贵州省中职单报高职数学主要公式
职校高中数学知识点总结及公式大全
职校高中数学知识点总结及公式大全全文共四篇示例,供读者参考第一篇示例:职校高中数学知识点总结及公式大全一、初等代数1. 二项式定理(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a b^(n-1) + C(n,n)b^n2. 多项式的加减乘除运算多项式加减法:合并同类项多项式乘法:展开式,按每一项分配展开多项式除法:长除法或者直接使用因式分解3. 一元二次方程一元二次方程的一般形式为ax^2 + bx + c = 0求根公式:x = (-b ± 根号(b^2 - 4ac)) / 2a判别式:Δ = b^2 - 4ac根的情况:Δ > 0,有两个不相等的实根Δ = 0,有两个相等的实根Δ < 0,无实数根4. 不等式解不等式的方法与解方程式类似,但需要注意不等式号的方向常见的不等式:线性不等式、一元二次不等式不等式的解集写法:用数轴表示或者写成区间形式5. 函数函数的定义:对于每个元素x,存在唯一的元素y 与之对应函数的图像:以y 轴为对称轴的曲线常见函数:一次函数、二次函数、指数函数、对数函数、三角函数二、平面几何1. 几何基本定理射影定理:两平行线被一截线相交,所成的两对对应角相等全等三角形的判定:SSS、SAS、ASA、AAS、HL相似三角形的判定:AA、SSS、SAS比例定理正弦定理:a/sinA = b/sinB = c/sinC余弦定理:c^2 = a^2 + b^2 - 2ab cosC2. 圆圆的相关性质:半径、直径、周长、面积圆的弦、割、切切线与半径的垂直性:切线与半径垂直于接触点圆内角的性质:内切圆、外切圆4. 向量向量的表示:用一个有向线段或者坐标表示向量的模:|a| = √(a1^2 + a2^2)向量的运算:加减法、数量积、向量积5. 空间几何点、直线、平面在空间中的位置关系直线和平面的交点及夹角平行线和垂直线的性质空间几何问题的解决方法第二篇示例:职校高中数学知识点总结在职校的高中数学课程中,学生将会接触到许多重要的数学知识点和公式。
高职考试常用公式
高职考试常用公式预备知识: 一.乘法公式完全平方公式:2222)(b ab a b a +±=± 平方差公式:))((22b a b a b a -+=-立方和、立方差公式:))((2233b ab a b a b a +±=±二.根式性质:)0()(2>=a a a ;⎩⎨⎧<-≥==)0()0(2a a a a a a .三.分式运算:bd bc ad d c b a ±=±, bd ac d c b a =⋅, bcadd c b a =÷. 四.一元二次方程 )0(02≠=++a c bx ax求根公式: aacb b x 2422,1-±-=判别式:ac b 42-=∆,当0>∆时,方程有两个不相等的实数根;当0=∆时,方程有两个相等的实数根; 当0<∆时,方程没有实数根.根与系数关系(韦达定理):a b x x -=+21 ,acx x =21 .第一章 集合与逻辑用语一.元素与集合的关系:a 是集合A 的元素,记作 A a ∈ 二.集合与集合的关系如果集合A 的任何一个元素都是集合B 的元素,则集合A 叫做集合B 的子集, 记作 B A ⊆ 或 A B ⊇;⎪⎩⎪⎨⎧=⊂⇒⊆B A B A B A 如果B A ⊆且B A ≠,则集合A 叫做集合B 的真子集,记作 B A ⊂, 如果B A ⊆同时A B ⊆,那么称集合A 与集合B 相等,记作 B A =;子集的性质:(1) A A ⊆ (2) A ⊆φ (3) n 个元素的集合一共有n2个子集三.集合运算交集 A x x B A ∈=⋂/{且}B x ∈ 并集 A x x B A ∈=⋃/{或}B x ∈ 补集 u x x A C u ∈=/{且}A x ∉ 四.充分与必要条件如果:在 A 条件下,必然有 B 结论,就记作 B A ⇒,那么就说:A 是 B 的充分条件,B 是 A 的必要条件; 如果有 B A ⇒,又有 A B ⇒,就记作 B A ⇔,那么就说:A 是 B 的充分条件且必要条件(又称A 、B 等价)。
高职高考数学考重点公式大全
重点公式 第零章一、()()0000<=>⎪⎩⎪⎨⎧-=a a a a a a二、因式分解常用的公式222)(2b a b ab a ±=+± ))((22b a b a b a -+=- ))((2233b ab a b a b a +±=±三、分式:除式中含有字母的有理式叫分式,分式有意义的条件是分母不零 1.分式的基本性质:M B M A B A ⨯⨯=MB MA B A ÷÷=(M 为整式,且0≠M ) 2.分式的运算:加减法:c b a c b c a ±=± bd bc ad d c b a ±=± 乘除法:bd ac d c b a =⋅ bcadc d b a d c b a =⨯=÷乘方:n nn ba b a =)( (n 为正整数)四、1.一元二次方程的求根公式:aac b b x 242-±-= (042≥-ac b )2.韦达定理:a b x x -=+21;ac x x =⋅21 第一章一、非空集合A 有:子集:n2个;真子集:12-n个;非空真子集个数:22-n个 二、两个实数大小的比较b a b a >⇔>-0 b a b a =⇔=-0 b a b a <⇔<-0第二章一、不等式的性质 1.对称性:a b b a <⇔> 2.传递性:c a c b b a <⇔>>, 3.(同加)m b m a b a +>+⇒>4. bc ac c b a >⇒>>0, bc ac c b a =⇒=>0, bc ac c b a <⇒<>0,5.(1) 加法运算(同向加):d b c a d c b a +>+⇒>>,(2)减法运算:统一成加法运算c b d a c d b a d c b a ->-⇒->->⇒>>,, 6.(1)(正向同乘) bd ac d c b a >⇒>>>>0,0 (2)除法运算:统一乘法运算0011,00,0>>⇒>>>>⇒>>>>cbd a c d b a d c b a 7.乘方运算(正乘方):)1,(0>∈>⇒>>+n N n b a b a nn且 8.开方运算(正开方):)1,(0>∈>⇒>>+n N n b a b a n n且9.(同号倒) ba ab b a 110,<⇒>> 二、均值定理1.时取等号当且仅当其中b a R b a ab ba =∈≥++,,,22. 时取等号当且仅当其中c b a R c b a abc c b a ==∈≥+++,,,,33三、重要不等式 1. 0)(2≥+b a2. 时取等号当且仅当其中b a R b a ab b a =∈≥+,,,2223. )0,0,0(3333>>>≥++c b a abc c b a第三章 一、1.正比例函数时为减函数时为增函数,当当00),0()(<>≠=k k k kx x f2.一次函数时为减函数时为增函数,当当00),0()(<>≠+=k k k b kx x f),0()(.3≠=k xkx f 反比例函数)上是减函数,,)和(,函数在区间(时当∞+∞->00,0k )上是增函数,)和(,时,函数在区间(当∞+∞-<000k时,函数为增函数时,函数为减函数,当当且对数函数110),10(log y 4.a ><<≠>=a a a a x 时,函数为增函数时,函数为减函数,当当且指数函数110),10(y 5.><<≠>=a a a a a x二、函数)0(2≠++=a c bx ax y 叫做二次函数 三、二次函数的图像是一条抛物线四、任何一个二次函数)0(2≠++=a c bx ax y 都可把它的解析式配方为顶点式;ab ac a b x a y 44)2(22-++=性质1.图像的顶点坐标为)44,2(2a b ac a b --,对称轴是直线abx 2-= 2.当0>a ,函数在区间)2,(a b --∞上是减函数,在),2(+∞-a b上是增函数, 当0<a ,函数在区间),2(+∞-a b 上是减函数,在)2,(ab--∞上是增函数,3.最值(1)当0>a ,函数图像开口向上,当a bx 2-=时,a b ac y 442min -=(2)当0<a ,函数图像开口向下,当abx 2-=时,a b ac y 442max -=[]说明1.我们研究二次函数的性质常用的方法有两种:配方法和公式法2.无论是利用公式法还是配方法我们都可以直接得出二次函数的顶点坐标与对称轴,但我们讨论函数的最值以及它的单调区间时一定要考虑它的开口方向 五、常见函数的表达式:1.正比例函数表达式:)0(≠=k kx y2.反比例函数表达式:)0(≠=k xky 3.一次函数表达式:)0(≠+=k b kx y 4.二次函数表达式:一般式:)0(2≠++=a c bx ax y顶点式:为抛物线顶点其中),(),0()(2n m a n m x a y ≠+-=两根式:c bx ax x x x x x x a y ++--=22121),)((为二次方程、其中的两根,或函数与x 轴的交点的横坐标第四章一、幂的有关概念1.正整数指数幂:)(+∈=⋅N n a a a a nn个2.零指数幂:)0(,10≠=a a 3.负整数指数幂:),0(,1+∈≠=-N n a aan n4.正分数指数幂:)1,,,0(,>∈≥=+n N m n a a a n m nm5.负分数指数幂:)1,,,0(,1>∈>=+-n N m n a aanmnm三、实数指数幂的运算法则 1.nm n m a a a +=⋅2.mnn m aa =)(3.)0,0,()(>>∈⋅=⋅b a R n m b a b a nnn、注 四、函数),10(R x a a a y x∈≠>=且叫做指数函数五、一般地,指数函数)1,0(≠>=a a a y x在其底数101<<>a a 及这两种情况下的图像和性质如下表所示:1>a (1)R x ∈(2)0>y(3)函数的图像都通过点(0,1) (4)在),(+∞-∞上是增函数(5)当100;10<<<>>y x y x 时,当时,10<<a (1)R x ∈(2)0>y(3)函数的图像都通过点(0,1) (4)在),(+∞-∞上是减函数(5)当10;100><<<>y x y x 时,当时,六、对数概念如果)10(≠>=a a N a b且,那么b N N a b a =log 的对数,记作为底叫做以,其中叫做真数叫做底,N a特别底,以10为底的对数叫做常用对数,N N lg log 10可简记作 七、对数的性质1.1的对数等于零,即)10(01log ≠>=a a a 且2.底的对数等于1,即)10(1log ≠>=a a a a 且3.零和负数没有对数 八、积、商、幂的对数:1.)0,0,10(log log )(log >>≠>+=N M a a N M MN a a a 且2. )0,0,10(log log )(log >>≠>-=N M a a N M NMa a a 且 3. )0,10(log log >≠>=M a a M a M a aa 且九、换底公式:)0,1,10,0(log log log >≠≠>>=N b a b a bMN a a b 且十、对数恒等式:)0,10(log >≠>=N a a N aNa 且十一、对数函数:形如)0,1,0(log >≠>=x a a x y a 的函数我们称为对数函数十二、一般地,对数函数)1,0(log ≠>=a a x y a 在其底数101<<>a a 及这两种情况下的图像和性质如下表所示:1>a (1)0>x(2)R y ∈(3)函数的图像都通过点(1,0) (4)在),0(+∞上是增函数(5)当010;01<<<>>y x y x 时,当时,10<<a (1)0>x(2)R y ∈(3)函数的图像都通过点(1,0) (4)在),0(+∞上是减函数(5)当010;01><<<>y x y x 时,当时, 十三、指数方程及解法 1.定义法:b x f b aa x f log )()(=⇔=2.同底比较法:)()()()(x g x f a a x g x f =⇔=3.换元法:[]x t c bt t t a c a b a x f x f x f 后再求求得得可设,002)()(2)(=++=⇔=+⋅+十四、对数方程及解法 1.定义法:⎩⎨⎧=>⇔=ba ax f x f b x f )(0)()(log 2.同底比较法:⎪⎩⎪⎨⎧=>>⇔=)()(0)(0)()(log )(log x g x f x g x f x g x f a a3.换元法形如:[]0)(log 0)(log )(log 22=++=⇔=++c bt t t x f c x g b x f a a a 得可设第五章一、利用数列的前{}的通项公式:之间的关系求出数列与项和n n a n S nn n a a a a S ++++= 321 ⎩⎨⎧≥-==-)2(,)1(,11n S S n S a n nn[]说明这里是用两个式子联合起来表示的,切莫忘记前一个式子,事实上,当1=n 时,001,S S S n 而=-没有意义,因而第二个式子也无意义二、等差数列定义如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,这个数列就叫做等差数列,这个常数叫做公差,记为)(,1++∈-=N n a a d d n n 即 等差数列的一般形式为 ,2,,111d a d a a ++ 三、等差数列通项公式d n a a n )1(1-+=四、等差数列前n 项和公式记n n a a a a S ++++= 321,则d n n na S a a n S n n n 2)1(2)(11-+=+=或 []说明在n nS an d a ,,,,1五个量中,已知任意三个量可求出另两的量,即“知三求二”五、等差中项对给定的实数b a A b A a A b a 与叫做成等差数列,则称使得,如果插入数与,, 的等差中项,且b a A ba A +=+=22或 六、等差数列的性质1.在等差数列中,若公差0=d ,则此数列为常数列;若0>d ,则此数列为递增数列;若0<d ,则此数列为递减数列2.在等差数列中,),,()(n m N n m nm a a d d n m a a nm n m ≠∈--=-=-+或3. 在等差数列中,若正整数q p n m ,,,满足q p n m +=+,则有q p n m a a a a +=+4. 在等差数列中,每隔相同的项抽出来的项按照原来的顺序排列,构成一个新的等差数列,如 ,,,531a a a 仍然是等差数列5. 在等差数列中,每连续m 项之和构成的数列仍然是等差数列,如654321,,a a a a a a +++仍然是等差数列6. 有穷等差数列中,与首末两端距离相等的两项之和相等,并等于首末两项之和,若项数为奇数,还等于中间项的2倍,即中a a a a a a a a a n p n p n n 2112312=+=+==+=++---[]说明在三个成等差数列的数中,一般设为:d a a d a +-,,七、等比数列定义如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,这个数列就叫做等比数列,这个常数叫做公比,记为)(,1++∈=N n a a q q nn 即 等比数列的一般形式为 ,,,2111q a q a a 八、等比数列通项公式)0(11≠=-q q a a n n九、等比数列前n 项和公式记n n a a a a S ++++= 321,则)1(1)1(1)1(11≠--=≠--=q qq a a S q q q a S n n n n 或 []说明1.以上的两个式子都是针对1≠q 的情况,当1=q 时,数列为常数列,故1na Sn=2.在n n S a n d a ,,,,1五个量中,已知任意三个量可求出另两的量,即“知三求二” 十、等差中项对给定的实数b a G b G a G b a 与叫做成等比数列,则称使得,如果插入数与,, 的等比中项,且ab G ab G ±==或2[]说明1.b a 、两个实数必须是同号的,即0>ab ,这时b a 、才有等比中项2.其中的一个值ab ,当b a 与是正数时,有称为b a 与的几何平均数 十一、等比数列的性质1.在等比数列中,若公比1=q ,则此数列为常数列;若10,01,011<<<>>q a q a 或,则此数列为递增数列;若1,010,011><<<>q a q a 或,则此数列为递减数列2.在等比数列中,),,(n m N n m q a a q a a n m n m n m nm≠∈==+--或 3. 在等比数列中,若正整数q p n m ,,,满足q p n m +=+,则有q p n m a a a a =(特殊地,若2,2p n m a a a p n m ==+则)4. 在等比数列中,每隔相同的项抽出来的项按照原来的顺序排列,构成一个新的等比数列,如 ,,,741a a a 仍然是等比数列5. 有穷等比数列中,与首末两端距离相等的两项之和相等,并等于首末两项之积,若项数为奇数,还等于中间项的平方,即2112312中a a a a a a a a a n k n k n n =====+---6. 在等比数列中,每连续m 项之和(积)构成的数列仍然是等比数列如 654321,,a a a a a a +++仍然是等比数列; 654321,,a a a a a a 也仍然是等比数列[]说明在三个成等比数列的数中,一般设为:aq a qa ,,第六章一、弧度π=0180 二、弧长公式:)(为弧度数ααr l⋅=三、扇形的面积公式:)(21212为弧度数扇形ααr lr S ⋅== 四、任意角的三角函数的定义定义:在平面直角坐标系中,设点α是角),(y x P 的终边上的任意一点,且该点到原点的距离为)0(>r r ,则yrx r y x x y r x r y ======ααααααcsc ,sec ,cot ,tan ,cos ,sin 五、三角函数的符号七、平方关系:1cot csc ,1tan sec ,1cos sin 222222=-=-=+αααααα 八、商数关系:ααααααcot sin cos ,tan cos sin == 九、倒数关系:1cos sec ,1sin csc ,1cot tan =⋅=⋅=⋅αααααα 十、诱导公式:1. ααααsec )sec(,cos )cos(=-=-2.终边相同的角,其同名三角函数值同3.奇变偶不变,符号看象限十一、两角和与差的三角函数的公式βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos( =± βαβαβαtan tan 1tan tan )tan( ±=±十二、倍角公式αααcos sin 22sin = ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=十三、半角公式2cos 12sinαα-±= 2cos 12cos αα+±= ααααααααsin cos 1cos 1sin 2tan cos 1cos 12tan-=+=+-±=或十四、三角函数的图像与性质x y sin =图像定义式:R 值域:[]1,1-周期性:最小正周期π2=T 奇偶性:x x sin )sin(-=-奇函数 单调性:在上递增Z k k k ∈⎥⎦⎤⎢⎣⎡++-ππππ22,22在上递减Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ223,22x y cos =图像定义式:R 值域:[]1,1-周期性:最小正周期π2=T 奇偶性:x x cos )cos(=-偶函数单调性:在[]上递增Z k k k ∈+-πππ2,2在[]上递减Z k k k ∈+πππ2,2x y tan =图像定义式: ⎭⎬⎫⎩⎨⎧∈⋅+≠Z k k x x ,2ππ值域:R周期性:最小正周期π=T 奇偶性:x x tan )tan(-=-奇函数 单调性:在每个区间上都是递增Z k k k ∈++-)2,2(ππππ十五、正弦性函数:k x A y ++=)sin(ϕω ,最小值:最大值:k A k A +-+, ϖπ2=T 最小正周期:十六、余弦性函数: k x A y ++=)cos(ϕω ,最小值:最大值:k A k A +-+, ϖπ2=T 最小正周期:十七、正切性函数: k x A y ++=)tan(ϕω ϖπ=T 最小正周期: 十八、辅助公式:)sin(cos sin 22ϕααα++=+=b a b a y (其中ab =αtan ) 十九、三角形中的边角关系 1.π=++C B A2.大边对大角,大角对大边3.直角三角形中:1sin ,sin ,sin 2222===+===+C cbB c a A b a cC B A 、、π二十、余弦定理A bc c b a cos 2222-+= bca cb A 2cos 222-+=B ac c a b cos 2222-+= acb c a B 2cos 222-+=C ab b a c cos 2222-+= abc b a C 2cos 222-+=二十一、正弦定理)(2sin sin sin 为三角形外接圆的半径其中r r CcB b A a === 二十二、三角形面积B ca A bcC ab S ABC sin 21sin 21sin 21===∆第七章 一、运算律若为实数,则、μλ 1.a a ⋅=)()(λμμλ 2. a a a μλμλ+=+)( 3. b a b a λλλ⋅=+)([]说明数乘向量的运算律与实数的运算律类似二、向量平行的充要条件若b a b a b λλ=⇔≠,使存在唯一实数则//,0[]说明当b a b //,0,显然对任意实数λ=三、向量内积的概念与性质 1.两向量的夹角已知两个非零向量b a 与,作,,b OB a OA ==则AOB ∠是向量b a 与规定01800≤≤[]说明①b a 与0②b a 与0180③b a ⊥0902.内积的定义b a =⋅[]说明①b a ⋅的结果是一个实数,可以等于正数、负数、零叫做a b 在方向上正射影的数量 3.内积的性质①如果e 是单位向量,则a e e a =⋅=⋅ ②0=⋅⇔⊥b a b a③a a ==⋅④b a =⑤b a ≤⋅ 四、向量内积的运算律 1. a b b a ⋅=⋅2. )()()(b a b a b a λλλ⋅=⋅=⋅3. c b c a c b a ⋅+⋅=⋅+)([]说明一般地,)()(c b a c b a ⋅⋅≠⋅+,也就是说,向量内积没有“乘法的结合律”五、设A 、B 两点的坐标分别是),)(,(2211y x y x 则 ),(),(),(12121122y y x x y x y x AB --=-= 六、向量直角坐标运算1.设),(21a a a =,),(21b b b =则),(),(),(22112121b a b a b b a a b a ±±=±=± 2.),(),(2121a a a a a λλλλ==3.若),(21a a a =,),(21b b b =则2211b a b a b a +=⋅ 七、向量长度坐标运算1.若),(21a a a =2221a a +=2.若),(),(2211y x B y x A ,212212)()(y y x x -+-=[]说明也叫A 、B 两点的距离,记为BA d、,上式也叫两点距离公式八、中点公式设),(),(2211y x B y x A ,线段AB 的中点坐标为),(y x ,则2,22121y y y x x x +=+= 九、平移变换公式 点平移公式:若把点⎩⎨⎧+=+==201021000),,(),(),(a y y a x x y x P a a a y x P 则平移到点按向量十、两向量平行于垂直的条件 设),(21a a a =,),(21b b b =,则)00(0//2122111221≠≠=⇔=-⇔b b b a b a b a b a b a 且 02211=+⇔⊥b a b a b a十一、图像平移公式:一般地,函数)(x f y =的图像平移向量),(21a a a =后,得到的图像的函数表达式为)(12a x f a y -=-第八章一、直线的倾斜角和斜率1.直线的倾斜角:一条直线向上的方向与x 轴的正方向所成的最小正角α,称为直线的倾斜角规定:当0//=α轴时,x l 倾斜角的范围是:πα≤≤02.直线的斜率:若α为直线l 的倾斜角,当2πα≠时,将αtan 叫做直线的斜率,记作:αtan =k ,当2πα=,直线的斜率不存在3.斜率的计算公式:①αtan =k②如果),(21v v v =为直线的一个方向斜率,且121,0v v k v =≠则 ③如果),(B A n =为直线的一个法向量,且BA kB -=≠则,0 ④如果),(),(2211y x N y x M 是直线上的两个点 ,且121221,x x y y k x x --=≠则二、直线的方程 1.直线方程一览表2.特殊的直线方程①平行于y 轴的直线方程:0x x = ②平行于x 轴的直线方程:0y y = ③过原点的直线方程:kx y =[]说明当一般式方程y x ,系数有为零时1. ,0:111=+C x A l ,0:222=+C x A l 则重合与或2121///l l l l212121//C C A A l l ≠⇔;212121/C C A A l l =⇔重合与 2. ,0:111=+C x A l ,0:222=+C x B l 则21l l ⊥四、待定系数法求直线方程已知直线l :0=++C By Ax ,则与l 平行的直线方程可设为:0=++D By Ax 与l 垂直的直线方程可设为:0=+-D Ay Bx 五、两直线的夹角1.定义:两条直线相交,组成两对对顶角,其中不大于2π的角叫做两条直线的夹角;当两直线平行或重合时,规定夹角为0,常用θ表示两直线的夹角 2.范围:20πθ≤≤3夹角公式:① 设0:1111=++C y B x A l ,0:2222=++C y B x A l 则222221212121cos B A B A B B A A +⋅++=θ②111:b x k y l +=,222:b x k y l +=则21121tan k k k k +-=θ六、点到直线的距离公式 1. 点到直线的距离公式设点),(000y x P 到直线l :0=++C By Ax 的距离为d ,则2200BA CBy Ax d +++=2. 两条平行直线间的距离公式设0:1111=++C y B x A l ,0:2222=++C y B x A l 的距离为d ,则2221BA C C d +-=七、定义:平面内,与定点的距离等于定长的点的集合(轨迹)叫做圆,定点叫做圆的圆心,定长叫做圆的半径 八、圆的标准方程圆心在点),(b a C ,半径为r 的圆的标准方程是222)()(r b y a x =-+- 特殊地,圆心在坐标原点,半径为r 的圆的标准方程是222r y x =+九、圆的一般方程022=++++F Ey Dx y x把圆的一般方程化为标准方程的形式就是:44)2()2(2222FE D E y D x -+=+++1.当F E D 422-+>0时,方程表示一个圆的方程,圆心为(2D-,2E -)半径为2422F E D r -+=2. 当F E D 422-+=0时,方程表示一个点(2D-,2E -)3. 当F E D 422-+<0时,方程不表示任何图形 十、点与圆的位置关系对于点),(000y x P 和圆222)()(r b y a x =-+-或022=++++F Ey Dx y x ,点P 到圆心距离记作d1.点P在圆内⇔⇔<-+-22020)()(r b y a x r d F Ey Dx y x <⇔<++++0002020⇔在圆上点P .2⇔=-+-22020)()(r b y a x r d F Ey Dx y x =⇔=++++0002020 ⇔在圆外点P .3⇔>-+-22020)()(r b y a x r d F Ey Dx y x >⇔>++++0002020十一、圆与直线的位置关系直线l :0=++C By Ax ,圆C: 222)()(r b y a x =-+-有直线和圆的方程联系得到关于y x 或的一元二次方程,求出判别式∆1. 直线与圆相离⇔圆与直线没有公共点⇔∆<0⇔圆心到直线l 的距离r d >2. 直线与圆相切⇔圆与直线有一个公共点⇔∆=0⇔圆心到直线l 的距离r d =3. 直线与圆相交⇔圆与直线有两个公共点⇔∆>0⇔圆心到直线l 的距离r d <[]说明当直线与圆相离时,圆上的点到直线的最大距离=r d +,最小距离=r d -其中d 为圆心到直线的距离,知圆上的一点),(00y x P ,则过点P 的圆222)()(r b y a x =-+-的切线方程为:0))(())((0000=--+--b y y y a x x x 十二、圆与圆的位置关系圆221211)()(r b y a x C =-+-,圆21222222,)()(C C d R b y a x C ==-+-,1.外离r R d +>⇔ 2外切r R d +=⇔3.相交)(,r R r R d r R >+<<-⇔4.内切r R d -=⇔5.内含r R d -<⇔十三、椭圆定义:平面内,与两定点21F F 、的距离的和等于常数(大于21F F )的点轨迹叫做椭圆,定点21F F 、叫做椭圆的焦点,两焦点间的距离叫做焦距第二定义:平面内,与一个定点F 的距离和到一条定直线l 的距离的比是常数)10(<<e e 的点的轨迹叫做椭圆,定点F 叫做椭圆的一个焦点,定直线l 叫做与该焦点对应的准线(一个椭圆有两个焦点和两条准线)常数e 叫做椭圆的离心率十四、椭圆的标准方程和几何性质定义:M 为椭圆上的点)2(22121F F a a MF MF >=+ 焦点位置:x 轴 图形:标准方程:12222=+by a x参数关系:)0(222>>+=b a c b a 范围:b y a x ≤≤,对称性:对称轴:x 轴、y 轴 对称中心:原点 焦点:)0,()0,(21c F c F 、- 顶点:),0()0,(b B a A ±±、 轴长:长轴长a 2;短轴长b 2准线:ca x l 2:±=离心率:ac e =焦点位置:y 轴 图形:标准方程:12222=+bx a y参数关系:)0(222>>+=b a c b a 范围:a y b x ≤≤,对称性:对称轴:x 轴、y 轴 对称中心:原点 焦点:),0(),0(21c F c F 、- 顶点:)0,(),0(b B a A ±±、 轴长:长轴长a 2;短轴长b 2准线:ca y l 2:±=离心率:ac e =十五、双曲线定义:平面内,与定点21F F 、的距离的差的绝对值等于常数(大于0小于21F F )的点轨迹叫做双曲线,定点21F F 、叫做双曲线的焦点,两焦点间的距离叫做焦距第二定义:平面内,与一个定点的距离和到一条定直线的距离的比是常数)1(>e 的点的轨迹叫做双曲线,定点叫做双曲线的一个焦点,定直线叫做与该焦点对应的准线(双曲线有两个焦点和两条准线)常数e 叫做双曲线的离心率十六、双曲线的标准方程和几何性质定义:M 为双曲线上的点)20(22121F F a a MF MF <<=- 焦点位置:x 轴图形:标准方程:12222=-by a x 参数关系:)0,0(222>>+=b a b a c 范围:R y a x ∈≥,对称性:对称轴:x 轴、y 轴 对称中心:原点焦点:)0,()0,(21c F c F 、-顶点:)0,()0,(21a A a A 、-轴长:实轴长a 2;虚轴长b 2 准线:ca x l 2:±= 渐近线:x a b y ±= 离心率:ac e =焦点位置:y 轴图形:标准方程:12222=-bx a y 参数关系:)0,0(222>>+=b a b a c范围:R x a y ∈≥,对称性:对称轴:x 轴、y 轴 对称中心:原点焦点:),0(),0(21c F c F 、-顶点:),0(),0(21a A a A 、-轴长:实轴长a 2;虚轴长b 2 准线:ca y l 2:±= 渐近线:x b a y ±= 离心率:ac e = 十七、抛物线定义:平面内与一个定点F 的距离和到一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线第二定义:平面内,与一个定点F 的距离和到一条定直线l 的距离的比是常数)1(=e 的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线,常数e 叫做抛物线的离心率十八、抛物线的标准方程和几何性质焦点位置:x 轴正半轴图形:标准方程:px y 22=范围:R y x ∈≥,0对称性:对称轴:x 轴 焦点:)0,2(p F 顶点:原点:(0,0) 准线:2:p x l -= 离心率:1=e焦点位置:x 轴负半轴图形:标准方程:px y 22-=范围:R y x ∈≤,0对称性:对称轴:x 轴 焦点:)0,2(pF -顶点:原点:(0,0) 准线:2:px l =离心率:1=e焦点位置:y 轴正半轴图形:标准方程:py x 22=范围:0,≥∈y R x对称性:对称轴:y 轴 焦点:)2,0(pF顶点:原点:(0,0) 准线:2:py l -=离心率:1=e焦点位置:y 轴负半轴图形:标准方程:py x 22-=范围:0,≤∈y R x对称性:对称轴:y 轴 焦点:)2,0(pF -顶点:原点:(0,0) 准线:2:py l =离心率:1=e、。
中职数学基础模块公式总结.doc
⑴整式形式: 职业高中常用数学公式解不等式* 1、一元二次不等式:{a > O,x,,x2二、函数部分1、几种常见函数的定义域二元一次函数:f(x) = ax^b定义域为R。
一兀二次函数:f(X)=。
尸+版+。
*⑵分式形式:"、)=些要求分母g(x)。
不为零gO)*⑶二次根式形式:F(x) = 7/W要求被开方数/(X)> 0⑷指数函数:),=/(。
〉0且。
主1),定义域为R*⑸对数函数:y = log”工(。
> 0且。
壬1),定义域为(0, +8)对数形式的函数:y Tog” f(尤),要求fM > 0⑹三角函数:♦正弦函数:y = sinx的定义域为&<余弦函数:y = cosx的定义域为R正切函数:y = tan x的定义域^J{\ x \ x kvr + — ,k eZ]< 2⑸对数函数: y = log” x(a > 0丰 1),值域为R⑺几种形式综合在一起的,求定义域即在求满足条件的各式解集的交集。
2、常见函数求值域⑴一次函数f(x) = ax + b z值域为R•⑵一元二次函数/(X)= ax2 + bx + c(a。
0):—b~当q > 00寸,值域为{y I y 2 —-----}—b~当〃 < Ofl寸,值域为{y I y < ---- }4a⑷指数函数:),=。
“(。
〉0且。
1)值域为(0, +8)⑹三角函数:*正弦函数:y = sinx的值域为[-1,1]*余弦函数:y = cosx的值域为[-1,1]3、函数的性质*⑴奇偶性①J奇函数:/'(-X)= -/'(对,图像关于原点对称[偶函数:/(-%) = /'(X),图像关于y轴对称②判断或证明奇偶函数的步第一步:求函数的定义域,判断是否关于原点对称第二步:如果定义域不关于原点对称,则为非奇非偶函数;如果对称,则第三步:若/(-X)= 则函数为奇函;若f(T)= f(x),则函数为偶函数*⑵单调性%1判断或证明函数为单调增、减函数的步骤:第一步:在给定区间(如果没给定,一定要先求函数的定义域)内任取河、第二步:做差/(x.)-/(x2)变形整理;第三步:JfW)-/a2)>。
职高数学概念公式(最全)
职高数学概念与公式预备知识:(必会)1. 相反数、绝对值、分数的运算2. 因式分解(1) ∆十字相乘法 如:)2)(13(2532-+=--x x x x(2) 两根法 如:)251)(251(12--+-=--x x x x 3. ∆配方法 如:825)41(23222-+=-+x x x 4. 分数(分式)的运算5. 一元一次方程、一元二次方程、二元一次方程组的解法 (1) 代入法 (2) 消元法6.完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-7.平方差公式:))((22b a b a b a -+=-8.立方和(差)公式:))((2233b ab a b a b a +-+=+))((2233b ab a b a b a ++-=-9. ∆注:所有的公式中凡含有“=”的,注意把公式反过来运用。
第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。
2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。
注:∆描述法 },|取值范围元素性质元素{⋯∈⋯=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集)4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“∉”的关系。
(2) 集合与集合是“⊆” “”“=”“⊆/”的关系。
注:(1)空集是任何集合的子集,任何非空集合的真子集。
(做题时多考虑φ是否满足题意) (2)一个集合含有n 个元素,则它的子集有n2个,真子集有12-n个,非空真子集有22-n个。
5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 与B 的公共元素(相同元素)组成的集合(2)}|{B x A x x B A ∈∈=或 :A 与B 的所有元素组成的集合(相同元素只写一次)。
高职单招数学公式大全
高职单招数学公式大全一、解不等式1、一元一次不等式(0)0(0)bx a a ax b ax b b x a a⎧>>⎪⎪->⇔>⇔⎨⎪<<⎪⎩2、一元二次不等式:),,0(21两根是对应一元二次方程的x x a >判别式△﹥0△=0△﹤0一元二次不等式的解集2>++c bx ax }|{21x x x x x ><或}2|{abx x -≠R2<++c bx ax }|{21x x x x <<φφ3、绝对值不等式:(c >0)⑴cb ax <+||⇔c b ax c <+<-⑵c b ax >+||⇔c b ax c b ax >+-<+或⑶c b ax ≤+||⇔cb axc ≤+≤-⑷cb ax ≥+||⇔cb axc b ax ≥+-≤+或二、集合与函数部分1、集合相关概念⑴集合的概念:能够确切指定的一些对象的全体。
⑵集合中元素的性质:确定性,互异性,无序性。
⑶集合的表示方法:列举法,描述法,图示法。
⑷子集的概念:A 中的任何一个元素都属于B 。
记作:A B ⊆⑸相等集合:A B ⊆且B A⊆⑹真子集:A B ⊆且B 中至少有一个元素不属于A 。
记作:A ≠⊂B ⑺交集:B}x A x |{x B A ∈∈=⋂且⑻并集:}|{B x A x x B A ∈∈=⋃或⑼补集:A}x x |{x A C U ∉∈=且U 2、几种常见函数的定义域⑴整式形式:⎩⎨⎧++=+=c bx ax x f bax x f 2)()(一元二次函数:一元一次函数:定义域为R 。
⑵分式形式:)()()(x g x f x F =要求分母0)(≠x g 不为零⑶二次根式形式:)()(x f x F =要求被开方数0)(≥x f ⑷指数函数:)10(≠>=a a a y x且,定义域为R ⑸对数函数:)10(log ≠>=a a x y a 且,定义域为(0,+∞)⑹三角函数:⎪⎪⎩⎪⎪⎨⎧∈+≠===},2||{tan cos sin Z k k x x x y R x y R x y ππ的定义域为正切函数:的定义域为余弦函数:的定义域为正弦函数:⑺几种形式综合在一起的,求定义域即在求满足条件的各式解集的交集。
高职单招数学知识点和重点公式
高职单招数学知识点和重点公式高职单招数学知识点与重点公式。
一、集合。
1. 集合的概念。
- 集合是由一些确定的、不同的对象所组成的整体。
例如,一个班级的所有学生可以组成一个集合。
- 元素与集合的关系:如果a是集合A中的元素,就说a∈ A;如果a不是集合A中的元素,就说a∉ A。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如{1,2,3}。
- 描述法:用确定的条件表示某些对象是否属于这个集合。
例如{xx > 0},表示所有大于0的数组成的集合。
3. 集合间的关系。
- 子集:如果集合A的任何一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A⊆ B。
- 真子集:如果A⊆ B,且B中至少有一个元素不属于A,那么A叫做B的真子集,记作A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
4. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
例如A = {1,2,3},B={2,3,4},则A∩ B = {2,3}。
- 并集:A∪ B={xx∈ A或x∈ B}。
对于上面的A和B,A∪ B={1,2,3,4}。
- 补集:设U是一个全集,A⊆ U,则A在U中的补集∁_UA={xx∈ U且x∉A}。
二、函数。
1. 函数的概念。
- 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B是从集合A到集合B的一个函数,记作y = f(x),x∈ A。
2. 函数的定义域和值域。
- 定义域:使函数有意义的自变量的取值范围。
例如,对于函数y=(1)/(x),定义域为x≠0。
- 值域:函数值的集合。
例如,函数y = x^2,x∈ R,其值域是[0,+∞)。
3. 函数的性质。
- 单调性。
- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。
(完整版)中职数学常用公式及常用结论大全(最新整理)
中职数学常用公式及常用结论大全1. 常见数集:N---自然数集 ---正整数集 Z---整数集 Q---有理数集 R---实数集*N 2、充要条件:(1)充分条件:若,则是充分条件.p q ⇒p q (2)必要条件:若,则是必要条件.q p ⇒p q (3)充要条件:若,且,则是充要条件.p q ⇒q p ⇒p q 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.3、一元二次方程20(0)ax bx c a ++=≠(1)求根公式:x =(2)根与系数的关系:,12b x x a +=-12c x x a⋅=4、不等式的基本性质:(1)若 ,则;a b >a c b c ±>±(2)若 ,且 ,则a b >0c >ac bc>(3)若 ,且 ,则a b >0c <ac bc<5、一元一次不等式(1)0(0)bax b a ax b x a->>⇒>⇒>(2)0(0)b ax b a ax b x a -<>⇒<⇒<(3)注意在解一元一次不等式组时,最后一定要求两个不等式解集的交集才是整个一元一次不等式组的解集。
6、一元二次不等式(1)的解集: 、是对应方程的两个根且<20(0)ax bx c a ++>>{}12x x x x x <>或1x 2x 1x 2x (2)的解集:、是对应方程的两个根且<20(0)ax bx c a ++<>{}12x x x x <<1x 2x 1x 2x 7、含绝对值的不等式(1)()(0),x a a a a <>⇒-(2)()()(0),,x a a a a >>⇒-∞-⋃+∞(3)(0)ax b c c ax b c ax b c +>>⇒+<-+>⇒或(4)(0)ax b c c c ax b c +<>⇒-<+<⇒8、定义域口诀:函数定义域好求,分母不能等于零;偶次方根非负,零和负数无对数;零的零次方无意义,正切函数角不直;其余函数实数集,多种情况求交集。
(完整word版)中职数学公式大全
中职数学常用公式及常用结论1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.5.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 6.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p a bx ,2∈-=,则{}m in m a x m ax ()(),()(),()2b f x f f x f p f qa=-=;[]q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p abx ,2∈-=,则{}m i n()m i n (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.7.一元二次方程的实根分布 8充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 9.函数的单调性(1)任取 []2121,,,x x b a x x ≠∈那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.10.如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.11.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.12.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 13.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- 14.两个函数图象的对称性15.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;16.几个常见的函数方程 (1)正比例函数()f x cx =,(2)指数函数()xf x a =,. (3)对数函数()log a f x x =,. (4)幂函数()f x x α=,(5)余弦函数()cos f x x =,正弦函数()sin g x x =,17.分数指数幂(1)m na =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).18.根式的性质(1)na =.(2)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.19.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.20.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.21.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).22.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2) log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.23. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.24.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).25.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 26.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.27.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=. 28.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s ()2(1)s i n ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩29.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ= ).30.二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 31.三角函数的周期公式函数sin()y x ωϕ=+, x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=.32.正弦定理2sin sin sin a b cR A B C===. 33.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.34.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111sin sin sin 222S ab C bc A ca B ===.35.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 36.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2.不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 37.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a //b(b ≠0)12210x y x y ⇔-=.38. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 39.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +. 40.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).41.平面两点间的距离公式||AB =11(,)x y ,B 22(,)x y ).42.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.43.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.44.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.45.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩46.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).47直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).48.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;49.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.50.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).51. 圆的2种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). 52.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.53.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;54.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上).55.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a--; 56.抛物线的内外部(1)点00(,)P x y 在抛物线22(0)y p x p => (2)点00(,)P x y 在抛物线22(0)y p x p =->的内部22(0)y px p ⇔<->. 点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->. (3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =>的外部22(0)x py p ⇔>>. (4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>. 点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.57.直线与圆锥曲线相交的弦长公式 AB =AB =A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).58.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行; (3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.59.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.60.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.61.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 62.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 63.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直. 向向量)64.直线AB 与平面所成角 65.二面角l αβ--的平面角 66.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=..67.点B 到平面α的距离68.分类计数原理(加法原理) 12n N m m m =+++.69.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯. 70.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 71.组合数公式mnC =m n m mA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).72.组合数的两个性质 (1)mn C =mn nC - ; (2) m n C +1-m n C =mn C 1+.注:规定10=n C .(6)nn n r n n n n C C C C C 2210=++++++ . (7)14205312-+++=+++n n n n n n n C C C C C C .73.排列数与组合数的关系m m n n A m C =⋅! .74.二项式定理n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;二项展开式的通项公式r r n r n r b a C T -+=1)210(n r ,,, =.75.等可能性事件的概率()m P A n=. 76.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).77.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 78.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).79.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-80.离散型随机变量的分布列的两个性质(1)0(1,2,)i P i ≥=; (2)121P P ++=.。
职高数学概念公式(最全)
职高数学概念与公式预备知识:(必会)1. 相反数、绝对值、分数的运算2. 因式分解(1) ∆十字相乘法 如:)2)(13(2532-+=--x x x x(2) 两根法 如:)251)(251(12--+-=--x x x x 3. ∆配方法 如:825)41(23222-+=-+x x x 4. 分数(分式)的运算5. 一元一次方程、一元二次方程、二元一次方程组的解法 (1) 代入法 (2) 消元法6.完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- 7.平方差公式:))((22b a b a b a -+=-8.立方和(差)公式:))((2233b ab a b a b a +-+=+))((2233b ab a b a b a ++-=-9. ∆注:所有的公式中凡含有“=”的,注意把公式反过来运用。
第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。
2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。
注:∆描述法 },|取值范围元素性质元素{⋯∈⋯=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集)4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“∉”的关系。
(2) 集合与集合是“⊆” “”“=”“⊆/”的关系。
注:(1)空集是任何集合的子集,任何非空集合的真子集。
(做题时多考虑φ是否满足题意) (2)一个集合含有n 个元素,则它的子集有n2个,真子集有12-n个,非空真子集有22-n个。
5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 与B 的公共元素(相同元素)组成的集合(2)}|{B x A x x B A ∈∈=或 :A 与B 的所有元素组成的集合(相同元素只写一次)。
职高数学概念公式(最全)
职高数学概念与公式预备知识:(必会)1. 相反数、绝对值、分数的运算2. 因式分解(1)公式法:平方差公式:))((22b a b a b a -+=-完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- (2) 十字相乘法:acx 2+(ad+cb )x+bd=(ax+b )(cx+d ) 如:)2)(13(2532-+=--x x x x(3) 两根法:ax 2+bx+c=a (x-x 1)(x-x 2) 如:)251)(251(12--+-=--x x x x 3. 配方法:ax 2+bx+c=a (x+a b 2)2+a ac b 442- 如:825)41(23222-+=-+x x x4. 分数(分式)的运算5. 常见方程的解法(1) 一元一次方程的解法:去分母;去括号;移项;合并同类项;系数化1。
(2) 一元二次方程的解法:直接开平方法;配方法;因式分解法;公式法 (x=aacb b 242-±-)(3) 二元一次方程组的解法:代入消元法;加减消元法。
6.常见的几种函数:(1)一次函数:y=kx+b (k ≠0) (2)反比例函数:y=xk(k ≠0) (3)二次函数:①一般式:c bx ax x f ++=2)((0≠a )②顶点式:h k x a x f +-=2)()( (0≠a ),其中),(h k 为顶点③两根式:))(()(21x x x x a x f --= (0≠a ),其中21x x 、是0)(=x f 的两根7.常用公式:(1)完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-(2)平方差公式:))((22b a b a b a -+=-(3)立方和(差)公式:))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-∆注:所有的公式中凡含有“=”的,注意把公式反过来运用。
《职高数学》公式及定理表
《数学》公式及定理表1、 乘法公式:(1)(a+b )²=a 2+2ab+b 2 (2)(a —b)²=a ²-2ab+b ² (3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、 集合运算(1)集合的交:{}B ∈∧A ∈=B ⋂A x x x (公共部分) (2)集合的并:{}B ∈∨A ∈=B ⋃A x x x (全部)(3)集合的补:{}A ∉∧∈=A x U x x C u (属于U 但不属于A )3、 逻辑:若B ⇒A , 则 (1)A 是B 的充分条件;(2)B 是A 的必要条件。
若B ⇔A , 则 A 是B 的充分必要条件。
4、一元二次方程:02=++c bx ax(1)求根公式:a ac b b x 242-±-=()42≥-ac b(2)判别式:ac b 42-=∆当Δ>0时,方程有两个不相等的实根; 当Δ=0时,方程有两个相等的实根; 当Δ<0时;方程没有实数根。
(3)根与系数的关系:a b x x -=+21 ac x x =⋅21 5、二次函数:c bx ax y ++=2(1)顶点:⎪⎪⎭⎫ ⎝⎛--ab ac a b 44,22(2)对称轴:a b x 2-= (3)当0>a 时,ab ac y 442min-=;当0<a 时,a b ac y 442max -=6.绝对值不等式(0a >)(1)若x a <,则:a x a -<<; (2)x a >,则:x a <-或x a >7、奇偶性:(1)奇函数:()()x f x f -=- (图象关于原点对称) (2)偶函数:()()x f x f =- (图象关于y 轴对称) (3)性质:奇奇奇=±; ;非奇非偶偶奇=± 偶偶偶=± ;偶奇奇=÷⨯ ;奇偶奇=÷⨯ 偶偶偶=÷⨯8、指数公式:(1)()010a a =≠ (2)()10pp aa a-=≠ (3)nma = (4)mnm na a a+= (5)mm nm n n a a a a a-÷== (6)()n m mn a a =(7)()nnnab a b = (8)(b a )n =n nba (9)n a =(10)n a = (11)n a =9、指数与对数关系:(1)若b a N =,则log a b N = (2)若10b N =,则lg b N =10、对数公式:(1)b a b a =log ()b b =10lg 2 ()01log 3=a()01lg 4= ()N a Na=log5 ()N N =lg 106 11、对数法则:()()N M MN a a a log log log 1+= ()N M NMa a alog log log 2-= ()M n M a n a log log 3= (4)换底公式:aN N a lg lg log =12.导数(1)导数公式: ()0C '=; ()1n n x nx -'=; ()u v u v '''±=±; ()Cu Cu ''= (2)切线斜率:0x x k y ='= (3)切线:()00y y k x x -=-13、三角函数定义:若点()y x P , 222y x r +=()r y =αsin 1 ()r x=αcos 2 ()x y =αtan 3 ()y x =αcot 4 ()x r =αsec 5 ()yr =αcsc 614、三角恒等式:(1)22sin cos 1αα+= (2)221tan sec αα+=(3)221cot csc αα+=(4)sin tan cos aa α= (5)cos cot sin a a α= (6)1cot tan aα= (7)1csc sin a α=(8)1sec cos aα= 15、特殊角三角函数值:16、三角符号:17、周期公式:若()()ϕω+=x A y sin 1 ()ϕω+=x A y cos x b x a y ϖϖcos sin +=则周期:ωπ2=T若()()ϕω+=x A y tan 2 ()ϕω+=x A y cot 则周期:ωπ=T 18、三角函数基本公式:()()βαβαβαsin cos cos sin sin 1±=±()()βαβαβαsin sin cos cos cos 2 =±()()βαβαβαtan tan 1tan tan tan 3⋅±=±19、倍角公式:(1)sin 22sin cos ααα= (2)22tan tan 21(tan )aa α=-(3)2222cos 2cos sin 2cos 112sin ααααα=-=-=-20、半角公式(降幂公式):(1)21cos sin 22a α-=(2)21cos cos 22a α+=(3)sin 1cos tan 21cos sin aaααα-==+21.题型(1)x b x a y cos sin ±= 则:22max b a y +=,22min b a y +-=(2)形如:ααcos sin ± 方法:平方(3)求AB 的垂直平分线 方法:设动点();,y x P 则:PB PA =22.正弦定理:CcB b A a sin sin sin == 23.余弦定理:()A bc c b a cos 21222-+=()B ac c a b cos 22222-+=()C ab b a c cos 23222-+=24.函数定义域求法:(1)分式中的分母不能为0, (a1α≠0) (2)负数不能开偶次方,(a α≥0) (3)对数中的真数必须大于0, (log a N N>0)25.等差数列:(1)公差:1--=n n a a d (2)通项:()d n a a n ⋅-+=11 (3)前n 项的和:()21na a S n n ⋅+=或 ()d n n na S n 211-+=(4)等差中项:若a ,A ,b 成等差b a A +=⇔2(5)若m+n=p+q ,则:q p n ma a a a +=+26.等比数列:(1)公比:1-=n na a q (2)通项:11-=n n q a a (3)前n 项的和:()q q a S nn --=111 或 q q a a S n n --=11(4)等比中项:若a ,G ,b 成等比ab G =⇒2(5)若m+n=p+q ,则:q p n ma a a a ⋅=⋅27.向量:若点()()222111,,,y x P y x P 则:(1)向量:()121221,y y x x P P --=→(2)距离:()()21221221y y x x P P -+-=(3)中点公式:若点()00,y x M 是21P P 的中点则:2210x x x +=,2210y y y += 28、向量的坐标运算:若:()()2121,,,b b b a a a ==→→ 则:()()2211,1b a b a b a ++=+→→()()2211,2b a b a b a --=-→→ ()()21,3a a a λλλ=→()2211,cos 4b a b a b a b a b a +=〉〈⋅⋅=⋅→→→→→→(22215a a +=()26a =29.向量的关系(1)平行:→a ∥2211b a b a b a b =⇔=⇔→→→λ(2)垂直:→a ⊥002211=+⇔=⋅⇔→→→b a b a b a b(3)夹角, 则:=30 倾斜角和斜率(1)倾斜角α:直线向上的方向与x 轴的正方向的所成的最小正角.[)00180,0∈α(2)斜率k αtan =k 或 1212x x y y k --=或 由 y kx b =+ 得31.直线方程形式:(1) 点斜式:()00y y k x x -=-0 (2) 斜截式:y kx b =+ (3)截距式:1=+bya x (4) 两点式:121121x x x x y y y y --=-- (5)一般式:0=++C By Ax 32.两条直线关系若 L 1:y=k 1x+b 1 L 2:y=k 2x+b 2(1) 平行:若L 1∥L 2,则k 1=k 2,b 1≠b 2 (2) 垂直:若L 1⊥L 2,则k 1*k 2=-1 (3)夹角θ, 则:21211tan k k k k +-=θ33.距离(1)点()00,y x P 到直线:0=++C By Ax 距离:2200BA CBy Ax d +++=(2)两条平行线的距离:1122:0;:0l Ax By C l Ax By C ++=++=则:2221B A C C d +-=34.圆(1)标准方程:若圆心()b a C ,, 半径:r 则:()()222r b y a x =-+-(2)一般方程:022=++++F Ey Dx y x35.椭圆 ()222b a c -= ()b a > 其中定义:a PF PF 221=+其中:长轴:2a 短轴:2b 焦距:2c 离心率:ae =(e<1) 36.双曲线: ()222b a c+=其中定义:a PF PF 221=-其中:实轴:2a 虚轴:2b 焦距:2c 离心率:ace =(e>1) 37.抛物线: 离心率:e=1其中定义:PMPF =)0(>p38.求()x f y =的反函数的方法(1) 方法:将()x f y =化成()y g x = ; 将x 与y 互换,得反函数:()()x g x f y ==-1(2)反函数性质:图象关于x y =对称39.排列,组合,概率,统计(1)排列:()()()121mn A n n n n m =---+ 阶乘:n n A =n ﹗=n(n-1)(n-2) (1)(2)组合:()()11(1)21m n n n n m C m m --+=-⨯; m n m n n C C -=; 01n n n C C ==(3)概率:互斥事件;()()()P A B P A P B +=+ 对立事件:()()1P A P A =- 独立事件:()()()P AB P A P B =独立重复试验:()()1n kk kn nP k C p p -=-(4)统计:平均数:12nx x x x n +++=方差:()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦。
职高数学公式大全
二 y ax2 bx c x b 时 y 单调增;
次
2a
函 数
(a 0, a,b, c R) 当 a 0 时 , x b 时 y 单 调 增 ,
2a
x b 时 y 单调减。 2a
当 k 0 时, y 在 x 0 时单调减,在 x 0
反 比 例
y k x
时单调减;
函 数
(k R 且 k 0 )
tan( ) tan tan . 1 tan tan
sin sin ;
第5页(共20页)
4、二倍角公式
sin 2 2sin cos .
cos 2 cos2 sin2 2cos2 1 1 2sin2 .
tan
2
2 tan 1 tan2
.
2cos2 1 cos2, 公式变形: 2sin2 1 cos2,
性质:
*A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A
*若 A∩B=A,则 A B,反之也成立。
(3)全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作 U。
(4)补集:对于全集 U 的一个子集 A,由全集 U 中所有不属于集合 A 的所有元素组成的集合称为集合 A 相对于全集 U 的补集
-2
注: 根据图像求 y Asin(x ) 的解析式的方法
①最值求 A ②周期求 ③点代入求
另外:函数 y Asin(x ) 及函数 y Acos(x ) 的周期T 2 ,最大值为|A|; | |
函数 y Atan(x ) ( x k )的周期T .
2
| |
第6页(共20页)
6、 正弦函数、余弦函数和正切函数的图象与性质:
中职春考单招数学公式大全
数学公式及知识点速记1、函数的单调性(1)设那么上是增函数; 上是减函数. (2)设函数在某个区间内可导,若,则为增函数; 若,则为减函数; 若,则有极值。
2、函数的奇偶性若,则是偶函数;偶函数的图象关于y 轴对称。
若,则是奇函数;奇函数的图象关于原点对称。
3、函数在点处的导数的几何意义函数y =f (x )在点x 0处的导数f ¢(x 0)是曲线y =f (x )在P (x 0,f (x 0))处的切线的斜率,相应的切线方程是y -y 0=f ¢(x 0)(x -x 0).4、几种常见函数的导数①; ②; ③; ④; ⑤; ⑥; ⑦; ⑧ 5、导数的运算法则(1). (2).(3). 6、求函数的极值的方法是:解方程得.当时: ① 如果在附近的左侧,右侧,那么是极大值; ② 如果在附近的左侧,右侧,那么是极小值. 7、分数指数幂(1).(2).8、根式的性质 (1).(2)当;当.1212[,],x x a b x x Î<、且],[)(0)()(21b a x f x f x f 在Û<-],[)(0)()(21b a x f x f x f 在Û>-)(x f y =0)(>¢x f )(x f 0)(<¢x f )(x f ()=0f x ¢)(x f )()(x f x f =-)(x f )()(x f x f -=-)(x f )(x f y =0x 'C 0=1')(-=n n nx x x x cos )(sin '=x x sin )(cos '-=a a a x x ln )('=x x e e =')(a x x a ln 1)(log '=xx 1)(ln '='''()u v u v ±=±'''()uv u v uv =+'''2()u u v uv v v-=()y f x =()0f x ¢=0x ()00f x ¢=0x ()0f x ¢>()0f x ¢<()0f x 0x ()0f x ¢<()0f x ¢>()0f x m na =1m nm naa-==n a =n a =n ,0||,0a a a a a ³ì==í-<î9、有理指数幂的运算性质(1);(2);(3).10、对数公式(1)指数式与对数式的互化式:。
职高数学概念公式最全版
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 最新资料介绍⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯职高数学观点与公式预备知识:(必会)1. 相反数、绝对值、分数的运算2. 因式分解(1)十字相乘法如:3x 2 5x 2 (3x 1)( x 2)1 5 1 52 x x x(2)两根法如:)x 1 ( )(2 23. 配方法 如: 2 x x 2x 3 2( 1 4) 2 2584. 分数(分式)的运算5. 一元一次方程、一元二次方程、二元一次方程组的解法(1)代入法(2)消元法6.完整平方和(差)公式: a 2 2ab b (a b) 2 2 2 2ab b 2 (a b)2a2 b 2 a b a b 7.平方差公式:a ( )( )3 b a b a 2 ab b 238.立方和(差)公式:a ( )( )3 b a b a ab b 3 2 2a ( )()9. 注:所有的公式中凡含有“”的,注意把公式反过来运用。
第一章会合1. 构成会合的元素一定知足三因素:确立性、互异性、无序性。
2. 会合的三种表示方法:列举法、描绘法、图像法(文氏图)。
2 x x注:描绘法{ x | x ,x } ;另要点种类如:{y | y x 3 1, ( 1,3]}元素元生性质取值范围3. 常用数集: N (自然数集) 、 Z (整数集) 、 Q (有理数集) 、 R (实数集)、 *N (正整数集) 、Z (正整数集)4. 元素与会合、会合与会合之间的关系:(1)元素与会合是“”与“”的关系。
(2)会合与会合是“”“”“”“”的关系。
注:(1)空集是任何会合的子集,任何非空会合的真子集。
(做题时多考虑能否知足题意)(2)一个会合含有n 个元素,则它的子集有2n 个,真子集有2n 1个,非空真子集有2n 2个。
5. 会合的基本运算(用描绘法表示的会合的运算尽量用画数轴的方法)(1)A B { x | x A且x B} :A与B 的公共元素(相同元素)构成的会合1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2)A B { x | x A或 x B} :A 与B 的所有元素构成的会合(相同元素只写一次)。