无功补偿电容器选择与计算

合集下载

低压无功补偿装置电容器额定电压选择和输出容量计算

低压无功补偿装置电容器额定电压选择和输出容量计算

规代建览电气-工程设计与应用-No.2 Vol.12 (Serial No.134) 2021低压无功补偿装置电容器额定电压选择和输出容量计算郑凯,袁松林,倪高俊(浙江大学建筑设计研究院有限公司,浙江杭州310000)扌商要:针对低压无功补偿装置常采用并联电容器组串联电抗的技术方案,分析了串联电抗器和电压偏差对并联电容器运行电压的影响,以电容器额定电压应与 运行电压一致最佳为原则来选择电容器的额定电压。

分析了电抗率、电压偏差和 电容器的额定电压对无功补偿装置输出无功容量的影响,计算了常见工况下无功 补偿装置的运行输出容量与额定容量的比值,可应用于电容器额定容量的快速选择。

郑凯(1990_),男,工程师,从事建筑电 气设计工作。

关键词:电容器;额定电压;电抗率;无功功率中图分类号:TU 852 文献标志码:B 文章编号:1674-8417(2021)02-0045-03DOI : 10.16618/j. cnki. 1674-8417.2021.02.0100 引 言计算机、荧光灯、空调等非线性负荷在民用建筑中广泛使用,其产生的谐波对系统的影响日益严重&1-'。

谐波电流叠加在电容器基波电流上,使电容器电流的有效值增大,温升增高,甚至引起过热而降低电容器的使用寿命或使电容器损坏。

谐波电压叠加在电容器基波电压上,不仅使电容器的电压有效值增大,并可能使电压峰值 增加,使电容器发生局部放电,损害电容器绝缘 介质,造成介质损耗增加,导致局部过热,进一步可能发展为绝缘击穿、电容器损坏。

低压无功补偿装置中串联一定电抗率的电抗器是抑制谐波和限值涌流的常用有效措施,工程人员熟知根据电容器组接入处的综合谐波阻抗呈感性来选择电抗率的方法&3-',但并联电抗器的额定电压、串联电抗器后电容器的额定电压和输出无功容量选择往往被忽略。

1电容器额定电压选择额定电压是电容器的重要参数之一,无功补 偿装置设计时合理选择电容器的额定电压非常重要。

无功补偿及计算

无功补偿及计算

无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。

无功补偿的合理配置原则,从电力网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网所占比重最大。

为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置,应按照“分级补偿,就地平衡”的原则,合理布局。

(1 ) 总体平衡与局部平衡相结合,以局部为主。

(2) 电力部门补偿与用户补偿相结合。

在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。

因此,为了减少无功功率在网络中的输送,要尽可能地实现就地补偿,就地平衡,所以必须由电力部门和用户共同进行补偿。

(3) 分散补偿与集中补偿相结合,以分散为主。

集中补偿,是在变电所集中装设较大容量的补偿电容器。

分散补偿,指在配电网络中分散的负荷区,如配电线路,配电变压器和用户的用电设备等进行的无功补偿。

集中补偿,主要是补偿主变压器本身的无功损耗,以及减少变电所以上输电线路的无功电力,从而降低供电网络的无功损耗。

但不能降低配电网络的无功损耗。

因为用户需要的无功通过变电所以下的配电线路向负荷端输送。

所以为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿。

所以,中、低压配电网应以分散补偿为主。

(4) 降损与调压相结合,以降损为主。

2、影响功率因数的主要因素功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。

当有功功率P一定时,如减少无功功率Q,则功率因数便能够提高。

在极端情况下,当Q=0时,则其力率=1。

因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。

2. 1、异步电动机和电力变压器是耗用无功功率的主要设备异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。

而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。

电容无功补偿装置输出容量计算

电容无功补偿装置输出容量计算

电容无功补偿装置输出容量计算电容无功补偿装置主要用于电力系统中的无功补偿,它能够有效地提高功率因数,提高电网供电质量,并减轻线路的负载损耗。

在实际应用中,根据电力系统的负荷情况和电容无功补偿装置的容量要求,需要对其输出容量进行合理计算。

一、电容无功补偿装置的功率计算无功功率Q与电容器的容量C之间的关系为:Q=V^2*Xc其中,V为电压,Xc为电容器的感抗,Xc为1/(2*π*f*C),f为频率。

有功功率P与电容器的容量C之间的关系为:P=P0-Q其中,P0为电容无功补偿装置的有功功率。

因此,电容无功补偿装置的输出容量可以根据所需的无功功率来计算。

二、电容无功补偿装置的容量选择1.电力系统的负载情况:根据负载情况来确定所需的无功功率,进而确定电容器的容量。

2.功率因数的要求:根据电力系统的要求,确定所需的功率因数,计算出所需的无功功率,再根据电容器的容量计算出所需的输出容量。

3.电容器的运行条件:根据电容器的额定电压和电流来确定所需的容量,以保证电容器能够正常运行。

4.装置的运行模式:根据电力系统的补偿对象和运行模式来确定所需的输出容量。

通过以上因素的综合考虑,可以合理地选择电容无功补偿装置的输出容量。

三、实际应用案例假设电力系统的负荷为1000kVA,功率因数为0.8,需要提高功率因数至0.95、根据上述电容无功补偿装置的功率计算公式,可以计算出所需的无功功率:Q = P * tan(acos(0.95) - acos(0.8))= 1000kW * tan(acos(0.95) - acos(0.8))≈286.82kVAR根据电容器的感抗公式和频率50Hz,可以计算出所需的电容器容量:Xc=1/(2*π*f*C)C=1/(2*π*f*Xc)=1/(2*π*50*286.82)≈112.65uF因此,此电力系统需要提供约112.65uF的电容无功补偿装置来满足所需的输出容量。

综上所述,电容无功补偿装置的输出容量的计算需要综合考虑电力系统的负荷情况、功率因数要求、电容器的运行条件和装置的运行模式等因素,并根据功率计算公式来确定所需的无功功率,进而计算出所需的输出容量。

电容补偿

电容补偿
四、主要技术参数 1、额定电压(AC) 6KV、10KV 2、系统电压取样(AC) 100V(PT二次线电压) 3、交流电流取样 0~5A(若PT取10KV侧二次A、C相线电压时,CT应取B相电流) 4、电压整定值 6~6.6KV 10~11KV可调 5、动作间隔时间 1~60分钟可调 6、功
容量为700KW的负荷,可以先测量一下其自然功率因数值,就是全部负荷起动情况下,不带电容器时的功率因数值。若没有办法精确测量,估计你大部分负荷都是电机,以功率因数COSφ1=0.70估算,若要在额定状态下,将其功率因数提高到0.90,则需要补偿电容器容量为: 补偿前:COSφ1=0.70,φ1=0.7953,tgφ1=1.020 补偿后:COSφ2=0.90,φ2=0.451,tgφ2=0.483 Qc=Pe*(tgφ1-tgφ2)=700*(1.020-0.483)=375.9(Kvar) 取整,约需要补偿378Kvar的电容器,若选择单台14Kvar的电容器组,则需要27块。 (我们行业内目前接触的最大的是单台30Kvar的电容器组,一个柜内可安装12组。我们目前补偿前大约COSφ1=0.75,相应的tgφ1=0.882,则Qc=Pe*(tgφ1-tgφ2)=Pe*(0.882-0.483)=Pe*(0.399)=XXX(Kvar),目前市面上的价格大约是每Kvar=220元。)[1]
三、技术特征 1、电压优先 按电压质量要求自动投切电容器,电压超出最高设定值时,逐步切除电容器组,直到电压合格为止。电压低于最低设定值时,在保证不过载的条件下逐步投入电容器组,使母线电压始终处于规定范围。 2、无功自动补偿功能 在电压优先原则下,依据负荷无功功率大小自动投切电容器组,使系统始终处于无功损耗最小状态。 3、智能控制功能 自动发出动作指令前首先探询动作后可能出现的所有超限定值,减少动作次数。 4、异常报警功能 当电容器控制回路继保动作拒动和控制器则自动闭锁改组电容器的自动控制。 5、模糊控制功能 当系统处于电压合格范围的高端且在某特定环境时如何实施综控原则是该系列产品设计的难点,由于现场诸多因素(如配置环境、受电状况、动作时间、用户对动作次数的限制等)而引起的频繁动作是用户最为担忧的,应用模糊控制正是考虑了以上诸多因素使这一“盲区”得到合理解决。 6、综合保护功能 每套装置有开关保护(选配),过压、失压、过流(短路)和零序继电保护、双星形不平衡保护、熔断器过流保护、氧化锌避雷器、接地保护、速断保护等。

电动机无功补偿容量的选择及注意事项

电动机无功补偿容量的选择及注意事项

电动机无功补偿容量的选择及注意事项浙江省宁海县供电局高补林采用低压静电电容器,在对感应电动机进行无功补偿时.准确、合理地选择补偿容量,可以最大限度地减少系统中流过的无功功率,降低电能的损耗,提高电压质量。

目前,我们对城关公用低压线路上的感应电动机,普遍推行无功就地补偿,以减少公用线路日益上升的线损,我局已作为技改措施计划落实。

1 容量选择1.l 单台三相电动机补偿容量,应把电动机空载时的功率因数补偿至1为原则、若以满载时耗用的无功功率作为补偿依据,空载时必为过补偿。

因此,补偿容量按下式计算:(1)式中U——电动机的额定电压kVI0——电动机的空载电流 AQ——无功补偿容量kvar1.2 补偿容量的校正。

当电网的实际运行电压低于电容器的额定电压,则电容器输出容量达不到额定值,应按下式进行校正。

校正后为实际应补偿的容量:Q′=K2Q (2)式中U eB——电容器的额定电压U L——电网的代表日均方根电压值1.3 对电动机组的补偿,应根据其行业的特点,确定需要系数及同期率,然后由(1)、(2)式求得补偿容量。

2 运行时注意事项2.l 正常巡视电容器的运行情况,如发现有外壳鼓涨、漏油、绝缘放电及温升过高等情况.应及时处理,以防止事故扩大。

2.2在实际运行中,尤其是用电低谷,网络的电压将大大上升,当电网电压超过电容的额定电压的10%时,或电容器电流超过额定电流的1.3倍时,电容器应退出运行。

2.3补偿电容器一定要装设放电装置,放电装置按附图接线,运行时,K1闭合。

放电时,K2闭合。

放电回路不得装设熔丝。

2.4 低压电容器的保护可采用刀闸开关与低压熔断器或空气开关相配合的办法。

10KV线路变压器及电动机无功补偿1.怎样进行无功补偿应采取就地平衡的原则,使电网任一时刻无功总出力(含无功补偿)与无功总负荷(含无功总损耗)保持平衡。

某供电局已实现了变电所的集中补偿,本文不再涉及,仅就10KV线路,配变与电动机的补偿加以讨论。

无功补偿原理

无功补偿原理

无功补偿原理当电网电压的波形为正弦波,且电压与电流同相位时,电阻性电气设备如白炽灯、电热器等从电网上获得的功率P等于电压U和电流I的乘积,即:P=U×I。

电感性电气设备如电动机和变压器等由于在运行时需要建立磁场,此时所消耗的能量不能转化为有功功率,故被称为无功功率Q。

此时电流滞后电压一个角度f。

在选择变配电设备时所根据的是视在功率S,即有功功率和无功功率的几何和:S =(P2 + Q2)1/2无功功率为:Q=(S2 - P2)1/2有功功率与视在功率的比值为功率因数:cosf=P/S无功功率的传输加重了电网负荷,使电网损耗增加,故需对其进行就近和就地补偿。

并联电容器可补偿或平衡电气设备的感性无功功率。

当容性无功功率QC等于感性无功功率QL时,电网只传输有功功率P。

根据国家有关规定,高压用户的功率因数应达到0.9以上,低压用户的功率因数应达到0.85以上。

如果选择电容器功率为Qc,则功率因数为:cosf= P/ (P2 + (QL - QC)2)1/2在实际工程中首先应根据负荷情况和供电部门的要求确定补偿后所需达到的功率因数值,然后再计算电容器的安装容量:Qc = P(tanf1 - tanf2)式中:Qc一电容器的安装容量,kvarP一系统的有功功率,kWtanf1一补偿前的功率因数角tanf2一补偿后的功率因数角采用查表法也可确定电容器的安装容量。

无功补偿相关名词注释2008-05-25 11:08无功功率补偿无功功率补偿的基本原理是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间互相交换。

这样,感性负荷所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是无功功率补偿的基本原理。

力率电费是指电力用户感性负载无功消耗量过大,造成功率因数低于国家标准,从而按电费额的百分比追收的电费(详细了解力率电费调整办法)。

电容补偿的一些计算

电容补偿的一些计算

电容补偿的一些计算电容器容量Kvar(千乏)与电容量uF(微法)的换算:无功功率单位为kvar(千乏)。

电功率分为有功功率和无功功率,有功功率就是指电能转化为热能或者机械能等形式被人们使用或消耗的能量,有功功率单位为kw 。

无功功率指电场能和磁场能相互转化的那部分能量,它的存在使电流与电压产生相位偏差,为了区别于有功功率就用了这么个单位。

电网中由于有大功率电机的存在,使得其总体呈感性,所以常常在电网中引入大功率无功补偿器(其实就是大电容),使电网近似于纯阻性,Kvar就常用在这作为无功补偿电容器的容量的单位。

kvar(千乏)和电容器容量的换算公式为(指三相补偿电容器):Q=√3×U×II=0.314×C×U/√3C=Q/0.314×U×U上式中Q为补偿容量,单位为Kvar,U为运行电压,单位为KV,I为补偿电流,单位为A,C为电容值,单位为uF。

式中0.314=2πf/1000。

例如:一补偿电容铭牌如下:型号:BZMJ0.4-10-3 (3三相补偿电容器)。

额定电压:0.4KV额定容量:10Kvar ?额定频率:50Hz额定电容:199uF (指总电容器量,即相当于3个电容器的容量)。

额定电流:14.4A代入上面的公司,计算,结果基本相付合。

补偿电容器:主要用于低压电网提高功率因数,电少线路损耗,改善电能质量电容器Q容量Kvar换算C容值uF公式I=0.314×C×UC=Q / 0.314×U×UQ容量=单位KvarC容值=单位uF1F=1000000μFI为补偿电流,单位为A,式中0.314=2πf/1000U电压单位=KV补充C=Q/U式中 C——电容器的电容,单位为法拉(F)Q——电容器所带电荷,单位为库仑(C)U——电容器两级间的电势差,单位为伏特(V)1F=1000000 uf (6个0) =1000000000000 PF(12个0)当给电容器两端施以正弦交流电压时,它发出的无功功率称为无功容量。

无功补偿柜电容器容量的计算

无功补偿柜电容器容量的计算

无功补偿柜电容器容量的计算方法无功补偿技术工程师:寇工(希拓电气(常州)有限公司)在提及电容柜时,常提到“容量”是多少这个问题。

容量,何为容量?其实主要分为以下三种:①变压器的额定容量(变压器的总共),单位KVA;②无功补偿容量的确定,一般取变压器容量的20~40%,取30%较多;③电容器的额定容量(电容器的功率),单位kvar(千乏)。

那么电容器的功率与低压防爆电容器无功功率补偿的关系是怎么样的?我们可以从以下这个公式看出:Q=2∙π∙f∙C∙U2注:Q表示电容器的功率,单位kvar;f表示系统频率,50Hz/60Hz;C为电容器容量,单位uF (微法);U表示系统电压,单位kV(千伏)。

我们上面公式可以看出,电容器的功率与施加到变压器两端电压的平方成正比。

其中,电容器有一个重要参数叫额定电压,对应额定电压有其额定功率,我们举例说明。

场景:选择电压为480V,额定功率为30kvar的电容器时:问1:当其用在400V系统中,其输出功率为多少呢?这是常遇到的问题,电容的额定电压一定大于系统的电压,通过上面的公式,我们可以很快算出来:Q400=Q480×(4002/4802)=30×(4002/4802)≈20.8kvar则,当其用在400V系统中,其输出功率为20.8kvar。

问2:为什么要选择额定电压高于系统电压的电容器呢?解答:因为电容器经受过电压危害时将快速损坏,为了保障电容器的运行安全,需要选择额定电压大于系统电压的电容器。

希拓小贴士:以低压电力电容器、高性能电抗器、高可靠投切开关、控制系统为主体,实现低压无功补偿功能。

主要应用于谐波严重场合的无功补偿,在一定程度上有吸收消除谐波的功能。

由以上可知,如果无功补偿支路设计为纯电容器的话,无功补偿支路的输出功率要根据电容器的额定电压和系统电压进行折算。

这也就是我们常说的安装功率(安装容量)和输出功率(输出容量)。

①安装功率常指:电容器的额定功率; ②输出功率常指:电容器在系统电压下的实际输出功率。

无功补偿在电力系统中的电容器选择与配置

无功补偿在电力系统中的电容器选择与配置

无功补偿在电力系统中的电容器选择与配置电力系统中的无功补偿是调节电力负载的重要手段,它不仅可以提高电力质量,还能提高电网的传输能力。

而电容器作为无功补偿的重要组成部分,在电力系统中起着至关重要的作用。

本文将讨论无功补偿在电力系统中的电容器选择与配置。

一、电容器的选择电力系统中的电容器按其电压等级分为低压电容器和高压电容器。

在选择电容器时,需要考虑以下几个因素:1. 电容器的额定电压:电容器的额定电压应大于或等于系统运行电压,以保证其正常运行,并具有足够的安全裕度。

2. 电容器的容量:选择合适的电容器容量是保证无功补偿效果的关键。

容量过小,则无法达到预期的补偿效果;容量过大,则可能造成电力系统的谐振问题。

因此,在选择容量时,需要根据负载的无功功率需求进行合理补偿。

3. 电容器的损耗:电力系统中的电容器存在一定的损耗,这些损耗将转化为热量,影响电容器的寿命。

因此,在选择电容器时,需要考虑其损耗因数和寿命。

二、电容器的配置电容器的配置是指将电容器合理地安装在电力系统的不同位置,以实现最优的无功补偿效果。

1. 单点补偿:单点补偿是指将电容器集中安装在负载侧,通过控制器控制其开关,以实现对负载无功功率的补偿。

这种配置适用于小型的负载系统,能够提供有效的无功补偿。

2. 多点补偿:多点补偿是指将电容器分散安装在电力系统的不同位置,根据不同位置的负载功率需求,分别进行无功补偿。

这种配置适用于大型的负载系统,能够更加精确地进行无功补偿。

3. 静止补偿器配置:静止补偿器是一种集中式的无功补偿设备,它能够通过电力电子器件实现对电容器的精确控制。

在配置静止补偿器时,需要考虑电容器和补偿器之间的匹配,以及静止补偿器的控制策略。

三、电容器的维护与管理为了确保电容器能够正常运行并延长其使用寿命,需要进行定期的维护与管理。

具体措施包括:1. 定期检查电容器的运行状态,包括电压、电流和温度等参数的监测,以及电容器外观的检查。

2. 定期清洁电容器周围的环境,避免灰尘和湿气的积聚,影响电容器的散热和运行。

补偿容量的选择

补偿容量的选择

①补偿容量的选择:补偿容量由电力负荷及补偿前和要求补偿提高后的功率因数值决定。

计算公式如下:Q bch=P pj(tgΦ1-tgΦ2)或Q bch=P pj(1-tgΦ2/tgΦ1)式中Q bch--所需的补偿容量kvarP pj--最大负荷月的平均有功负荷kWQ pj--最大负荷月的平均无功负荷kvartgΦ1--补偿前的功率因数cosΦ1的正切值tgΦ2--补偿后要求达到的功数因数cosΦ2的正切值另外,我们必须注意cosΦ2值的确定必须适当。

当功率因数由0.95提高到1时所需的补偿容量增加得很多,得不偿失。

因此将功率因数提高到1是不合理的。

摘要:农村配电网无功分散补偿方案探讨.1 配电线路进行无功补偿的效果;2关键词:配电线路无功补偿1 配电线路进行无功补偿的效果(1)减少线路的有功损失:当电流通过线路时,其有功功率损耗为:△P=3I2R×10-3或△P=3×(P/UcosΦ)2×R×10-3式中△P--线路的有功功率损耗kWI--线路通过的电流AR--线路每相电阻ΩP--线路输送的有功功kWQ--线路输送的无功功率kvarcosΦ--线路负荷的功率因数;由上式可知,有功功率损失和功率因数的平方成反比。

提高功率因数可以大量降低线损。

当功率因数由0.6提高到0.8时,铜损下降将近一半。

(2)改善用户电压质量:线路电压损失的公式为:△U=(PR QX)/U×10-3式中△U--线路电压损失kVU--线路电压kVP--线路有功负荷kWQ--线路无功负荷kvarX--线路感抗ΩR--线路电阻Ω由上式可以看出,提高系统功率因数,减少线路输送的无功负荷,则电压损失莫玌将下降。

(3)减小系统元件的容量,提高电网的输送能力:视在功率S=P/cosΦ,由此可以看出,提高功率因数在输送同样的有功功率情况下,设备安装容量可以减少,节约了投资。

如设备安装容量不变则可增大有功功率输送量。

电容器自动补偿原理及无功补偿计算

电容器自动补偿原理及无功补偿计算

一、KL-4T 智能无功功率自动补偿控制器1、补偿原理JKL-4T 智能无功功率自动补偿控制器采用单片机技术,投入区域、延时时间、过压切除门限等参数已内部设定,利用程序控制固态继电器和交流接触器复合工作方式,投切电容器的瞬间过渡过程由固态继电器执行,正常工作由接触器执行(投入电容时,先触发固态继电器导通,再操作交流接触器上电,然后关断固态继电器;切除电容时先触发固态继电器导通,再操作交流接触器断电,然后关断固态继电器),具有电压过零投入、电流过零切除、无拉弧、低功耗等特点。

2、计算方法及投切依据以电压为判据进行控制,无需电流互感器,适用于末端补偿,以保证用户电压水平。

1)电压投切门限投入电压门限范围 175V ~210V 出厂预置 175V切除电压门限范围 230V ~240V 出厂预置 232V回差 0V ~22V 出厂预置 22V2)欠压保护门限(电压下限)170V ~175V 出厂预置 170V3)过压保护门限(电压上限)242V ~260V 出厂预置 242V4)投切延时 1S ~600S 出厂预置 30S3、常见故障及处理办法用户端电压过低而电容器不能投入。

1)电压低于欠压保护门限。

2)三相电压严重不平衡。

二、JKL-4C 无功补偿控制器1、补偿原理JKL-4C 无功补偿控制器采用单片机技术,投切组数、投切门限、延时时间、过压切除门限等参数可由用户自行整定。

取样物理量为无功电流,取样信号相序自动鉴别、转换、无须提供互感器变比及补偿电容容量,自行整定投切门限,满量程跟踪补偿,无投切振荡,适应于谐波含量较大的恶劣现场工作。

2、计算方法及投切依据依据《DL/T597-1996低压无功补偿器订货技术条件》无功电流投切,目标功率因数为限制条件。

1)当电网功率因数低于COSФ预置且电网无功电流大于1.1Ic 时(Ic为电容器所产生无功电流,由控制器自动计算),超过延时时间,补偿电容器自动投入。

2)当相位超前或电压处于过压、欠压状态时,控制器切除电容器。

无功补偿电容计算方法

无功补偿电容计算方法

1、Q = UU2πfC2、C = Q/2πfUU2、若功率因数为,则:无功功率Q = 3/4P ,相无功功率Qx = 1/4P ;3、相电容Cx = Qx/2πfUU,U = 380V,三相电容△接;4、相电容Cx = Qx/2πfUU,U = 220V,三相电容Y 接;李纯绪:引用加为好友发送留言2008-2-28 9:35:00 告诉你最简单的一个估算办法:1.测量电机的实际运行电流,变化负载估计一个平均电流;2.测量电流与铭牌电流比较,可得电机大概的有功功率,由此可算出有功电流;3.测量电流减去计算的有功电流,所得结果就是要选的电容器的电流。

比如一台75KW电机,负载是水泵,测量电流140A;铭牌电流150A,可得此时电机的有功功率约70KW,有功电流约106A,140-106=34。

结果是选34A的电容或选20KVar左右的电容器。

按此方法选的电容器在欠补偿范围,其余的补偿量由集中补偿完成。

刘志斌:引用加为好友发送留言编辑2008-2-29 11:04:0TO 李纯绪:1、“测量电流140A-有功电流约106A=无功电流34”,正弦交流电是矢量,要按矢量求和的法则运算,你按算术求和的方法算是极其错的!2、异步电机补偿电容的大小,首先要确定补偿的无功电流或无功功率;3、在确定一相的无功电流或无功功率,然后计算电容的大小和接法;曾lingwu:引用加为好友发送留言2008-2-29 11:19:00 不要说得那么深奥,以电机额定电流的30%来选择电容电流就可以了. 一般情况下,只有高压电容我们才用考虑接法,低压的电力电容器都已接好.刘志斌:引用加为好友发送留言编辑2008-2-29 11:29:0 0“以电机额定电流的30%来选择电容电流就可以了.”1、这又是一种估算的方法,和李纯绪的方法不同;2、以电机额定电流的30%来选择补偿电容电流,没有错误可言,是一种经验估算的方法;4、按照这个估算法,额定电流150A,补偿电流应该是150×30% = 45A ;1、如果电机额定运行,功率因数是,那么无功电流是额定电流的倍,即60%;2、额定电流150A,补偿电流无功电流应该是150×60% = 90A1、电机的额定电流Ie,功率因数COSΦ = ,则SinΦ = ;2、此时的有功电流是Ie×COSΦ ;3、此时的无功电流是Ie×SinΦ ;1、电机符合变化不大时,可按符合电流I,以及功率因数COSΦ,查表得Sin Φ ,计算实际无功电流,确定补偿电容;2、电机符合变化大时,可按小符合电流I,以及功率因数COSΦ,查表得Sin Φ ,计算实际无功电流,确定补偿电容;3、也可按空载电流的倍的规定,确定补偿电容;1、补偿电流选大,补偿电容大,会出现过补偿,过补偿会降低线路功率因数;2、过补偿,电容电流会造成电网电压上飘,电压不稳;3、由于电机的无功电流是变化的,为了不出现过补偿的情况,所以补偿电流以最小无功电流计算;4、由于电机电压不变,所以励磁电流不变,即认为无功电流不变;5、电机空载时的电流,90%是励磁电流,即无功电流,所以以空载电流的倍作为无功电流计算补偿电容,是科学的,是最简单的方法;如果知道无功电流Ig,则补偿电容C可按下式计算:1、三相的无功功率Q = √3×U×Ig;2、一相的无功功率Qx = 1/3×Q = 1/√3 ×U×Ig;3、相电容Cx = Qx/2πfUU =(1/√3 ×U×Ig)/2πfUcUc = Ig/2√3πfUc, Uc = 380V,三相电容△接;4、相电容Cx = Qx/2πfUU =(1/√3 ×U×Ig)/2πfUcUc = Ig/2πfUc, ,Uc = 220V,三相电容Y 接;。

380V、10kV无功补偿电容器容量计算、接线和保护

380V、10kV无功补偿电容器容量计算、接线和保护

380V、10kV无功补偿电容器容量计算、接线和保护摘要:在本次研究中,我们针对10kv以及380V的无功补偿所需要的电容器容量进行正确的计算,提出每千瓦有功负荷功率因数需要提升到cosΦ2。

当处于额定电压状态下,需要装设电容器计算系数。

我们通过大量的电容器数据给出单个电容器大小容量搭配的建议,能够便于设计实现电容器的稳定性运行。

关键词:无功补偿;电容器;容量;接线;保护在当前一些工程配电设计过程中,我们常会发现在无功补偿设计时选择电容器容量,很容易忽视额定电压对其产生的影响,反而仅从额定容量的角度上进行选取,将其视为实际预期无功负荷需要补偿无功容量,将其投入运行之后,很难达到预期的功率因数。

此外,在选择单个电容器时,没有考虑到负荷变化会对功率因素产生的影响,选取同容量的单个电容器进行组合。

处于轻负荷状态下,很容易使电容器无法投入运行,其运行功率因数低于0.9。

针对上述问题,在本次研究中,我们针对工程设计以及运行人员所给出的数据作为参考进行分析。

一、电容器补偿容量当我们将电容器所需的补偿容量这一内容可以看作是接入电容器,能够使负荷从cosΦ1提升到cosΦ2,这个过程中有功负荷所需要的电容器容量,根据公式我们可以发现该公式中p是设备中最高负荷,年平均有功功率P,tan是电容器补偿之前cosΦ1的正切值,tan2是电容器补偿之后cosΦ2的正切值,k是无功补偿率因数。

为能够实现电容器的安全可靠性运行,并联电容器的额定电压应当高于实际的电网标准电压。

具体来看,当电网中所用的并联电容器额定电压一般是400V以上,而实际其电压为380V,能够限制分流谐波和闸涌流电流,一般还需要进行电抗器的串联,需要采用更高额定电压的电容器,我们发现电容器容量是与其受电压平方成正比关系,当额定电压较高时,电容器可以使用低于电压值,此时电容器容量会于电压成反比例。

在投入使用过程中,我们会发现投、切电容器都会产生工频过电压,尤其是当电容器没有完全放完电,而又投入第二次充电过程中,这个过程中产生的过电压高。

浅析10kV配电线路无功补偿电容器补偿容量的选择

浅析10kV配电线路无功补偿电容器补偿容量的选择

与 电动 机 相 比 , 用 户使 个 问题 上 , 我 国不能依靠数 量 , 而要 依 靠 质 量 取 胜 . 这 也 应 是 进 行 功 率 补 偿 的 一 种 方 式 。 一 般 来说 , 用 的 电 器 负载 的 无 功 功 率 的 消耗 并 不 太 大 .故 而 个 别补 偿的 今 后 电 力 发展 的 一 个 方 向 。而 如 何 才 能提 高 现 有 发 电厂 的 发
小, 然后 用 无 功补 偿 率 与 平 均 的 有 功 功 率 进 行 乘 积 处 理 计 算 ,
便 可 以得 到 需 要 补偿 的 容 量 的 大 小 。
1 无功补偿 方式 的选择
1 . 1 集中补 偿
集 中补 偿 的装 配特 点 自然 就 是 集 中装 配 .其 主要 就 是 把 电容 器组 放 置在 专 门 的 电 线 上 ,这 种 集 中补 偿 的 方 式 最 大 的 优 点 就 是 电容 器 的利 用 率较 高 。而 且 可 以就 地 补 偿 。 除 此 之
电 量 应 该 从 多个 角 度 进 行 着 手 .进 行 设 备 的 更 新 改 良换 代 是

对 象 般 都 是 电动 机 。因 为这 种 补 偿 具 有 定 向性 的特 点 , 所以
个方向 , 改进 相 关 的技 术也 是 一 个 方 向 , 还 有 一 种 思 路 就 是 它 的补 偿 效 果 也 是 十 分 出 色 . 而且 因 为 个 别补 偿 对 象 的特 殊 也使 得 个 别补 偿 的补 偿 容 量 是 三 者 中最 大 的一 个 。 把 无 功 功 率 消 耗 的 电 量 进 行 补 偿 , 这种 方 法 虽然 没 有 真 正 意 性 , 义 上提 高 发 电 机 的 产 出电 量 ,但 从 结 果 来 看 却 实 现 了可 供 利

补偿电容器怎么选择

补偿电容器怎么选择

补偿电容器怎么选择电动机的就地补偿,都是补偿电动机的空载无功:空载无功一般为电动机功率的20~30%。

也就是15KW的电动机补偿3KVAR左右。

接地不规范,正确的应当是配电柜上还有一根线接到接地体上面的。

假如是直接接在配电柜上,而配电柜没有接到接地体的话,那设备漏电的话,配电柜也会带电,是特别危急的。

选择无功补偿主要考虑几个方面:由于电网不洁净,尤其使用变频设备较多的场合,谐波问题严峻,因此无功补偿一般都选用电容器串电抗器。

来防止谐波放大,保证电容器的平安。

1,调谐频率的选择,通过电抗器与电容器阻抗比来确定调谐频率,一般来说预防5次谐波,可选择电抗器6%2,电容器耐电压=系统电压+电抗器压升+谐波电压三者缺一不行。

3,电抗器耐电流=系统电流+谐波电流。

供应一个例题参考:问:将功率因数从0.9提高到1.0所需的补偿容量,与将功率因数从0.8提高到0.9所需的补偿容量相比()A. 一样多B. 更多些C. 少一些D. 不肯定选;B!解释:根据配置无功补偿的计算公式:Qc=P(tg a1-tg a2)其中:Qc,是需要补偿的电容器容量值,单位:KvarP,是系统有功功率,此处可以看作一个确定的有功功率值,单位:Kwtg a1,是补偿前功率因数Cos a1 的相角的正切。

tg a2,是补偿后功率因数Cos a2的相角的正切。

对于从0.9提高到1.0,用三角函数公式计算得:tg a1=0.48,tg a2=0.00带入前面公式:Qc=P*(0.0.48-0.00)=0.48P (Kvar)对于从0.8提高到0.9,用三角函数公式计算得:tg a1=0.75,tg a2=0.48带入前面公式:Qc=P*(0.75-0.48)=0.27P (Kvar)所以:选:B,更多一些。

这说明,当功率因数较低的时候,提高功率因数的代价,比原本功率因数高的时候,来的更简单。

与同学考试是一个道理。

平常考60、70分的同学,要考80分、90分,比平常考90分的同学盼望考99分简单。

无功补偿电容器容量计算举例

无功补偿电容器容量计算举例

无功补偿电容器容量计算举例无功补偿电容器容量计算举例 1. 电容器的容量计算电容器的补偿容量,需根据配变容量、负荷容量、负荷性质、三相电压平衡度、自然功率因数、目标功率因数等背景参数,经过计算确定。

(1)对于35,110kV变电所中电容器装置的总容量,按照无功功率就近平衡的原则,可按主变压器容量的10%,30%考虑。

并建议10kV侧电容器组分组容量确定为2000、3000、6000kvar。

(2)对于普通负荷的公用变的0.4kV低压补偿,可按配变容量的20%,30%进行补偿。

(3)当三相电压不平衡时(如单相负荷较多),需考虑一定容量的分相补偿。

(4)对于企业专用变压器的0.4kV低压补偿,可按配变容量的30%,60%进行补偿。

(5)当补偿点处有谐波时,还要考虑串联一定比率的电抗器,以构成调谐支路,滤除线路上的高次谐波。

(6)当采用固定补偿方式时,补偿总容量应选小些,避免线路轻载时出现过补,产生无功倒送。

(7)当采用自动补偿方式时,补偿总容量应选大些,避免高峰负荷时出现欠补,造成力率过低。

(8)当电容器额定电压与系统标称电压不相等时,补偿容量?安装容量,装机容量需进行修正。

2. 随机补偿装置电容器容量QC的计算公式(1)按电动机的空载电流选择高压电动机随机装置电容器容量计算:以从电动机样本中查取;?经验方法,对于大容量电动机,约为额定电流的20%,35%。

对于小容量电动机,约为额定电流的35%,50%(计算后,应该取最小值,带入计算)。

建议:两种计算方法取得的QC值的结果可能并不一致,应采用较小的数值。

高压电动机采用进相机实施无功补偿,也是近年来应用比较多的一种随机补偿设备。

与电机定子侧并联电容器的补偿方式有着本质的区别。

电容补偿只是在电机之外的电网上对电机的无功进行补偿,无法改善电机本身的运行状况;而进相机装置是串接在电机转子回路中,不仅可显著提高功率因数,使电机定子电流约减少15%~20%左右,而且电机温升明显降低,电机的效率和过载能力有一定提高。

电容补偿柜的电容容量如何计算

电容补偿柜的电容容量如何计算

电容补偿柜的电容容量如何计算无功功率单位为kvar(千乏)电网中由于有大功率电机的存在,使得其总体呈感性,所以常常在电网中引入大功率无功补偿器(其实就是大电容),使电网貌似于纯阻性,Kvar就常用在这作为无功补偿电容器的容量的单位。

kvar(千乏)和电容器容量的换算公式为(指三相补偿电容器):Q=√3×U×II=0.314×C×U/√3C=Q/(0.314×U×U)上式中Q为补偿容量,单位为Kvar,U为额定运行电压,单位为KV,I为补偿电流,单位为A,C为电容值,单位为F。

式中0.314=2πf/1000。

例如:一补偿电容铭牌如下:型号:BZMJ0.4103(3三相补偿电容器)。

额定电压:0.4KV额定容量:10Kvar额定频率:50Hz额定电容:199uF(指总电容器量,即相当于3个电容器的容量)。

额定电流:14.4A代入上面的公式,计算,结果相符合。

补偿电容器:重要用于低压电网提高功率因数,削减线路损耗,改善电能质量。

200千瓦变压器无功补偿柜匹配电容多少最合理一般来说,对于电动机类型的功率负荷,补偿量约为40%,对于综合配变,补偿量约为20%.假如知道未补偿前的功率因数,那么依据公式即可以算出实在的补偿量。

可是我现在有7.5电机12台,5.5的4台,11的2台,500型电焊机15台,由于有用电高峰和低谷,在低谷时动力可下降30%,我现在用无功补偿柜里的电容器有4块14Kvar的,6块40Kvar的。

据说匹配不合理,怎么样才能匹搭配理。

另外补偿器的读数在多少时最合适时没有罚款有嘉奖。

一般来说,配电变压器的无功补偿容量约为变压器容量的20%~40%,对于200KVA的配电变压器,补偿量约为40Kvar~80Kvar。

精准计算无功补偿容量比较多而杂,且负荷多常常变化,计算出来也无太大意义。

一般设计人员以30%来估算,即选取60Kvar为最大补偿容量,也就是安装容量。

浅析无功补偿电容器计算及配置

浅析无功补偿电容器计算及配置

为满足 日益增长的电能需要 ,电力 系统的结构愈来愈显得薄弱 、发 电设各储量愈趋 于极限。系统在重负荷条件 下, 一旦受到设备投切 、系 统故障等于扰时 , 些节点电压跌落就会出现 电压不稳定 ,它们开始是 某 局部现象 ,但是能够发展成为波及到广阔区域 的电压崩溃 ,造成系统大 面积停 电事故 。电网电压崩溃事故的发生和发展过程 ,从根本原因看 , 主要是无功功率补偿严重不足造成的。当电力系统趋向于短期电压不稳 定时 ,靠近负荷中心的无功支撑是基本的,考虑的无功支撑应该能够在 所考虑到的最坏的情况下使系统恢复到稳定平衡 点。设置无功补偿 电容 器是补偿无功功率 比较传统的方法 ,它具有结构简单 , 经济灵活,调节 力便 等优点 ,在国内外得到广泛应用 ,目 前仍是无功补偿运用最多的手
段。
工程实践中将 i种补偿方式统筹考虑 , 合理布局 ,选配合适的补偿 容量 ,可取得较好的补偿效果。
4 电容器 补偿容 量计算
1 采用集 中补偿方式和分组补偿方式时,总的补偿容量 由下式决定 ) 培 () 1 或 l qP fv a ( 2)

式中 表示 巾变配电所供电的月最大有功计算负载 (w 肋 《 k ); 示 月平均负载率 , 一般可S0 8 表示补偿后的功率因数角, t7 ;识 . 参照电力 部 门的要求确定,一般 可 . 0 5 一 取O _. ; 表示电容器补偿率 ( V r W ), 9 9 K aK / 即每千瓦有功负载需要补偿的无功功率,g 智 t - %。电容器接法不同 = g
流 ( A),n 表示电动机最大转矩倍数 ,一般取 1 — .。需要注意 ,若 T . 22 8 实际运行 电压与 电容器额定 电压不一致 ,则 电容器的实际补容量为 :
= (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

31 0.047 3.818kV 6.6 /
157.5 A
3
1800 3 6.6
电容器组容抗 X c
6600 3 157.5
24.2
于是,电抗率 K=1.039/24.2=4.3% 验算电容器组每相电压:
U cn 1.05 6
31 0.043 3.80kV 6.6 /
保护装置动作时间:top=0.15s 3) 过负荷保护 保护装置的动作电流: I op K rel K jx I cn nt K r 1.2 1 99.9 4.44 A 30 0.9
保护装置动作时间:top=0.5+0.5= 1.0s 4) 开口三角电压保护(用于单星形接线的电容器组) 保护装置动作电压: U op 1 3 0.6 3810.6 1 6859 7.47 V 取 7.4V 1.5 60 3 181 0.6 0.6 2 0.6 90 10.2
7)
低电压保护 保护装置动作电压:Uop=0.5100=50V, 注:此保护也可不设 保护装置通常动作于信号。
8)
单相接地保护 保护装置的一次动作电流:Iop=12/1.5=8A Iop=(12/10)1.5=0.8A 保护装置动作于信号或跳闸,若动作于跳闸,则 t=0.1s
K jx I '' min 0.866 nt K sen

1 1763 0.866 25.4 A 30 2
即按电容器端头最小两相短路时灵敏度不小于 2 确定动作电流值。 保护装置动作时间:top=0.15s 保护装置一次动作电流:I=25.430=762 A 2) 过电流保护 保护装置的动作电流: I op 取 5.8A 保护装置动作时间:top=0.5 灵敏度校验 Ksen=(17630.866)/(305.8)=8.71.5 K rel K jx I cn nt 2.5 1 99.9 8.3 A 30 注:上述两项保护可合并,即只装设带短延时过电流保护,此时: 保护装置的动作电流: I op K rel K jx K gh I cn nt K r 1.2 1 1.3 99.9 5.77 A 30 0.9
无功补偿用电容器的选择与计算 1 有关规范 GB50227 CECS32:91 CECSS33:91 2 2.1 接线方式 在中性点非直接 6-35kV 高压电容器组宜采用单星形接线或双星形接线。 接地的电网中,星形接线电容器组的中性点不应接地。对于石化企业变 (配)电所应优先采用单星形接线。 2.2 2.3 2.4 3 低压电容器组可采用三角形接线或中性点不接地的星形接线方式。石化 企业常用三角形接线。 补偿用电容器组及其配套装置直接接入变电所母线上。 串联接入的电抗器宜装设于电容器组的中性点侧。当装设于电容器组的 电源侧时,应校验电抗器的动稳定电流和热稳定电流。 串联电抗器选择 电容器回路应串联接入适当的电抗器,用于限制合闸涌流或限制 n 次谐 波。 电抗率计算 电抗率-串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示。 设 6kV 母线经计算需补偿无功功率 Q=1800kvar=1.8Mvar,选用 6.3/ 3 kV,36100 kvar 电容器,星形接线,电抗器装设于电容器组的中性点侧。 电容器组的容抗计算: Ic 1800 3 6.3 165 A 并联电容器装置设计规范 并联电容器用串联电抗器设计选择标准 并联电容器装置的电压、容量系列选择标准
6.6 / 3 10
2
3
8 50
36.3
L=5%Xc=0.04536.3=1.634 电容器组额定电流:
I
6000 3
6.6 / 3
8 50
2

6 36.3 99.9 A 3 36.3 1.634
或I
36.3 1.634 99.93 A(当母线电压为 6kV 时)
选电流互感器变比 150/5A=30
1)保护配置: 1) 短路短延时速断保护 电抗器后最小三相短路电流计算: 系统电抗 Xs=9.16/8.5=1.0776 (Sj=100MVA) 电抗器电抗 Xr=1.634100/6.32=4.117
当忽略馈线电缆阻抗时,Imin=9.16/(1.0776+4.117)=1.763kA=1763A 保护装置的动作电流: I op
此保护通常由供货厂商配套提供,只需将继电器接点作为开关量接入开关 柜保护器。 5) 中性线电流平衡保护(用于双星形接线的电容器组) 此保护通常由供货厂商配套提供,只需将继电器接点作为开关量接入开关 柜保护器。
6)
过电压保护 保护装置动作电压:Uop=1.1100=110V。 保护装置动作于信号或跳闸,若动作于跳闸,则 t=3min。
注:后两项标准为中国工程建设标准化协会标准。
电容器组额定电流 Xc
6300 3 165
22.04
电容器组容抗

串联电抗器的感抗计算: k4.5%时,即 K=Xl/Xc=4.5%,得 XL=0.04522.04=0.9918, ,200A,额定 电抗 6 %的干式电抗器, X L 0.06 6 / 3 0.2 1.039 ,实际的电抗率为 K=1.039/22.04=4.7%。 4 电容器容量和电压选择 标准的容量(指三相额定容量)等级见表 4-1。 上述举例中,补偿容量 1800kvar =1.8Mvar 符合容量等级要求。 4.1 电容器组的额定容量应按 CECSS 33:91 规定的容量等级选择功率 Q=3(-157)2(1.039-24.2)10-3=-1712.68kvar 同理,当母线电压为 6.0kV 时,Q=-1554.4kvar 当母线电压为 5.7kV 时,Q=-1402.9kvar 表 4-1 级差容量 Mvar 0.15 0.3 0.6 1.2 2.0 装置的额定容量 Mvar 0.3 0.45 0.6 0.75 0.9 1.2 2.4 3.0 3.6 4.2 7.2 8.4 9.6 2.0 4.0 6.0 8.0 10 12 1.5 4.8(5.0) 1.8 5.4
4.0 6.0
16 18
20 24 30 36 表 4-2 42 48 54 60
系统电压 UsnkV) 电容器额定电压 Ucn(kV) 电抗率%
6
10
35
63
1 4.5 6 12 1213 5 6 操作过电压保护
6.3/ 3 6.6/ 3 6.9/ 3 7.2/ 3
10.5/ 3 11/ 3 11.5/ 3 12/ 3
21 22 23 24
38 40 42 44
应选用无间隙氧化锌避雷器,由制造厂成套供应。 继电保护设置与整定计算(举例) 带串联电抗器、单星形接线 6kV 电容器组的保护: 电容器组额定容量 1200kvar,共 24 个 BFM,共 24 个 BFM 6.6 / 3 -50-1W, 每相 8 个电容器并联。为抑制 5 次以上谐波,取电抗率 K= XL/Xc=4.5%,即 XL=4.5%Xc,6kV 母线最小三相短路电流为 8500A,系统单相总接地电容电流为 12A。 解:每相电容器容抗及串联电抗器电抗计算: Xc


4.2 电容器的额定电压选择 电容器组每相额定电压的选择除与接入系统的额定电压有关外,还与 回路的电抗 率有关,可按下式计算:
U cn 1.05U sn
31 K
式中,Usn——接入电网的额定电压(kV); Ucn——每相电容器的额定电压(kV); K——装置的额定电抗率。 上述举例中, U cn 1.05 6 但此时,电容器组额定电流 I c
3 3.81kV
结论是:因为串联电抗器,应选用较高额定电压的电容器,电抗率越大(即串联 电抗值越大)所选电容器额定电压越高。表 4-2 列出电抗率与电容器额定电压之 关系。 4.3 运行中实际发出无功功率(供给系统的)计算: 当母线电压为 6.3kV 时,回路电流 I
3 1.039 24.2
相关文档
最新文档