七年级数学下册《5.1.2 垂线》2 (新版)新人教版

合集下载

5.1.2 垂线(2)

5.1.2 垂线(2)
2.直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离。
七楼A座办公家园
0m 10m 20m
练1.如图,测量点A到直线m的距离。
A
m
B
1.过点A画出直线m的垂线段AB,垂足为B; 2.用直尺量出垂线段AB的长.
七楼A座办公家园
练2:选择题
已知,P是直线a外一点,则下列说法 中正确的 是:( )
A
M
B ∴直线MF为所求 垂线。
CN
FD
七楼A座办公家园
练习3:如果 ∠A+∠B=90°, 且∠A与∠B的度数比为4︰5, 求∠A与∠B的度数。
七楼A座办公家园
练习4:如图、已知∠ AOC=ɑ ,
OA⊥OB于O,OD ⊥ OC于O,则
∠ BOD的度数是

A D
O
七楼A座办公家园
C B
练习5、如图,试用直尺或三角板量出: 1.城市A与城市B的距离. 2.城市A,B到大河l的D是 点P到直线 a的距离。
(B)过点P作a 的垂线段PD,则PD是点P到直线 a 的距离。
(C)过点P作直线交 a 于 D ,则线段PD的长 是点P到直线 a 的距离。
(D)过点P作a 的垂线段PD ,则线段 PD的长 是点P 到直线 a 的距离。 七楼A座办公家园
解:∵ AC⊥BC于C,(已知) ∴ AC<AB.(垂线的性质二) 又∵ CD⊥AD于D,(已知) ∴ CD<AC.(垂线的性质二) ∵ DE⊥CE于E,(已知) ∴ DE<CD.(垂线的性质二) ∴ AB>AC>CD>DE.
七楼A座办公家园
拓展应用1
如图:在铁路旁边有一 张庄,现在要建一火车 站,为了使张庄人乘火 车最方便(即距离最近 ),请你在铁路上选一 点来建火车站,并说明 理由。

5.1.2 垂线 人教版七年级数学下册分层作业(含答案)

5.1.2 垂线 人教版七年级数学下册分层作业(含答案)

第五章相交线与平行线5.1.2 垂线分层作业1.如图,图中直角的个数有()A.个B.个C.个D.个【答案】D【分析】根据直角的定义进行求解即可.【详解】解:由题意得,图中的直角有一共五个,故选D.【点睛】本题主要考查了垂线的定义,熟知垂线的定义是解题的关键.2.如图,,,若,则的度数是()A.B.C.D.【答案】C【分析】先求出,即可求出.【详解】解:,,.,.故选:C.【点睛】本题主要考查直角的概念以及角度的计算,比较简单.3.如图,在纸片上有一直线l,点A在直线l上,过点A作直线l的垂线、嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.【详解】解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点睛】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.4.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】C【分析】根据垂直定义得到∠AOF+∠BOD=,求出∠AOF的度数,利用角平分线的定义求出∠EOF即可.【详解】解:∵∠DOF=,∴∠AOF+∠BOD=,∵∠BOD=,∴∠AOF=,∵OF平分∠AOE,∴∠EOF=∠AOF=,故选:C.【点睛】此题考查了垂直的定义,几何图形中角度的计算,正确理解图形中各角度的关系是解题的关键.5.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°【答案】C【分析】根据角平分线的定义,得出∠MOC=35°,再根据题意,得出∠MON=90°,然后再根据角的关系,计算即可得出∠CON的度数.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C【点睛】本题主要考查了角平分线的定义和垂线的定义,解决本题的关键在正确找出角的关系.6.如图,为了解决村民饮水困难,需要在河边建立取水点,下面四个点中哪个最方便作为取水点()A.A点B.B点C.C点D.D点【答案】B【分析】根据“垂线段最短”可得结论.【详解】解:根据“垂线段最短”可知要在河边建立取水点,点B作为取水点最方便,故选:B【点睛】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.7.如图,,垂足是点,,,,点是线段上的一个动点包括端点,连接,那么的长为整数值的线段有()A.条B.条C.条D.条【答案】D【分析】根据垂线段最短解答即可.【详解】解:∵,,,,且点是线段上的一个动点包括端点,∴长的范围是,∴的长为整数值的线段有、、、,,共条,故选:D.【点睛】本题考查垂线段最短.理解和掌握垂线段最短是解题的关键.8.如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,若∠1=50°,则∠2的度数为()A.B.C.D.【答案】B【分析】应用垂线性质可得∠EOD=90°,由∠1+∠BOD=90°,即可算出∠BOD的度数,再根据对顶角的性质即可得出答案.【详解】解:∵EO⊥CD,∴∠EOD=90°,∵∠1+∠BOD=90°,∴∠BOD=∠EOD-∠1=90°-50°=40°,∴∠2=∠BOD=40°.故选:B.【点睛】本题主要考查了垂线及对顶角,熟练掌握垂线及对顶角的性质进行求解是解决本题的关键.9.已知,与的度数之比为,则等于___.【答案】或【分析】根据垂直定义知,由,可求,根据与的位置关系,分类求解.【详解】解:,,,即∠AOB:90°=3:5,.分两种情况:①当OB在内时,如图,∴;②当OB在外时,如图,∴.故答案是:或.【点睛】本题考查垂直定义,角的和差运算,解题的关键是利用分类讨论的思想进行求解.10.如图,点,在直线上,且,的面积为.若是直线上任意一点,连接AP,则线段AP的最小长度为_____cm.【答案】8【分析】根据点到直线的垂线段最短,再由面积求出高,即为AP的最小值,由题知,过点A作BC的垂线,即为所求,此时,该垂线也是三角形的高.【详解】解:过点A作BC的垂线AP,根据点到直线的所有线段中,垂线段最短,∴垂线段即为AP的最小值,∵BC=5cm,ΔABC的面积为20,∴,∴AP=8,故答案为:8.【点睛】本题考查三角形的面积公式,垂线段最短的性质,属于基础题.11.已知的两边与的两边分别垂直,且比的倍少,则______【答案】80°或92°【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠A比∠B的倍少40°,设∠B是x 度,利用方程即可解决问题.【详解】解:设∠B是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=x-40,解得,x=80,故∠A=80°,②两个角互补时,如图2:x+x-40=180,所以x=88,×88°-40°=92°综上所述:∠A的度数为:80°或92°.故答案为:80°或92°.【点睛】本题考查垂线,本题需仔细分析题意,利用方程即可解决问题.关键是得到∠A与∠B的关系.12.如图,直线AB,CD相交于点O,若,且,则的度数是______.【答案】54°##54度【分析】设,则,可得,再由,可得,可求出x,即可求解.【详解】解:设,则,∴,∵,∴∠AOE=∠BOE=90°,∴,即,∴.故答案为:54°【点睛】本题主要考查了垂直的性质,对顶角的性质,熟练掌握垂直的性质,对顶角的性质进行求解是解决本题的关键.13.如图,直线与直线相交于点,,垂足为,,则的度数为______.【答案】60°##60度【分析】根据对顶角相等可得,由,可得,由,即可求解.【详解】解:∵,∴,∵,,,解得.故答案为:60°.【点睛】本题考查了垂直的定义,对顶角相等,几何图形角度的计算,数形结合是解题的关键.14.如图,点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,连接,若,则的长可能是___________(写出一个即可).【答案】4【分析】直接利用垂线段最短即可得出答案.【详解】解∶∵点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,∴3≤AP,∴PA可以为4,故答案为4(答案不唯一).【点睛】此题主要考查了垂线段最短,正确得出A P的取值范围是解题的关键.15.如图,直线和相交于点,,,,求的度数.【答案】【分析】根据,得出,根据,可得,根据角的倍分关系,可得∠的度数,根据是邻补角,可得答案.【详解】解:∵,∴,∵,∴,∵,∴,∴,∵,∴.∴.【点睛】本题考查垂直的性质、角的和差、角的倍分关系、邻补角的性质等知识,是基础考点,掌握相关知识是解题关键.16.如图,是直线上一点,,平分(1)求的度数.(2)试猜想与的位置关系,并说明理由.【答案】(1)的度数为(2)OD⊥AB,理由见解析【分析】(1)设=x,根据题意得,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.【详解】(1)解:设=x,∵,∴,∵直线,∴x+3x=180°,解得,∴的度数为;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.【点睛】此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.17.如图,两直线、相交于点,平分,如果::.(1)求;(2)若,,求.【答案】(1)145°(2)125°【分析】(1)根据邻补角的性质和已知求出和的度数,根据对顶角相等求出和的度数,根据角平分线的定义求出的度数,可以得到的度数;(2)根据垂直的定义得到,根据互余的性质求出的度数,计算得到答案.(1)解:,::,,,,,平分,,.(2)解:,,平分,,,.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.18.如图,已知直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC.(1)若∠COE=54°,求∠DOF的度数;(2)若∠COE∶∠EOF=2∶1,求∠DOF的度数.【答案】(1)∠DOF=108°;(2)∠DOF=112.5°.【分析】(1)先由OE⊥AB得出∠AOE=∠BOE=90°,再根据角平分线定义求出∠COF=72°,然后由∠DOF=180°-∠COF即可求解;(2)设∠EOF=x°,则∠COE=2x°,则∠COF=3x°,再根据角平分线定义求出∠AOF=∠COF=3x°,所以∠AOE=4x°,由垂直的定义可知∠AOE=90°,则4x=90,解之,求出x即可.(1)解:∵OE⊥AB,∴∠AOE=90°;∵∠COE=54°,∴∠AOC=∠AOE+∠COE=144°,∵OF平分∠AOC,∴∠COF=∠AOC=72°,∴∠DOF=180°-∠COF=108°;(2)解:设∠EOF=x°,则∠COE=2x°,∴∠COF=3x°,∵OF平分∠AOC,∴∠AOF=∠COF=3x°,∴∠AOE=4x°,∵OE⊥AB,∴∠AOE=90°,∴4x=90,解得x=22.5,∴∠COF=3x°=67.5°,∴∠DOF=180°-∠COF=112.5°.【点睛】本题考查了角的计算,根据垂直的定义、角的和差关系列方程进行求解,即可计算出答案,难度适中.1.如图,直线AB,CD相交于点O,OE⊥CD,OF平分∠BOD,∠AOE=24°,∠COF的度数是()A.146°B.147°C.157°D.136°【答案】B【分析】欲求∠COF,需求∠DOF.由OE⊥CD,得∠EOD=90°,故求得∠BOD=66°.由OF平分∠BOD,故∠DOF==33°.【详解】解:∵OE⊥CD,∴∠EOD=90°.∴∠BOD=180°﹣∠AOE﹣∠DOE=66°.又∵OF平分∠BOD,∴∠DOF==33°.∴∠COF=180°﹣∠DOF=180°﹣33°=147°.故选:B.【点睛】本题主要考查垂直的定义、角平分线的定义以及邻补角的性质,熟练掌握垂直的定义、角平分线的定义以及邻补角的性质是解决本题的关键.2.如图,,,平分,则的度数为()A.45°B.46°C.50°D.60°【答案】A【分析】先根据垂直的定义得,由已知,相当于把四等分,可得的度数,根据角平分线可得,从而得结论.【详解】解:,,,,,平分,,.故选:.【点睛】本题考查了角平分线的定义,垂直的定义及有关角的计算,解题的关键是确定.3.如图所示,直线AB,CD相交于点O,于点O,OF平分,,则下列结论中不正确的是()A.B.C.与互为补角D.的余角等于【答案】D【分析】根据垂直的定义及角平分线的性质判断A,利用对顶角的性质判断B,利用邻补角的性质判断C,根据余角的定义判断D.【详解】∵于点O,∴∠AOE=,∵OF平分,∴∠2=,故A正确;∵直线AB,CD相交于点O,∴∠1与∠3是对顶角,∴∠1=∠3,故B正确,∵,∴与互为补角,故C正确;∵,∴的余角=,故D错误,故选:D.【点睛】此题考查垂直的定义,角平分线的性质,对顶角的性质,余角的定理,邻补角的性质,几何图形中角度的计算,熟记各定义及性质是解题的关键.4.已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为()A.4 cm B.5 cm C.小于2 cm D.不大于2 cm【答案】D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.5.如图,若直线与相交于点,平分,且,则的度数为()A.B.C.D.【答案】C【分析】根据角平分线的定义得到,根据垂线的定义得到,利用邻补角的定义即可求解.【详解】解:∵,平分,∴,∵,∴,∴,故答案为:C.【点睛】本题考查邻补角的定义、角平分线的定义、垂直的定义等内容,运用几何知识进行角的和差运算是解题的关键.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.25°【答案】A【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.【详解】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°-55°=35°,∵射线OM平分∠AOC,∴∠AOM=∠COM=35°,故选:A.【点睛】本题考查了垂直定义,角平分线定义等知识点,解题的关键是能求出∠COM的度数和求出∠AOM=∠COM.7.已知,如图,直线,相交于点,⊥于点,∠=35°.则∠的度数为().A.35°B.55°C.65°D.70°【答案】B【分析】直接利用垂线的定义结合已知角得出∠COE的度数即可.【详解】∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE−∠AOC=90°−35°=55°.∴∠COE=55°.故选B.【点睛】此题考查垂线的定义,对顶角,解题关键在于得出∠AOC=35°.8.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】B【分析】由垂直得∠COE=90°,从而知∠AOC=64°,则∠BOD也得64°,由角平分线和平角定义得∠COF 的度数.【详解】∵OE⊥CD,∴∠COE=90°,∴∠AOC=∠COE-∠AOE=90°-26°=64°,∵∠AOC=∠BOD,∴∠BOD=64°,又∵OF平分∠BOD,∴∠DOF=∠BOD=×64°=32°,∴∠COF=180°-∠DOF=180°-32°=148°.故选B.【点睛】本题考查了垂线的定义、邻补角、对顶角定义、角平分线定义等知识点.本题属于基础题,推理过程的书写是关键,从垂直入手与已知相结合得出∠AOC的度数,使问题得以解决;同时要注意对顶角和平角性质的运用.9.如图,直线,,相交于点,,,射线,则的度数为___________.【答案】20°或160°【分析】先求出∠EOD=70°,再分射线OG在直线EF的两侧进行讨论求解即可.【详解】解:∵,,∠2=∠AOE,∴∠EOD=180°-50°-60°=70°,分两种情况:①如图,∵,∴∠EOG=90°,∴∠DOG=∠EOG-∠EOD=90°-70°=20°;②如图,∵∠EOG=90°,∠EOD=70°,∴∠DOG=∠EOD+∠EOG=70°+90°=160°,综上,的度数为20°或160°,故答案为:20°或160°.【点睛】本题考查邻补角、对顶角、垂线性质、角的运算,熟练掌握对顶角相等、邻补角互补,分情况讨论是解答的关键.10.如图,点C,O,D在一条直线上,,OE平分比大,的度数为________.【答案】##72.5度【分析】根据比大,和互补,即可求出,进而由垂直性质可求出,再由角平分线性质即可得出答案.【详解】解:∵比大,∴设,则,∵,∴,∴,∴,∵,∴,∴,∴,∵OE平分,∴.故答案为:.【点睛】本题考查了垂直的性质,角平分线的性质以及角的运算,掌握以上知识是解题的关键.11.如图,直线AB,CD交于点O,OC平分∠BOE,OE⊥OF,若∠DOF=15°,则∠EOA=_________.【答案】30°##30度【分析】根据垂直定义可得∠EOF=90°,从而利用平角定义求出∠COE=75°,然后利用角平分线的定义求出∠BOE=2∠COE=150°,最后利用平角定义求出∠EOA,即可解答.【详解】解:∵OE⊥OF,∴∠EOF=90°,∵∠DOF=15°,∴∠COE=180°﹣∠EOF﹣∠DOF=75°,∵OC平分∠BOE,∴∠BOE=2∠COE=150°,∴∠AOE=180°﹣∠∠BOE=30°,故答案为:30°.【点睛】本题考查了垂线,角平分线的定义,根据题目的已知条件并结合图形分析是解题的关键.12.如图,直线AB、CD相交于点O,,O为垂足,如果,则________°.【答案】57.5【分析】根据垂线的定义,可得,根据角的和差,可得的度数,根据邻补角的定义,可得答案.【详解】解:∵∴∴∵,∴,∴,∴,故答案为:.【点睛】本题考查了垂线的定义,邻补角的和等于180°,角与分的转化等知识.解题的关键在于领会由垂直得直角.13.如图,直线AB和CD交于O点,OD平分∠BOF,OE⊥CD于点O,∠AOC=40 ,则∠EOF=_______.【答案】130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE ⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.14.如图所示,已知,若,,,则点到的距离是______,点到的距离是______.【答案】 4 2.4【分析】根据点到直线的距离概念可得点到的距离为垂线段AC的长,设点到的距离为,依据三角形面积,即可得到点到的距离.【详解】解:∵,∴,∴点到的距离为垂线段AC的长,又∵,∴点到的距离为4cm;设点到的距离为,,,,∵,,,,,故答案为:4;2.4.【点睛】本题考查了点到直线的距离,利用三角形的面积得出是解题关键.15.如图,直线,相交于点,平分.(1)若,,求的度数;(2)若平分,,求的度数.【答案】(1)70°(2)50°【分析】(1)根据角平分线的性质可得,根据垂线的定义以及已知条件求得,继而求得,根据对顶角相等即可求解;(2)根据角平分线的性质可得,,设,则,根据平角的定义建立方程,解方程即可求解.(1)解:平分,,,,,,∴;(2)平分,,,设,则,,解得:,故的度数为:.【点睛】本题考查了几何图形中角度的计算,角平分线的定义,垂线的定义,一元一次方程的应用,数形结合是解题的关键.16.如图,直线相交于点O,平分,求:(1)的度数;(2)写出图中互余的角;(3)的度数.【答案】(1)70°(2)∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余(3)55°【分析】(1)根据对顶角相等即可得到;(2)根据余角的定义求解即可;(3)先根据角平分线的定义求出∠DOE=35°,则∠EOF=∠DOF-∠DOE=55°.(1)解:由题意得;(2)解:∵∠COF=90°,∴∠DOF=180°-∠COF=90°,∴∠BOF+∠BOD=90°,∠EOF+∠EOD=90°,∵OE平分∠BOD,∴∠BOE=∠DOE,∴∠EOF+∠BOE=90°,∵∠AOC=∠BOD,∴∠BOF+∠AOC=90°,∴∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余;(3)解:∵∠BOD=70°,OE平分∠BOD,∴∠DOE=35°,∴∠EOF=∠DOF-∠DOE=55°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,对顶角相等,余角的定义,熟知相关知识是解题的关键.17.如图,已知,,是内三条射线,平分,平分.(1)若,,求的度数.(2)若,,求的度数.(3)若,,求的度数.【答案】(1)(2)(3)【分析】对于(1),由角平分线的定义求出和,再根据即可求解;对于(2),先求出,再根据角平分线的定义求出和,然后根据即可求解;对于(3),由角平分线的定义得,结合已知条件可得,,即,进而得出,可得答案.【详解】(1)∵平分,平分,∴,,∴;(2)∵,∴.∵,∴.∵平分,平分,∴,,∴;(3)∵平分,∴.∵,∴.∵,∴,∴,∴,∴.【点睛】本题主要考查了角的和差,关键是由角平分线定义得出相关等式.18.点O为直线l上一点,射线均与直线l重合,如图1所示,过点O作射线和射线,使得,,作的平分线.(1)求与的度数;(2)作射线,使得,请在图2中画出图形,并求出的度数;(3)如图3,将射线从图1位置开始,绕点O以每秒的速度逆时针旋转一周,作的平分线,当时,求旋转的时间.【答案】(1),(2)或(3)6秒或秒【分析】(1)根据,,即可得出的度数,根据角平分线的定义得出,然后根据得出的度数;(2)根据题意得出的度数,然后分两种情况进行讨论:①当射线在内部时;②当射线在外部时;分别进行计算即可;(3)根据平分得出,根据题意画出图形,计算的角度,然后计算时间即可.【详解】(1)解:由题意可知,,∵,∴,∵平分,∴,∴;(2)由(1)知,,∴,①当射线在内部时,如图2(1),;②当射线在外部时,如图2(2),,综上所述,的度数为或;(3)∵平分,∴,①如图3,,∵平分,∴,∴,∴旋转的时间(秒);②如图3(1),此时,,∵平分,∴,∴,∴,∴旋转的时间(秒);综上所述,旋转的时间为6秒或秒.【点睛】本题主要考查角度的计算,角平分线的定义等内容;第(2)问进行合适的分类讨论是解题的关键;第(3)问,搞清楚在射线旋转的过程中,和的相对位置在不断的变化,以此进行分类画图.1.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.2.(2022·河南·中考真题)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得,根据平角的定义即可求解.【详解】解:EO⊥CD,,,.故选:B .【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.3.(2021·北京·中考真题)如图,点在直线上,.若,则的大小为()A.B.C.D.【答案】A【分析】由题意易得,,进而问题可求解.【详解】解:∵点在直线上,,∴,,∵,∴,∴;故选A.【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.4.(2021·浙江杭州·中考真题)如图,设点是直线外一点,,垂足为点,点是直线上的一个动点,连接,则()A.B.C.D.【答案】C【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点是直线外一点,,垂足为点,是垂线段,即连接直线外的点与直线上各点的所有线段中距离最短,当点与点重合时有,综上所述:,故选:C.【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.5.(2020·湖北孝感·中考真题)如图,直线,相交于点,,垂足为点.若,则的度数为()A.B.C.D.【答案】B【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵∴∵∴故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.6.(2020·河北·中考真题)如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.7.(2020·吉林·中考真题)如图,某单位要在河岸上建一个水泵房引水到处,他们的做法是:过点作于点,将水泵房建在了处.这样做最节省水管长度,其数学道理是_______.【答案】垂线段最短【分析】直线外一点与直线上各点连结的所有线段中,垂线段最短.【详解】通过比较发现:直线外一点与直线上各点连结的所有线段中,垂线段最短.故答案为:垂线段最短.【点睛】此题主要考查点到直线的距离,动手比较、发现结论是解题关键.。

2019七年级数学下册5.1.2垂线习题新版新人教版教案导学案练习含答案

2019七年级数学下册5.1.2垂线习题新版新人教版教案导学案练习含答案

5.1.2 垂线基础题知识点1 认识垂直1.(贺州中考)如图,OA⊥OB,若∠1=55°,则∠2的度数是(A)A.35°B.40°C.45°D.60°2.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是垂直;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=90°.3.如图,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=127°,求∠AOF的大小.解:因为AB⊥CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.知识点2 画垂线4.(和平区期中)画一条线段的垂线,垂足在(D)A.线段上B.线段的端点C.线段的延长线上D.以上都有可能5.(邢台期中)下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是(D)知识点3 垂线的性质6.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个7.下面可以得到在如图所示的直角三角形中斜边最长的原理是(D)A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.某中学创建绿色和谐校园活动中要在一块三角形花园里种植两种不同的花草,同时拟从点A修建一条花间小径到边BC.若要使修建小路所使用的材料最少,请在图中画出小路AD,你这样画的理由是垂线段最短.知识点4 点到直线的距离9.点到直线的距离是指这点到这条直线的(D)A.垂线段B.垂线C.垂线的长度D.垂线段的长度10.(枝江市期中)如图所示,在灌溉农田时,要把河(直线l表示一条河)中的水引到农田P处,设计了四条路线PA,PB,PC,PD(其中PB⊥l),你选择哪条路线挖渠才能使渠道最短(B)A.PA B.PB C.PC D.PD11.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,AB=6 cm,AD=5 cm,则点B到直线AC的距离是6_cm,点A 到直线BC的距离是5_cm.中档题12.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数有(D)A.1个B.2个C.3个D.4个13.(淄博中考)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有(D) A.2条B.3条C.4条D.5条14.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是(A) A.2.5 B.3C.4 D.515.(济源期末)点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为(D)A.等于2 cm B.小于2 cmC.大于2 cm D.不大于2 cm16.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD垂直时,他跳得最远.17.如图,当∠1与∠2满足条件∠1+∠2=90°时,OA⊥OB.18.(河南中考改编)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为55°.19.如图,已知DO⊥CO,∠1=36°,∠3=36°.(1)求∠2的度数;(2)AO与BO垂直吗?说明理由.解:(1)因为DO⊥CO,所以∠DOC=90°.因为∠1=36°,所以∠2=90°-36°=54°.(2)AO⊥BO.理由如下:因为∠3=36°,∠2=54°,所以∠3+∠2=90°.所以AO⊥BO.20.如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7∶11.(1)求∠COE;(2)若OF⊥OE,求∠COF.解:(1)因为∠AOC ∶∠AOD =7∶11,∠AOC +∠AOD =180°, 所以∠AOC =70°,∠AOD =110°. 所以∠BOD =∠AOC =70°, ∠BOC =∠AOD =110°. 又因为OE 平分∠BOD ,所以∠BOE =∠DOE =12∠BOD =35°.所以∠COE =∠BOC +∠BOE =110°+35°=145°. (2)因为OF ⊥OE ,所以∠FOE =90°.所以∠FOD =∠FOE -∠DOE =90°-35°=55°. 所以∠COF =180°-∠FOD =180°-55°=125°. 综合题21.如图所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,C ,D 分别是位于公路AB 两侧的村庄.(1)该汽车行驶到公路AB 上的某一位置C ′时距离村庄C 最近,行驶到D ′位置时,距离村庄D 最近,请在公路AB 上作出C ′,D ′的位置(保留作图痕迹);(2)当汽车从A 出发向B 行驶时,在哪一段路上距离村庄C 越来越远,而离村庄D 越来越近?(只叙述结论,不必说明理由)解:(1)过点C 作AB 的垂线,垂足为C ′,过点D 作AB 的垂线,垂足为D ′. (2)在C ′D ′上距离村庄C 越来越远,而离村庄D 越来越近.。

七年级数学下册:第五章相交线与平行线5.1相交线5.1.2垂线第2课时垂线段教学课件(新版新人教版)

七年级数学下册:第五章相交线与平行线5.1相交线5.1.2垂线第2课时垂线段教学课件(新版新人教版)
图5-1-33
解:如答图所示, (1)沿 AB 走,两点之间线段最短; (2)沿 AC 走,垂线段最短; (3)沿 BD 走,垂线段最短.
7.如图 5-1-34,为了解决 A,B,C,D 四个小区的缺水问题,市政府准备 投资修建一个水厂.
(1)不考虑其他因素,请你画图确定水厂 H 的位置,使之与四个小区的距离 之和最小;
知识管理
1.垂线段的概念及性质 定 义:从直线外一点引一条直线的 垂 线,这点和 垂足 之间的线
段叫做垂线段. 性 质:连接直线外一点与直线上各点的所有线段中,垂线段最短,简 单说成:垂线段最短.
2.点到直线的距离 定 义:直线外一点到这条直线的 垂线段 的长度,叫做点到直线的距离.
注 意:垂线、垂线段和点到直线的距离是三个不同的概念,不能混淆.垂 线是直线;垂线段是一条线段;点到直线的距离是垂线段的长度,是一个数 量,不能说垂线段是点到直线的距离.
7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。
9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更5、别着急要结果,先问自己够不够格,付出要配得上结果,工夫到位了,结果自然就出来了。 6、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。
7、别人对你好,你要争气,图日后有能力有所报答,别人对你不好,你更要争气望有朝一日,能够扬眉吐气。 8、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给时间来定夺。 9、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡慕那些总能撞大运的人,你必须很努力,才能遇上好运气。

人教版数学七年级下册5.1.2垂线 课件

人教版数学七年级下册5.1.2垂线 课件

感悟新知
例 1 如图5.1-11,直线AB,CD 相交于点O,OE ⊥ AB 于 点O,且∠ COE=40°,求∠ BOD 的度数. 解题秘方:利用垂直的定 义及对顶角的性质,将要 求的角向已知角转化.
感悟新知
解:因为OE ⊥ AB, 所以∠ AOE=90°. 又因为∠ AOE= ∠ AOC+ ∠ COE,∠ COE=40°, 所以∠ AOC=90°-40°=50°. 所以∠ BOD= ∠ AOC=50°
所以AC·BC=AB·CD,进而可得CD=2.4 cm.
感悟新知
(2)点P 为直线m 外一点,点A,B,C 为直线m 上的三点,
PA=4 cm,PB=5 cm,PC=2 cm,则点P 到直线m 的距
离( D )
A. 等于4 cm
B. 等于2 cm
C. 小于2 cm
D. 不大于2 cm
感悟新知
解题秘方:根据点到直线的距离的定义,找出垂线段. 解:点到直线的距离是该点到这条直线的垂线段的 长度,而垂线段是该点与直线上各点的连线中最短 的. 从条件看,PC是三条线段中最短的,但不一定 是所有连线中最短的,所以点P 到直线m 的距离应 该是不大于2 cm.
感悟新知
1-1. [中考·河南] 如图,直线AB,CD相交于点O,EO⊥ CD,垂足为O,若∠ 1=54°,则∠ 2 的度数为( B ) A. 26° B. 36° C. 44° D.54°
感悟新知
例2 将一张长方形纸片按如图5.1-12 所示方式折叠,EF, EG 为折痕,判断EF 与EG 的位置关系. 解题秘方:利用折叠的性 质求出两线的夹角,根据 夹角是90°判断两条直线 的位置关系.
1. 垂线段:
特别解读 垂线、垂直与垂线段之间的区别与联系: 1. 区别:垂线是一条与已知直线垂直的直线;垂

2020春人教版数学七年级下册同步课件02-第五章5.1.2垂线

2020春人教版数学七年级下册同步课件02-第五章5.1.2垂线

图5-1-2-5 A.两点之间,线段最短 B.过两点有且只有一条直线 C.垂线段最短 D.过一点可以作无数条直线 答案 C 根据垂线段的性质“垂线段最短”可知,选C.
知识点四 点到直线的距离
5.1.2 垂线
栏目索引
7.(独家原创试题)如图5-1-2-6,P是直线l外一点,A,B,C三点在直线l上,且PB ⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线 段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段 PC的长是点P到直线l的距离,其中正确的个数是 ( )
5.1.2 垂线
栏目索引
例1 如图5-1-2-1,直线AB、CD相交于点O,OE⊥AB,且∠COE=40°,求∠ BOD的度数.
图5-1-2-1
解析 解法一:因为OE⊥AB,所以∠BOE=∠AOE=90°.因为∠AOE=∠AOC +∠COE,∠COE=40°,所以∠AOC=90°-40°=50°,所以∠BOD=∠AOC=50°. 解法二:因为OE⊥AB,所以∠BOE=90°.因为∠COD是平角,所以∠EOC+∠ BOE+∠BOD=180°,所以∠BOD=180°-90°-40°=50°. 点拨 观察并找出图中所求角与已知角之间的关系是解决此类题的关键.
5.1.2 垂线
栏目索引
知识点一 垂直的定义
定义
符号语言
图例
垂直
两条直线相交所成的 如图,∠AOC=90°或∠
四个角中有一个角为9 BOC=90°或∠AOD=90
0°时,这两条直线互相 °或∠BOD=90° AB
垂直.其中一条直线是 ⊥CD 另一条直线的垂线,它
们的交点叫垂足
拓展延伸

人教版七年级数学下册同步备课 5.1.2 垂线(教学设计)

人教版七年级数学下册同步备课 5.1.2 垂线(教学设计)

5.1.2 垂线教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第五章“相交线与平行线”5.1.2垂线,内容包括:垂线的有关概念、性质及画法、垂线段和点到直线的距离的概念.2.内容解析垂线是平面几何所要研究的基本内容之一.垂线的概念、画法和性质是重要的基础知识,是进一步学习平面直角坐标系、三角形的高、切线的性质和判定、以及空间里的垂直关系等知识的基础,与其他数学知识一样,它在现实生活中有着广泛的应用.垂线的概念和性质,蕴含着“从一般到特殊”的认识规律,是培养学生思维能力的重要内容之一.基于以上分析,确定本节课的教学重点为:垂直定义、垂直性质的理解与运用.二、目标和目标解析1.目标(1)理解垂线的有关概念、性质及画法;(2)知道垂线段和点到直线的距离的概念,并会应用其解决问题.2.目标解析认识垂线,理解“互相垂直”和“垂足”的含义;会用三角板或量角器过一点画一条直线(或射线、线段)的垂线:3.知道垂线的性质:过一点有且只有一条直线垂直于已知直线;培养学生的观察、理解能力,几何语言能力,画图能力,抽象思维能力;培养学生动手操作能力和创造精神,运用知识解决实际问题能力,形成垂线的空间观念;培养学生辩证唯物主义思想及勇于探索的精神;培养学生的合作精神,进行集体观念的教育.三、教学问题诊断分析七年级学生是第三学段低年级的学生,他们在课堂中思维活跃,有想法就会举手发言甚至是抢答,探索真理的欲望比较强.因此,我们要营造轻松、和谐的课堂气氛,充分激活学生的探索欲望,让学生在教师创设的情境中充满好奇地学,留给学生足够的自主活动、相互交流的空间,让学生在观察中不断发现数学问题、在实践中领悟数学思想、在评价中逐步形成数学价值观.七年级学生由于年龄较小,他们虽然对新事物容易产生兴趣,但这种兴趣并不稳定,上课时注意力也不易持久,容易分散,因而在教学中不断激发他们的兴趣,吸引他们的注意力至关重要。

人教版七年级数学下册5.1.2《垂线段最短》讲义(PDF版 )

人教版七年级数学下册5.1.2《垂线段最短》讲义(PDF版 )

释义图示垂线段线段PO点P 为直线l 外一点,点O ,1A ,2A ,3A ,…,在直线l 上,其中l PO ⊥公理:垂线段最短连接直线外一点与直线上各点的所有线段中,垂线段最短.【简单说成,垂线段最短】点P 与直线l 各点的连线中,线段PO 最短点到直线的距离直线外一点到这条直线的垂线段的长度..,叫做点到直线的距离.线段PO 的长度即为点P 到直线l 的距离:点到直线的距离是一个正的数值,并非图形,所以不能说...垂线段是距离名称定义性质图示点到直线的距离直线外一点到这条直线的垂线段的长度垂线段最短两点之间的距离连接两点线段的长度两点之间,线段最短ii1、如图所示,ABC ∆中,BC AD ⊥于D ,下列说法正确的是()A.点B 到AC 的垂线段是线段ABB.点C 到AB 的垂线段是线段ACCABD2、【2017北京】如图所示,点P 到直线l 的距离是()A.线段PA 的长度B.线段PB 的长度C.线段PC 的长度D.线段PD 的长度3、如图所示,点D 在AC 上,点E 在AB 上,CE BD ⊥于M .说法正确的是(填序号)①BM 的长度是点B 到CE 的距离;②CE 的长度是点C 到AB 的距离;③BD 的长是点B 到AC 的距离;④CM 的长是点C 到BD 的距离.CEM A BD4、点到直线的距离是()A 、点到直线上一点的连线B 、点到直线的垂线C 、点到直线的垂线段D 、点到直线的垂线段的长度5、如图所示,︒=∠90AOB (1)、AB BO (填“>”,“<”或“=”),判断理由是(2)、若m OA 2=,cm OB 3=,则点A 到OB 的距离是cm ;点B 到OA 的距离是cm ;ABO6、如图,△ABC 中,∠C =90°,AC =3,点P 是边BC 上的动点,则AP 长不可能...是()A .2.5B .3C .4D .5P7、点P 为直线l 外一点,A 、B 、C 为直线l 上三点,cm PA 4=,cm PB 5=,cm PC 2=,则P 到直线l 的距离()A.不小于2cm B.小于2cm C.不大于2cm D.不小于5cm 8、如图,点M ,N 分别在直线1l ,2l 上,画出三条线段,使它们的长分别是:(1)、M ,N 两点间的距离;(2)、点M 到直线2l 的距离;(3)、点N 到直线1l 的距离.∙MN∙1l 2l 9、如图,计划把河水引到水池A 中,先引CD AB ⊥,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是_______________________________________.10、如图,修一条公路将村庄A ,B 与公路MN 连接起来,怎样修才能使所修的公路最短?画出线路图,并说明理由.A BM N∙∙答案:1、D 2、B ;3、①④4、D 5、(1)、>;垂线段最短;(2)、2;36、A7、C8、EF ∙M N∙1l 2l 答案:(1)、图中线段MN 为所求(2)、图中线段ME 为所求(3)、图中线段NF 为所求9、垂线段最短10、连接AB ,作MN BC ⊥于C ,沿AB ,BC 修公路长度最短.理由:①两点之间,线段最短;②垂线段最短A BCMN∙∙。

人教版七年级数学下册课件5.1.2垂线

人教版七年级数学下册课件5.1.2垂线
们(2)的判交断点ODO与叫A做B_的__位__置_关.系,并说明理由.
活动5 课堂小结
1.垂线的相关概念. 2.垂线的画法. 3.垂线的性质. 4.点到直线的距离.
四、作业布置与教学反思 1.作业布置
(1)教材P8 习题5.1第3,4,5,6题;
2.教学反思
A
C OD B 图5.1-5
2.教材P4 探究. 提出问题: (1)如何利用三角板过一点作已知直线的垂线? (2)通过画图,你认为过一点作已知直线的垂线,能作几条?
3.教材P5 探究. 提出问题: (1)观察图5.19,你能用哪些方法说明线段PO最短? (2)你从中能得出什么结论? (3)垂线段和点到直线的距离有哪些区别和联系?
1
1
∴∠FOC+∠EOC= =
2
1 2
∠AOC+ 2 ∠BOC (∠AOC+∠BOC)=
1 2
×180°=90°
即∠EOF=90°,
∴OE⊥OF.
练习
1.教材P5 练习第1,2题. 2.教材P6 练习. 3.下列选项中,过点P画AB的垂线,三角尺放法正确的是( C )
练习
4.如图,O为直线AB上一点,∠AOC= ∠13 BOC,OC是∠AOD的平分线. (1)求∠COD的度数; (2)判断OD与AB的位置关系,并说明理由.
__垂__线__段___最短.简单说成:__垂__线__段__最__短__.
3.直线外一点到这条直线的_垂__线__段__的__长____,叫做点到
直线的距离.

活动4 例题与练习
例1 (1)如图①,过点P画AB的垂线; (2)如图②,过点P分别画OA,OB的垂线; (3)如图③,过点A画BC的垂线.
又解∵:∠(1A)O∵C∠+AO∠CB=OC=∠1B8O0C°,, 例反1过来(1,)如如图果①AB,⊥过C点DP,画那A么B的∠A垂O线C等;于多少度? (垂2)直你定从义中、能垂得直出公什理么的结理论解?与运用.

人教版七年级数学下册 5-1-2 垂线(第二课时) 教案

人教版七年级数学下册 5-1-2  垂线(第二课时) 教案

5.1 相交线5.1.2 垂线(第二课时)教学反思教学目标1.理解垂线段的概念.2.掌握垂线段最短的性质.3.体会点到直线的距离的意义,并会度量或计算点到直线的距离.4.学会用本节知识理解生活中的一些现象及解决生活中的一些实际问题.教学重难点重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用.难点:对点到直线的距离的概念的理解,垂线段的画法.课前准备多媒体课件、模型教学过程导入新课教师:同学们上节课,我们研究了垂直、垂线、垂线的性质,请分别回答它们各自的定义或内容是什么?学生积极回答,教师给予肯定和表扬.教师:今天这节课我们继续深入学习,研究垂线的性质及点到直线的距离.(板书课题:5.1.2垂线(第二课时))探究新知探究点一:垂线段最短教师:同学们来看下面一个问题,出示教材图5.1-8(如图1所示),提出问题:要把河中的水引到农田P处,如何挖渠使渠道最短?图1教师:要完美地解决这个问题,我们首先来看第一个问题:如果把上述实际问题抽象成几何图形的话,你们能否画出来?教师引导,学生上台板演,结果如图2所示.图2教师:我们来看第二个问题:在直线上有无数个点,试着取几个点与点P相连(如图3所示),猜想在P点与直线l上的点连接的线段中,哪条线段最短?这时直线l上的点的位置在什么地方?图3学生发言,指出当点P与直线l上的点的连线与直线l垂直时,点P到直线l的距离最短.也就是,过点P作l的垂线,点P与垂足之间的线段即为最短路线.教师:如果我们规定:当PO⊥直线l时,线段PO是直线l的垂线段,你们能用一句话总结你们观察得出的结论吗?学生展示,教师引导学生总结.设计意图首先引领学生回忆旧知识,加深学生对上节课所学知识的理解,为新知识的学习奠定基础.探究点二:垂线的性质2连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.教师:“垂线段最短”在日常生活中广泛应用,你们还能举出几个例子吗?学生回答,教师给予肯定和表扬.教师:我们学习了垂线段,认识了垂线,这两种图形的区别与联系是什么?学生独立思考后,小组交流,代表发言.垂线段是一条线段,而垂线是一条直线;垂线段是垂线上的一部分.设计意图通过设计分层问题,将实际问题转化成数学问题,结合图形直观演示.使学生对垂线的性质2有初步的认识,从而得出“垂线段最短”这一性质.探究点三:点到直线的距离教师:在以前我们学习了两个点之间的距离,你们知道怎样才能得到两个点之间的距离吗?学生:测量连接两个点的线段的长度.教师:两个点之间的距离是测量两点之间线段的长度,那确定一个点到一条直线的距离,应该测量什么?学生独立思考,小组讨论,展示答案,教师引导得出结论:确定点到直线的距离,应该测量点到直线垂线段的长度.教师:现在你们知道什么是点到直线的距离了吗?学生回答,教师板书:点到直线的距离是指直线外一点到这条直线的垂线段的长度.教师强调:点到直线的距离是长度,而非垂线段.设计意图类比两点间的距离给出点到直线的距离,点到直线的距离是点到直线的垂线段的长度,是一个数量,在教学中注意强调距离是数量,而不能说成垂线段是距离.新知应用例1 如图4所示,∠C=90°.(1)分别指出点A到直线BC,点B到直线AC的距离是哪些线段的长度.(2)AC AB(填“>”“<”或“=”),依据是.(3)AC+BC=AB(填“>”“<”或“=”),依据是.解:(1)AC,BC.(2)<垂线段最短.(3)>两点之间,线段最短.例2 (1)如图5所示,小刚准备从C处牵牛到河边AB处饮水,作出小刚(2)如图6所示,小刚从C处牵牛到河边AB处饮水,并且必须先到点D处观察河水水质情况,然后再去牵牛饮水,作出小刚行走的最短路线(不考虑其他因素),并作出必要说明.师生活动学生先独立思考,教师组织学生交流并适度进行引导评价.7所示.(2)如图8所示,由C处到D处和由D处到C处,依据:两点之间线段最短;由C处到河边,依据:垂线段最短.设计意图通过例题进一步了解垂线段最短和两点之间线段最短的区别.例3 如图9所示,∠BCA=90°,BC=3,AC=4,AB=5,点P是线段AB上一个动点,点P在运动过程中,PC长度随之发生变化.你能确定PC长度的最大值与最小值吗?师生活动学生先独立分析,再小组交流,教师巡视指导. 解:如图10所示.(1)当点P 运动到与点A 重合时,PC =AC =4,∴ PC 长度的最大值为4. (2)当点P 运动到CP ⊥AB 时,PC 的长度最小. ∵ S △ABC =12AC ·BC =12AB ·CP , ∴ AC ·BC =AB ·CP ,∴ 3×4=5·CP , ∴ PC =125,∴ PC 长度的最小值为125.设计意图通过解决生活中的实际问题,加深学生对垂线段最短的理解.借助“动点”运动问题(课本习题的变式),不仅加深学生对知识的理解,而且渗透了“等积法”这一解题方法.课堂练习(见导学案“当堂达标”)参考答案1.C2.B3.C4.B5.4.8 66.4 10 6.(1)略 (2)略 (3)PM (4)PM <OP. 理由:垂线段最短.7.解:(1)如图11所示,连接AC ,BD 交于点H ,则H 为蓄水池的位置.(2)作HG ⊥EF ,如图11所示,沿线段HG 把河水引入蓄水池,开渠最短.理由:过直线外一点与直线上的各点的所有线段中,垂线段最短.(见导学案“课后提升”)参考答案1.A2.解:∵ AC ⊥BC ,∴ AC <m. ∵ AD ⊥CD ,∴ AC >n ,∴n<AC<m.课堂小结1.本节课主要学习了垂线的性质“垂线段最短”和点到直线的距离.2.注意垂线段、垂线概念之间的区别和联系.布置作业教材第8,9页习题5.1第6,10题板书设计。

5.1.2垂线__学科信息:数学-人教版-七年级下

5.1.2垂线__学科信息:数学-人教版-七年级下

能作一条,而且只能作一条.
结论: 过一点有且只有一条直线与已知直线垂直.
注意: 过一点画已知线段(或射线)的垂线,就
是画这条线段(或射线)所在直线的垂线.
5.1.2垂线
人教版本七年级下册第5章5.1.2垂线
练习3.
①过点P 向线段AB 所在直线引垂线,正确的是(C ).
A
B
C
D
5.1.2垂线
②、
观察与思考
在相交线的模型中,固定木条a,转动木条b,
当b的位置变化时,a、b所 b 成的角α也会发生变化. b
b
bb
当α =90°时,a与b垂直.
α )α
当α ≠90°时,a与b不垂
a
直,叫斜交.
斜交 两条直线相交
垂直 垂直是相交的特殊情况
5.1.2垂线
一、垂直的定义
人教版本七年级下册第5章5.1.2垂线
1.垂直定义:当两条直线相交所成的四个角中,有
一个角是直角时,这两条直线互相垂直,其中一条
直线叫另一条直线的垂线,它们的交点叫垂足。a
例如、如图,a、b互相垂直,O叫垂 足.a叫b的垂线,b也叫a的垂线。
b O
从垂直的定义可知, 判断两条直线互相垂直的关键:
只要找到两条直线相交时四个交角中一个角 是直角。
人教版本七年级下册第5章5.1.2 垂线
5.1.2 垂线
5.1.2垂线
入水姿势
人教版本七年级下册第5章5.1.2垂线
5.1.2垂线
复习:




两 条 直 线 相 交
特殊情况
人教版本七年级下册第5章5.1.2垂线
对顶角:相等
C
2O

人教版数学七年级下册教学设计5.1.2《 垂线》

人教版数学七年级下册教学设计5.1.2《 垂线》

人教版数学七年级下册教学设计5.1.2《垂线》一. 教材分析《垂线》这一节的内容是七年级下册人教版数学教材中的一个重要部分。

它主要介绍了垂线的定义、性质以及垂线段的概念。

学生通过学习这一节内容,应该能够理解垂线的含义,掌握垂线的性质,并能够运用垂线段的知识解决实际问题。

二. 学情分析七年级的学生已经具备了一定的几何知识,对线段、直线等基本概念有了初步的理解。

但是,他们对垂线的认识可能还比较模糊,对垂线段的运用也还不够熟练。

因此,在教学过程中,教师需要引导学生从实际情境中发现垂线,理解垂线的性质,并通过大量的练习来巩固所学知识。

三. 教学目标1.知识与技能:理解垂线的定义,掌握垂线的性质,能够运用垂线段的知识解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.教学重点:垂线的定义,垂线的性质。

2.教学难点:垂线段的运用,对垂线概念的理解。

五. 教学方法采用问题驱动法、情境教学法、合作学习法等。

通过引导学生观察实际情境中的垂线,让学生在操作中体验和理解垂线的性质,通过合作学习,提高学生解决问题的能力。

六. 教学准备1.教具准备:直尺、三角板、多媒体课件等。

2.学具准备:每人一副直尺、三角板,一组学生一台计算器。

七. 教学过程导入(5分钟)教师通过展示一些生活中的垂线实例,如墙角、衣架、雨滴等,引导学生发现生活中的垂线,并提问:“什么是垂线?”让学生初步感知垂线的概念。

呈现(10分钟)教师通过多媒体课件,展示一些垂线的基本性质,如从一点到直线的垂线有且只有一条,垂线段是最短的等。

同时,让学生在纸上画出一条直线,并尝试画出它的垂线,从而加深对垂线概念的理解。

操练(15分钟)教师给出一些实际问题,如在平面直角坐标系中,找出一点P到x轴的垂线段的长度。

让学生独立完成,并在小组内交流解题过程。

人教版七年级数学下册第五章《垂 线》优质课课件

人教版七年级数学下册第五章《垂 线》优质课课件

变式训练1-1:点O在直线AB上,且OC⊥OD.若∠COA=36°,则∠DOB的大 小为( B ) (A)36°(B)54°(C)64°(D)72° 解析:根据OC⊥OD, 得出∠COD=90°, 根据∠AOC+∠COD+∠DOB=180°, 得∠DOB=180°-∠AOC-∠COD=180°-36°-90°=54°. 故选B.
。超








You made my day!
我们,还在路上……
(1)该汽车行驶到公路AB上的某一位置C′时距离村庄C最近,行驶到D′位置 时,距离村庄D最近,请在公路AB上作出C′、D′的位置; 【导学探究】 连接直线外一点与直线上各点的所有线段中 垂线段 最短.
解:(1)如图所示. 过点 C 作 AB 的垂线,垂足为 C′, 过点 D 作 AB 的垂线,垂足为 D′.
5.1.2 垂 线
1.了解垂直的概念,掌握垂线的性质. 2.会过一点用三角板或量角器画已知直线的垂线.
1.垂直 两条直线相交所成的四个角中的任意一个角是 90° 时,我们说这两条直线互 相垂直. 如图:(1)直线AB、CD相交于点O,若∠AOC=90°,则 AB⊥CD .
(2)若AB⊥CD时,则∠COB= 90° . 2.垂线 垂直是相交的一种特殊情况,两直线 互相垂直 ,其中的一条直线叫做另一 条直线的垂线,它们的交点叫做垂足 .如图:AB⊥CD,垂足为O.
(2)当汽车从A出发向B行驶时,在哪一段路上距离村庄C越来越远,而离村庄 D越来越近?(只叙述结论,不必说明理由)
解: (2)在线段C′D′这段路上,距离村庄C越来越远,而离村庄D越来越近. 点到直线的距离是指直线外一点到这条直线的垂线段的长

平泉县二中七年级数学下册第五章相交线与平行线5.1相交线5.1.2垂线(2)教案新版新人教版3

平泉县二中七年级数学下册第五章相交线与平行线5.1相交线5.1.2垂线(2)教案新版新人教版3

5.1.2 垂线(2)1.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义.2.学会度量点到直线的距离.重点垂线段最短的性质,点到直线的距离的概念及其简单应用.难点对点到直线的距离的概念的理解.一、创设情境,引入新课教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?学生看图、思考.教师以问题的形式,启发学生思考.问题1:上学期我们曾经学过什么最短的知识,还记得吗?问题2:如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线l,那么原问题就是怎么连线的数学问题.学生说出:两点之间,线段最短.二、尝试活动,探索新知学生能在教师的引导下用数学眼光思考:在连接直线l外一点P与直线l上各点的线段中,哪一条最短?教师演示教具,给学生直观的感受.如图:在硬纸板上固定木条l,l外有一点P,转动的木条a一端固定在点P.使木条l与a相交,左右摆动木条a,l与a的交点A随之变化,线段PA的长度也随之变化.PA最短时,a与l的位置关系如何?用三角尺检验.教师引导学生画图操作:学生看图总结,得出结论:(1)画出直线l及l外的一点P;(2)过P点作PO⊥l,垂足为O;(3)点A1、A2、A3……在l上,连接PA1、PA2、PA3……(4)用叠合法或度量法比较PO、PA1、PA2、PA3……的长短.教师请同学们与组内的同学进行充分的配合,讨论相应的结论,并选派代表发言.教师引导学生交流,得出垂线的另一个性质.教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.三、尝试反馈,理解新知关于垂线段,教师引导学生思考:(1)垂线段与垂线的区别与联系;(2)垂线段与线段的区别与联系.结合课本图形(图5.1-9),深入认识垂线段PO: PO⊥l,∠POA1=90°,O为垂足,垂线段PO与其他线段PA1、PA2……相比,长度是最短的.教师根据两点间的距离的意义给出点到直线的距离命名.教师板书:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.教师强调,在图5.1-9中,PO的长度是点P到直线l的距离,PA1、PA2……的长度都不是点P到直线l的距离.四、提升练习判断下列说法是否正确,如果正确,请说明理由;如果错误,请订正.(1)直线外一点与直线上一点间的线段的长度是这一点到这条直线的距离;(2)如图,线段AE的长是点A到直线BC的距离;(3)如图,线段CD是点C到直线AB的距离.【答案】(1)错误,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;(2)正确;(3)错误,线段CD的长是点D到直线BC的距离.五、课堂小结本节课学习了哪些新的知识,对于垂线段的理解有没有什么收获?是不是学会了如何作出垂线段?你还有哪些没有解决的问题呢?大部分学生经历观察、操作、想象、归纳、交流等活动,进一步发展空间观念,培养用几何语言准确表达的能力并且了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,但是度量点到直线的距离的方法掌握得还不够好.1.4 有理数的加法和减法第1课时有理数的加法【知识与技能】1.经历探索有理数加法法则的过程,理解有理数的加法法则.2.运用有理数加法法则熟练地进行加法运算.【过程与方法】在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力.【情感态度】通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质.【教学重点】理解和运用有理数的加法法则.【教学难点】理解有理数加法法则,尤其是理解异号两数相加的法则.一、情景导入,初步认知1.下列各组数中,哪一个较大?-3与-2;3与-3;-3与0;-2与+1;-4与-3.2.一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 .【教学说明】我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围.这里先让学生回顾在具体问题中感受正数和负数的加法运算.二、思考探究,获取新知1.动脑筋:如下图,在一条东西向的笔直的马路上,任取一个点O,若把向东走1km 记为1,则向西走1km记为-1.小丽从点O出发,先向西走了2km,然后继续向西走了3km,两次行走后,小丽从O点向哪个方向走了多少千米?2.根据你所列出的等式,观察等号两边的两个加数的符号、绝对值与结果的符号、绝对值之间有什么关系.你能归纳两个负数相加的运算法则吗?【归纳结论】两个负数相加,结果是负数,并且把它们的绝对值相加.3.计算:(1)(-8)+(-12)(2)(-3.75)+(-0.25)4.探究:在一条东西向的笔直的马路上,任取一个点O,若把向东走1km记为1,则向西走1km 记为-1.(1)小亮从点O出发,先向东走了4km,然后掉头向西走了1km,小亮两次走的效果等于从点O向哪个方向走了多少千米?(2)小刚从点O出发,先向东走了1km,然后掉头向西走了3km,小刚两次走的效果等于从点O向哪个方向走了多少千米?(3)根据具体的情境列出算式,并利用数轴写出这两个算式的结果.5.上面我们列出了两个有理数相加的算式,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这2个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?【归纳结论】异号两数相加,当两数的绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.6.说一说:(1)互为相反数的两个数相加,和为多少?(2)一个数与0相加,和为多少?【归纳结论】互为相反数的两个数相加得0;一个数与0相加,得这个数.7.你能根据有理数的加法推出相反数的另一种说法吗?【归纳结论】如果两个数的和等于0,那么这两个数互为相反数.【教学说明】引导学生借助数轴分析,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识.三、运用新知,深化理解1.教材P21例2.2.下列说法正确的是(B)A.两数之和必大于任何一个加数B.同号两数相加,符号不变,并把绝对值相加C.两负数相加和为负数,并把绝对值相减D.异号两数相加,取绝对值较大的加数的符号,并把绝对值相加3.如果│a+b│=│a│+│b│成立,那么(D)A.a,b同号B.a,b为一切有理数C.a,b异号D.a,b同号或a,b中至少有一个为零4.计算:(1)15+(-22)(2)(-13)+(-8)(3)(-0.9)+1.51 (4)12 23⎛+-⎫⎪⎝⎭解:-7,-21,0.61,-1 67.数轴上的一点由原点出发,向左移动2个单位长度后又向左移动了4个单位,两次共向左移动了几个单位?解:(-2)+(-4)=-6.答:这个点共向左移动了6个单位.9.用算式表示:温度由-5℃上升8℃后所达到的温度.解:-5+8=3(℃)10.已知|2a-1|+|5b-4|=0,计算下题:(1)a的相反数与b的倒数的相反数的和;(2)a的绝对值与b的绝对值的和.解:略.【教学说明】通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度.四、师生互动、课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.布置作业:教材“习题1.4”中第1、2题.在课上学生基本能掌握有理数加法法则并能运用,但是做题时很不理想,主要表现在:1.个别学生的书写很乱.2.符号不确定.3.对绝对值的相加减不是很清楚.4.对绝对值和相反数会混为一谈.5.个别学生的计算结果错误.针对这种原因的措施:首先在讲解时特别强调计算步骤,首先要确定最终得数的符号,其次再算绝对值(同号相加,异号相减),并且确定好的符号一定要带到最后,做题时一定要细心,其次在学生的书写上下功夫,再次在课上让学生多上黑板展示,讲解,尽量让学生在课上就把所学知识掌握,课后再加练习,出现做题问题及时纠正引导,加深学生对有理数加法法则的理解,课后练习中出现的问题做个别指导.第2章有理数【基本目标】引导学生自己回顾本章内容,以独立思考和小组讨论的学习方式,以便学生自己梳理知识,形成知识的联系,使新旧知识成为一个有机的整体.【过程与方法】通过小结与复习加深对正负数、相反数、绝对值概念的理解,通过练习,进一步提高学生的计算能力和解决简单实际问题的能力.【情感态度】培养学生反思意识,进一步体会数学来源于生活,应用于生活.【教学重点】1.相关概念、法则、运算律的理解与掌握;2.有理数混合运算的法则的应用及有理数的混合运算技巧.【教学难点】1.应用有理数的运算解决实际问题.2.解题技巧的灵活性和解题思路的全面性和多样性.一、知识框图,整体把握【教学说明】以框图的形式对本章内容做一个形象的解读,便于学生对本章的知识脉络有一个形象的了解,对各知识点之间的关系有一个形象的把握.二、释疑解惑,加深理解通过提问的方式回顾本章的主要内容,采用独立思考与同伴讨论的学习方式,让学生通过思考回答问题,加深对本章知识的理解.根据学生实际情况,教师给予适当的引导、归纳.1.为什么要引入负数?举出实例说明正数和负数在表示相反意义的量时的作用.现实生活中存在很多个有相反意义的量,如:向东5米与向西5米,零上2℃与零下2℃,收入100元与支出100元,低于海平面150米与高出海平面800米……用正数表示其中一种量,负数表示和它相反意义的量,这样既简单又明白.例如吐鲁番盆地的海拔高度为-155m,表示吐鲁番盆地的海拔高度是低于海平面155m.2.数的范围从正整数、零和正分数扩充到有理数后,增加了哪些数?减法中哪些原来不能进行的运算可以进行了?增加了负整数、负分数,解决了原来“小数不能减去大数”的问题,现在任何有理数都可以进行减法运算.3.怎样用数轴表示有理数?数轴与普通直线有什么不同?怎样用数轴解释绝对值和相反数?任何一个有理数都可以用数轴上的一个点表示,但数轴上的点不是都表示有理数,这一点,以后我们将要学习.数轴是一条特殊的直线,是规定了正方向、原点和单位长度的直线.原点、正方向、单位长度也称数轴的三要素,缺一不可.数轴上与原点的距离相等的两个点所表示的数是互为相反数.4.怎样比较有理数的大小?有理数的大小比较方法有两种;一是利用数轴,在数轴上较左边的点比右边的点所表示的数小;二是用绝对值,两个负数,绝对值大的反而小.正数大于零,负数小于零.5.有理数的加法与减法有什么关系?乘法与除法呢?有理数的减法可以转化为加法,转化的桥梁是相反数,减去一个数等于加上这个数的相反数,同样,除法可以转化为乘法,转化的桥梁是倒数,除以一个数(不为0),等于乘以这个数的倒数.有理数的混合运算都可以转化为加法与乘法.6.有理数满足哪些运算律?交换律:a+b=b+a,ab=ba结合律:(a+b)+c=a+(b+c)(a·b)·c=a(bc)分配律:(a+b)·c=ac+bc其中a、b、c表示任意有理数.合理使用运算律,可以使计算更简便.三、典例精析,温故知新例1 填空:(1)在知识竞赛中,如果+10分表示加10分,那么扣20分可表示成;(2)某人转动转盘,如果沿逆时针转5圈记作+5圈,那么沿顺时针转12圈可表示成;(3)某次乒乓球质量检测中,一只乒乓球超出标准0.02g记作+0.02g,那么-0.03g 可表示成 .分析:本题主要是考查同学们运用正负数表示相反意义的量的能力.点评:怎样利用生活中的常见量表示正负数,理解正负数,练习本题时还需要再做一次认真的总结.例2 填空:(1)若m,n互为相反数,则m+ n =;(2)-2006的倒数是;(3)-(-3)= ;(4)-|-2|的倒数是 .分析:相反数、倒数的概念,注意符号.点评:初学代数,首先必须确保性质符号的准确.例3 如图,数轴上两点所表示的两数()A.和为正数B.和为负数C.积为正数D.积为负数分析:本题重在考查能否应用数形结合思想及数轴上的点所提供的信息进行判别.点评:本题考查的是数轴的知识及运算符号的确定.例4 下列四个运算中,结果最小的是()A.1+(-2)B.1-(-2)C.1×(-2)D.1÷(-2)分析:注意在计算时要先确定符号,再按法则进行计算.点评:本题考查的是有理数的加减乘除运算法则以及有理数大小的比较.例5 如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-aB.a>-a>b>-bC.b>a>-b>-aD.-a>b>-b>a分析:本题可利用特殊值法,根据条件可令a和b等于某数.点评:本题也可以运用画数轴的方法,利用数形结合的思想来解决问题. 例6 计算下列各题:(1)-1+5×(-2)-(-4)2÷(-8);(2)34-83-81+21-14.分析:对于有理数的混合运算,要注意运算顺序和运算法则.点评:在进行混合运算时,能用运算律简便运算的一定要用运算律来进行运算.例7计算下列各题:分析:本题主要考查有理数乘法的交换律、结合律、分配律的运用.应用运算律可以简化运算,同时也可提高做题的速度,减少计算量.点评:对于乘法分配律a(b+c)=ab+ac有两种运用方法,一种是顺用公式,如上题中的(1),另一种是逆用公式,如上题中的(2),在做题时,应具体问题具体分析.例8神舟六号飞船,在平安飞行115小时23分后重返神州. 用科学记数法表示神舟六号飞船飞行的时间是秒(精确到千位).分析:a×10x中a的取值范围是1≤a<10,底数10的指数n等于所表示的整数位数减去1.点评:本题考查的是科学记数法及其运算,由于数字较大,计算时很容易出错,因此一定要特别当心,没有特别说明的话,建议此题用计算器来解决.例9(-8)2014+(-8)2013能被下列数整除的是()A.3B.5C.7D.9分析:本题重在考查转化思想,因为直接计算显然不大可能,因此可把原式转化为82014-82013,运用了乘方的意义及乘法分配律.点评:从(-8)2014+(-8)2013到7×82013的运算,只要掌握了乘方的概念,我们就会发现这是一道看似超纲的,其实却没超纲的好题.四、拓展训练,巩固提高1.如果x<0,y>0,且x2=4,y2=9,则x+y= .2.大于-4而小于+3的整数是 .3.a为最小的正整数,b为a的相反数的倒数,c为相反数等于本身的数,则(a+b)×5+4c= .4.已知|a-1|+|2-b|=0,则a100-5b .5.认真算一算:6.已知有理数a,b,c 在数轴上的位置如图所示且|a|=|b|.(1)求a+b 与b a 值; (2)判断b+c,a-c,bc,ac 及c b c a --的符号; (3)化简|a|-|a+b|-|c-a|+|c-b|.【教学说明】学生独立完成练习,体会知识点的运用变化,提高思维和解题能力,提高综合解题能力.完成本课时对应的练习.全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力.因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点.本节课是有理数全章的复习课,所以教学中抓住了有理数的概念和有理数的运算这两个主要内容.这是有理数的基础知识,也是复习的重点.此外,还通过典型例题的分析,让学生熟练地利用数轴来解题,以提高他们对数形结合思想的认识,以及分析问题、解决问题的能力.。

《5.1.2垂线》PPT课件

《5.1.2垂线》PPT课件

巩固练习
如图所示,直线BC与MN相交于点O, AO⊥BC于O,OE平分∠BON, 若∠EON=20°, 求 ∠AOM和∠NOC的度数。
课堂小结
1、垂线的定义 当两条直线相交所成的四个角中,有一个角是直角时,这两 条直线互相垂直,其中一条直线叫另一条直线的垂线,它们 的交点叫垂足。
2、垂线的画法 一、重合;二、平移;三、画线.
互相垂直.(4)两条Fra bibliotek线相交,有一组对顶角互补,则这两条直
线互相垂直.
A.4
B.3
C.2
D.1
A
C E
1
O
B
2

F D
首页
选择题
巩固练习
1.下面四种判断两条直线垂直的方法正确的有___

[A ]
(1)两条直线相交所成的四个角中有一个角是直角,
则这两条直线互相垂直.
(2)两条直线相交,有一组邻补角相等,则这两条直
线互相垂直.
(3)两条直线相交,所成的四个角相等,这两条直线
如.如图图,A,ABB、、CCDD相相交交于于点点OO,若,若∠OEEO⊥D=O4D0,°∠, EOD=40°, ∠求B∠OBCO=C13的0度°,则数O。E与AB具备什么位置关系, 并说明理由

2.垂线的画法:
一、重合;二、平移 三、画线.
3.垂线的性质
在同一平面内,过一点有且只有 一条直线与已知直线垂直.
(1)直线上一点或直线外一点
(2)“有”说明存在性,“只有”说明唯 一性
巩固练习
如图, MC⊥AB, NC⊥AB,请问M、N、C三点共线 吗?
思考:如何画线段和射线的垂线?
P
P
B

人教版数学七年级下册:5.1.2垂线课件

人教版数学七年级下册:5.1.2垂线课件
两条直线互相垂直是它们相交的一种特殊情况.
知识点 1 垂线的概念
垂直的表示法:
如图,直线 AB 与 CD 相交于点 O,若∠BOC = 90°,
则AB,CD 互相垂直,记作“AB⊥CD”,读作“AB 垂直
于 CD”,直线 AB 叫做直线 CD 的垂线(或直线 CD 叫
做直线 AB 的垂线),交点 O 叫做垂足.
无数条
l
知识点 2 垂线的画法及性质 经过直线l上一点A画l的垂线,这样的垂线能画出几条?
一条
A
l
知识点 2 垂线的画法及性质 经过直线l外一点B画l的垂线,这样的垂线能画出几条?
一条 B
l
在同一平面内,过一点有且只有一条直线与已知直线垂直。
知识点 2 垂线的画法及性质 经过一点画已知直线的垂线,通常有两种画法. (1)用三角尺画: 1 落:让三角尺的一条直角边落在已知直线上,使其 与已知直线重合. 2 移:沿已知直线移动三角尺,使其另一条直角边经 过已知点. 3 画:沿此直角边画直线,则这条直线就是已知直线 的垂线.
(2)垂线段最短. 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
移:沿已知直线移动三角尺,使其另一条直角边经过已知点. 如图,AO⊥CO,直线 BD 经过点 O,且∠1 =20°,则∠COD 的度数为( )
∠COB =90°-20°=70°
4.点到直线的距离
谢 谢!
“有且只有”中,“有”指存在,“只有”指唯一性.
与已知直线垂直. =180°-40°=140°,
点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离. (2)画一条线段或射线的垂线,就是画它们所在直线的垂线,垂足可能在这条线段或射线上,也可能在线段的延长线上或射线的反向延长线上.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个推理过程可以写成:
∵∠AOC=90°(已知), ∴AB⊥CD(垂直的定义).
如果AB⊥CD,那么所得的四个角中,必有一个是直
角.这个推理过程可以写成:
∵AB⊥CD(已知),
∴∠AOC=90°(垂直的定义).
日常生活中,两条直线互相垂直的情形 很常见,说出图5.1-6中的一些互相垂直的 线条.
你能再举出其他例子吗?
简单说成:垂线段最短.
直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离.
方格本的横线和竖线
铅垂线和水平线
选择题: 1、两条直线相交所成的四个角中,下列条件中能判 定两条直线垂直的是 (C) (A)有两个角相等 ( B)有两对角相等 (C)有三个角相等 ( D)有四对邻补角
2、下面四种判定两条直线的垂直的方法,正确
的有( A )个
(1)两条直线相交所成的四个角中有一个角是
C
又∵∠2=∠1
∴∠2=60°
∴∠BOD=30°(互余的定义)
看谁做得快
1∠.若1=直9线0°m,、则n相__交m__于_⊥_点__On_,_.
m
1
On
2.若直线AB、CD相交于点O,
且AB⊥CD,那么∠BOD=__9_0_.°
3.如图,BO⊥AO,∠BOC 与∠BOA的度数之比为1:5,
那么∠COA=__7_2__°,
的垂线时,有时要将线
段延长(或将射线反向
延长)后再画垂线.
问题 (1)如图,在灌溉时需要把河AB中的水引到C处, 如何挖渠能使渠道最短?
C
A
B
(2)从上述探究过程中你能发现什么结论?
结论:连接直线外一点与直线上各点的所有线段中, 垂线段最短.
即,垂线段最短.
P
AB C
m
D
连接直线外一点与直线上各点的所有 线段中,垂线段最短.
直角,则这两条直线互相垂直
(2)两条直线相交,只要有一组邻补角相等,
则这两条直线互相垂直
(3)两条直线相交,所成的四个角相等,这两
条直线互相垂直
(4)两条直线相交,有一组对顶角互补,则这
两条直线互相垂直
(A)4
(B)3
(C)2
(D)1
练习: 1.如图,直线AB、CD相交于点O,
OE⊥AB,∠1=125°, C E 求∠COE的度数.
∠BOC的补角为_1__6_2__度.
B C
OA二、垂线的Fra bibliotek法问题: 怎么样画垂线?
1.垂线的画法:
工具:直尺、三角板 如图,已知直线 l,作l的垂线.
A
问题:
这样画l的
垂线可以
画几条?
O
1放、 2靠、
l 3画线、
无数条
1.垂线的画法:
如图,已知直线 l 和l上的一点A ,作l的
垂线.
B
则所画直线AB是过
在相交线的模型中,固定木条a,转动木条b,
当b的位置变化时,a、b 所成的角α也会发生变化.
b
b
b bb
当α=90°时,a与b垂直.
α )α
当α≠90°时,a与b不垂
a
直,叫斜交.
斜交 两条直线相交
垂直 垂直是相交的特殊情况
一、垂直的定义
1.垂直定义:当两条直线相交所成的四个角中, 有一个角是直角(90度)时,这两条直线互相垂
O
C
B
∴AB⊥CD(垂直的定义)
反之,若直线AB与CD垂直,垂足为O,
那么,∠AOD=90°.
书写形式:∵ AB⊥CD (已知)
∴ ∠AOD=90°(垂直的定义)
应用垂直的定义: ∠AOC=∠BOC=∠BOD=90°
垂直的定义的应用格式
如果直线AB、CD 相交于点O,∠AOC=90°(或三
个角中的一个角等于90°),那么 AB⊥CD.
结论:过一点有且只有一条直线与已知直线垂直.
问题:过已知直线 l 和l上(或外)的一点A , 作l的垂线,可以作几条?
能作一条,而且只能作一条.
结论: 过一点有且只有一条直线与已知直线垂直.
注意: 过一点画已知线段(或射线)的垂线,就是画 这条线段(或射线)所在直线的垂线.
课堂练习
1.过点 P向线段AB所在直线引垂线,正确的是( C).
点A的直线l的垂线.
A
l
1放:放直尺,直尺的一边要与已知直线重合; 2靠:靠三角板,把三角板的一直角边靠在直尺 3上移;:移动三角板到已知点; 4画线:沿着三角板的另一直角边画出垂线.
探究:
(1)画已知直线l的垂线能画几条? (2)过直线l上的一点A画l的垂线, 这样的垂线能画几条? (3)过直线l外的一点B画l的垂线, 这样的垂线能画几条?
A 1O B
D
2.如图,∠ABC=90°,∠1=60°,过B作AC的 垂线BO,垂足是O,过O作BC的垂线,垂足是D, 若∠1=∠2,求∠ABO,∠BOD.
解:∵∠ABC=90°( 已知 ) ∠1=60
A
O
∴∠ABO=30°(互余的定义) 2
∵BO ⊥AC于O点
)1
∴∠BOC=90°(垂直的定义)B D
a⊥b或b⊥a,
a
αb O
若要强调垂足,则记为:a⊥b垂,足为O.
M
E
F
O
E
A
O
B
N
记作:MN⊥EF ,垂足为O. 记作:AB⊥OE垂足为O.
或者MN⊥EF于O
或者AB⊥OE于O
3.垂直的书写形式:
如图,当直线AB与CD相 A
D
交于O点,∠AOD=90°时,
AB⊥CD,垂足为O. 书写形式: ∵∠AOD=90°(已知)
直,其中一条直线叫另一条直线的垂线,它们
的交点叫垂足.
a
例如、如图,a、b互相垂 直,O叫垂足.a叫b的垂线, b也叫a的垂线.
b O
从垂直的定义可知, 判断两条直线互相垂直的关键: 只要找到两条直线相交时四个交角中一个 角是直角.
2.垂直的表示:
用“⊥”和直线字母表示垂直 例如、如图,a、b互相垂直, 垂足为O,则记为:
A
B
C
D
巩固练习
1.如何画一条线段或一条射线的垂线?
C
C
A
A
B
B
C
画已知线段、射线的垂线其实
就是经过已知点作已知线段、射线
所在的直线的垂线.
A B
课堂练习: 2. 过点P作线段或射线所在直线的垂线
.P
.
.
A
B
(1)
.P
.
O
.A
(2)
3.过点P分别向角的两边作垂线
.P
.P
.P
.P
E
E
E
注意:画线段(或射线)
5.1.2 垂线
问题1:如右图,
( 1 ) ∠ AOC 的 对 顶 角 是 哪 个 角 ?
这两个角的关系怎样?
(2)∠AOC的邻补角有几个?
是哪几个角?
问题2:如下图,当∠AOC=90°时,∠BOD、∠AOD、 ∠BOC等于多少度?为什么?
观察:
活动1
两条直线相交形成4个角,若固定 木条a,旋转木条b,当b的位置发生变化 时,a、b所成的角也会随之变化,其中 有一个特殊的位置: =90°.
相关文档
最新文档