .(﹣x 2)4=x 6D .x 2+x 3=x 5 5.如图所示,该几何体的俯视图是( )A .B .C .D .6.下列二次分式中,与是同类二次根式的是( )A .B .C .D .7.若分式方程2+=有增根,则k 的值为( )A .﹣2B .﹣1C .1D .28.从边长为a 的正方形内去掉一个边长为b 的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )A .(a ﹣b )2=a 2﹣2ab +b 2B .a 2﹣b 2=(a +b )(a ﹣b )C .(a +b )2=a 2+2ab +b 2D .a 2+ab=a (a +b )9.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,若EF :AF=2:5,则S △DEF :S 四边形EFBC 为( )A .2:5B .4:25C .4:31D .4:35第8题图 第9题图 第10题图 10.已知如图,等腰三角形ABC 的直角边长为a ,正方形MNPQ 的边为b (a <b ),C 、M 、A 、N 在同一条直线上,开始时点A 与点M 重合,让△ABC 向右移动,最后点C 与点N 重合.设三角形与正方形的重合面积为y ,点A 移动的距离为x ,则y 关于x 的大致图象是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分.把答案写在答题卡中的横线上.)11.多项式2x 3﹣8x 2y +8xy 2分解因式的结果是 . 12.计算:﹣= .13.若等腰三角形的顶角为120°,腰长为2cm ,则它的底边长为 cm .14.关于x 的一元二次方程mx 2+(m ﹣2)x +m ﹣2=0有两个不相等的实数根,则m 的取值范围是 .15.如图,△ABC 中,点D 、E 在BC 边上,∠BAD=∠CAE 请你添加一对相等的线段或一对相等九年级模拟试卷 第3页 共6页 九年级模拟试卷 第4页 共6页密 封 线 内 不 要 答 题的角的条件,使△ABD ≌△ACE .你所添加的条件是 .第15题图 第16题图 第17题图 16.在Rt △ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°,BD=2,,则AC 的长是 .17.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是 .18.正整数按如图所示的规律排列,则第29行第30列的数字为 .三、解答题(一):本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(5分)计算:﹣22﹣+|1﹣4sin60°|+(π﹣)0.20.(5分)解分式方程:+=3.21.(6分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,AE ∥BC .(1)作∠ADC 的平分线DF ,与AE 交于点F ;(用尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,若AD=2,求DF 的长.22.(5分)如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡. (1)求改造前坡顶与地面的距离BE 的长.(2)为了消除安全隐患,学校计划将斜坡AB 改造成AF (如图所示),那么BF 至少是多少米?(结果精确到1米)(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).23.(5分)如图,在平面直角坐标系xOy 中,一次函数y=﹣ax +b 的图象与反比例函数y=的图象相交于点A (﹣4,﹣2),B (m ,4),与y 轴相交于点C . (1)求反比例函数和一次函数的表达式; (2)求点C 的坐标及△AOB 的面积.九年级模拟试卷 试第1页 共6页 九年级模拟试卷 第6页 共6页学校 班级 姓名 考号密 封 线 内 不 要 答 题四、解答题(二):本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(7分)如图,转盘被平均分成三块扇形,转动转盘,转动过程中,指针保持不动,转盘停止后,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止. (1)转动转盘两次,用画树状图或列表的方法求两次指针所指区域数字不同的概率;(2)在第(1)题中,两次转到的区域的数字作为两条线段的长度,如果第三条线段的长度为5,求这三条线段能构成三角形的概率.25.(8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2016年10月1日加入SDR (特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SD R”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有 人,其中“不了解”的学生有 人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为 °;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?26.(7分)如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点,点M 是AB 边上的一个动点(不与点A 重合),延长ME 交CD 的延长线于点N ,连接MD ,AN . (1)求证:四边形AMDN 是平行四边形.(2)当AM 的值为何值时,四边形AMDN 是矩形?请说明理由.27.(8分)如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径的⊙O 与AB 边交于点D ,点E 是边BC 的中点.(1)求证:BC 2=BD•BA ;(2)判断DE 与⊙O 位置关系,并说明理由.28.(10分)如图,已知抛物线与x 轴交于A (﹣1,0)、B (4,0)两点,与y 轴交于点C (0,3). (1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使△PAB 的面积等于△ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.。
2018年九年级中考语文模拟试卷 (二模)及答案
2018年九年级中考语文模拟试卷 (二模) 考生须知 1.本试卷共10页,共五道大题,28道小题。
满分100分。
考试时间150分钟。
2.在试卷和答题卡上准确填写学校名称、班级、姓名和学号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
一、基础·运用(共16分)学校开展“建设班级文化 营造和谐校园”系列活动。
你所在的班级正在征集班训,有同学提出以“j ìng ”为训,并写出一段解说词。
请你参与完善,完成1-3题。
以“j ìng ”为训,我们能联想到“静”,它提醒我们保持安静,内心沉静;我们能联想到“敬”,它提醒我们尊敬师长,敬重知识;我们还能联想到“径”,“书山有路勤为径”提醒我们以勤为径,肯于登攀……总之,以“j ìng ”为训, 可以想到不同的字,留给人以联想的空间,能在多方面给同学们以教益。
希望这个班训能够zh āng ( )显出我们的班级文化,把我们凝聚成一支团结奋进的劲.旅。
1. 文中括号内应填写的汉字和加点字的读音,全都正确的一项是(2分)A .(彰)显 劲.旅(j ìng )B .(张)显 劲.旅(j ìng ) C .(彰)显 劲.旅(j ìn ) D.(张)显 劲.旅(j ìn ) 2.在解说词的横线处填入关联词,最恰当的一项是(2分)A .只要 就B .如果那么C .不仅 而且D .虽然但是3.以“j ìng ”为训,你还能联想到哪个字?请用规范的正楷字将这个字写在田字格内,并进行解说。
(2分)我还能联想到:解说:4.清华大学的校训“自强不息,厚德载物”语出《易经》,原文是“天行健,君子以自强不息;地势坤,君子以厚德载物”。
甲图是清华校园碑刻作品,乙图是书法作品。
请你从书体和内容两方面,任选一幅进行点评。
2018年中考数学二模试卷含答案
2018年中考数学二模试卷一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a23.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.化简÷(1+)的结果是()A.B.C.D.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m27.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1968.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.0012410.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.711.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= .22.方程=的解为.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是.三、解答题(本题共5小题,48分)25.(8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?26.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.27.(10分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1),易证BD+AB=CB,过程如下:过点C 作CE ⊥CB 于点C ,与MN 交于点E ∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE .∵四边形ACDB 内角和为360°,∴∠BDC+∠CAB=180°. ∵∠EAC+∠CAB=180°,∴BD+AB=CB .∴∠EAC=∠BDC 又∵AC=DC , ∴△ACE ≌△DCB , ∴AE=DB ,CE=CB , ∴△ECB 为等腰直角三角形,∴BE=CB .又∵BE=AE+AB , ∴BE=BD+AB .(1)当MN 绕A 旋转到如图(2)和图(3)两个位置时,BD 、AB 、CB 满足什么样关系式,请写出你的猜想,并对图(3)给予证明. (2)MN 在绕点A 旋转过程中,当∠BCD=30°,BD=时,则CD= ,CB= .28.(10分)如图1,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE ⊥OB 交BC 边于点E . (1)求证:△ABF ∽△COE ; (2)当O 为AC 的中点,时,如图2,求的值; (3)当O 为AC 边中点,时,请直接写出的值.29.(12分)如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x 轴,点P 是直线AC 下方抛物线上的动点. (1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2018年中考数学二模试卷参考答案与试题解析一、选择题(本大题共20小题,每小题3分,共60分)1.(﹣)﹣1的倒数是()A.B.C.﹣ D.﹣【考点】6F:负整数指数幂;17:倒数.【分析】先计算负整数指数幂,再依据倒数的定义可得.【解答】解:∵(﹣)﹣1=﹣,∴(﹣)﹣1的倒数为﹣,故选:C.【点评】本题主要考查负整数指数幂和倒数的定义,熟练掌握负整数指数幂是解题的关键.2.下列计算正确的是()A.(﹣3a)2+4a2=a2B.3a2﹣(﹣2a)2=﹣a2C.3a•4a2=12a2D.(3a2)2÷4a2=a2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=9a2+4a2=13a2,不符合题意;B、原式=3a2﹣4a2=﹣a2,符合题意;C、原式=12a3,不符合题意;D、原式=9a4÷4a2=a2,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握公式及法则是解本题的关键.3.已知点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】R6:关于原点对称的点的坐标;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先确定出点M在第三象限,然后根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解得到m的取值范围,从而得解.【解答】解:∵点M(1﹣2m,m﹣1)关于原点的对称点在第一象限,∴点M(1﹣2m,m﹣1)在第三象限,∴,解不等式①得,m>,解不等式②得,m<1,所以,m的取值范围是<m<1,在数轴上表示如下:.故选C.【点评】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法,以及关于原点对称的两点坐标之间的关系以及一元一次不等式组的解法.4.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.5.化简÷(1+)的结果是()A.B.C.D.【考点】6C:分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.6.长方体的主视图、俯视图如图所示(单位:m),则其左视图面积是()A.4m2B.12m2C.1m2D.3m2【考点】U3:由三视图判断几何体.【分析】左视图面积=宽×高.【解答】解:由主视图易得高为1,由俯视图易得宽为3.∴左视图面积=1×3=3(m2).故选D.【点评】主视图确定物体的长与高;俯视图确定物体的长与宽.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196【考点】AC:由实际问题抽象出一元二次方程.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选C.【点评】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.8.2017年“端午节”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家都抽到东营港的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两家抽到东营港的情况,再利用概率公式求解即可求得答案.【解答】解:用A、B、C表示:东营港、黄河入海口、龙悦湖;画树状图得:∵共有9种等可能的结果,则两家都抽到东营港的有3种情况,∴则两家都抽到东营港的概率是=;故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.9.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n 位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A.5 B.5.5 C.6 D.7【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义先求出这组数据x,再将这组数据从小到大排列,然后找出最中间的数即可.【解答】解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7,将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6;则这组数据的中位数是6;故选:C.【点评】此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).11.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()A.B.5 C.4 D.【考点】R2:旋转的性质.【分析】先求出∠ACD=30°,再根据旋转角求出∠ACD1=45°,然后判断出△ACO是等腰直角三角形,再根据等腰直角三角形的性质求出AO、CO,AB⊥CO,再求出OD1然后利用勾股定理列式计算即可得解.【解答】解:∵∠ACB=∠DEC=90°,∠D=30°,∴∠DCE=90°﹣30°=60°,∴∠ACD=90°﹣60°=30°,∵旋转角为15°,∴∠ACD1=30°+15°=45°,又∵∠A=45°,∴△ACO是等腰直角三角形,∴AO=CO=AB=×6=3,AB⊥CO,∵DC=7,∴D1C=DC=7,∴D1O=7﹣3=4,在Rt△AOD1中,AD1===5.故选B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,根据等腰直角三角形的性质判断出AB⊥CO是解题的关键,也是本题的难点.12.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k 的值为()A.3 B.6 C.D.【考点】GB:反比例函数综合题.【分析】先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x 轴,BE⊥x轴,CF⊥BE于点F,再设A(3x, x),由于OA=3BC,故可得出B(x, x+4),再根据反比例函数中k=xy为定值求出x【解答】解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x, x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x, x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.【点评】本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.13.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A. cm B. cm C. cm D.4cm【考点】M4:圆心角、弧、弦的关系;KD:全等三角形的判定与性质;KQ:勾股定理.【分析】连接OD,OC,作DE⊥AB于E,OF⊥AC于F,运用圆周角定理,可证得∠DOB=∠OAC,即证△AOF≌△OED,所以OE=AF=3cm,根据勾股定理,得DE=4cm,在直角三角形ADE中,根据勾股定理,可求AD的长.【解答】解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.【点评】本题考查了翻折变换及圆的有关计算,涉及圆的题目作弦的弦心距是常见的辅助线之一,注意熟练运用垂径定理、圆周角定理和勾股定理.14.如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2CD的长【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】作直径AE,连接BE.得直角三角形ABE.根据圆周角定理可证∠CBD=∠MAO,运用三角函数定义求解.【解答】解:连接AO并延长交圆于点E,连接BE.则∠C=∠E,由AE为直径,且BD⊥AC,得到∠BDC=∠ABE=90°,所以△ABE和△BCD都是直角三角形,所以∠CBD=∠EAB.又△OAM是直角三角形,∵AO=1,∴sin∠CBD=sin∠EAB==OM,即sin∠CBD的值等于OM的长.故选:A.【点评】考查了圆周角定理和三角函数定义.此题首先要观察题目涉及的线段,然后根据已知条件结合定理进行角的转换.15.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【考点】H2:二次函数的图象;F4:正比例函数的图象.【分析】由y=mx(m≠0),y随x的增大而减小,推出m<0,可知二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,由此即可判断.【解答】解:∵y=mx(m≠0),y随x的增大而减小,∴m<0,∴二次函数y=mx2+m的图象的开口向下,与y则交于负半轴上,故选A.【点评】本题参考二次函数的性质、正比例函数的性质等知识,解题的关键是熟练掌握正比例函数以及二次函数的性质,属于中考常考题型.16.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④【考点】L9:菱形的判定;KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.【解答】解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故选:C.【点评】本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.17.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm【考点】LB:矩形的性质;PB:翻折变换(折叠问题).【分析】根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据tan∠EFC=,设BF=3x、AB=4x,利用勾股定理列式求出AF=5x,再求出CF,根据tan∠EFC=表示出CE并求出DE,最后在Rt△ADE中,利用勾股定理列式求出x,即可得解.【解答】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°﹣90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵tan∠EFC=,∴设BF=3x、AB=4x,在Rt△ABF中,AF===5x,∴AD=BC=5x,∴CF=BC﹣BF=5x﹣3x=2x,∵tan∠EFC=,∴CE=CF•tan∠EFC=2x•=x,∴DE=CD﹣CE=4x﹣x=x,在Rt△ADE中,AD2+DE2=AE2,即(5x)2+(x)2=(10)2,整理得,x2=16,解得x=4,∴AB=4×4=16cm,AD=5×4=20cm,矩形的周长=2(16+20)=72cm.故选A.【点评】本题考查了矩形的对边相等,四个角都是直角的性质,锐角三角函数,勾股定理的应用,根据正切值设出未知数并表示出图形中的各线段是解题的关键,也是本题的难点.18.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF 于G,下列结论:①BE=DF;②∠DAF=15°;③AC垂直平分EF;④BE+DF=EF;⑤S△CEF=2S△ABE,其中正确结论有()A.2个B.3个C.4个D.5个【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x 与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故③正确).设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△CEF=x2,S△ABE=x2,∴2S△ABE=x2=S△CEF,(故⑤正确).综上所述,正确的有4个,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.19.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】H4:二次函数图象与系数的关系.【分析】(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b+2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.【点评】本题考查二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图象信息解决问题,属于中考常考题型.20.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质得OB=OC,∠OBC=∠OCD=45°,然后根据“SAS”可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.【解答】解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选:B.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(本小题共4小题,每小题3分,共12分)21.因式分解2x4﹣2= 2(x2+1)(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】首先提公因式2,然后利用平方差公式即可分解.【解答】解:原式=2(x4﹣1)=2(x2+1)(x2﹣1)=2(x2+1)(x+1)(x﹣1).故答案是:2(x2+1)(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.方程=的解为x=2 .【考点】B3:解分式方程.【分析】方程两边都乘以最简公分母(x﹣1)(2x+1)把分式方程化为整式方程,求解后进行检验.【解答】解:方程两边都乘以(x﹣1)(2x+1)得,2x+1=5(x﹣1),解得x=2,检验:当x=2时,(x﹣1)(2x+1)=(2﹣1)×(2×2+1)=5≠0,所以,原方程的解是x=2.故答案为:x=2.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当r=时,S为﹣1 .【考点】MO:扇形面积的计算.【分析】首先求出S关于r的函数表达式,分析其增减性;然后根据r的取值,求出S的最大值与最小值,从而得到S的取值.【解答】解:如右图所示,过点D作DG⊥BC于点G,易知G为BC的中点,CG=1,在Rt△CDG中,由勾股定理得:DG==,设∠DCG=θ,则由题意可得:S=2(S扇形CDE﹣S△CDG)=2(﹣×1×)=﹣,∴S=﹣.当r增大时,∠DCG=θ随之增大,故S随r的增大而增大.当r=时,DG=1,∵CG=1,故θ=45°,∴S=﹣=﹣1,故答案为:﹣1.【点评】本题考查扇形面积的计算、等边三角形的性质、勾股定理等重要知识点.解题关键是求出S的函数表达式.24.如图,在平面直角坐标系中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B、BA 为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1、B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C2017的坐标是(﹣×42016,42017).【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标;L5:平行四边形的性质.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n的坐标是(﹣×4n﹣1,4n),即可求得C2017的坐标.【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x,∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n),∴C2017的坐标是(﹣×42016,42017).故答案为(﹣×42016,42017).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三、解答题(本题共5小题,48分)25.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.26.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.【考点】G8:反比例函数与一次函数的交点问题;G6:反比例函数图象上点的坐标特征.【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由点A的坐标表示出点C的坐标,根据C、D点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k、m的二元一次方程,解方程即可得出结论;。
2.2018年中考模拟卷(二)(含答案)
2018年中考模拟卷(二) 【娄底卷】考生注意:1.本试卷共四个大题,满分100分,考试时间45分钟。
2.-32 Zn -65一、选择题(本大题共15个小题,每小题只有一个正确答案,每小题2分,共30分)1.小华同学为母亲过生日,下列庆祝活动中发生了化学变化的是( ) A .编制花环 B .榨取果汁 C .点燃蜡烛 D .切分蛋糕2.下列实验基本操作错误的是( )3.下列实验现象的描述正确的是( ) A .灼烧棉纱线,有烧焦羽毛的气味 B .铜片投入稀盐酸,产生大量气体 C .铁丝在纯氧中燃烧,生成白色固体 D .加热“铜绿”,固体变黑 4.下列说法正确的是( )A .花香四溢说明分子在不断运动B .分子在化学变化中不能再分C .不同元素的本质区别是中子数不同D .原子不能直接构成物质5.下列各图中和分别表示不同元素的原子,其中表示化合物的是( )6.在化学上,把由同种元素组成的不同种单质互称为“同素异形体”。
互为同素异形体的物质一定具有相同的( )A .物理性质B .元素组成C .微观结构D .用途7.参加六盘水市夏季国际马拉松赛的运动员,剧烈运动后感觉肌肉酸胀,原因是人体产生了较多的乳酸(化学式为C 3H 6O 3)。
下列关于乳酸说法错误的是( )A .乳酸属于有机物B .乳酸由3个碳原子、6个氢原子和3个氧原子构成C .乳酸中碳、氢、氧元素的质量比为6∶1∶8D .乳酸中碳元素的质量分数为40%8.下列做法正确的是( ) A .食用霉变的花生B .用甲醛溶液浸泡鱼虾防腐C .食用加碘盐可补充人体缺乏的碘元素D .食品中加入过量的亚硝酸钠 9.镍(Ni)和锰(Mn)都是重要金属,将Ni 丝插入MnCl 2溶液中,无明显现象;插入CuCl 2溶液中,Ni 丝表面有红色固体析出,则这三种金属活动性由强到弱的顺序是( )A .Cu 、Mn 、NiB .Mn 、Ni 、CuC .Ni 、Mn 、CuD .Mn 、Cu 、Ni10.对比是学习化学的重要方法,下列关于CO 2与CO 的比较,错误的是( ) A .CO 2可用于人工降雨,CO 可用于光合作用 B .通常情况下,CO 2能溶于水,CO 难溶于水C .CO 2无毒,CO 易与血液中的血红蛋白结合引起中毒D .一个二氧化碳分子比一个一氧化碳分子多一个氧原子11.在一定条件下,一个密闭容器内发生某反应,测得反应过程中各物质的质量如表所示,下列说法正确的是( )A .a 等于10B .该化学反应为复分解反应C .丙一定为催化剂D .b 等于1212.遇到火灾时,正确处理火险有利于保护生命财产安全,下列处理方式中错误的是( )A .如果是室内着火,立即打开所有门窗B .用湿毛巾捂住口鼻,蹲下靠近地面,迅速离开火灾现场C .发现火灾立即拨打119火警电话D .炒菜时油锅着火,立即盖上锅盖物质 甲 乙 丙 丁反应前的质量/g12 26 3 0 反应中的质量/g9 22 3 b 反应后的质量/g0 a 3 2815.下列图像中有关量的变化趋势正确的是()二、填空题(本大题共6个小题,每空2分,共40分)16.化学用语是学习化学的重要工具,是国际通用的化学语言。
2018年中考数学模拟试题二答案
2018初四数学模拟试题(二)答案一.选择题(每题3分,共36分)1、B2、C3、B4、D5、D6、C7、B8、C9、A10、A11、C12、B二.选择题(每题3分,共18分)13、5.7101014、a>-115、1016、4317、14318、2 6三.解答题(19题6分,20题8分,21题8分,22题10分,23题10分,24题12分,25题12分)19、解:原式=•= •=,.........3分由x2+x﹣2=0,解得x=﹣2,x=1,12∵x≠1,.........5分∴当x=﹣2时,原式= =1/5 ..........6分20.解:(1)15%;35%;.........2分(2)126°;.........3分(3)如图所示:.........4分(4)列树状图得:所以从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,则小明参加的概率为:P=,小刚参加的概率为:P=故游戏规则不公平..........8分21、解:作FH⊥AB于H,DQ⊥AB于Q,如图2,FH=42cm,在Rt△BFH中,∵sFBin∠H=,∴BF=≈48.28,∴BC=BF+CF=48.28+42≈90.3(cm);.........3分在Rt△BDQ中,∵tan∠DBQ=∴BQ=,在Rt△ADQ中,∵tan∠DAQ=,,∴AQ=,∵BQ+AQ=AB=43,...........6分∴+=43,解得DQ≈56.999,在Rt△ADQ中,∵sin∠DAQ=,∴AD=≈58.2(cm).答:两根较粗钢管AD和BC的长分别为58.2cm、90.3cm...........8分22、解:(1)由题意得:y=(210-10x)(50+x-40)=-10x2+110x+2100(0<x≤15且x为整数)(2)y=-10x2+110x+2100=-10(x-5.5)2+2 402.5.∵-10<0,∴当x=5.5时,y取得最大值2402.5. ..........3分又∵0<x≤15且x为整数,当x=5时,50+x=55,y=2400;当x=6时,50+x=56,y=2400.∴当售价定为每件55元或56元时,每个月的利润最大,最大的月利润是2400元...........5分(3)当y=2200时,-10x2+110x+2100=2200,解得:x1=1,x2=10...........7分∴当x=1时,50+x=51;当x=10时,50+x=60.∴当售价定为每件51元或60元时,每个月的利润恰为2200元.........9分当每件商品的售价不低于51元、不高于60元且为整数时,每个月的利润不低于2 200元...........10分23、解:(1)∵∠ABC=∠AC且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°∴2∠BCP+2∠BCA=180°,∴∠BCP+∠BCA=90°,∴直线CP是⊙O的切线..........2分(2)如下图,作BD⊥AC于点D,∵PC⊥AC∴BD∥PC∴∠PCB=∠DBC∵BC=2,sin∠BCP= ,∴sin∠BCP=sin∠DBC=== ,...........4分解得:DC=2,∴由勾股定理得:BD=4,∴点B到AC的距离为4...........5分(3)如下图,连接AN,在△R t ACN中,AC=又CD=2,∴AD=AC﹣CD=5﹣2=3.=5,∵BD∥CP,∴在△R t ACP中,AP=,∴CP=.=,AC+CP+AP=5++=20,∴△ACP的周长为20...........1分24.(1)①由旋转可知:AC=DC,∵C 90,B E30,∴A D 60∴△ADC是等边三角形,∴ACD60,又∵CDE 60∴DE∥AC...........2分②过D作DN⊥AC交AC于点N,过E作EM⊥AC交AC延长线于M,过C作CF⊥AB交AB于点 F.由①可知:△ADC是等边三角形,DE∥AC,∴DN=CF,DN=EM∴CF=EM∵C 90,B30,∴AB 2A C,又∵AD AC,∴BD AC∵S112CF BD,1S AC EM2,∴S=S12...........4分(2)∵DCE ACB 90,DCM ACE 180又∵ACN ACE 180,ACN DCM又∵CNA CMD 90,A C CD.∴△ANC≌△DMC.∴AN=DM.又∵CE=CB,∴S S...........8分12(3)如图所示,作DF∥BC交BA于点F ,作DF B D交BA于点F.1122按照(1)(2)求解的方法可以计算出BF1433,BF2833..........12分25解:(1)抛物线的解析式为y=x2+2x+1. ..........3分(2)∵AC∥x轴,A(0,1),∴点C的坐标(-6,1).∵点A(0,1),B(-9,10),∴直线AB的解析式为y=-x+1.设点P(m,m2+2m+1),∴E(m,-m+1),∴PE=m2-3m.∵AC⊥EP,AC=6,2.∴S四边形AECP+S =AC·(EF+PF)=-m2-9m =-(m+)2+△=S AEC△APC∵-6<m<0,∴当m=-时,四边形AECP的面积的最大值是,此时点P(-,-). ..........9分(3)∵y=x2+2x+1.,∴P(-3,-2),∴PF=Y-Y=3,CF=X-X=3,∴PF=CF,F P F C∴∠PCF=45°.同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q. 设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形△与ABC相似,①当△CPQ∽△ABC时,∴=,∴t=-4,∴Q(-4,1);②当△CQP∽△ABC时,∴=,∴t=3,∴Q(3,1).故Q(-4,1)或(3,1)..........12分。
2018中考模拟(2)答案
密云县2018年初中模拟(二)考试数学试卷答案及评分标准一、选择题(本题共32分,每小题4分)1B 2A 3C 4A 5C 6D 7A 8A二、填空题(本题共16分,每小题4分)9.2(x+2)(x-2) 10.90︒ 11.(4,2) 12.1256三、解答题(本题共30分,每小题5分)13. 原式=4-1+4+1…………………4分=8 …………………5分14. 42=-+x x ………………1分62=x …………………2分3=x …………………3分经检验 3=x 是原方程的解, …………………4分∴ 3=x …………………5分15. ∵AD 平分∠BAC ,∴∠BAD =∠CAD . …………………2分又∵AB =AC ,AD =AD ,∴△BAD ≌△CAD. …………………3分∴BD =CD . …………………4分∴∠DBC =∠DCB . …………………5分18.设购进篮球x 个,购进排球y 个,由题意得:………………3分解得:, ………………4分答:购进篮球12个,购进排球8个. ………………5分四、解答题(本题共20分,每小题5分) ∵CD 为⊙O 的切线 ∴OC ⊥CD∵AD ⊥CD ∴AD ∥OC ∴∠1=∠2∵OA=OC ∴∠2=∠3∴∠1=∠3即AC 平分∠DAB. ………………5分(2)如图2∵AB 为⊙O 的直径∴∠ACB=90°又∵∠B=60°∴∠1=∠3=30°在Rt △ACD 中,CD=23∴AC=2CD=43在Rt △ABC 中,AC=43∴438AC AB ===…4分连接OE∵∠EAO=2∠3=60°,OA=OE∴△EAO 是等边三角形∴AE=OA=12AB =4. ………………5分 21. (每空1分)(1)132,48,60;(2)4,6. 22.(1)在图3中设计出符合题目要求的图形.……………2分(2)在图4中画出符合题目要求的图形.………………5分19. (1)证明:连接OE ,∵四边形ABCD 是平行四边形,∴DO=OB , ………………1分∵四边形DEBF 是菱形,∴DE=BE , ………………2分∴EO ⊥BD ,∴∠DOE=90°,即∠DAE=90°,又四边形ABCD 是平行四边形,∴四边形ABCD 是矩形.………… ……3分(2)∵四边形DEBF 是菱形,∴∠FDB=∠EDB ,又由题意知∠EDB=∠EDA ,由(1)知四边形ABCD 是矩形,∴∠ADF=90°,即∠FDB+∠EDB+∠ADE=90°,则∠ADB=60°,∴在Rt △ADB 中,有AD :AB=1:,又BC=AD ,则. ………… ……5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(1)△=22)1(4)2(m m m =-+-∵方程有两个不相等的实数根,∴0≠m .∵01≠-m ,∴m 的取值范围是1,0≠≠m m 且.……………………………2分(2)证明:令0=y 得,01)2()1(2=--+-x m x m .∴)1(2)2()1(2)2(2-±--=-±--=m m m m m m x . ∴1)1(221-=--+-=m m m x ,11)1(222-=-++-=m m m m x . ……………4分 ∴抛物线与x 轴的交点坐标为(0,1-),(0,11-m ),∴无论m 取何值,抛物线1)2()1(2--+-=x m x m y 总过定点(0,1-). ………5 分(3)∵1-=x 是整数 ∴只需11-m 是整数. ∵m 是整数,且1,0≠≠m m ,∴2=m . ……………………………………………………………6分当2=m 时,抛物线为12-=x y . 把它的图象向右平移3个单位长度,得到的抛物线解析式为861)3(22+-=--=x x x y . ……………………………7分 24. (1)BD=CF 成立.理由:∵△ABC 是等腰直角三角形,四边形ADEF 是正方形,∴AB=AC ,AD=AF ,∠BAC=∠DAF=90°,∵∠BAD=∠BAC ﹣∠DAC ,∠CAF=∠DAF ﹣∠DAC ,∴∠BAD=∠CAF ,在△BAD 和△CAF 中,∴△BAD ≌△CAF (SAS ).∴BD=CF .…………………………………2分(2)①证明:设BG 交AC 于点M .∵△BAD ≌△CAF (已证),∴∠ABM=∠GCM .∵∠BMA=∠CMG ,∴△BMA ∽△CMG .∴∠BGC=∠BAC=90°.∴BD ⊥CF ………………………………4分②过点F 作FN ⊥AC 于点N .∵在正方形ADEF 中,AD=DE=,∴AE==2,∴AN=FN=AE=1.∵在等腰直角△ABC 中,AB=4,∴CN=AC﹣AN=3,BC==4.∴在Rt△FCN中,tan∠FCN==.∴在Rt△ABM中,tan∠ABM==tan∠FCN=.∴AM=AB=.∴CM=AC﹣AM=4﹣=,BM==.…………………………5分∵△BMA∽△CMG,∴.∴.∴CG=.………………………………………………………6分∴在Rt△BGC中,BG==.………………………………7分。
2018年中考二模数学试卷及答案
EDCB A2018年初中毕业生学业模拟考试数 学 试 卷说明:本试卷共 4页,25小题,满分 120 分.考试用时100 分钟. 注意事项:1.答题前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写准考证号、姓名、试室号、座位号,再用2B 铅笔把试室号、座位号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、相信你,都能选择对!四个选项中只有一个是正确的.(本大题10小题,每题3分,共30分) 1.﹣4的绝对值是( )A .4B .﹣4C .41 D .41 2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( ) A .44×108 B .4.4×109 C .4.4×108D .4.4×10103.一组数据从小到大排列为2,3,4,x ,6,9.这组数据的中位数是5,那么这组数据的众数为( ) A .4B .5C .5.5D .64.下列四边形中,是中心对称而不是轴对称图形的是( ) A .平行四边形 B .矩形 C .菱形 D .正方形 5.如图,能判定EB ∥AC 的条件是( ) A .∠A=∠ABE B .∠A=∠EBDC .∠C=∠ABCD .∠C=∠ABE 6.下列计算正确的是( )A .a 2+a 2=a 4B .(﹣a )2﹣a 2=0C .a 8÷a 2=a 4D .a 2•a 3=a 6 7.一元二次方程x 2﹣2x+p=0总有实数根,则p 应满足的条件是( ) A .p >1 B . p =1 C .p <1 D .p ≤18.如图,沿AC 方向修隧道,为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B 取∠ABD=145°,BD=500米,∠D=55°,使A 、C 、E 在一条直线上,那么开挖点E 与D 的距离是( ) A .500sin55°米 B .500cos35°米 C .500cos55°米 D .500tan55°9.如图,在Rt △ABC 中,∠C=90°,∠ABC=60°,AB 的垂直平分线分别交AB 与AC 于点D 和点E ,若CE=2,则AB 的长是( ) A .4B .43C .8D .83P OFEDCBACC10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AC=6,BD=8.动点E 从点B 出发,沿着 B ﹣A ﹣D 在菱形ABCD 的边上运动,运动到点D 停止.点F 是点E 关于BD 的对称点,EF 交 BD 于点P ,若BP=x ,△OEF 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .二.填空题(本大题6小题,每小题4分,共24分) 11.比较大小:(填“>”或“<”)12.一个多边形的每个外角都是60°,则这个多边形边数为 . 13.若|x +2|+5-y =0,则xy 的值为 .14.分式方程aa 134=-的根是 . 15.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是 . 16.把边长为1的正方形ABCD 绕点A 逆时针旋转45°得到正方形AB′C′D′, 边B′C′与DC 交于点O ,则四边形AB′OD 的周长为 . 三.解答题(一)(本大题3小题,每题6分,共18分) 17.(本题满分6分)计算:()332160tan 3101++-︒-⎪⎭⎫⎝⎛-.18.(本题满分6分)先化简,再求值: ⎪⎭⎫ ⎝⎛--÷+-+x x x x x x 1121222,其中x=3.19.(本题满分6分)在平行四边形ABCD 中,AB=2AD . (1)作AE 平分∠BAD 交DC 于E (2)在(1)的条件下,连接BE ,判定△ABE 的形状 (不要求证明).20.(本题满分7分)中秋佳节我国有赏月和吃月饼的传统,英才学校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图.(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”的部分所对应的圆心角为度;条形统计图中,“很喜欢”月饼中喜欢“豆沙”月饼的学生有人;(2)若该校共有学生1200人,请根据上述调查结果,估计该校学生中“很喜欢”月饼的有人.(3)李民同学最爱吃莲蓉月饼,陈丽同学最爱吃豆沙月饼,现有重量、包装完全一样的豆沙、莲蓉、蛋黄三种月饼各一个,让李民、陈丽每人各选一个,则李民、陈丽两人都选中自己最爱吃的月饼的概率为.21.(本题满分7分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F.(1)证明:△ADF≌△AB′E;(2)若AD=12,DC=18,求△AEF的面积.22.(本题满分7分)飞马汽车销售公司3月份销售新上市一种新型低能耗汽车8辆,由于该型汽车的优越的经济适用性,销量快速上升,5月份该公司销售该型汽车达18辆.(1)求该公司销售该型汽车4月份和5月份的平均增长率;(2)该型汽车每辆的进价为9万元,该公司的该型车售价为9.8万元/辆.且销售m辆汽车,汽车厂返利销售公司0.04m万元/辆.若使6月份每辆车盈利不低于1.7万元,那么该公司6月份至少需要销售该型汽车多少辆?(盈利=销售利润+返利)E23.(本题满分9分)如图,在平面直角坐标系中,一次函数的图象y 1=kx +b 与反比例函数xny =2的图象交于点A (1,5)和点B (m ,1). (1)求m 的值和反比例函数的解析式; (2)当x >0时,根据图象直接写出不等式xn≥kx +b 的解集; (3)若经过点B 的抛物线的顶点为A ,求该抛物线的解析式.24.(本题满分9分)如图,四边形ABCD 内接于⊙O ,AB=AD ,对角线BD 为⊙O 的直径,AC 与BD 交于点E .点F 为CD 延长线上,且DF=BC . (1)证明:AC=AF ;(2)若AD=2,AF=13+,求AE 的长;(3)若EG ∥CF 交AF 于点G ,连接DG.证明:DG 为⊙O25.(本题满分9分)如图,在矩形ABCD 中,AB=5,AD=4,E 为AD 边上一动点(不与点A 重合), AF ⊥BE ,垂足为F ,GF ⊥CF ,交AB 于点G ,连接EG .设AE=x ,S △BE G =y . (1)证明:△AFG ∽△BFC ;(2)求y 与x 的函数关系式,并求出y 的最大值; (3)若△BFC 为等腰三角形,请直接写出x 的值.2018年初中毕业生学业模拟考试数学参考答案一.选择题(本大题10小题,每题3分,共30分)1.A 2.B 3.D 4.A 5.A 6.B 7.D 8.C 9.B 10.D 二.填空题(本大题6小题,每小题4分,共24分)11.<. 12.6. 13.-10. 14.1-=a . 15.2. 16.. 三.解答题(一)(本大题3小题,每题6分,共18分) 17.解:原式=3-3-1+3 4分 =2. 6分 18.解:原式=()()()11112+-⨯-+x x x x x x 4分=12-x x . 5分当x=3时,原式=291332=-. 19.解:(1)如图,AE 为所求; 3分 (2)△ABE 为直角三角形. 6分四.解答题(二)(本大题3小题,每小题7分,共21分) 20.解:(1)126°, 1分4; 2分 (2)420; 4分 (3)61. 7分 21.(1)证明:∵四边形ABCD 是矩形,∴∠D=∠C=∠B′=90°,AD=CB=AB′, 1分 ∵∠DAF +∠EAF=90°,∠B′AE +∠EAF=90°,∴∠DAF=∠B′AE , 2分 在△ADF 和△AB′E 中,∴△ADF ≌△AB′E . 3分(2)解:由折叠性质得FA=FC ,设FA=FC=x ,则DF=DC -FC=18-x , 4分在Rt △ADF 中,AD 2+DF 2=AF 2, 5分∴()2221812x x =-+.解得13=x . 6分∵△ADF ≌△AB′E ,(已证) ∴AE=AF=13. ∴S △AEF =AD AE ⋅⋅21=131221⨯⨯=78. 7分 22.解:(1)设该公司销售该型汽车4月份和5月份的平均增长率为x , 1分 根据题意列方程:8(1+x )2=18, 3分 解得x 1=﹣250%(不合题意,舍去),x 2=50%.答:该公司销售该型汽车4月份和5月份的平均增长率为50%. 4分 (2)由题意得:0.04m +(9.8﹣9)≥1.7, 5分 解得:m ≥22.5, 6分 ∵m 为整数,∴该公司6月份至少需要销售该型汽车23辆, 7分 答:该公司6月份至少需要销售该型汽车23辆.五.解答题(三)(本大题3小题,每小题9分,共27分) 23.解:(1)∵反比例函数xny =2的图象交于点A (1,5), ∴5=n ,即n=5,∴, 1分∵点B (m ,1)在双曲线上.∴1=, ∴m=5, ∴B (5,1); 2分(2)不等式xn≥kx +b 的解集为0<x ≤1或x ≥5; 6分 (3)∵抛物线的顶点为A (1,5),∴设抛物线的解析式为()512+-=x a y , 8分∵抛物线经过B (5,1),∴()51512+-=a ,解得41-=a . ∴()51412+--=x y . 9分F24.(1)证明:∵四边形ABCD 内接于⊙O ,∴∠ABC+∠ADC=180°. ∵∠ADF+∠ADC=180°,∴∠ABC=∠ADF . 1分在△ABC 与△ADF 中,⎪⎩⎪⎨⎧=∠=∠=DF BC ADF ABC ADAB , 2分∴△ABC ≌△ADF .∴AC=AF ; 3分 (2)解:由(1)得,AC=AF=13+. 4分 ∵AB=AD , ∴⌒⌒AD AB =.∴∠ADE=∠ACD . ∵∠DAE=∠CAD ,∴△ADE ∽△ACD . 5分 ∴ADAEAC AD =. ∴()232213413222-=-=+==AC AD AE . 6分(3)证明:∵EG ∥CF ,∴1==ACAFAE AG . ∴AG=AE . 由(2)得AD AE AC AD =,∴ADAGAF AD =. ∵∠DAG=∠FAD ,∴△ADG ∽△AFD . 7分 ∴∠ADG=∠F .∵AC=AF ,∴∠ACD=∠F . 又∵∠ACD=∠ABD ,∴∠ADG=∠ABD . 8分 ∵BD 为⊙O 的直径, ∴∠BAD=90°.∴∠ABD+∠BDA=90°.∴∠ADG+∠BDA=90°. ∴GD ⊥BD .∴DG 为⊙O 的切线. 9分E 25.(1)证明:在矩形ABCD 中,∠ABC=90°. ∴∠ABF+∠FBC=90°. ∵AF ⊥BE , ∴∠AFB=90°. ∴∠ABF+∠GAF=90°.∴∠GAF=∠FBC . 1分 ∵FG ⊥FC , ∴∠GFC=90°. ∴∠ABF=∠GFC .∴∠ABF-∠GFB =∠GFC-∠GFB . 即∠AFG=∠CFB . 2分 ∴△AFG ∽△BFC ; 3分 (2)解:由(1)得△AFG ∽△BFC , ∴BFAFBC AG =. 在Rt △ABF 中,tan ∠ADF=BF AF, 在Rt △EAB 中,tan ∠EBA=ABEA,∴AB EA BF AF =. ∴ABEA BC AG =. ∵BC=AD=4,AB=5,∴54xAB BC EA AG =⋅=. 4分 ∴BG=AB-AG=5-x 54.∴32125825522552545212122+⎪⎭⎫ ⎝⎛--=+-=⎪⎭⎫ ⎝⎛-=⋅=x x x x x AE BG y . 5分 ∴y 的最大值为32125; 6分 (3)x 的值为25,825或415. 9分。
2018年中考语文(人教版)模拟试卷(二)附答案
2018年中招语文(人教版)模拟试卷(二)答案附后注意事项:1.本试卷共8页,四个大题,满分120分,考试时间120分钟。
请用蓝、黑色水笔或圆珠笔直接答在试卷上。
一、积累与运用(共27分)1.下列词语中加点的字,每对读音都不同的一项是(2分)()A.复辟./辟.谣宿舍./退避三舍.好.逸恶劳/君子好.逑B.汲.取/级.别蹊.跷/独辟蹊.径拾.级而上/拾.金不昧C.虐.待/戏谑.诧.异/叱咤.风云如法炮.制/越俎代庖.D.收讫./迄.今亵.渎/广袤.无垠猝.不及防/鞠躬尽瘁.2.下列词语中没有错别字的一项是(2分)()A.捍卫必需品入不敷出不屑置辩B.颠簸震慑力轻歌蔓舞开诚布公C.滂沱副作用一曝十寒明眸善莱D.羁绊座右铭义愤填膺断璧残垣3.古诗文默写。
(8分)(1)烟笼寒水月笼沙,。
(杜牧《泊秦淮》)(3)李商隐在《夜雨寄北》中,以相会的欢愉衬托客居的寂寞,将相思之情转化为重逢对他来说书信就显得特别珍贵。
4.名著阅读。
(任选一题....作答)(4分)(1)在《格列佛游记》中,格列佛周游列国,有许多奇遇。
请结合他乘“羚羊号”出游的故事简述他的奇遇。
(2)阅读下面语段,回答问题。
没有包月,他就拉整天,出车早,回来的晚,他非拉过一定的钱数不收车,不管时间,不管两腿;有时他硬连下去,拉一天一夜。
从前,他不肯抢别人的买卖,特别是对于那些老弱残兵;以他的身体,以他的车,去和他们争座儿,还能有他们的份儿?现在,他不大管这个了。
这段文字中“他”最大的愿望是什么?是什么遭遇导致他性情上发生了变化?5.在下面一段文字的横线处补写恰当的语句,使整段文字语意完整、连贯。
(4分)心的自由,才是一个人真正的自由。
人力所能永远是有限的,人生环境永远是有遗憾是儒家责任里的闲情,是道家朴素中的安然,是法家理性下的游弋,是士人重压时的释放。
全在于自我获得。
因为,没有任何一种形式的自由,抵得上心灵自由的强大有力。
5.根据要求,回答下面问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国中考模拟测试卷(二)时间90分钟分数:100分一、单项选择题(每小题3分,共45分)1.(2018年黑龙江省)2017年10月15日,袁隆平团队选育的超级杂交水稻品种“湘两优900”通过测产验收,创造了世界水稻单产的最高纪录。
我国最早种植水稻的原始居民是(A)A.河姆渡居民B.半坡居民C.北京人D.元谋人2.(2018年东营市)“古代监察制以专制王权为中枢”“监察官为维护皇权而监察百官”。
秦朝在中央设置负责“监察百官”的官职是(C)A.丞相B.太尉C.御史大夫D.锦衣卫3.(2018年黄石市)为了加强君主专制,清朝的统治者从思想领域严密控制知识分子,将人们禁锢于思想的牢笼。
材料中的“思想的牢笼”是指(C)A.焚书坑儒B.罢黜百家C.大兴文字狱D.闭关锁国4.通过历史事件的比较,找出异同点和易混点,是历史研究性学习的一个重要方法。
秦国的商鞅变法和北魏的孝文帝改革相比较,下列认识不正确的是(A)A.都促进了民族的融合B.都加速了封建社会的进程C.都顺应了历史趋势D.改革都有阻力5.(2018年黔南州)杜甫诗“忆昔开元全盛日,小邑犹藏万家室。
稻米流脂粟米白,公私仓廪俱丰实”描绘的是(C)A.贞观之治B.开皇之治C.开元盛世D.文景之治6.(2018年临沂市)“在宣传十月革命的过程中,他自己的觉悟得到迅速提高,从一个爱国的民主主义者转变为一个马克思主义者,并且成为我国最早的马克思主义传播者。
”这里的“他”是(B)A.陈独秀B.李大钊C.董必武D.鲁迅7.(2018年青岛市)《一寸河山一寸血》写道:“当年七月七日,日军在这里借故寻衅,点燃了中日两国全面战争的战火……由于这场仗是扭转中国人民命运的一场民族战争,因此,卢沟桥和宛平城响亮的名字便得以永垂青史。
”“当年”是指(C)A.1894年B.1931年C.1937年D.1941年8.(2018年衡阳市)解放战争时期,毛泽东非常形象地说:“蒋介石两个拳头(指陕北和山东)这么一伸,他的胸膛就露出来了。
所以,我们的战略就是要把这两个拳头紧紧地拖住,对准他的胸膛插上一刀。
”这里“插上一刀”是指 (A)A.千里挺进大别山B.辽沈战役C.中共中央转战陕北D.孟良崮战役9.(2018年孝感市)“这是世界历史的转折点,反西方国家(主要是第三世界国家及共产党国家)在美国威信动摇时第一次击败了美国。
”结合右图,材料中的“转折点”是指(C) Array A.抗美援朝战争的胜利 B.中国参加万隆会议C.中国恢复在联合国合法席位D.中日关系正常化10.(2018年菏泽市)海南省因开放而生,也因开放而兴,上个世纪80年代我国为开放海南最早采取的措施是(C)A.建立深圳、珠海等4个经济特区B.开放14个沿海港口城市C.批准海南建省并成为经济特区D.建设海南国际旅游岛11.(2018年山西省)下面是小丽同学在读史活动中摘抄的有关“罗马帝国兴衰”的读书笔记,由此可以得出的结论是A.帝国起源于地中海区域B.帝国的扩张给被征服地区带来了灾难C.帝国实行奴隶主民主政治D.帝国的扩张客观上促进人类文明传播12.(2018年娄底市)法国启蒙思想家伏尔泰极力推崇英国的政治制度,说“英国是世界上抵抗君主达到节制君主权力的唯一的国家"英国的政治制度是(B)A.君主专制B.君主立宪C.民主共和D.三权分立13.(2018年青岛市)古巴比伦王国的一部法典规定:杀死或伤害奴隶不算犯罪,只须向主人赔偿损失,就算了事;盗窃或隐藏他人奴隶者处死;消灭他人奴隶标记者断指或处死;殴打自由民或反抗主人的奴隶处割耳之刑。
这说明该法典的实质是 (C)A.体现自由平等B.体现“君权神授”C.维护奴隶主的利益D.规定严格的等级制度14.(2018年广东省)到1935年初,美国失业人数从1933年初的最高点减少了400万人;资本收入从1933年以来增加了6倍,工业产量几乎翻了一番。
这得益于(C)A.新经济政策B.美国独立战争C.罗斯福新政D.第三次科技革命15.(2018年襄阳市)第二次世界大战的重要转折点是(D)A.诺曼底登陆B.苏军攻占柏林C.国际反法西斯同盟建立D.斯大林格勒战役二、非选择题(55分)16.(2018年安徽省)我国历史悠久,传统文化辉煌灿烂。
按要求完成下列填空。
(6分)(1)北魏农学家贾思勰在总结前人经验的基础上撰写的《齐民要术》,强调农业生产必须遵循自然规律。
(2分)(2) “若止印三二本,未为简易;若印数十百千本,则极为神速”是对毕昇发明的活宇印刷术的称赞。
(2分)(3)明朝卓越的医药学家李时珍写成药物学巨著《本草纲目》对医药学发展作出了杰出贡献。
(2分)17.(2018年黔南州)根据你对中国历史上教育发展的了解,回答下列问题。
(11分)(1)我国科举制的正式诞生是哪位皇帝在位时?科学制发展到哪个朝代得到了完善?(4分)答:隋炀帝。
唐朝。
(2)洋务运动期间,受西方影响,洋务派创办了什么形式的学校?请写出中国近代最早一所体制完备的高等学府的名称。
(4分)答:新式学校(堂)。
京师大学堂(3)自2000年以来,我国教育经费总投入不断提高,2016年超过了3.8万亿元。
党和政府如此重视教育,有什么重大意义?(3分)答:教育的发展将大力提升劳动者的素质;促进文化教育繁荣社会进步、国家发展等。
18.世界形势风云变幻,扫清迷雾追根溯源;国际关系错综复杂,抽丝剥茧正本清源。
阅读下列材料,完成相关问题。
(8分)材料一:凡尔赛一华盛顿体系不过是帝国主义上一轮争夺的总结,下一轮争夺的开始。
正如列宁所指出的,“不管是一个帝国主义联盟,还是一切帝国主义强国结成一个总联盟,都不可避免地只会是前后两次战争之间的‘暂时休战’。
”一旦……他们必将重开争夺之战,那个时候也就是凡尔赛一华盛顿体系寿终正寝之时。
一一陶诗永、宋洪章《火山口上的分赃》材料二:鉴于美国所处的非常有利的经济和战略地位,美国的势力在1945年后便向外迅猛发展…美国势力最难渗透进去的地区是苏联控制的地区……利益的严重冲突终于不可避免了……自由主义和共产主义是两个世界性的思想体系,互相“排斥”,水火不相容……一个国家不站在美国领导的阵营内,便站在苏联领导的阵营内,不存在中间道路。
一一[美]保罗·肯尼迪《大国的兴衰》材料三:第一,未来相当一段时间内,国际关系格局不会发生根本性改变,即美欧日及俄中等主要国家和战略区域决定世界格局的态势,美国仍然是唯一的超级大国;第二,和平与发展的世界性主题不会根本逆转……各国战略将主要着眼于本国经济发展和社会进步。
一一王逸舟《关于多极化的若干思考》材料四:世界正处于大发展大变革大调整时期,和平与发展仍然是时代主题……各国人民同心协力,构建人类命运共同体……要同舟共济,促进贸易和投资自由化、便利化……要尊重世界文明多样性,以文明交流超越文明隔阂、文明互鉴超越文明冲突、文明共存超越文明优越。
一一中国共产党第十九次全国代表大会报告(1)材料一中,“争夺”的根本原因是什么?写出一个“上一轮争夺”期间成立的“帝国主义联盟”的名称。
(1分)答:帝国主义政治经济发展不平衡;国际联盟。
(1分)(2)根据材料一并结合所学知识,谈谈你对“暂时休战”的理解。
“凡尔赛一华盛顿体系寿终正寝”的标志是什么?(2分)答:凡尔赛一华盛顿体系建立了帝国主义世界的和平秩序,出现了一战后的暂时的相对稳定时期。
1939年9月1日,德国突袭波兰,第二次世界大战全面爆发。
(2分)(3)材料二中,“利益的严重冲突”的主要方式是什么?(2分)由此形成了怎样的世界政治格局? 答:冷战;两极格局。
(2分)(4)材料三中,“国际关系”呈现出怎样的局面?根据材料并结合所学知识回答,“决定世界格局的态势”的因素有哪些?(2分)答:一超多强;大国经济实力对比、大国之间的关系。
(2分)(5)材料四中,我国为世界和平与发展提供了怎样的中国方案?(1分)答:各国人民同心协力,构建人类命运共同体,同舟共济,促进贸易和投资自由化、便利化;尊重世界文明多样性。
(1分)19.(2018年成都市)人类创造历史的一切活动都离不开指导人们行动的思想意识。
阅读材料,回答问题。
(18分)材料一:14~17世纪,欧洲新生的资产阶级掀起了一场思想文化运动。
这场运动的重大历史意义在于它促使欧洲人从以神为中心过渡到以人为中心,在于唤起人的觉醒,使人们把关注的重点从来世转移到现世,从而在精神方面为资本主义制度的确立开辟了道路。
一一摘编自吴于谨、齐世荣《世界史·近代史编》材料二:1848年,两个德国人向全世界宣告了一种新的社会主义理论诞生。
此后,这一理论成为国际无产阶级无比锐利的思想武器,“哺育了世界西方和东方两个半球的无产阶级运动”,对人类社会的进程产生了深远影响。
一一据高中历史岳麓版《必修(Ⅰ)政治文明历程》等材料三:中国必须用更为先进的社会制度取代封建制度,整个社会才有可能继续进步和发展。
戊戌变法的发动者和组织者顺应了这一社会发展趋势和方向,打破封建思想的禁区,积极倡导变革和向资本主义学习,并且付诸实施,吹响了变法的号角,起到了思想启蒙的作用。
一一摘编自杨杰《戊戌变法:百年后的反思与启示》(1)根据材料一并结合所学知识,指出欧洲这场“思想文化运动”的名称及其历史意义。
(5分) 答:名称:文艺复兴。
历史惫义:猛烈冲击了封建神学,促进了人们思想的解放;为资产阶级革命准备了思想文化条件;在精神方面为资本主义制度的确立开辟了道路。
(2)根据材料二并结合所学知识,指出“新的社会主义理论诞生”的标志。
列举这一理论“哺育了世界西方和东方两个半球的无产阶级运动”的具体史实。
(任举两例)(5分)答:标志:《共产党宣言》的发表。
史实:巴黎公社;俄国十月革命;苏饿(联)的社会主义建设和改革;中国新民主主义革命;中国社会主义建设。
(其他与社会主义国家相关的史实均可)(3)材料三中“这一社会发展趋势和方向”是指什么?根据材料三并结合所学知识回答,为什么说戊戌变法“起到了思想启蒙的作用”?(5分)答:趋势:先进的社会制度(资本主义制度)取代封建制度。
原因:茂戌变法是一次资产阶级的爱国政治运动,具有进步的意义;打破封建思想的禁区;积极倡导变革和向资本主义学习;提倡变法并付诸实践;广泛传播了资产阶级政治学说和自然科学知识。
(4)综合上述材料,谈谈思想进步与社会发展的关系。
(3分)答:思想进步推动社会发展,社会发展促进思想进步(或“社会存在决定社会惫识,社会惫识反作用于社会存在”)。
(言之有理即可)20.(2018年江西省)历史潮流滚滚向前,面对复杂变化的世界,我们要把握历史规律,认清世界大势。
阅读下列材料,回答问题。
(12分)【变革创新的潮流】材料一:如右下图。
(1)图一、图二分别反映了中外历史上哪两次改革?结合所学知识概括这两次改革内容的共同点。