山东省2020年高考理科数学模拟试题及答案(二)

合集下载

2020年山东省德州市高考数学二模试卷(理科)

2020年山东省德州市高考数学二模试卷(理科)

2020年山东省德州市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.把正确答案涂在答题卡上.1.(5分)设全集U=R,集合M={x|x2≤x},N={x|2x≤1},则M∩∁U N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]2.(5分)已知复数z1=l+ai(a∈R),z2=1+2i(i为虚数单位),若为纯虚数,则a=()A.﹣2B.2C.﹣D.3.(5分)港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长5多千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为()A..300,0.25B.300,0.35C.60,0.25D.60,0.354.(5分)已知椭圆=1(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐进线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)的展开式中,含x3项的系数为()A.﹣60B.﹣12C.12D.606.(5分)已知△ABC的面积是,AB=1,,则AC=()A.5B.或1C.5或1D.7.(5分)如图,在且角坐标系xOy中,过原点O作曲线y=x2+1(x≥0)的切线,切点为P,过点P分别作x,y轴的垂线,垂足分别为A,B,在矩形OAPB中随机选取一点,则它在阴影部分的概率为()A.B.C.D.8.(5分)设a,b都是不等于1的正数,则“log a2<log b2”是“2a>2b>2”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件9.(5分)已知函数f(x)=([x]表示不超过x的最大整数),若f(x)﹣ax =0有且仅有3个零点,则实数的取值范围是()A.(]B.[)C.[)D.(]10.(5分)已知定义在R上的函数f(x)在区间[0,+∞)上单调递增,且y=f(x﹣1)的图象关于x=1对称,若实数a满足f(log2a)<f(2),则a的取值范围是()A.(0,)B.()C.(,4)D.(4,+∞)11.(5分)已知椭圆的左右焦点分别为F1、F2,过点F1的直线与椭圆交于P,Q两点.若△PF2Q的内切圆与线段PF2在其中点处相切,与PQ相切于点F1,则椭圆的离心率为()A.B.C.D.12.(5分)已知△ABC中,|=﹣2.点P为BC边上的动点,则的最小值为()A.2B.﹣C.﹣2D.﹣二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)设x、y满足约束条件的最小值是﹣1,则m的值为.14.(5分)若,则sin2α=.15.(5分)如图.网络纸上小正方形的边长为1.粗实线画出的是某几何体的三视图,则该几何体的体积为.16.(5分)已知函数f(x)=2a(lnx﹣x)+x2(a>0)有两个极值点x1,x2(x1<x2),则f(x1)+f(x2)的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)数列{a n}的前n项和为S n,且S n=2a n﹣2.数列{b n}满足b n=log2a n,其前n 项和为T n.(1)求数列{a n}与{b n}的通项公式;(2)设,求数列{c n}的前项和∁n.18.(12分)如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,E,F分别为AB,B1C1的中点.(1)求证:B1E∥平面ACF;(2)求平面CEB1与平面ACF所成二面角(锐角)的余弦值.19.(12分)2020年,山东省高考将全面实行“3+[6选3]”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取200人做调查.统计显示,男生喜欢物理的有64人,不喜欢物理的有56人;女生喜欢物理的有36人,不喜欢物理的有44人.(1)据此资料判断是否有75%的把握认为“喜欢物理与性别有关”(2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从5名男同学和4名女同学(其中3男2女喜欢物理)中,选取3名男同学和2名女同学参加座谈会,记参加座谈会的5人中喜欢物理的人数为X,求X的分布列及期望E (X)..P(K2≥k)0.250.100.05k 1.323 2.706 3.84120.(12分)已知点P在抛物线C:x2=2py(p>0)上,且点P的横坐标为2,以P为圆心,|PO|为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且|MN|=2.(l)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且AB⊥HB,求|AF|﹣|BF|的值.21.(12分)已知函数.(1)当a为何值时,x轴为曲线y=f(x)的切线,(2)用max{m,n}表示m,n中的最大值,设函数h(x)=max{xf(x),xg(x)}(x>0),当0<a<3时,讨论h(x)零点的个数.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数,α∈[0,π)).以坐标原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2=2ρcosθ+3.(l)求直线l的普通方程和曲线C的直角坐标方程:(2)若直线l与曲线C相交于A,B两点,且|AB|=2.求直线l的方程.23.已知函数f(x)=|x﹣1|.(1)求不等式f(x)<x+|x+l|的解集;(2)若函数g(x)=log2[f(x+3)+f(x)﹣2a]的定义域为R.求实数a的取值范围.2020年山东省德州市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.把正确答案涂在答题卡上.1.(5分)设全集U=R,集合M={x|x2≤x},N={x|2x≤1},则M∩∁U N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]【解答】解:M={x|x2≤x}={x|0≤x≤1},N={x|2x≤1}={x|x≤0},则∁U N={x|x>0},M∩∁U N={x|0<x≤1}=(0,1],故选:B.2.(5分)已知复数z1=l+ai(a∈R),z2=1+2i(i为虚数单位),若为纯虚数,则a=()A.﹣2B.2C.﹣D.【解答】解:∵z1=l+ai(a∈R),z2=1+2i,∴=,∵为纯虚数,∴,解得a=﹣.故选:C.3.(5分)港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长5多千米.桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90km/h的频率分别为()A..300,0.25B.300,0.35C.60,0.25D.60,0.35【解答】解:由频率分布直方图得:在此路段上汽车行驶速度在区间[85,90)的频率为0.06×5=0.3,∴在此路段上汽车行驶速度在区间[85,90)的车辆数为:0.3×1000=300,行驶速度超过90km/h的频率为:(0.05+0.02)×5=0.35.故选:B.4.(5分)已知椭圆=1(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐进线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:依题意椭圆=1(a>b>0)与双曲线(a>0,b>0)的焦点相同,可得:a2﹣b2=a2+b2,即a2=3b2,∴,可得∴双曲线的渐近线方程为:y=±x故选:A.5.(5分)的展开式中,含x3项的系数为()A.﹣60B.﹣12C.12D.60【解答】解:的展开式的通项公式为T r+1=•(﹣2)r•x6﹣3r,令6﹣3r=3,求得r=1,可得含x3项的系数为﹣12,故选:B.6.(5分)已知△ABC的面积是,AB=1,,则AC=()A.5B.或1C.5或1D.【解答】解:∵△ABC的面积是,AB=1,BC=,∴•AB•BC•sin B=,解得sin B=,∴B=,或,当B=时,由余弦定理得,AC2=AB2+BC2﹣2•AB•BC•cos B=1+2﹣2×1××(﹣)=5,则AC=,当B=时,由余弦定理得,AC2=AB2+BC2﹣2•AB•BC•cos B=1+2﹣2×1××=1,解得AC=1.故选:B.7.(5分)如图,在且角坐标系xOy中,过原点O作曲线y=x2+1(x≥0)的切线,切点为P,过点P分别作x,y轴的垂线,垂足分别为A,B,在矩形OAPB中随机选取一点,则它在阴影部分的概率为()A.B.C.D.【解答】解:根据题意,设P的坐标为(m,m2+1),则切线的斜率k==,又由y=x2+1,其导数y′=2x,则点P处切线的斜率k=y′|x=m=2m,则有=2m,解可得m=±1,又由m>0,则m=1,即P(1,2),故切线的方程为y=2x,矩形OAPB的面积S=2×1=2,阴影部分的面积S′=[(x2+1)﹣2x]dx=(﹣x2+x)=,则点在阴影部分的概率P===;故选:A.8.(5分)设a,b都是不等于1的正数,则“log a2<log b2”是“2a>2b>2”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解答】解:由“”,得<,得:或log2a>log2b>0或0>log2a>log2b,即或a>b>1或0<b<a<1,由2a>2b>2,得:a>b>1,故“”是“2a>2b>2”的必要不充分条件,故选:C.9.(5分)已知函数f(x)=([x]表示不超过x的最大整数),若f(x)﹣ax =0有且仅有3个零点,则实数的取值范围是()A.(]B.[)C.[)D.(]【解答】解:当0≤x<1时,[x]=0,当1≤x<2时,[x]=1,当2≤x<3时,[x]=2,当3≤x<4时,[x]=3,若f(x)﹣ax=0有且仅有3个零点,则等价为f(x)=ax有且仅有3个根,即f(x)与g(x)=ax有三个不同的交点,作出函数f(x)和g(x)的图象如图,当a=1时,g(x)=x与f(x)有无数多个交点,当直线g(x)经过点A(2,1)时,即g(2)=2a=1,a=时,f(x)与g(x)有两个交点,当直线g(x)经过点B(3,2)时,即g(3)=3a=2,a=时,f(x)与g(x)有三个交点,要使f(x)与g(x)=ax有三个不同的交点,则直线g(x)处在过y=x和y=x 之间,即<a≤,故选:A.10.(5分)已知定义在R上的函数f(x)在区间[0,+∞)上单调递增,且y=f(x﹣1)的图象关于x=1对称,若实数a满足f(log2a)<f(2),则a的取值范围是()A.(0,)B.()C.(,4)D.(4,+∞)【解答】解:根据题意,y=f(x﹣1)的图象关于x=1对称,则函数f(x)的图象关于y轴对称,即函数f(x)为偶函数,又由函数f(x)在区间[0,+∞)上单调递增,则f(log2a)<f(2)⇒f(|log2a|)<f(2)⇒|log2a|<2,解可得:<a<4,即a的取值范围为(,4);故选:C.11.(5分)已知椭圆的左右焦点分别为F1、F2,过点F1的直线与椭圆交于P,Q两点.若△PF2Q的内切圆与线段PF2在其中点处相切,与PQ相切于点F1,则椭圆的离心率为()A.B.C.D.【解答】解:可设△PF2Q的内切圆的圆心为I,M为切点,且为中点,可得△PF2Q为等腰三角形,设|PF1|=m,|PF2|=n,可得m+n=2a,由切线的性质可得m=n,解得m=,n=,设|QF1|=t,|QF2|=2a﹣t,由t=2a﹣t﹣,解得t=,则△PF2Q为等边三角形,即有2c=•,即有e==,故选:D.12.(5分)已知△ABC中,|=﹣2.点P为BC边上的动点,则的最小值为()A.2B.﹣C.﹣2D.﹣【解答】解:以BC的中点为坐标原点,建立如图的直角坐标系,可得B(﹣1,0),C(1,0),设P(a,0),A(x,y),由•=﹣2,可得(x+1,y)•(2,0)=2x+2=﹣2,即x=﹣2,y≠0,则=(1﹣a,0)•(x﹣a﹣1﹣a+1﹣a,y+0+0)=(1﹣a)(x﹣3a)=(1﹣a)(﹣2﹣3a)=3a2﹣a﹣2=3(a﹣)2﹣,当a=时,的最小值为﹣.故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.13.(5分)设x、y满足约束条件的最小值是﹣1,则m的值为﹣1.【解答】解:画出满足条件的平面区域,如图示:由,解得:A(﹣m﹣2,﹣m),由z=2x+y得:y=﹣2x+z,显然直线过A(﹣m﹣2,﹣m)时,z最小,∴﹣2m﹣4﹣m=﹣1,解得:m=﹣1,故答案为:﹣1.14.(5分)若,则sin2α=﹣.【解答】解:∵,∴(sinα﹣cosα)=,可得:sinα﹣cosα=,∴两边平方,可得:1﹣sin2α=,∴sin2α=﹣.故答案为:﹣.15.(5分)如图.网络纸上小正方形的边长为1.粗实线画出的是某几何体的三视图,则该几何体的体积为8+.【解答】解:根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示;结合图中数据,计算它的体积为V=V三棱柱+V半圆锥=×2×2×4+××π×12×2=8+.故答案为:8+.16.(5分)已知函数f(x)=2a(lnx﹣x)+x2(a>0)有两个极值点x1,x2(x1<x2),则f(x1)+f(x2)的取值范围为(﹣∞,16ln2﹣24).【解答】函数f(x)的定义域为(0,+∞),f′(x)=2a(+2x=,依题意,方程2x2﹣2ax+2a=0有两个不等的正根x1,x2(其中x1<x2).故x1+x2=a>0,x1x2=a>0,△=4a2﹣16a>0⇒a>4,所以f(x1)+f(x2)=2aln(x1x2)+(x12+x22)﹣2a(x1+x2)=2alna+[(x1+x2)2﹣2x1x2]﹣2a(x1+x2)=2alna+a2﹣2a﹣2a2=2alna﹣2a﹣a2,令h(a)=2alna﹣a2﹣2a,(a>4),h′(a)=2(lna﹣a),h″(a)=2()<0,故h′(a)在(4,+∞)递减,故h′(a)≤h′(4)<0,故h(a)在(4,+∞)递减,而h(4)=16ln2﹣24故答案为(﹣∞,16ln2﹣24).三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)数列{a n}的前n项和为S n,且S n=2a n﹣2.数列{b n}满足b n=log2a n,其前n 项和为T n.(1)求数列{a n}与{b n}的通项公式;(2)设,求数列{c n}的前项和∁n.【解答】解:(1)S n=2a n﹣2,可得a1=S1=2a1﹣2,可得a1=2;当n≥2时,a n=S n﹣S n﹣1=2a n﹣2a n﹣1,即有a n=2a n﹣1,可得{a n}的首项和公比均为2的等比数列,可得a n=2n;b n=log2a n=log22n=n;(2)T n=n(n+1),则=2n+=2n+2(﹣),即有∁n=+2(1﹣+﹣+…+﹣)=2n+1﹣2+2(1﹣)=2n+1﹣.18.(12分)如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,E,F分别为AB,B1C1的中点.(1)求证:B1E∥平面ACF;(2)求平面CEB1与平面ACF所成二面角(锐角)的余弦值.【解答】证明:(1)取AC的中点M,连结EM,FM,在△ABC中,∵E为AB的中点,∴EM∥BC,且EM=BC,又F为B1C1的中点,B1C1∥BC,∴B1F∥BC,且B1F=,∴EM∥B1F,且EM=B1F,∴四边形EMFB1为平行四边形,∴B1E∥FM,又MF⊂平面ACF,BE⊄平面ACF,∴B1E∥平面ACF.解:(2)取BC中点O,连结AO,OF,则AO⊥BC,OF⊥平面ABC,以O为原点,分别以OB,AO,OF为x,y,z轴,建立空间直角坐标系,则A(0,﹣,0),B(1,0,0),C(﹣1,0,0),E(,0),F(0,0,2),B1(1,0,2),=(,0),=(1,0,2),=(1,﹣,0),=(2,0,2),设平面CEB1的一个法向量=(x,y,z),则,令x=1.则=(1,,﹣1),同理得平面ACF的一个法向量为=(1,,﹣),则cos<>==,∴平面CEB1与平面ACF所成二面角(锐角)的余弦值为.19.(12分)2020年,山东省高考将全面实行“3+[6选3]”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取200人做调查.统计显示,男生喜欢物理的有64人,不喜欢物理的有56人;女生喜欢物理的有36人,不喜欢物理的有44人.(1)据此资料判断是否有75%的把握认为“喜欢物理与性别有关”(2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从5名男同学和4名女同学(其中3男2女喜欢物理)中,选取3名男同学和2名女同学参加座谈会,记参加座谈会的5人中喜欢物理的人数为X,求X的分布列及期望E (X)..P(K2≥k)0.250.100.05k 1.323 2.706 3.841【解答】解:(1)根据所给的条件得,男女合计喜欢物理6436100不喜欢物理5644100合计12080200K2==>1.323,所以有75%的把握认为喜欢物理和性别有关.(2)设参加座谈会的5人中喜欢物理的男同学有m人,女同学有n人,则X=m+n,由题意可知,X的所以可能取值为1,2,3,4,5.P(X=1)==,P(X=2)=+=,P(X=3)=++=,P(X=4)=+=,p(X=5)==,所以X的分布列为X12345P所以E(X)=1×+2×+3×+4×+5×=,20.(12分)已知点P在抛物线C:x2=2py(p>0)上,且点P的横坐标为2,以P为圆心,|PO|为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且|MN|=2.(l)求抛物线C的方程;(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且AB⊥HB,求|AF|﹣|BF|的值.【解答】解:(1)将点P横坐标x P=2代入x2=2py中,求得y P=,∴P(2,),|OP|2=+4,点P到准线的距离为d=+,∴|OP|2=+d2,∴22+=12+,解得p2=4,∴p=2,∴抛物线C的方程为:x2=4y;(2)抛物线x2=4y的焦点为F(0,1),准线方程为y=﹣1,H(0,﹣1);设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,代入抛物线方程可得x2﹣4kx﹣4=0,∴x1+x2=4k,x1x2=﹣4,…①由AB⊥HB,可得k AB•k HB=﹣1,又k AB=k AF=,k HB=,∴•=﹣1,∴(y1﹣1)(y2+1)+x1x2=0,即(﹣1)(+1)+x1x2=0,∴+(﹣)﹣1+x1x2=0,…②把①代入②得,﹣=16,则|AF|﹣|BF|=y1+1﹣y2﹣1=(﹣)=×16=4.21.(12分)已知函数.(1)当a为何值时,x轴为曲线y=f(x)的切线,(2)用max{m,n}表示m,n中的最大值,设函数h(x)=max{xf(x),xg(x)}(x>0),当0<a<3时,讨论h(x)零点的个数.【解答】解:(1)设曲线y=f(x)与x轴相切与点(x0,0),则,即,∴,∴当时,x轴为曲线y=f(x)的切线.(2)令,g1(x)=xg(x)=lnx(x>0),则h(x)=max{f1(x),g1(x)},,由f'1(x)=0,得,∴当x∈(0,)时,f'1(x)>0,f1(x)为增函数;当x∈(,+)时,f'1(x)为减函数,∵0<a<3,∴0<,①当,即0<a<时,h(x)有一个零点;②当,即a=时,h(x)有两个零点;③当,即时,h(x)有三个零点;④当,即时,h(x)有两个零点;⑤当,即时,h(x)有一个零点,综上,或时,h(x)有一个零点;当或时,h(x)有两个零点;当,h(x)有三个零点.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数,α∈[0,π)).以坐标原点O为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2=2ρcosθ+3.(l)求直线l的普通方程和曲线C的直角坐标方程:(2)若直线l与曲线C相交于A,B两点,且|AB|=2.求直线l的方程.【解答】解:(1)由消去参数t得x sinα﹣y cosα+cosα=0(α∈[0,π),由ρ2=2ρcosθ+3得曲线C的直角坐标方程为:x2+y2﹣2x﹣3=0(2)由x2+y2﹣2x﹣3=0得(x﹣1)2+y2=2,得圆心为(1,0),半径为2,圆心到直线的距离为d==|sinα+cosα|,∴|AB|=2,即=,整理得sin2α=1,∵α∈[0,π),∴2α∈[0,2π),∴2α=,∴α=,所以直线l的方程为:x﹣y+1=0.23.已知函数f(x)=|x﹣1|.(1)求不等式f(x)<x+|x+l|的解集;(2)若函数g(x)=log2[f(x+3)+f(x)﹣2a]的定义域为R.求实数a的取值范围.【解答】解:(1)不等式f(x)<x+|x+l|⇔|x﹣1|<x+|x+1|⇔或或,解得x>0,所以原不等式的解集为(0,+∞).(2)要使函数g(x)=log2[f(x+3)+f(x)﹣2a]的定义域为R,只要h(x)=f(x+3)+f(x)﹣2a的最小值大于0即可.,又h(x)=|x+3|+|x﹣1|﹣2a≥|(x+2)﹣(x﹣1)|﹣2a=3﹣2a,当且仅当x∈[﹣2,1]时取等,所以3﹣2a>a,即a<.所以实数a的取值范围是(﹣∞,).。

2020年山东省泰安市高考数学二模试卷(理科)含答案解析

2020年山东省泰安市高考数学二模试卷(理科)含答案解析

2020年山东省泰安市高考数学二模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的共轭复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|y=},B={x|x2﹣2x<0},则()A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B3.设,,是非零向量,已知:命题p:∥,∥,则∥;命题q:若•=0,•=0则•=0,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.¬p∨q4.=()A.B.﹣1C.D.15.执行如图所示的程序框图,则输出i的值为()A.4B.5C.6D.556.在二项式的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为()A.﹣32B.0C.32D.17.如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角8.已知x,y满足条件,若z=mx+y取得最大值的最优解不唯一,则实数m的值为()A.1或﹣B.1或﹣2C.﹣1或﹣2D.﹣2或﹣9.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=110.将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A.B.C.D.二、填空题:本大题共5小题,每小题5分.11.长方形ABCD中,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为.12.已知直线ax+by﹣6=0(a>0,b>0)被圆x2+y2﹣2x﹣4y=0截得的弦长为2,则ab 的最大值为.13.如图是一个几何体的三视图,则该几何体的体积是.14.已知函数f(x)=,若存在x1,x2∈R,当0≤x1<4≤x2≤12时,f(x1)=f(x2),则x1f(x2)的最大值是.15.给出下列命题:①已知ξ服从正态分布N(0,δ2),且P(﹣2≤ξ≤2)=0.4,则P(ξ>2)=0.3;②函数f(x﹣1)是偶函数,且在(0,+∞)上单调递增,则f(2)>f(log2)>f[()2]③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=﹣3,其中正确命题的序号是(把你认为正确的序号都填上).三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.已知a,b,c分别为△ABC三个内角的对边,且cosC+sinC=.(Ⅰ)求∠B的大小;(Ⅱ)若a+c=5,b=7,求的值.17.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?课外体育不达标课外体育达标合计男60女110合计(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取12人,再从这12名学生中随机抽取3人参加体育知识问卷调查,记“课外体育达标”的人数为ξ,求ξ得分布列和数学期望.附参考公式与数据:K2=P(K2≥k0)0.10 0.05 0.010 0.005 0.001k0 2.706 3.841 6.635 7.879 10.82818.已知正项等差数列{a n}的首项为a1=2,前n项和为S n,若a1+3,2a2+2,a6+8成等比数列.(1)求数列{a n}的通项公式;(2)记P n=+++…+,Q n=+++…+,证明:P n≥Q n.19.如图,三棱柱ABC﹣A1B1C1中,D、M分别为CC1和A1B的中点,A1D⊥CC1,△AA1B 是边长为2的正三角形,A1D=2,BC=1.(1)证明:MD∥平面ABC;(2)证明:BC⊥平面ABB1A1(3)求二面角B﹣AC﹣A1的余弦值.20.已知函数f(x)=x2+mlnx+x(1)求f(x)的单调区间;(2)令g(x)=f(x)﹣x2,试问过点P(1,3)存在多少条直线与曲线y=g(x)相切?并说明理由.21.已知椭圆C:+=1,(a>b>0)的离心率为,F1、F2分别为椭圆的上、下焦点,过点F2作直线l与椭圆C交于不同的两点A、B,若△ABF1周长为4(1)求椭圆C的标准方程(2)P是y轴上一点,以PA、PB为邻边作平行四边形PAQB,若P点的坐标为(0,﹣2),≤≤1,求平行四边形PAQB对角PQ的长度取值范围.2020年山东省泰安市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的共轭复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】化简复数,得出其共轭复数.【解答】解:==,∴复数的共轭复数是+.故选:A.2.已知集合A={x|y=},B={x|x2﹣2x<0},则()A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B【考点】集合的包含关系判断及应用.【分析】求出集合A,B,根据集合包含关系的定义,可得答案.【解答】解:∵集合A={x|y=}=(﹣∞,2],B={x|x2﹣2x<0}=(0,2),故B⊆A,故选:C.3.设,,是非零向量,已知:命题p:∥,∥,则∥;命题q:若•=0,•=0则•=0,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.¬p∨q【考点】命题的真假判断与应用;平面向量数量积的运算.【分析】根据向量共线的性质以及向量数量积的应用,判断pq的真假即可.【解答】解:∵,,是非零向量,∴若∥,∥,则∥;则命题p是真命题,若•=0,•=0,则•=0,不一定成立,比如设=(1,0),=(0,1),=(2,0),满足•=0,•=0,但•=2≠0,则•=0不成立,即命题q是假命题,则p∨q为真命题.,p∧q为假命题.,(¬p)∧(¬q),¬p∨q都为假命题,故选:A.4.=()A.B.﹣1C.D.1【考点】三角函数的化简求值.【分析】由条件利用两角和差的三角公式化简所给的式子,求得结果.【解答】解:==2•=2sin30°=1,故选:D.5.执行如图所示的程序框图,则输出i的值为()A.4B.5C.6D.55【考点】程序框图.【分析】模拟执行程序,可得程序作用是对平方数列求和,当i的值为5时满足条件,退出循环,即可得解.【解答】解:模拟执行程序,可得程序作用是对平方数列求和,容易得到S4=30,S5=55>50,故输出i的值为5.故选:B.6.在二项式的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为()A.﹣32B.0C.32D.1【考点】二项式系数的性质.【分析】由二项式系数的性质求出n的值,再令x=1求出展开式中各项系数的和.【解答】解:二项式的展开式中,所有二项式系数的和是32,∴2n=32,解得n=5;令x=1,可得展开式中各项系数的和为(3×12﹣)5=32.故选:C.7.如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【考点】直线与平面垂直的性质.【分析】根据SD⊥底面ABCD,底面ABCD为正方形,以及三垂线定理,易证AC⊥SB,根据线面平行的判定定理易证AB∥平面SCD,根据直线与平面所成角的定义,可以找出∠ASO是SA与平面SBD所成的角,∠CSO是SC与平面SBD所成的角,根据三角形全等,证得这两个角相等;异面直线所成的角,利用线线平行即可求得结果.【解答】解:∵SD⊥底面ABCD,底面ABCD为正方形,∴连接BD,则BD⊥AC,根据三垂线定理,可得AC⊥SB,故A正确;∵AB∥CD,AB⊄平面SCD,CD⊂平面SCD,∴AB∥平面SCD,故B正确;∵SD⊥底面ABCD,∠ASO是SA与平面SBD所成的角,∠CSO是SC与平面SBD所成的,而△SAO≌△CSO,∴∠ASO=∠CSO,即SA与平面SBD所成的角等于SC与平面SBD所成的角,故C正确;∵AB∥CD,∴AB与SC所成的角是∠SCD,DC与SA所成的角是∠SAB,而这两个角显然不相等,故D不正确;故选D.8.已知x,y满足条件,若z=mx+y取得最大值的最优解不唯一,则实数m的值为()A.1或﹣B.1或﹣2C.﹣1或﹣2D.﹣2或﹣【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分mBC).由z=mx+y得y=﹣mx+z,即直线的截距最大,z也最大.若m>0,目标函数y=﹣mx+z的斜率k=﹣m>0,要使z=mx+y取得最大值的最优解不唯一,则直线z=mx+y与直线x﹣y+1=0平行,此时m=﹣2,若m<0,目标函数y=﹣mx+z的斜率k=﹣m<0,要使z=y﹣mx取得最大值的最优解不唯一,则直线z=mx+y与直线x+y﹣2=0,平行,此时m=﹣1,综上m=﹣2或m=1,故选:B.9.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1【考点】双曲线的标准方程.【分析】先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.【解答】解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为﹣=1.故选:A.10.将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.【解答】解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.故选:D.二、填空题:本大题共5小题,每小题5分.11.长方形ABCD中,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为.【考点】几何概型.【分析】本题利用几何概型解决,这里的区域平面图形的面积.欲求取到的点到O的距离大于1的概率,只须求出圆外的面积与矩形的面积之比即可.【解答】解:根据几何概型得:取到的点到O的距离大于1的概率:==.故答案为:12.已知直线ax+by﹣6=0(a>0,b>0)被圆x2+y2﹣2x﹣4y=0截得的弦长为2,则ab 的最大值为.【考点】直线与圆相交的性质.【分析】由圆的方程得到圆的半径为,再由弦长为2得到直线过圆心,即得到a与b 满足的关系式,再利用基本不等式即可得到结论.【解答】解:圆x2+y2﹣2x﹣4y=0可化为(x﹣1)2+(y﹣2)2=5,则圆心为(1,2),半径为,又由直线ax+by﹣6=0(a>0,b>0)被圆x2+y2﹣2x﹣4y=0截得的弦长为2,则直线ax+by﹣6=0(a>0,b>0)过圆心,即a+2b﹣6=0,亦即a+2b=6,a>0,b>0,所以6=a+2b≥2,当且仅当a=2b时取等号,所以ab≤,所以ab的最大值为,故答案为:.13.如图是一个几何体的三视图,则该几何体的体积是15.【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个组合体:左边是三棱柱、右边是三棱锥,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是一个组合体:左边是三棱柱、右边是三棱锥,三棱柱底面是侧视图:等腰直角三角形,两条直角边是3,三棱柱的高是3;三棱锥的底面也是侧视图,高是1,所以几何体的体积是V==15,故答案为:15.14.已知函数f(x)=,若存在x1,x2∈R,当0≤x1<4≤x2≤12时,f(x1)=f(x2),则x1f(x2)的最大值是.【考点】分段函数的应用.【分析】由题意作函数f(x)=的图象,从而可得1≤x1≤3,x1f(x2)=﹣x13+4,记g(x1)=﹣x13+4,则g′(x1)=﹣3+8x1=﹣3x1(3x1﹣8),从而判断函数的单调性及最值,从而求得.【解答】解:由题意作函数f(x)=的图象如下,,结合图象可知,3≤﹣+4x1≤4,解得,1≤x1≤3,故x1f(x2)=x1f(x1)=x1(﹣+4x1)=﹣x13+4,记g(x1)=﹣x13+4,g′(x1)=﹣3+8x1=﹣3x1(3x1﹣8),故g(x1)在[1,]上是增函数,在(,3]上是减函数,故x1f(x2)的最大值是g()=,故答案为:.15.给出下列命题:①已知ξ服从正态分布N(0,δ2),且P(﹣2≤ξ≤2)=0.4,则P(ξ>2)=0.3;②函数f(x﹣1)是偶函数,且在(0,+∞)上单调递增,则f(2)>f(log2)>f[()2]③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=﹣3,其中正确命题的序号是①②(把你认为正确的序号都填上).【考点】命题的真假判断与应用.【分析】①根据随机变量ξ服从标准正态分布N(0,σ2),得到正态曲线关于ξ=0对称,利用P(﹣2<ξ≤2)=0.4,即可求出P(ξ>2).②确定函数f(x)图象关于x=﹣1对称,在(﹣1,+∞)上单调递增,即可得出结论;③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是a+3b=0.【解答】解:①∵随机变量ξ服从正态分布N(0,σ2),∴正态曲线关于ξ=0对称,∵P(﹣2<ξ≤2)=0.4,∴P(ξ>2)=(1﹣0.4)=0.3.正确;②∵函数f(x﹣1)是偶函数,∴f(﹣x﹣1)=f(x﹣1),∴函数f(x)图象关于x=﹣1对称,∵函数f(x﹣1)在(0,+∞)上单调递增,∴函数f(x)在(﹣1,+∞)上单调递增,∵f(log2)=f(﹣3)=f(1),()2<1<2,∴f(2)>f(log2)>f[()2],正确;③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是a+3b=0,故不正确.故答案为:①②.三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤. 16.已知a,b,c分别为△ABC三个内角的对边,且cosC+sinC=.(Ⅰ)求∠B的大小;(Ⅱ)若a+c=5,b=7,求的值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)根据两角和差的正弦公式以及正弦定理进行化简即可求∠B的大小;(Ⅱ)由余弦定理可求|AB||BC|=42,利用平面向量数量积的运算即可得解.【解答】解:(I)在△ABC中,∵cosC+sinC=,∴cosC+sinC=,∴sinBcosC+sinBsinC=sin(B+C),∴sinBcosC+sinBsinC=sinBcosC+cosBsinC,∴由于sinC≠0,可得:sinB=cosB,∴tanB=,∵B∈(0,π),∴B=;(Ⅱ)∵B=,a+c=5,b=7,∴由余弦定理b2=a2+c2﹣2accosB,可得:49=a2+c2﹣ac=(a+c)2﹣3ac=175﹣3ac,解得:ac=42,即|AB||BC|=42,∴=﹣|AB||BC|cosB=﹣42×=﹣21.17.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?课外体育不达标课外体育达标合计男60 3090女9020110合计15050200(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取12人,再从这12名学生中随机抽取3人参加体育知识问卷调查,记“课外体育达标”的人数为ξ,求ξ得分布列和数学期望.附参考公式与数据:K2=P(K2≥k0)0.10 0.05 0.010 0.005 0.001k0 2.706 3.841 6.635 7.879 10.828【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差.【分析】(1)由题意得“课外体育达标”人数为50,则不达标人数为150,由此列联表,求出K2=,从而得到在犯错误的概率不超过0.01的前提下没有理由认为“课外体育达标”与性别有关.(2)由题意得在不达标学生中抽取的人数为9人,在达标学生中抽取人数为3人,则ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】解:(1)由题意得“课外体育达标”人数为:200×[(0.02+0.005)×10]=50,则不达标人数为150,∴列联表如下:课外体育不达标课外体育达标合计男60 30 90女90 20 110合计150 50 200∴K2==,∴在犯错误的概率不超过0.01的前提下没有理由认为“课外体育达标”与性别有关.(2)由题意得在不达标学生中抽取的人数为:12×=9人,在达标学生中抽取人数为:12×=3人,则ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ0 1 2 3PE(ξ)==.18.已知正项等差数列{a n}的首项为a1=2,前n项和为S n,若a1+3,2a2+2,a6+8成等比数列.(1)求数列{a n}的通项公式;(2)记P n=+++…+,Q n=+++…+,证明:P n≥Q n.【考点】数列的求和;等差数列与等比数列的综合.【分析】(1)通过设正项等差数列{a n}的公差为d,并利用首项和公差d表示出a2、a6,通过a1+3,2a2+2,a6+8成等比数列构造方程,进而计算可得结论;(2)通过(1)可知=,利用等比数列的求和公式计算可知P n=1﹣,通过裂项可知=﹣,进而并项相加即得结论.【解答】(1)解:设正项等差数列{a n}的公差为d,则d≥0,依题意,a2=2+d,a6=2+5d,∵a1+3,2a2+2,a6+8成等比数列,∴(6+2d)2=(2+3)(10+5d),整理得:36+24d+4d2=50+25d,即4d2﹣d﹣14=0,解得:d=2或d=﹣(舍),∴数列{a n}的通项公式a n=2n;(2)证明:由(1)可知==,由等比数列的求和公式可知P n=+++…+==1﹣,∵==﹣,∴Q n=+++…+=1﹣+﹣+…+﹣=1﹣,显然,当n≥1时≥,故P n≥Q n.19.如图,三棱柱ABC﹣A1B1C1中,D、M分别为CC1和A1B的中点,A1D⊥CC1,△AA1B 是边长为2的正三角形,A1D=2,BC=1.(1)证明:MD∥平面ABC;(2)证明:BC⊥平面ABB1A1(3)求二面角B﹣AC﹣A1的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)取AB的中点H,连接HM,CH,根据线面平行的判定定理即可证明MD∥平面ABC;(2)根据三角形的边长关系证明三角形是直角三角形,然后结合线面垂直的判定定理即可证明BC⊥平面ABB1A1(3)建立坐标系求出平面的法向量,利用向量法即可求二面角B﹣AC﹣A1的余弦值.【解答】(1)证明:取AB的中点H,连接HM,CH,∵D、M分别为CC1和A1B的中点,∴HM∥BB1,HM=BB1=CD,∴HM∥CD,HM=CD,则四边形CDMH是平行四边形,则CH=DM.∵CH⊂平面ABC,DM⊄平面ABC,∴MD∥平面ABC;(2)证明:取BB1的中点E,∵△AA1B是边长为2的正三角形,A1D=2,BC=1.∴C1D=1,∵A1D⊥CC1,∴A1C1==,则A1B12+A1B12=4+1=5=A1C12,则△A1B1C1是直角三角形,则B1C1⊥A1B1,∵在正三角形BA1B1中,A1E=,∴A1E2+DE2=3+1=4=A1D12,则△A1DE是直角三角形,则DE⊥A1E,即BC⊥A1E,BC⊥A1B1,∵A1E∩A1B1=A1,∴BC⊥平面ABB1A1(3)建立以E为坐标原点,EB,EA1的反向延长线,ED分别为x,y,z轴的空间直角坐标系如图:则E(0,0,0),B(1,0,0),C(1,0,1),A(2,﹣,0),A1(0,﹣,0),则设平面ABC的法向量为=(x,y,z),=(﹣1,,0),=(0,0,1),则,即,令y=1,则x=,z=0,即=(,1,0),平面ACA1的法向量为=(x,y,z),=(﹣1,,1),=(﹣2,0,0),则,得,即,令y=1,则z=﹣,x=0,即=(0,1,﹣),则cos<,>====,即二面角B﹣AC﹣A1的余弦值是.20.已知函数f(x)=x2+mlnx+x(1)求f(x)的单调区间;(2)令g(x)=f(x)﹣x2,试问过点P(1,3)存在多少条直线与曲线y=g(x)相切?并说明理由.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,通过讨论m的范围,解关于导函数的不等式,从而得到函数的单调区间;(2)设切点为(x0,x0+mlnx0),求出切线斜率K,求出切线方程,切线过点P(1,3),推出关系式,构造函数g(x)(x>0),求出导函数,通过讨论①当m<0时,判断g(x)单调性,说明方程g(x)=0无解,切线的条数为0,②当m>0时,类比求解,推出当m>0时,过点P(1,3)存在两条切线,③当m=0时,f(x)=x,说明不存在过点P(1,3)的切线.【解答】解:(1)f(x)=x2+mlnx+x,(x>0),f′(x)=x++1==,①m≥0时,f′(x)>0,函数在(0,+∞)递增,②m<0时,令f′(x)>0,解得:x>,令f′(x)<0,解得:x<,∴f(x)在(0,)递减,在(,+∞)递增;(2)设切点为(x0,x0+mlnx0),则切线斜率k=1+,切线方程为y﹣(x0+alnx0)=(1+)(x﹣x0).因为切线过点P(1,3),则3﹣(x0+alnx0)=(1+)(1﹣x0).即m(lnx0+﹣1)﹣2=0.…①令g(x)=m(lnx+﹣1)﹣2(x>0),则g′(x)=m(﹣)=,①当m<0时,在区间(0,1)上,g′(x)>0,g(x)单调递增;在区间(1,+∞)上,g′(x)<0,g(x)单调递减,所以函数g(x)的最大值为g(1)=﹣2<0.故方程g(x)=0无解,即不存在x0满足①式.因此当m<0时,切线的条数为0.②当m>0时,在区间(0,1)上,g′(x)<0,g(x)单调递减,在区间(1,+∞)上,g′(x)>0,g(x)单调递增,所以函数g(x)的最小值为g(1)=﹣2<0.取x1=e1+>e,则g(x1)=a(1++e﹣1﹣﹣1)﹣2=ae﹣1﹣>0.故g(x)在(1,+∞)上存在唯一零点.取x2=e﹣1﹣<,则g(x2)=m(﹣1﹣+e1+﹣1)﹣2=me1+﹣2m﹣4=m[e1+﹣2(1+)].设t=1+(t>1),u(t)=e t﹣2t,则u′(t)=e t﹣2.当t>1时,u′(t)=e t﹣2>e﹣2>0恒成立.所以u(t)在(1,+∞)单调递增,u(t)>u(1)=e﹣2>0恒成立,所以g(x2)>0.故g(x)在(0,1)上存在唯一零点.因此当m>0时,过点P(1,3)存在两条切线.③当m=0时,f(x)=x,显然不存在过点P(1,3)的切线.综上所述,当m>0时,过点P(1,3)存在两条切线;当m≤0时,不存在过点P(1,3)的切线.21.已知椭圆C:+=1,(a>b>0)的离心率为,F1、F2分别为椭圆的上、下焦点,过点F2作直线l与椭圆C交于不同的两点A、B,若△ABF1周长为4(1)求椭圆C的标准方程(2)P是y轴上一点,以PA、PB为邻边作平行四边形PAQB,若P点的坐标为(0,﹣2),≤≤1,求平行四边形PAQB对角PQ的长度取值范围.【考点】椭圆的简单性质.【分析】(1)由题意可得:,4a=4,a2=b2+c2,解出即可得出.(2)F2(0,﹣1).设A(x1,y1),B(x2,y2).=,1.﹣x1=λx2.由于四边形PAQB是平行四边形,可得==(x1+x2,y1+y2+4).设直线AB的方程为:y=kx﹣1,与椭圆方程联立化为:(k2+2)x2﹣2kx﹣1=0,利用根与系数的关系可得:k2=,可得:k2∈.由于==,令k2=t∈,f(t)=,再利用导数研究函数的单调性即可得出.【解答】解:(1)由题意可得:,4a=4,a2=b2+c2,解得a=,b=c=1.∴椭圆C的标准方程为:=1.(2)F2(0,﹣1).设A(x1,y1),B(x2,y2).=,1.﹣x1=λx2.∵四边形PAQB是平行四边形,==(x1+x2,y1+y2+4).设直线AB的方程为:y=kx﹣1,联立,化为:(k2+2)x2﹣2kx﹣1=0,∴x1+x2=,x1x2=,﹣x1=λx2.可得:k2==.λ=1时,k=0.时,k2∈.综上可得:k2∈.∴y1+y2=kx1﹣1+kx2﹣1=k(x1+x2)﹣2,∴=====,令k2=t∈,f(t)=,f′(t)==<0,∴函数f(t)在t∈上单调递减,∴f(t)∈.∴∈.2020年7月21日第21页(共21页)。

2020年高考模拟试卷——理科数学(山东卷)解析版(2)(52020高考)

2020年高考模拟试卷——理科数学(山东卷)解析版(2)(52020高考)

2021年山东高|考数学理试题解析一、选择题:本大题共12小题 ,每题5分 ,总分值60分.在每题给出的四个选项中 ,只有一项为哪一项符合题目要求的 .(1 )复数z 满足(z -3)(2 -i) =5(i 为虚数单位) ,那么z 的共轭复数为( )【答案】D 【解析】由(z-3)(2-i)=5,得(2 )设集合A ={0,1,2},那么集合B ={x -y |x ∈A, y ∈A }中元素的个数是( ) A. 1 B. 3 C 【答案】C【解析】因为,x y A ∈,所以2,1,0,1,2x y -=-- ,即{2,1,0,1,2}B =--,有5个元素 ,选【解析】因为函数为奇函数 ,所以(1)(1)(11)2f f -=-=-+=- ,选A.OP PAO OA ∠==,即3PAO π∠=,选B.(5 )将函数y =sin (2x +ϕ )的图像沿x 轴向左平移8π个单位后 ,得到一个偶函数的图像 ,那么ϕ的一个可能取值为 (A )34π (B ) 4π (C )0 (D ) 4π- 【答案】B【解析】将函数y =sin (2x +ϕ )的图像沿x 轴向左平移8π个单位 ,得到函数sin[2()]sin(2)84y x x ππϕϕ=++=++ ,因为此时函数为偶函数 ,所以,42k k Z ϕπ+=+∈ ,即,4k k Z ϕπ=+∈ ,所以选B.(6 )在平面直角坐标系xOy 中 ,M 为不等式组:2x y 20x 2y 103x y 80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点 ,那么直线OM 斜率的最||小值为 (A )2 (B )1 (C ) 13- (D ) 12- 【答案】 C【解析】作出可行域如图 ,由图象可知当M 位于点D 处时 ,OM的斜率最||小 .由210380x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=-⎩ ,即(3,1)D -,此时OM 的斜率为1133-=- ,选C. (7 )给定两个命题p 、q ,假设﹁p 是q 的必要而不充分条件 ,那么p 是﹁q 的(A )充分而不必条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 【答案】B【解析】因为﹁p 是q 的必要而不充分条件 ,所以﹁q 是p 的必要而不充分条件 ,即p 是﹁q 的充分而不必要条件 ,选A.(8 )函数y =xcosx + sinx 的图象大致为(A ) (B ) (C) (D) 【答案】 D【解析】函数x π=时 ,()0f ππ=-<,排除A,选D.(9 )过点 (3 ,1 )作圆 (x -1 )2 +y 2 =1的两条切线 ,切点分别为A ,B ,那么直线AB 的方程为 (A )2x +y -3 =0 (B )2x -y -3 =0 (C )4x -y -3 =0 (D )4x +y -3 =0 【答案】A【解析】由图象可知 ,(1,1)A 是一个切点 ,所以代入选项知 ,,B D 不成立 ,排除 .又AB 直线的斜率为负 ,所以排除C ,选A.设切线的斜率为k ,那么切线方程为1(3)y k x -=- ,即130kx y k -+-= (10 )用0 ,1 ,… ,9十个数字 ,可以组成有重复数字的三位数的个数为 (A )243 (B )252 (C )261 (D )279 【答案】B【解析】有重复数字的三位数个数为91010900⨯⨯= .没有重复数字的三位数有1299648C A =,所以有重复数字的三位数的个数为900648=252- ,选B.(11 )抛物线C 1:y = 12px 2(p >0)的焦点与双曲线C 2: 2213x y -=的右焦点的连线交C 11在点M 处的切线平行于C 2的一条渐近线 ,那么p =332343【答案】D【解析】经过第|一象限的双曲线的渐近线为3y x =.抛物线的焦点为(0,)2p F ,双曲线的右焦点为2(2,0)F.1'y xp=,所以在2(,)2xM xp处的切线斜率为,即1xp=,所以0x p=,即三点(0,)2pF,2(2,0)F,,)6pM p共线,所以202p pp--=-,即p=,选D.【解析】由22340x xy y z-+-=,得2234z x xy y=-+.所以4yx=,即2x y=时取等号此时22yz=,1)(max=zxy.xyyyzyx2122212-+=-+)211(2)11(2yyxy-=-=1)221121(42=-+≤yy,应选B.二、填空题:本大题共4小题,每题4分,共16分(13 )执行右面的程序框图,假设输入的ε的值为0.25 ,那么输入的n的值为【答案】3【解析】第|一次循环 ,10123,312,2F F n =+==-== ,此时1110.253F =≤不成立 .第二次循环 ,10235,523,3F F n =+==-== ,此时1110.255F =≤成立 ,输出3n = . (14)在区间[ -3,3]上随机取一个数x ,使得 |x +1 | - |x -2 |≥1成立的概率为 【答案】13【解析】设()12f x x x =+-- ,那么3,31()1221,123,23x f x x x x x x --≤≤-⎧⎪=+--=--<<⎨⎪≤≤⎩.由211x -≥ ,解得12x ≤< ,即当13x ≤≤时 ,()1f x ≥ .由几何概型公式得所求概率为31213(3)63-==-- .(15 )向量AB 与AC 的夹角为120 ,且||3,||2,AB AC ==假设,AP AB AC λ=+且AP BC ⊥,那么实数λ的值为【答案】712【解析】向量AB 与AC 的夹角为120 ,且||3,||2,AB AC ==所以1cos1203232AB AC AB AC ⋅=⋅=-⨯⨯=- .由AP BC ⊥得 ,0AP BC ⋅= ,即()()0AP BC AB AC AC AB λ⋅=+⋅-= ,所以22(1)0AC AB AB AC λλ-+-⋅= ,即493(1)0λλ---= ,解得712λ=. (16 )定义 "正对数〞:0,01ln ln ,1x x x x +<<⎧=⎨≥⎩ ,现有四个命题:①假设0,0a b >> ,那么ln ()ln b a b a ++= ②假设0,0a b >> ,那么ln ()ln ln ab a b +++=+ ③假设0,0a b >> ,那么ln ()ln ln a a b b+++≥-④假设0,0a b >> ,那么ln ()ln ln ln 2a b a b ++++≤++ 其中的真命题有: (写出所有真命题的编号 )【答案】①③④【解析】①当1,0a b >>时 ,1ba > ,ln ()ln ln ,ln lnb b a a b a b a b a ++=== ,所以ln ()ln b a b a ++=成立 .当01,0a b <<>时 ,01b a << ,此时ln ()0,ln 0b a b a ++== ,即ln ()ln b a b a ++=成立 .综上ln ()ln b a b a ++=恒成立 .②当1,a e b e==时 ,ln ()ln10,ln ln 1,ln 0ab a e b +++===== ,所以ln ()ln ln ab a b +++=+不成立 .③讨论,a b 的取值 ,可知正确 .④讨论,a b 的取值 ,可知正确 .所以正确的命题为①③④ . 三、解答题:本大题共6小题 ,共74分. (17 )设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6 ,b =2 ,cosB = 79. (Ⅰ )求a ,c 的值;(Ⅱ )求sin (A -B )的值. 解答: (1 )由cosB = 79与余弦定理得 ,221449a c ac +-=,又 a +c =6 ,解得3a c ==(2 )又 a =3,b =2 ,42sin 9B =与正弦定理可得 ,22sin 3A =,1cos 3A = ,(18 ) (本小题总分值12分 )如下列图 ,在三棱锥P -ABQ 中 ,PB ⊥平面ABQ ,BA =BP =BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点 ,AQ =2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(Ⅰ )求证:AB//GH ;(Ⅱ )求二面角D -GH -E 的余弦值 . 解答: (1 )因为C 、D 为中点 ,所以CD//AB 同理:EF//AB ,所以EF//CD ,EF ⊂平面EFQ , 所以CD//平面EFQ ,又CD ⊂平面PCD,所以 CD//GH ,又AB//CD ,所以AB//GH.(2)由AQ =2BD ,D 为AQ 的中点可得 ,△ABQ 为直角三角形 ,以B 为坐标原点 ,以BA 、BC 、BP 为x 、y 、z 轴建立空间直角坐标系 ,设AB =BP =BQ =2 ,可得平面GCD 的一个法向量为1(0,2,1)n = ,平面EFG 的一个法向量为2(0,1,2)n = ,可得4cos 5α==,所以二面角D (19 ) (2 )由题意可知X 的可能取值为:3,2,1,0相应的概率依次为:14416,,, ,所以EX =7解答: (1 )由S 4 =4S 2 ,a 2n =2a n +1 ,{a n }为等差数列 ,可得 ,11,2a d ==所以21n a n =-2.71828是自然对数的底数 (1 )求()f x 的单调区间 ,最||大值; (2 )讨论关于x 的方程|ln |()x f x =根的个数.于x 轴的直线被椭圆C 截得的线段长为l.(Ⅰ )求椭圆C 的方程;(Ⅱ )点P 是椭圆C 上除长轴端点外的任一点 ,连接PF 1、PF 2,设∠F 1PF 2的角平分线 PM 交C 的长轴于点M (m ,0 ) ,求m 的取值范围;(Ⅲ )在 (Ⅱ )的条件下 ,过点p 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共11||||PF PM PF PM ⋅ =22||||PF PM PF PM ⋅,11||PF PM PF ⋅ =22||PF PMPF ⋅,设(P 204x ≠ ,将向量坐标代入并化简得:m (23000416)312x x x -=- ,因为204x ≠ ,(2,2)∈- ,所以33(,)m ∈-。

2020年山东省高考理科数学仿真模拟试题二(附答案)

2020年山东省高考理科数学仿真模拟试题二(附答案)

2020年山东省高考理科数学仿真模拟试题二(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{}2log (1)2A x x =-<,{}16B x x =-<<,则A B ⋂= ( ) A. {}15x x -<< B. {}16x x -<< C. {}15x x <<D. {}16x x <<2. 复数i z a b =+(,a b R ∈)满足2i(1)z z =-,则a b +=( ) A. 35-B. 15-C.15D.353. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为A. B. C.D.4. 为了计算满足的最大正整数,设置了如下图所示的程序框图,若判断框中填写的是“”,则输出框中应填( )A. 输出B. 输出C. 输出D. 输出5. 已知函数()cos x xf x e=,则()f x 的图象在点()()0,0f 处的切线方程为( ) A. 10x y ++= B. 10x y +-=C. 10x y -+=D. 10x y --=6. 某班有50名学生,一次数学考试的成绩ξ服从正态分布N (105,102),已知 P (95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为( ) A. 10B. 9C. 8D. 77. 为了得到函数sin y x =的图像,只需将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图像( )A. 横坐标伸长为原来的两倍,纵坐标不变,再向右平移6π个单位 B. 横坐标伸长为原来的两倍,纵坐标不变,再向左平移6π个单位C. 横坐标缩短为原来的12,纵坐标不变,再向右平移6π个单位D. 横坐标缩短为原来的12,纵坐标不变,再向左平移6π个单位8. 若,a b 是从集合{}1,1,2,3,4-中随机选取两个不同元素,则使得函数()5ab f x x x =+是奇函数的概率为( ) A.320B.310C.925D.359.已知命题2:233p x x a ++≥恒成立,命题():21xq y a =-为减函数,若p 且q 为真命题,则a 的取值范围是( ) A .1223a <≤ B .102a <<C .121a << D .23a £10.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,)x m ∈-∞,都有()1f x <,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦ B .8,3⎛⎤-∞ ⎥⎝⎦ C .7,3⎛⎤-∞ ⎥⎝⎦ D .5,2⎛⎤-∞ ⎥⎝⎦11.倾斜角为15°的直线l 经过原点且和双曲线22221(0,0)x y a b a b-=>>的左右两支交于A ,B 两点,则双曲线的离心率的取值范围是( )A.)+∞B. )+∞C. D. 12.曲线()xf x ke-=在x=0处的切线与直线x-2y-1=0垂直,则12,x x 是()()ln g x f x x =-的两个零点,则( )A.12211x x e e << B. 12211x x e << C. 1211x x e<< D. 212e x x e <<二、填空题:本题共4小题,每小题5分,共20分。

山东省2020年高考理科数学模拟试题及答案

山东省2020年高考理科数学模拟试题及答案

山东省2020年高考理科数学模拟试题及答案(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.已知全集U =R ,集合{}|24,{|(1)(3)0}xA xB x x x =>=--<,则()U A B =ð( )A. (1,2)B. (]1,2C. (1,3)D. (,2]-∞2. 已知复数(i)(1i)z a =+-(i 为虚数单位)在复平面内对应的点在直线2y x =上,则实数a 的值为( ) A. 0B. 1-C. 1D. 13-3.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若c b == 60B =︒,则C 等于( ) A .30︒ B .60︒ C .150︒ D .30︒或150︒ 4.执行如图所示的程序框图,如果输入N=4,则输出p 为( )A. 6B. 24C. 120D. 7205. 已知等差数列的前项和为,且,则( )A. B.C.D.6. 已知直线和抛物线C :,P 为C 上的一点,且P 到直线l 的距离与P 到C的焦点距离相等,那么这样的点P 有( ) A. 0个B. 1个C. 2个D. 无数个7. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为A. B. C.D.8. 从2个不同的红球,2个不同的黄球,2个不同的蓝球中任取两个,放入颜色分别为红、黄、蓝的三个袋子中,每个袋子中至多放入1个球,且球的颜色与袋子的颜色不同,那么不同的放法有( )A .46种B .36种C .72种D .42种9. 已知双曲线2222:1x y C a b-=(0,0a b >>)的左焦点为F ,第二象限的点M 在双曲线C 的渐近线上,且||OM a =,若直线MF 的斜率为ba,则双曲线的渐近线方程为( )A .y x =±B .2y x =±C .3y x =±D .4y x =± 10.已知数列的通项公式是,其前项和,则项数A. 13B. 10C. 9D. 611.已知()f x 是定义域为R 的偶函数,且在(0,+∞)单调递增,设21log 3m f ⎛⎫= ⎪⎝⎭,()0.17n f -=, ()4log 25p f =,则,,m n p 的大小关系为( )A.m p n >>B.p n m >>C.p m n >>D.n p m >> 12.已知函数()1x f x e ax =--在区间(-1,1)内存在极值点,且()0f x <恰好有唯一整数解,则a 的取值范围是(其中e 为自然对数的底数, 2.71828e = )A.221,2e e e ⎡⎫-⎪⎢⎣⎭ B.22211,11,22e e e e ⎡⎫⎛⎤---⎪ ⎢⎥⎣⎭⎝⎦C.()2211,1,e 2e e e e e⎡⎫---⎪⎢⎣⎭ D.()1,e e -二、填空题(本题共4小题,每小题5分,共20分。

2020届高考模拟山东省淄博市部分学校高考数学二模考试试卷(原卷版+解析版)

2020届高考模拟山东省淄博市部分学校高考数学二模考试试卷(原卷版+解析版)

2020年高考模拟高考数学二模试卷一、选择题1.已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=() A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3} 2.已知复数z满足(1+2i)z=4+3i,则z的共轭复数是()A.2﹣i B.2+i C.1+2i D.1﹣2i3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙4.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面5.已知曲线y=a x﹣1+1(a>0且a≠1)过定点(k,b),若m+n=b且m>0,n>0,则的最小值为()A.B.9 C.5 D.6.函数y=在[﹣6,6]的图象大致为()A.B.C.D.7.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f8.已知点F1是抛物线C:x2=2py的焦点,点F2为抛物线C的对称轴与其准线的交点,过F2作抛物线C的切线,切点为A,若点A恰好在以F1,F2为焦点的双曲线上,则双曲线的离心率为()A.B.﹣1 C.+1 D.二、多项选择题9.某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图(1)所示)后(如直方图(2)所示)的体重(单位:kg)变化情况,对比数据,关于这20名肥胖者,下面结论正确的是()A.他们健身后,体重在区间[90,100)内的人数较健身前增加了2人B.他们健身后,体重原在区间[100,110)内的人员一定无变化C.他们健身后,20人的平均体重大约减少了8kgD.他们健身后,原来体重在区间[110,120]内的肥胖者体重都有减少10.已知点P在双曲线C:﹣=1上,F1,F2是双曲线C的左、右焦点,若△PF1F2的面积为20,则下列说法正确的有()A.点P到x轴的距离为B.|PF1|+|PF2|=C.△PF1F2为钝角三角形D.∠F1PF2=11.如图所示,在四棱锥E﹣ABCD中,底面ABCD是边长为2的正方形,△CDE是正三角形,M为线段DE的中点,点N为底面ABCD内的动点,则下列结论正确的是()A.若BC⊥DE时,平面CDE⊥平面ABCDB.若BC⊥DE时,直线EA与平面ABCD所成的角的正弦值为C.若直线BM和EN异面时,点N不可能为底面ABCD的中心D.若平面CDE⊥平面ABCD,且点N为底面ABCD的中心时,BM=EN12.已知lnx1﹣x1﹣y1+2=0,x2+2y2﹣4﹣2ln2=0,记M=(x1﹣x2)2+(y1﹣y2)2,则() A.M的最小值为B.当M最小时,x2=C.M的最小值为D.当M最小时,x2=三、填空题:本题共4小题,每小题5分,共20分.13.已知向量=(﹣4,3),=(6,m),且⊥,则m=.14.在的展开式中,各项系数之和为64,则n=;展开式中的常数项为.15.在△ABC中,内角A,B,C所对的边分别是a,b,c.若b sin A=a sin C,c=1,则b =,△ABC面积的最大值为.16.已知函数f(x)的定义域为R,导函数为f'(x),若f(x)=cos x﹣f(﹣x),且,则满足f(x+π)+f(x)≤0的x的取值范围为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}满足a1=,且a n=+(n≥2,n∈N*).(1)求证:数列{2n a n}是等差数列,并求出数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.18.已知△ABC的内角A,B,C的对边分别为a,b,c,满足sin A+cos A=0.有三个条件:①a=1;②b=;③S△ABC=.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.19.图1是由矩形ADEB、Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE =BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B﹣CG﹣A的大小.20.已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.21.某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量x(单位:亿元)对年销售额y(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①y=α+βx2,②y=eλx+t,其中α,β,λ,t均为常数,e为自然对数的底数.现该公司收集了近12年的年研发资金投入量x i和年销售额y i的数据,i=1,2, (12)并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令u i=x i2,v i=lny i(i=1,2,…,12),经计算得如下数据:2066770200460 4.203125000215000.30814(1)设{u i}和{y i}的相关系数为r1,{x i}和{v i}的相关系数为r2,请从相关系数的角度,选择一个拟合程度更好的模型;(2)(i)根据(1)的选择及表中数据,建立y关于x的回归方程(系数精确到0.01);(ii)若下一年销售额y需达到90亿元,预测下一年的研发资金投入量x是多少亿元?附:①相关系数r=,回归直线中斜率和截距的最小二乘估计公式分别为:=,=;②参考数据:308=4×77,≈9.4868,e4.4998≈90.22.设函数f(x)=2ln(x+1)+.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)如果对所有的x≥0,都有f(x)≤ax,求a的最小值;(Ⅲ)已知数列{a n}中,a1=1,且(1﹣a n+1)(1+a n)=1,若数列{a n}的前n项和为S n,求证:S n>﹣lna n+1.参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=() A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3} 【分析】利用一元二次不等式的解法和交集的运算即可得出.解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},∴M∩N={x|﹣2<x<2}.故选:C.2.已知复数z满足(1+2i)z=4+3i,则z的共轭复数是()A.2﹣i B.2+i C.1+2i D.1﹣2i【分析】直接由复数代数形式的除法运算化简复数z,则z的共轭复数可求.解:∵(1+2i)z=4+3i,∴,则z的共轭复数是2+i.故选:B.3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙【分析】本题可从三人预测中互相关联的乙、丙两人的预测入手,因为只有一个人预测正确,而乙对则丙必对,丙对乙很有可能对,假设丙对乙错则会引起矛盾故只有一种情况就是甲预测正确乙、丙错误,从而得出结果.解:由题意,可把三人的预测简写如下:甲:甲>乙.乙:丙>乙且丙>甲.丙:丙>乙.∵只有一个人预测正确,∴分析三人的预测,可知:乙、丙的预测不正确.如果乙预测正确,则丙预测正确,不符合题意.如果丙预测正确,假设甲、乙预测不正确,则有丙>乙,乙>甲,∵乙预测不正确,而丙>乙正确,∴只有丙>甲不正确,∴甲>丙,这与丙>乙,乙>甲矛盾.不符合题意.∴只有甲预测正确,乙、丙预测不正确,甲>乙,乙>丙.故选:A.4.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【分析】充要条件的定义结合面面平行的判定定理可得结论解:对于A,α内有无数条直线与β平行,α∩β或α∥β;对于B,α内有两条相交直线与β平行,α∥β;对于C,α,β平行于同一条直线,α∩β或α∥β;对于D,α,β垂直于同一平面,α∩β或α∥β.故选:B.5.已知曲线y=a x﹣1+1(a>0且a≠1)过定点(k,b),若m+n=b且m>0,n>0,则的最小值为()A.B.9 C.5 D.【分析】令x﹣1=0,求出曲线y=a x﹣1+1(a>0且a≠1)过定点为(1,2),所以m+n=2,再利用乘1法即可得到的最小值.【解答】解析:∵定点为(1,2)∴m+n=2∴=当且仅当,即m=,n=时取得最小值,故选:A.6.函数y=在[﹣6,6]的图象大致为()A.B.C.D.【分析】由y=的解析式知该函数为奇函数可排除C,然后计算x=4时的函数值,根据其值即可排除A,D.解:由y=f(x)=在[﹣6,6],知f(﹣x)=,∴f(x)是[﹣6,6]上的奇函数,因此排除C又f(4)=,因此排除A,D.故选:B.7.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【分析】利用等比数列的通项公式,转化求解即可.解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:=.故选:D.8.已知点F1是抛物线C:x2=2py的焦点,点F2为抛物线C的对称轴与其准线的交点,过F2作抛物线C的切线,切点为A,若点A恰好在以F1,F2为焦点的双曲线上,则双曲线的离心率为()A.B.﹣1 C.+1 D.【分析】根据抛物线的性质,设出直线方程,代入抛物线方程,求得k的值,设出双曲线方程,求得2a=|AF2|﹣|AF1|=(﹣1)p,利用双曲线的离心率公式求得e.解:直线F2A的直线方程为:y=kx﹣,F1(0,),F2(0,﹣),代入抛物线C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),设双曲线方程为:﹣=1,|AF1|=p,|AF2|==p,2a=|AF2|﹣|AF1|=( ﹣1)p,2c=p,∴离心率e===+1,故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图(1)所示)后(如直方图(2)所示)的体重(单位:kg)变化情况,对比数据,关于这20名肥胖者,下面结论正确的是()A.他们健身后,体重在区间[90,100)内的人数较健身前增加了2人B.他们健身后,体重原在区间[100,110)内的人员一定无变化C.他们健身后,20人的平均体重大约减少了8kgD.他们健身后,原来体重在区间[110,120]内的肥胖者体重都有减少【分析】根据两个频率分布直方图,对选项中的命题分析、判断正误即可.解:体重在[90,100)内的肥胖者由健身前的6人增加到健身后的8人,增加了2人,所以A正确;他们健身后,体重在[100,110)内的百分比没有变,但人员组成可能改变,所以B错误;他们健身后,20人的平均体重大约减少了(0.3×95+0.5×105+0.2×115)﹣(0.1×85+0.4×95+0.5×105)=5(kg),所以C错误;因为图(2)中没有体重在[110,120)内的人员,所以原来体重在[110,120)内的肥胖者体重都有减少,所以D正确.故选:AD.10.已知点P在双曲线C:﹣=1上,F1,F2是双曲线C的左、右焦点,若△PF1F2的面积为20,则下列说法正确的有()A.点P到x轴的距离为B.|PF1|+|PF2|=C.△PF1F2为钝角三角形D.∠F1PF2=【分析】根据双曲线的图象和性质,结合三角形的面积求出P的坐标,分别进行计算判断即可.解:由双曲线方程得a=4,b=3,则c=5,由△PF1F2的面积为20,得•2c•|y P|=10|y P|=20,得|y P|=4,即点P到x轴的距离为4,故A错误,将|y P|=4代入双曲线方程得|x P|=,根据对称性不妨设P(,4),则|PF2|==,由双曲线的定义知|PF1|﹣|PF2|=2a=8,则|PF1|=8+=,则|PF1|+|PF2|=+=,故B正确,在△PF1F2中,|PF1|=>2c=10>|PF1|=,则==>0,则△PF1F2为钝角三角形,故C正确,cos∠F1PF2====1﹣=1﹣,则∠F1PF2=错误,故正确的是BC,故选:BC.11.如图所示,在四棱锥E﹣ABCD中,底面ABCD是边长为2的正方形,△CDE是正三角形,M为线段DE的中点,点N为底面ABCD内的动点,则下列结论正确的是()A.若BC⊥DE时,平面CDE⊥平面ABCDB.若BC⊥DE时,直线EA与平面ABCD所成的角的正弦值为C.若直线BM和EN异面时,点N不可能为底面ABCD的中心D.若平面CDE⊥平面ABCD,且点N为底面ABCD的中心时,BM=EN【分析】利用直线与平面垂直判断选项A的正误;利用直线与平面所成角判断B的正误;利用平面的性质判断C的正误;利用距离公式求解即可判断D即可.解:取CD的中点F,AB的中点H连接EF,FH,EH,BC⊥DE时,易证CD与平面EFH垂直,所以平面CDE⊥平面ABCD,所以A正确;连接FA,若BC⊥DE时,平面CDE⊥平面ABCD,直线EA与平面ABCD所成的角的正弦值为:==,所以B不正确;连接BD,AC,交点为N,此时EN与BM共线,所以若直线BM和EN异面时,点N 不可能为底面ABCD的中心,正确;若平面CDE⊥平面ABCD,且点N为底面ABCD的中心时,连接BD,则N在BD的中点,ED≠BD,所以BM≠EN所以D不正确.故选:AC.12.已知lnx1﹣x1﹣y1+2=0,x2+2y2﹣4﹣2ln2=0,记M=(x1﹣x2)2+(y1﹣y2)2,则() A.M的最小值为B.当M最小时,x2=C.M的最小值为D.当M最小时,x2=【分析】根据条件可将M=(x1﹣x2)2+(y1﹣y2)2的最小值转化为函数y=lnx﹣x+2图象上的点到直线x+2y﹣4﹣2ln2=0上的点的距离的最小值的平方,求出d的最小值为两直线平行时的距离,即可得到M的最小值,并可求出此时对应的x2解:由lnx1﹣x1﹣y1+2=0,得y1=lnx1﹣x1+2,M=(x1﹣x2)2+(y1﹣y2)2的最小值可转化为函数y=lnx﹣x+2图象上的点到直线x+2y﹣4﹣2ln2=0上的点的距离的最小值的平方,由y=lnx﹣x+2得y′=,因为与直线x+2y﹣4﹣2ln2=0平行的直线斜率为﹣,所以=﹣,解得x=2,则切点坐标为(2,ln2),所以(2,ln2)到直线x+2y﹣4﹣2ln2=0上的距离d==,即函数y=lnx﹣x+2上的点到直线x+2y﹣4﹣2ln2=0上的点的距离最小值为,所以(x1﹣x2)2+(y1﹣y2)2的最小值为d2=,又过(2,ln2)且与x+2y﹣4﹣2ln2=0垂直的直线为y﹣ln2=2(x﹣2),即2x﹣y+4+ln2=0,联立,解得x=,即当M最小时,x2=.故选:BC.三、填空题:本题共4小题,每小题5分,共20分.13.已知向量=(﹣4,3),=(6,m),且⊥,则m=8.【分析】⊥则,代入,,解方程即可.解:由向量=(﹣4,3),=(6,m),且⊥,得,∴m=8.故答案为:8.14.在的展开式中,各项系数之和为64,则n=6;展开式中的常数项为15.【分析】各项系数之和为2n=64,解得即可,先求出通项公式,令x的指数为0,即可求出展开式中的常数项为解:令x=1,则在的展开式中,各项系数之和为2n=64,解得n=6,则其通项公式为C6r,令6﹣3r=0,解得r=2,则展开式中的常数项为C62=15故答案为:6,1515.在△ABC中,内角A,B,C所对的边分别是a,b,c.若b sin A=a sin C,c=1,则b =1,△ABC面积的最大值为.【分析】利用正弦定理化简已知等式可得b sin A=sin A,由于sin A≠0,解得b=1,根据范围A∈(0,π),可得sin A∈(0,1],利用三角形的面积公式即可计算得解.解:∵b sin A=a sin C,c=1,∴由正弦定理,可得:a sin C=c sin A=sin A,∴b sin A=a sin C=sin A,∵sin A≠0,∴解得:b=1,∵A∈(0,π),sin A∈(0,1],∴S△ABC=bc sin A≤=.即ABC面积的最大值为.故答案为:1,.16.已知函数f(x)的定义域为R,导函数为f'(x),若f(x)=cos x﹣f(﹣x),且,则满足f(x+π)+f(x)≤0的x的取值范围为[﹣,+∞).【分析】依题意令,易知函数g(x)为奇函数,求导知函数g(x)在R上单调递减,则⇔g(x+π)≤g(﹣x),于是可求得x的取值范围.解:依题意,,令,则g(x)=﹣g(﹣x),故函数g(x)为奇函数,,故函数g(x)在R上单调递减,则⇔g(x+π)+g(x)≤0⇔g(x+π)≤﹣g(x)=g(﹣x),即x+π≥﹣x,故,则x的取值范围为.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}满足a1=,且a n=+(n≥2,n∈N*).(1)求证:数列{2n a n}是等差数列,并求出数列{a n}的通项公式;(2)求数列{a n}的前n项和S n.【分析】本题第(1)题先对递推式进行转化变形,然后将2n a n看作一个整体,即可计算得到数列{2n a n}是以3为首项,2为公差的等差数列.从而可得数列{2n a n}的通项公式,进一步计算可得数列{a n}的通项公式;第(2)题运用错位相减法计算出数列{a n}的前n项和S n.【解答】(1)证明:当n≥2时,由a n=+,两边同时乘以2n,可得2n a n=2n﹣1a n﹣1+2,即2n a n﹣2n﹣1a n﹣1=2(n≥2).∵21a1=2×=3,∴数列{2n a n}是以3为首项,2为公差的等差数列.∴2n a n=3+2(n﹣1)=2n+1,∴a n=,n∈N*.(2)解:由(1),可知,S n=a1+a2+…+a n=+++…++,S n=++…++,两式相减,可得:S n=+++…+﹣=+﹣=﹣,∴S n=5﹣.18.已知△ABC的内角A,B,C的对边分别为a,b,c,满足sin A+cos A=0.有三个条件:①a=1;②b=;③S△ABC=.其中三个条件中仅有两个正确,请选出正确的条件完成下面两个问题:(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.【分析】(1)先根据条件求出A=,所以A为钝角,与a=1<b=矛盾,所以①②中仅有一个正确,③一定正确,再分情况讨论,即可得到c的值.(2)利用得到,从而求出△ABD的面积.解:(1)∵sin A+cos A=0.∴2sin(A+)=0,又A∈(0,π),∴A=,∵A为钝角,与a=1<b=矛盾,∴①②中仅有一个正确,③一定正确,∴S△ABC==,∴bc=,当①③正确时,由cos A=得:b2+c2=﹣2,无解,故不符合题意,当②③正确时,∵bc=,b=,∴c=1,经检验成立,综上所述,c=1;(2)如图所示:∵,∠DAC=,∴,∴=,∴,∴S△ABD=.19.图1是由矩形ADEB、Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE =BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B﹣CG﹣A的大小.【分析】(1)推导出AD∥BE,CG∥BE,从而AD∥CG,由此能证明A,C,G,D四点共面,推导出AB⊥BE,AB⊥BC,从而AB⊥面BCGE,由此能证明平面ABC⊥平面BCGE.(2)作EH⊥BC,垂足为H,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系H﹣xyz,运用空间向量方法求二面角B﹣CG﹣A的大小.【解答】证明:(1)由已知得AD∥BE,CG∥BE,∴AD∥CG,∴AD,CG确定一个平面,∴A,C,G,D四点共面,由已知得AB⊥BE,AB⊥BC,∴AB⊥面BCGE,∵AB⊂平面ABC,∴平面ABC⊥平面BCGE.解:(2)作EH⊥BC,垂足为H,∵EH⊂平面BCGE,平面BCGE⊥平面ABC,∴EH⊥平面ABC,由已知,菱形BCGE的边长为2,∠EBC=60°,∴BH=1,EH=,以H为坐标原点,的方向为x轴正方向,建立如图所求的空间直角坐标系H﹣xyz,则A(﹣1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,﹣1,0),设平面ACGD的法向量=(x,y,z),则,取x=3,得=(3,6,﹣),又平面BCGE的法向量为=(0,1,0),∴cos<>==,∴二面角B﹣CG﹣A的大小为30°.20.已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【分析】(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=,则x M==,y M=kx M+b=,于是直线OM的斜率k OM==,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m﹣m,∴k2m2>9(m﹣m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y=x,设P的横坐标为x P,由得,即x P=,将点(,m)的坐标代入l的方程得b=,即l的方程为y=kx+,将y=x,代入y=kx+,得kx+=x解得x M=,四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,于是=2×,解得k1=4﹣或k2=4+,∵k i>0,k i≠3,i=1,2,∴当l的斜率为4﹣或4+时,四边形OAPB能为平行四边形.21.某芯片公司为制定下一年的研发投入计划,需了解年研发资金投入量x(单位:亿元)对年销售额y(单位:亿元)的影响.该公司对历史数据进行对比分析,建立了两个函数模型:①y=α+βx2,②y=eλx+t,其中α,β,λ,t均为常数,e为自然对数的底数.现该公司收集了近12年的年研发资金投入量x i和年销售额y i的数据,i=1,2, (12)并对这些数据作了初步处理,得到了右侧的散点图及一些统计量的值.令u i=x i2,v i=lny i(i=1,2,…,12),经计算得如下数据:2066770200460 4.203125000215000.30814(1)设{u i}和{y i}的相关系数为r1,{x i}和{v i}的相关系数为r2,请从相关系数的角度,选择一个拟合程度更好的模型;(2)(i)根据(1)的选择及表中数据,建立y关于x的回归方程(系数精确到0.01);(ii)若下一年销售额y需达到90亿元,预测下一年的研发资金投入量x是多少亿元?附:①相关系数r=,回归直线中斜率和截距的最小二乘估计公式分别为:=,=;②参考数据:308=4×77,≈9.4868,e4.4998≈90.【分析】(1)由题意计算相关系数,比较它们的大小即可;(2)(i)先建立v关于x的线性回归方程,再转化为y关于x的回归方程;(ii)利用回归方程计算y=90时x的值即可.解:(1)由题意,=,…=,…则|r1|<|r2|,因此从相关系数的角度,模型y=eλx+t的拟合程度更好;…(2)(i)先建立v关于x的线性回归方程,由y=eλx+t,得lny=t+λx,即v=t+λx;…由于,…,…所以v关于x的线性回归方程为,所以,则;…(ii)下一年销售额y需达到90亿元,即y=90,代入,得90=e0.02x+3.84,又e4.4998≈90,所以4.4998≈0.02x+3.84,…所以,所以预测下一年的研发资金投入量约是32.99亿元…22.设函数f(x)=2ln(x+1)+.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)如果对所有的x≥0,都有f(x)≤ax,求a的最小值;(Ⅲ)已知数列{a n}中,a1=1,且(1﹣a n+1)(1+a n)=1,若数列{a n}的前n项和为S n,求证:S n>﹣lna n+1.【分析】(Ⅰ)先求出函数f(x)的导数,通过解关于导数的不等式,从而求出函数的单调区间;(Ⅱ)设g(x)=f(x)﹣ax,先求出函数g(x)的导数,通过讨论a的范围,得到函数的单调性,从而求出a的最小值;(Ⅲ)先求出数列是以为首项,1为公差的等差数列,,,问题转化为证明:,通过换元法或数学归纳法进行证明即可.解:(Ⅰ) f(x)的定义域为(﹣1,+∞),,当时,f′(x)<0,当时,f′(x)>0,所以函数f(x)在上单调递减,在单调递增.(Ⅱ)设,则,因为x≥0,故,(ⅰ)当a≥2时,2﹣a≤0,g′(x)≤0,所以g(x)在[0,+∞)单调递减,而g(0)=0,所以对所有的x≥0,g(x)≤0,即f(x)≤ax;(ⅱ)当1<a<2时,0<2﹣a<1,若,则g′(x)>0,g(x)单调递增,而g(0)=0,所以当时,g(x)>0,即f(x)>ax;(ⅲ)当a≤1时,2﹣a≥1,g′(x)>0,所以g(x)在[0,+∞)单调递增,而g(0)=0,所以对所有的x>0,g(x)>0,即f(x)>ax;综上,a的最小值为2.(Ⅲ)由(1﹣a n+1)(1+a n)=1得,a n﹣a n+1=a n•a n+1,由a1=1得,a n≠0,所以,数列是以为首项,1为公差的等差数列,故,,,⇔,由(Ⅱ)知a=2时,,x>0,即,x>0.法一:令,得,即因为,所以,故.法二:⇔下面用数学归纳法证明.(1)当n=1时,令x=1代入,即得,不等式成立(2)假设n=k(k∈N*,k≥1)时,不等式成立,即,则n=k+1时,,令代入,得=,即:,由(1)(2)可知不等式对任何n∈N*都成立.故.。

山东省2020版高考数学二模试卷(理科)(II)卷(模拟)

山东省2020版高考数学二模试卷(理科)(II)卷(模拟)

山东省2020版高考数学二模试卷(理科)(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)已知集合,集合,集合.则集合可表示为()A .B .C .D .2. (2分) (2019高三上·成都月考) 在复平面内,给出以下四个说法:①实轴上的点表示的数均为实数;②虚轴上的点表示的数均为纯虚数;③互为共轭复数的两个复数的实部相等,虚部互为相反数;④已知复数满足,则在复平面内所对应的点位于第四象限.其中说法正确的个数为()A . 1B . 2C . 3D . 43. (2分)(2017·榆林模拟) 函数y=2log4(1﹣x)的图象大致是()A .B .C .D .4. (2分) (2016高三上·黑龙江期中) 设等差数列{an}的前n项和为Sn ,若a6=18﹣a7 ,则S12=()A . 18B . 54C . 72D . 1085. (2分)执行右边的程序框图,若t∈[-1,2],则s∈()A . [-1,1)B . [0,2]C . [0,1)D . [-l,2]6. (2分) (2020高一下·南平期末) 已知向量,满足,,则()A . 4B . 3C . 2D . 07. (2分) (2016高二下·宜春期中) 设x∈R,则“x=1”是“复数z=(x2﹣1)+(x+1)i为纯虚数”的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件8. (2分) (2015高二下·赣州期中) 已知在双曲线中,F1 , F2分别是左右焦点,A1 , A2 ,B1 , B2分别为双曲线的实轴与虚轴端点,若以A1A2为直径的圆总在菱形F1B1F2B2的内部,则此双曲线离心率的取值范围是()A .B . [ ,+∞)C .D .9. (2分) (2016高二下·宝坻期末) 已知函数f(x)=|mx|﹣|x﹣n|(0<n<1+m),若关于x的不等式f(x)<0的解集中的整数恰有3个,则实数m的取值范围为()A . 3<m<6D . ﹣1<m<010. (2分) (2017高二下·台州期末) 曲线y=x3﹣6x2+9x﹣2在点(1,2)处的切线方程是()A . x=1B . y=2C . x﹣y+1=0D . x+y﹣3=011. (2分) (2019高二下·南充月考) 某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是()A .B .C .D . 3212. (2分) (2015高二下·九江期中) 已知点列如下:P1(1,1),P2(1,2),P3(2,1),P4(1,3),P5(2,2),P6(3,1),P7(1,4),P8(2,3),P9(3,2),P10(4,1),P11(1,5),P12(2,4),…,则P60的坐标为()A . (3,8)D . (5,7)二、填空题: (共4题;共5分)13. (1分) (2018高三上·南宁月考) 若的展开式式中含的项为________.14. (1分)(2020·山东模拟) 若一个圆柱的轴截面是面积为4的正方形,则该圆柱的外接球的表面积为________.15. (1分) (2018高二下·齐齐哈尔月考) 设实数满足,则目标函数的最小值为________.16. (2分)(2017·浙江模拟) 某中学的十佳校园歌手有6名男同学,4名女同学,其中3名来自1班,其余7名来自其他互不相同的7个班,现从10名同学中随机选择3名参加文艺晚会,则选出的3名同学来自不同班级的概率为________,设X为选出3名同学中女同学的人数,则该变量X的数学期望为________.三、解答题: (共7题;共70分)17. (10分) (2020高三上·温州期末) 已知函数()的周期为 .(1)当时,求函数的值域;(2)已知的内角,,对应的边分别为 . ,,,若,且,,求的面积.18. (15分)如图是一几何体的直观图、正视图、侧视图、俯视图.(1)若F为PD的中点,求证:AF⊥平面PCD;(2)证明:BD∥平面PEC;(3)求二面角E﹣PC﹣D的大小.19. (15分) (2018高二上·贺州月考) 某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图. 为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率;(3)若a=1,记乙型号电视机销售量的方差为,根据茎叶图推断b为何值时,达到最值.(只需写出结论)20. (5分) (2019高三上·清远期末) 如图,已知椭圆的左、右焦点分别为,,短轴的两端点分别为,,线段,的中点分别为,,且四边形是面积为8的矩形.(Ⅰ)求椭圆的方程;(Ⅱ)过作直线交椭圆于,两点,若,求直线的方程.21. (10分) (2019高二下·赣县期中) 已知函数 .(1)讨论的单调性;(2)若函数在上有零点,求的取值范围.22. (10分)(2020·呼和浩特模拟) 已知椭圆的普通方程为:,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,正方形的顶点都在上,且逆时针依次排列,点的极坐标为(1)写出曲线的参数方程,及点的直角坐标;(2)设为椭圆上的任意一点,求:的最大值.23. (5分) (2019高一上·大庆月考) 已知函数在区间[1,7]上的最大值比最小值大,求a的值参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题: (共7题;共70分) 17-1、17-2、18-1、18-2、18-3、19-1、19-2、19-3、20-1、21-1、21-2、22-1、22-2、23-1、。

2020届山东省济宁市高考第二次模拟考理科数学模拟试题有答案(加精)

2020届山东省济宁市高考第二次模拟考理科数学模拟试题有答案(加精)

济宁市高三模拟考试理科数学试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写到答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:本大题共12小题。

每小题5分,共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.1.设复数z 满足1z i z =+(i 为虚数单位),则z 在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.设集合(){}1ln 2,2,2x A x y x B x A B ⎧⎫⎪⎪⎛⎫==-=<⋂=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭则A .{}1x x <-B .{}2x x <C .{}12x x -<<D .{}2x x -1<≤3.设R θ∈,则“sin 2θ=”是“tan 1θ=”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 4.从1,2,3,4,5这5个数中任取2个数,则所取2个数之积能被3整除的概率是A .25B .310C .35D .455.已知,αβ是平面,m ,n 是直线,下列命题中不正确的是A .,,//m m αβαβ⊥⊥若则B .//,,m n m n αα⊥⊥若则C .//,,//m n m n ααβ⋂=若则D .,,m m αβαβ⊥⊂⊥若则 6.已知双曲线2221y x b-=的虚轴长是实轴长的2倍,则其顶点到渐近线的距离为A B C D7.()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是 A .11-B .5-C .7D .138.九连环是我国的一种古老的智力游戏,它环环相扣,趣味无穷.要将九连环中的九个圆环全部从框架上解下或套上,需要遵循一定的规律.解下或者套上所需要的最少移动次数可由右图所示的程序框图得到.执行该程序框图,输出的结果为A .170B .256C .341D .6829.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象 A .关于点,012π⎛⎫ ⎪⎝⎭对称 B .关于点,012π⎛⎫- ⎪⎝⎭对称 C .关于直线12x π=对称 D .关于直线12x π=-对称10.某组合体的三视图如图所示(其中侧视图中的弧线为半圆),则该几何体的体积为A .22π+B .43π+C .4433π+D .423π+ 11.设非零向量,,a b c 满足0,2a b c a ++==,,120b c <>=o ,则b 的最大值为A .1B .23C .43D .212.已知(),,122x y f x ππ⎛⎫∈-=- ⎪⎝⎭为奇函数,()()tan 0f x f x x '+>,则不等式()cos f x x >的解 A .,02π⎛⎫-⎪⎝⎭ B .,04π⎛⎫- ⎪⎝⎭ C .0,4π⎛⎫ ⎪⎝⎭ D .0,2π⎛⎫ ⎪⎝⎭第Ⅱ卷(非选择题 共90分)13.已知变量,x y满足约束条件10 310,2310x yx y z x yx y+-≤⎧⎪-+≥=-⎨⎪--≤⎩则的最大值为▲.14.2017年底,某单位对100名职工进行绩校考核,依考核分数进行评估,考核评估后,得其频率分布直方图如图所示,估计这100名职工评估得分的中位数是▲.15.如图,在平面四边形ABCD中,45,60A B∠=∠=o o,150,24D AB BC∠===o,则四边形ABCD的面积为▲.16.抛物线()220y px p=>的焦点为F,A,B为抛物线上的两点,以AB为直径的圆过点F,过AB的中点M作抛物线准线的垂线MN,垂足为N,则MNMF的最大值为▲.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知数列{}n a满足2113,44412n n na a a a+==+-.(I)证明:1lg2na⎧⎫⎛⎫+⎨⎬⎪⎝⎭⎩⎭是等比数列;(II)记12111222n nR a a a⎛⎫⎛⎫⎛⎫=+⋅+⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭g g,求nR.18. (本小题满分12分)如图,四边形ABCD是矩形,沿对角线AC将ACD∆折起,使得点D在平面ABC上的射影恰好落在边AB上.(I)求证:平面ACD⊥平面BCD;(II)若直线AB与平面BCD所成角为30o时,求二面角D AC B--的余弦值.19.(本小题满分12分)某单位计划组织200名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为1%,且每个人血检是否呈阳性相互独立.(I)根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机分成20组,每组10人,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.设进行化验的总次数为X ,试求X 的数学期望;(Ⅱ)若该疾病的患病率为0.5%,且患该疾病者血检呈阳性的概率为99%,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据:0.9910=0.904,0.9911=0.895,0.9912=0.886.)20.(本小题满分12分)已知椭圆()222210x y C a b a b+=>>:的右焦点为F x 轴的直线交椭圆于A ,B 两点,且AF BF +=(I)求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得EM EN ⋅u u u u r u u u r 是定值?若存在,请求出该点的坐标;若不存在,请说明理由.21.(本小题满分12分)已知函数()2ln f x x t x =-+. (I)讨论()f x 的单调性;(Ⅱ)当1t =时,若对任意(]1,0m ∈-,关于x 的方程()(]003f x ax m +-=在,内总有两个不同的根,求实数a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xoy 中,曲线121cos :4sin x C x y C y αα=+⎧+=⎨=⎩,曲线:(α为参数),过坐标原点O 的直线l 交曲线1C 于点A ,交曲线2C 于点B(点B 不是原点).(I)以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,写出曲线1C 和2C 的极坐标方程; (Ⅱ)求OB OA的最大值.23.[选修4—5:不等式选讲](本小题满分10分)设函数()21f x x =-.(I)设()()15f x f x ++<的解集为A ,求集合A ;(Ⅱ)已知m 为(I)中集合A 中的最大整数,且a b c m ++=(其中,,a b c 为正实数), 求证:1118a b c a b c---⋅⋅≥./-------/-//-------/-/。

山东省2020年高考数学模拟考试题与答案

山东省2020年高考数学模拟考试题与答案

山东省2020年高考数学模拟考试试题及答案按珈密级苇项管理*启用前2020年普通高等学校招生全国统一考试(模拟卷)数学asw 项:1. 答卷前,考生务必将口己的姓名、考生号等填遞在答题卡和试卷指定位匿匕工回答选择题时,选岀每小题答案屁用铅抠把答题R上对应题冃的答案折号涂熾如磁动,用橡皮掠干净后,再选涂苴他答案标号*回答非选择题时,将答案写在答题卡上。

另在本试卷上无效,生考试结束存*将本试卷和答題卡…井交回。

—、单项选择题:本趣共$小舐每小題§分・共豹分。

在每小题给出的四个选琐中,只有一项是符合髒目要求的“1, 迎集合/訂(工』)ix+?=2}, 则*n七A. {(ij)}氐{(一签4)} C HM)J-2f4)}6 02. 已知◎牛bi⑷b左R)是上二的共扳复数・则a^b =1 +1A- -1 B.-丄C- ;D・ 12 23* Bt向fi4-(.1,1)t A = c»(2,!)> 且(■-几血)丄―则丄“A. 3 氐2 G -2-34. 幵式中『抽系数足xA.-210B. -12QC. 120D. 2105+已知三按锥$_仙C中,ZSAB = ZABC= y * 5^-4• SC = 1J\3. XB = 2,5C = 6, 则三棱锥S 亠ABC的体积是A. 4B. 6 G 4巧D+ M6. 己知点丄为曲纯y二工+毀工:>0)上前动点,月为圆2F +/=!上的动点’则皿鋼X的最小值是九3 B•斗G迈 D. 4^27, 设命題戸所有正方形都是平行叫边母*则「卩为d所宿疋方形罰不長平行四边形B-有的平行四边底不是正方舷C”有的iE方形不是平行四边形 D.不是正方形的四边彫不是平行四边形数学试题第1页:(共5贡)数学试題第2页(共5页〉数学试題第2页(共5页〉8. 若>1 且 MC F ・则4. log 」、1隅疋、teg 評 C. log f c> lo£fl 5> lo 空 a二、多項远择题*本题共4」卜駆•毎小题5^-共20分・存毎小额给岀的选项中、右 多项精合倾目蓉求,全部选对的得5分,部分选对的得3分,有选措的得0分“ 9. 下国为茱地桜2006年〜2018年地方財政预算内收入、城乡居民储齧年未余额折线2财政预篇内收入*城乡居民储蓄年朮余额肉呈増怅趋势 R.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C. 赃政预畀内收入年平均增长虽局于城乡居民储蔷年末余额年平均增机帚 D, 城乡居艮储蓄年末余鈿与财政预算内收入的差報逐年增大w.已知艰曲线<?过点Q 品且渐近钱为丿=±¥厂则下列结论正确的是A, C 的方程为■- / -I B ・0的离心翠为J5 C ・曲线经过C 的一于焦点 D.直线"逅厂1“与C 有两个公共点11正方陣」肌也GO 的梭长为1・E , F 、(?分别为5C, CC 「1?鸟的中点•则扎直线与直线曲垂直 B.直^Afi 与平面*防平行C 平面/EF 截正方体所得的載画面积为? D.点C?与点石到平而*EF 曲聊离相諄B- log"〉k 唱』a lug/ D, log/A 】0£ 占 > log/城乡尿民储雷叶朿 ♦余额C 百亿元】 亠地方财政预算内 收入f 百亿元)根据该折线I ]可Sb 该地区2006年-2018年\2.函数/(巧的定义域为K, fi7(^ + 1) f(x^2)都为奇函数,则A. 奇函数氐/V)为周期雷数C /(x + 3)为奇函数 D. /(I +4)X J®^I数三填空駆本题共4小题、每小题3分,共20分。

2020届山东省沂水县高考模拟考试数学(理)模拟试题(二)有答案(精品)

2020届山东省沂水县高考模拟考试数学(理)模拟试题(二)有答案(精品)

高三模拟考试理科数学本试卷共5页,满分l50分。

注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数z 满足()121i z i +=-,则z = A .25B .35C .105D .102. 已知集合221,116943x y x y M xN y ⎧⎫⎧⎫=+==+=⋂⎨⎬⎨⎬⎩⎭⎩⎭,则M N= A .∅B .()(){}4,0,3,0C .[]3,3-D .[]4,4-3.函数cos 24y x π⎛⎫=+⎪⎝⎭是 A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数D .周期为2π的偶函数4.已知倾斜角为θ的直线l 与直线230x y +-=垂直,则sin 2θ的值为 A .35 B .45C .15D .15-5.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个数大于30的概率为 A.25B.16C.13D.356.设0.13592,lg ,log 210a b c ===,则a ,b ,c 的大小关系是 A .b >c >aB .a >c >bC .b >a >cD .a >b >c7.“m <0”是“函数()()2log 1f x m x x =+≥存在零点”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A .163π B .112π C .173π D .356π 9.已知A ,B 是圆224O x y +=:上的两个动点,522,33AB OC OA OB ==-u u u u r u u u r u u u r u u u r ,若M 是线段AB 的中点,则OC OM u u u r u u u u rg的值为 A .3B .23C .2D .310.习总书记在十九大报告中指出:坚定文化自信,推动社会主义文化繁荣兴盛.如图,“大衍数列”:0,2,4,8,12……来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.右图是求大衍数列前n 项和的程序框图,执行该程序框图,输入6m =,则输出的S= A .26B .44C .68D .10011.如图所示,在平面四边形ABCD 中,1,2,AB BC ACD ==∆为正三角形,则BCD ∆面积的最大值为A .232+B .31+ C .32+ D .31+12.已知函数()()()()22240,8f q f x ax a a x R p q f p =-->∈+=,若,则的取值范围是A. (),23-∞-B .)23,⎡++∞⎣C .()2323-+,D .2323⎡⎤-+⎣⎦,第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分。

山东省2020年高考数学(理)冲刺卷及答案(二)

山东省2020年高考数学(理)冲刺卷及答案(二)

绝密★启用前 试卷类型A山东省2020年高考模拟冲刺卷(二) 理科数学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、已知i 为虚数单位,R a ∈,若ia i+-2为纯虚数,则复数i a z 2)12(++=的模等于( ) A .2B .3C .11D .62、在ABC ∆中,设命题B cA b C a p sin sin sin :==,命题ABC q ∆:是等边三角形,那么命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3、已知sinα+2cosα=3,则tanα=( ) A .22B . 2C .- 22D .- 24、如图所示的茎叶图表示甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为( )A .52 B .107 C .54D .109 5、在ABC ∆中,c ,b ,a 分别为C ,B ,A 的对边,如果c ,b ,a 成等差数列,︒=30B ,ABC ∆的面积为23,那么=b( ) A 13+ B .13 C 23+ D .236、直线L 过抛物线()2:20C y px p =>的焦点F 且与C 相交于A 、B 两点,且AB 的中点M 的坐标为()3,2,则抛物线C 的方程为( )A .2224y x y x ==或B .2248y x y x ==或C .2268y x y x ==或D .2228y x y x ==或7、已知某几何体的三视图如图所示,则该几何体的表面积等于( ) A .3160B .160C .23264+D .2888+8、.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表x ()f x ()y f x =[0,]( )xO1 π yx OB1 π yxO1π y x O1 π y9、设)为整数(0,,>m m b a ,若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记作)(mod m b a ≡,已知),10(mod ,22212020202202120b a C C C a ≡++++=且Λ则b 的值可为 ( )A .2020B .2020C .2020D .202010、若定义在R 上的函数()f x 满足()()()(),2,f x f x f x f x -=-=且当[]0,1x ∈时,()f x =则函数()()xH x xe f x =-在区间[]5,1-上的零点个数为( ) A .4 B .8 C .6 D .10第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11、已知21k π-=⎰,直线1y kx =+交圆22:1P x y +=于,A B 两点,则AB = .12、已知()f x 为定义在(0,+∞)上的可导函数,且()'()f x xf x >,则不等式21()()0x f f x x-<的解集为 .13、已知集合}9|4||3|{≤-++∈=x x R x A ,)},0(,614{+∞∈-+=∈=t tt x R x B ,则集合B A ⋂= .14、若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++=L L .15、给出定义:若2121+≤<-m x m (其中m 为整数),则m 叫做离实数x 最近的整数,记作{x},即m x =}{.在此基础上给出下列关于函数}{)(x x x f -=的四个命题:①函数)(x f y =定义域是R ,值域是⎥⎦⎤⎢⎣⎡21,0;②函数)(x f y =的图像关于直线)(2Z k kx ∈=对称;③函数)(x f y =是周期函数,最小正周期是1;④函数)(x f y =在⎥⎦⎤⎢⎣⎡-21,21上是增函数.则其中真命题的序号为 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16、(本小题满分12分)已知)1,sin 32cos 2(x x +=,),(cos y x -=,且m n ⊥u r r.(Ⅰ)将y 表示为x 的函数)(x f ,并求)(x f 的单调增区间;(Ⅱ)已知c b a ,,分别为ABC ∆的三个内角C B A ,,对应的边长,若()32Af =,且2=a ,4b c +=,求ABC ∆的面积.17、(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA=PD=2,BC=12AD=1,CD=3.(Ⅰ)求证:平面PQB⊥平面PAD ;(Ⅱ)若二面角M-BQ-C 为30。

2020年山东省高考数学模拟试卷(理科)含答案解析

2020年山东省高考数学模拟试卷(理科)含答案解析

2020年山东省高考数学模拟试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.62.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.23.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B.C.﹣D.±4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.75.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A.B.C.D.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B.C.D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣810.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B.C.﹣D.﹣二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是.12.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n (x2﹣mx+4)的最大值等于.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.17.在2020年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?19.已知数列{a n}的前n项和S n=a n+.(1)求数列{a n}的通项公式;(2)若b n=,且数列{b n}的前n项和为T n,求T2n.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?2020年山东省高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,则a的值等于()A.1B.2C.5D.6【考点】复数的代数表示法及其几何意义.【分析】求出对应点的坐标,代入直线方程,然后求解a的值.【解答】解:复数z=(a﹣1)+3i(a∈R)在复平面内对应的点在直线y=x+2上,可得3=a﹣1+2,解得a=2.故选:B.2.已知集合,则集合A的真子集的个数为()A.3B.4C.1D.2【考点】子集与真子集.【分析】先求出集合A,由此能求出集合A的子集的个数.【解答】解:∵集合={2},∴集合A的真子集只有一个为∅.故选:C.3.已知函数f(x)=,若f(﹣1)=2f(a),则a的值等于()A.或﹣B.C.﹣D.±【考点】分段函数的应用.【分析】利用分段函数的表达式建立方程关系进行求解即可.【解答】解:f(﹣1)=(﹣1)2=1,则由f(﹣1)=2f(a),得1=2f(a),即f(a)=,若a>0,由f(a)=得log3a=,得a=,若a<0,由f(a)=得a2=,得a=﹣或(舍),综上a的值等于或﹣,故选:A.4.将800个个体编号为001~800,然后利用系统抽样的方法从中抽取20个个体作为样本,则在编号为121~400的个体中应抽取的个体数为()A.10B.9C.8D.7【考点】系统抽样方法.【分析】根据题意,求出系统抽样的分组组距,再求编号为121~400的个体中应抽取的个体数即可.【解答】解:把这800个个体编上001~800的号码,分成20组,则组距为=40;所以编号为121~400的个体中应抽取的个体数为=7.故选:D.5.“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】等差关系的确定.【分析】数列{a n}成等比数列,公比为q.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.即可判断出结论.【解答】解:∵数列{a n}成等比数列,公比为q.∴a n=.若a1<0时,则lga n+1没有意义.由数列{lga n+1}成等差数列,则(lga n+1+1)﹣(lga n+1)=为常数,则为非0常数.∴“数列{a n}成等比数列”是“数列{lga n+1}成等差数列”的必要不充分条件.故选:B.6.已知直线l的方程为ax+2y﹣3=0,且a∈[﹣5,4],则直线l的斜率不小于1的概率为()A.B.C.D.【考点】直线的斜率.【分析】先求出直线的斜率的范围,再根据几何概型的概率公式计算即可.【解答】解:由ax+2y﹣3=0得到y=﹣x+,故直线的斜率为﹣,∵直线l的斜率不小于1,∴﹣≥1,即a≤﹣2,∵且a∈[﹣5,4],∴﹣5≤a≤﹣2,∴直线l的斜率不小于1的概率为=,故选:C.7.一个空间几何体的三视图如图,其中主视图是腰长为3的等腰三角形,俯视图是边长分别为1,2的矩形,则该几何体的体积等于()A.2B.C.D.【考点】由三视图求面积、体积.【分析】由三视图易得这个几何体是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为:3,求出棱锥的高,即可求解四棱锥的体积.【解答】解:由三视图知,这是一个四棱锥,四棱锥的底面是一个边长是1、2的长方形,顶点在底面的射影是长边的中点,短侧棱长为3,棱锥的高:=2,∴四棱锥的体积是:×1×2×2=.故选:D.8.已知向量,若向量的夹角为φ,则有()A.φ=θB.φ=π﹣θC.φ=θ﹣πD.φ=θ﹣2π【考点】平面向量数量积的运算.【分析】根据向量的夹角公式和两角和的余弦公式以及诱导公式,再根据向量的夹角的范围即可求出.【解答】解:∵向量,∴||==1,||=1,=﹣cosθcos2θ﹣sinθsin2θ=﹣cosθ=cos(π﹣θ),∴cosφ==cos(π﹣θ)=cos(θ﹣π),∵θ∈(π,2π),∴θ﹣π∈(0,π),∴φ=θ﹣π,故选:C.9.已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m的取值范围是()A.m>﹣10B.m<﹣10C.m>﹣8D.m<﹣8【考点】基本不等式.【分析】不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,利用基本不等式的性质可得2(x﹣1)+的最小值,即可得出.【解答】解:不等式2x+m+>0化为:2(x﹣1)+>﹣m﹣2,∵x>1,∴2(x﹣1)+≥2×=8,当且仅当x=3时取等号.∵不等式2x+m+>0对一切x∈(1,+∞)恒成立,∴﹣m﹣2<8,解得m>﹣10,故选:A.10.在三角形ABC中,角A、B、C的对边分别为a,b,c,且满足==,则=()A.﹣B.C.﹣D.﹣【考点】正弦定理;余弦定理.【分析】由题意设===k,可得a=6k,b=4k,c=3k,由余弦定理可得cosA,再由正弦定理可得=,代值化简可得.【解答】解:由题意设===k,(k>0),则a=6k,b=4k,c=3k,∴由余弦定理可得cosA===﹣,∴由正弦定理可得====﹣,故选:A.二、填空题(每题5分,满分25分,将答案填在答题纸上)11.阅读如图所示的程序框图,运行相应的程序,输出的结果是11.【考点】循环结构.【分析】按照循环结构的流程,列举出每个循环的变量的取值,与循环条件对比即可得结果【解答】解:依此程序框图,变量a的变化依次为1,12+2=3,32+2=11不满足循环条件a <10,故输出11故答案为1112.从0,2,4中选两个数字,从1,3中选一个数字,组成无重复数字的三位数,其中偶数的个数为20.【考点】计数原理的应用.【分析】根据0的特点,分三类进行,当0在个为和十位时,当没有0参与时,根据分类计数原理可得.【解答】解:若三位数的个位为0,则有2×2×A22=8个;若十位为0,则有C21•C21=4个;若这个三位数没有0,则有C21•C21A22=8个.综上,要求的三位偶数的个数为8+8+4=20个,故答案为:20.13.若不等式|2x+a|<b的解集为{x|1<x<4},则ab等于﹣15.【考点】绝对值不等式的解法.【分析】解出不等式|2x+a|<b,得到关于a,b的不等式组,求出a,b的值,从而求出ab 即可.【解答】解:∵|2x+a|<b,∴﹣b<2x+a<b,∴﹣a﹣b<2x<b﹣a,∴﹣<x<,由不等式的解集为{x|1<x<4},则,解得:a=﹣5,b=3则ab=﹣15,故答案为:﹣15.14.若函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),则函数g(x)=log n(x2﹣mx+4)的最大值等于﹣1.【考点】函数与方程的综合运用;函数的最值及其几何意义.【分析】求出m、n,然后利用对数函数的性质,以及二次函数的性质求解函数的最值.【解答】解:函数f(x)=a x+2﹣(a>0,a≠1)的图象经过定点P(m,n),可知m=﹣2,n=,函数g(x)=log n(x2﹣mx+4)=log(x2+2x+4)=log[(x+1)2+3]≤﹣1.函数g(x)=log n(x2﹣mx+4)的最大值:﹣1.故答案为:﹣1.15.已知双曲线=1(a>0,b>0)的一条渐近线与抛物线y2=2px(p>0)的准线的交点坐标为,且双曲线与抛物线的一个公共点M的坐标(x0,4),则双曲线的方程为\frac{{x}^{2}}{5}﹣\frac{{y}^{2}}{20}=1.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程和抛物线的准线方程,由题意可得p=,=2,求得M (3,4)代入双曲线的方程,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线=1的渐近线方程为y=±x,抛物线y2=2px的准线方程为x=﹣,由题意可得=,即p=,=2,即b=2a①又M的坐标(x0,4),可得16=2px0=x0,解得x0=3,将M(3,4)代入双曲线的方程可得﹣=1②由①②解得a=,b=2,即有双曲线的方程为﹣=1.故答案为:﹣=1.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数f(x)=cosx[sin(x+)﹣sin(x+)]+.(1)若f(+)=,0<θ<,求tanθ的值;(2)求函数f(x)的最小正周期和单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x﹣),由f(+)=,可解得cosθ,又0<θ<,可由同角三角函数关系式即可求sinθ,tanθ的值.(2)由f(x)=sin(2x﹣),根据周期公式可求T,由2kπ﹣≤2x﹣≤2kπ+,k∈Z 可解得单调递增区间.【解答】解:(1)∵f(x)=cosx[sin(x+)﹣sin(x+)]+=cosx(sinx﹣cosx)+=sin2x﹣cos2x=sin(2x﹣),∵f(+)=,故有:sin[2(+)﹣]=sin(θ+﹣)=sin (θ+)=cosθ=,∴可解得:cosθ=,∵0<θ<,sinθ==,∴tanθ===.(2)∵f(x)=sin(2x﹣),∴T==π.∴由2kπ﹣≤2x﹣≤2kπ+,k∈Z可解得:x∈[kπ﹣,kπ+],k∈Z∴函数f(x)的最小正周期是π,单调递增区间是:x∈[kπ﹣,kπ+],k∈Z.17.在2020年8月世界杯女排比赛中,中国女排以11战10胜1负的骄人战绩获得冠军.世界杯女排比赛,采取5局3胜制,即每场比赛中,最先获胜3局的队该场比赛获胜,比赛结束,每场比赛最多进行5局比赛.比赛的积分规则是:3﹣0或者3﹣1取胜的球队积3分,负队积0分;3﹣2取胜的球队积2分,负队积1分.在本届世界杯中,中国队与美国队在第三轮相遇,根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为.(1)在中国队先输一局的情况下,中国队本场比赛获胜的概率是多少?(2)试求中国队与美国队比赛中,中国队获得积分的分布列与期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.【分析】(1)在中国队先输一局的情况下,中国队本场比赛获胜的可能性有两种:连胜3局或前3局两胜1负,第五局胜,由此能求出在中国队先输一局的情况下,中国队本场比赛获胜的概率.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出中国队获得积分X的分布列和数学期望EX.【解答】解:(1)∵根据以往数据统计分析,中国队与美国队的每局比赛中,中国队获胜的概率为,∴在中国队先输一局的情况下,中国队本场比赛获胜的概率:p=+=.(2)中国队与美国队比赛中,中国队获得积分X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)=()=,∴中国队获得积分X的分布列为:X 0 1 2 3PEX==.18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF且BE<CF,∠BCF=,AD=,EF=2.(1)求证:AE∥平面DCF;(2)若,且=λ,当λ取何值时,直线AE与BF所成角的大小为600?【考点】异面直线及其所成的角;直线与平面平行的判定.【分析】(1)推导出面ABE∥面CDF,由此能证明AE∥面CDF.(2)以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,利用向量法能求出当λ取1时,直线AE与BF所成角的大小为60°.【解答】证明:(1)∵BE∥CF,AB∥CD,且BE∩AB=B,FC∩CD=C,∴面ABE∥面CDF,又AE⊂面ABE,∴AE∥面CDF.解:(2)∵∠BCF=,且面ABCD⊥面BEFC,∴FC⊥面ABCD以C为坐标原点,以CB,CD,CF分别为x,y,z轴建系,∵,且=λ,∴AB=()λ,∴A(,()λ,0),E(,0,),F(0,0,),B(,0,0),=(0,(1﹣)λ,),=(﹣,0,),∵直线AE与BF所成角的大小为60°,∴cos60°==,由λ>0,解得λ=1,∴当λ取1时,直线AE与BF所成角的大小为60°.19.已知数列{a n }的前n 项和S n =a n +.(1)求数列{a n }的通项公式; (2)若b n =,且数列{b n }的前n 项和为T n ,求T 2n .【考点】数列的求和;数列递推式. 【分析】(1)由于数列{a n }的前n 项和S n =a n +,可得a 1+a 2=a 2+﹣2,解得a 1.当n ≥2时,S n ﹣1=a n ﹣1+﹣2,可得:a n =a n ﹣a n ﹣1+n ﹣2﹣[﹣2],化简整理即可得出.(2)b n =,可得b 2n ﹣1==.b 2n =.即可得出.【解答】解:(1)∵数列{a n }的前n 项和S n =a n +,∴a 1+a 2=a 2+﹣2,解得a 1=3.当n ≥2时,S n ﹣1=a n ﹣1+﹣2,可得:a n =a n ﹣a n ﹣1+n ﹣2﹣[﹣2],解得a n ﹣1=n+1.∴a n =n+2,当n=1时也成立.∴a n=n+2.=(2)b n=,∴b2n﹣1==.b2n==.∴数列{b n}的前2n项和T2n=+=﹣﹣.20.已知椭圆=1(a>b>0)经过点,且离心率等于.(1)求椭圆的方程;(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.①当|CD|=2时,求直线l的方程;②若λ=,试求λ的取值范围.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和点M满足椭圆方程,结合a,b,c的关系,解方程可得a,b,进而得到椭圆方程;(2)①求出O到直线的距离,由圆的弦长公式可得2,解方程可得m的值,进而得到直线的方程;②将直线y=x+m代入椭圆方程,运用判别式大于0,运用韦达定理和弦长公式,再由直线和圆相交的条件和弦长公式,化简整理,即可得到所求范围.【解答】解:(1)由题意可得e==,a2﹣b2=c2,将M的坐标代入椭圆方程,可得+=1,解得a=2,b=c=2,即有椭圆的方程为+=1;(2)①O到直线y=x+m的距离为d=,由弦长公式可得2=2,解得m=±,可得直线的方程为y=x±;②由y=x+m代入椭圆方程x2+2y2=8,可得3x2+4mx+2m2﹣8=0,由判别式为△=16m2﹣12(2m2﹣8)>0,化简可得m2<12,由直线和圆相交的条件可得d<r,即有<,即为m2<4,综上可得m的范围是(﹣2,2).设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,即有弦长|AB|=•=•=•,|CD|=2=,即有λ==•=•,由0<4﹣m2≤4,可得≥2,即有λ≥.则λ的取值范围是[,+∞).21.已知函数f(x)=ln()+(a∈R).(1)若函数f(x)在定义域上是单调递增函数,求实数a的取值范围;(2)若函数在定义域上有两个极值点x1,x2,试问:是否存在实数a,使得f(x1)+f(x2)=3?【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求得函数的定义域和导函数f′(x),依题意可知f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,构造辅助函数,g(x)=,求导,利用导数法求得g(x)的单调区间及最小值,即可求得a的取值范围;(2)由题意可知:函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,根据二次函数性质求得a的取值范围,利用韦达定理,求得x1+x2和x1•x2表达式,写出f(x1)+f(x2),根据对数的运算性质求得a的值,判断是否满足a的取值范围.【解答】解:(1)由函数f(x)的定义域为(0,+∞),f′(x)=﹣,依题意可知:f′(x)≥0,在(0,+∞)上恒成立,即a≤在(0,+∞)上恒成立,令g(x)=,g′(x)==,令g′(x)=0,解得x=4,且1<x<4时,g′(x)<0,当x>4时,g′(x)>0,所以g(x)在x=4时取极小值,也为最小值,g(4)=12,故实数a的取值范围是a≤12;(2)f′(x)=﹣=,函数在定义域上有两个极值点x1,x2,即方程f′(x)=0在(1,+∞)上由两个不同的实根,即方程x2+(4﹣a)x+(4+a)=0,在(1,+∞)上由两个不同的实根,∴解得:a≥12,由韦达定理:x1+x2=a﹣4,x1•x2=a+4,于是,f(x1)+f(x2)=ln()++ln()+,=ln[]+a[],=ln[]+a[],=ln()+a(),=,=3,解得a=9,但不满足a>12,所以不存在实数a,使得f(x1)+f(x2)=3.2020年7月18日。

2020年普通高考数学[山东卷]全真模拟卷2解析版

2020年普通高考数学[山东卷]全真模拟卷2解析版

2020年2月普通高考【卷】全真模拟卷(2)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试围:高中全部容。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1A.第一象限B.第二象限C.第三象限D.第四象限【答案】B第二象限.故选B.2A.2 B.3 C.4 D.5【答案】B【解析】因为21|{|2}4A x y x x x ⎧⎫===≠±⎨⎬-⎩⎭,{|23,}{2,1,0,1,2}B x x x =-≤<∈=--Z , 所以{1,0,1}A B ⋂=-,所以A B I 中元素的个数为3.故选B .3.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为A .%25.6B .%5.7C .%25.10D .%25.31【答案】A【解析】水费开支占总开支的百分比为%25.6%20100450250250=⨯++.故选A 4.函数22()11xf x x=-+在区间[4,4]-附近的图象大致形状是 A . B .C .D .【答案】BA,D C.故选B5P是C与y轴交于点M O为坐标原点)C的渐近线方程为A B C D【答案】CC C.6在下列命题中,为真命题的是A B C D【答案】AAD平行于BC,故角中,PB=PC,故三角形PBC是等边三角形;当AB=2取BC的中点G EFG//平面PAB,从而得到EF//平面PAB,故2p是真命题;设AB=a,AC和BD的交点为O,则PO垂直于地面ABCD,PA=a,AO=2a2,PO=2a2O为球心,球的半径为2a2,表面积为22πa,又正方形的面积为2a,故3p为真.故23p p∧为真;()12p p∨⌝13p p∧()23p p∧⌝均为假.故选A.7.图1是我国古代数学家爽创制的一幅“勾股圆方图”(又称“爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD=,3BD=,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为A.964B.449C.225D.27【答案】B【解析】18060120ADB∠=︒-︒=︒Q,在ABDV中,可得2222cosAB AD BD AD BD ADB=+-⋅∠,即为222153253492AB⎛⎫=+-⨯⨯⨯-=⎪⎝⎭,解得7AB=,2DE AD BD=-=Q,224()749DEFABCSS∴==VV.故选B.8.已知抛物线2:4C y x =的焦点为,F P 是抛物线C 的准线上一点,且P 的纵坐标为正数,Q 是直线PF与抛物线C 的一个交点,若2PQ QF =u u u r u u u r,则直线PF 的方程为 A .330x y --= B .10x y +-=C .10x y --=D .330x y +-=【答案】D 【解析】作QM y ⊥轴于M ,则根据抛物线的定义有QM QF =.又2PQ QF =u u u r u u u r ,故2PQ QM =,故1cos 2MQ PQM PQ ∠==.故3PQM π∠=,故直线PF 的倾斜角为23π. 故直线PF 的斜率为3-.直线PF 的方程为()31y x =--,化简得330x y +-=.故选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分。

山东省2020年高考数学模拟考试试题及答案

山东省2020年高考数学模拟考试试题及答案

山东省2020年高考数学模拟考试试题及答案参考答案一、单项选择题1. 一看就是两个交点,所以需要算吗?C2. 分母实数化,别忘了“共轭”,D3. 简单的向量坐标运算,A4. 球盒模型(考点闯关班里有讲),37分配,B5. 在一个长方体中画图即可(出题人就是从长方体出发凑的题,其实就是一个鳖臑bie nao )C6. 画个图,一目了然,A7. 关键是把“所有”翻译成“任取”,C8. 用6、4、2特值即可(更高级的,可以用极限特值8-、4、2,绝招班里有讲),B二、多项选择题9. 这个,主要考语文,AD10. 注意相同渐近线的双曲线设法,2222x y a bλ-=,D 选项可用头哥口诀(直线平方……)AC11. B 选项构造二面平行,C 选项注意把面补全为AEFD1(也可通过排除法选出),D 选项CG中点明显不在面上,BC12. 利用函数平移的思想找对称中心,ABC三、填空题13. 确定不是小学题?3614. 竟然考和差化积,头哥告诉过你们记不住公式怎么办,不过这题直接展开也可以,45- 15. 利用焦半径公式,或者更快的用特殊位置,或者更更快用极限特殊位置(绝招班有讲),2,116. 根据对称之美原则(绝招班有讲),8(老实讲,选择填空所有题都可以不动笔直接口算出来的呀~~~)四、解答题17. 故弄玄虚,都是等差等比的基本运算,选①,先算等比的通项()13n n b -=--,再算等差的通项316n a n =-,4k =,同理②不存在,③ m.cksdu 牛逼 4k =18. (1)根据三角形面积很容易得出两边之比,再用正弦定理即可,60°(2)设AC=4x (想想为什么不直接设为x ?),将三角形CFB 三边表示出来,再用余弦19. (1)取SB 中点M ,易知AM//EF ,且MAB=45°,可得AS=AB ,易证AM ⊥面SBC ,进一步得证(2)可设AB=AS=a ,,建系求解即可,20. (1)正相关(2)公式都给了,怕啥,但是需要把公式自己化简一下,ˆ121.867.89yx =+ (3)两侧分布均匀,且最大差距控制在1%左右,拟合效果较好21. (1)没啥可说的,2214x y +=,(2214x y -+= (2)单一关参模型,条件转化为AB=CD=1(绝招班里有讲),剩下就是计算了,无解,所以不存在22. (1)送分的(求导可用头哥口诀),7(2)考求导,没啥意思,注意定义域,单增()0,+∞(3)有点意思,详细点写由递推公式易知1n a ≥由(11711n n n n n a a a a a +-+-==++知若n a,则1n a +;若n a >,则1n a +<又11a =<,所以n为奇数时n a <,n为偶数时n a >1)n为奇数时,n a <,1n a +>,由(2)的单增可知 ()2221n n n n a a a f a +=<=可知22111ln ln 0ln 277n n n n a a a a ++<<⇒>>⇒>2)n为偶数时,n a >,1n a +<2)的单增可知()2221n n n n a a a f a +=>=2211771ln 02ln n n a a ++>>⇒>>⇒>由1)212<所以111117ln ln22lnn nna---⎛⎫⎛⎫=≤<⎪⎪⎝⎭⎝⎭所以222ln ln71nna-⋅-<证毕注:奉劝大家千万不要求通项公式,当然利用不动点也能求出来)(((117711nn na--⎛⎫-⎝⎭=-,只是接下来你就要崩溃了吧~~~。

山东省2020年高考数学模拟试卷(理科)(II)卷

山东省2020年高考数学模拟试卷(理科)(II)卷

山东省2020年高考数学模拟试卷(理科)(II)卷姓名:________ 班级:________ 成绩:________一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (共12题;共24分)1. (2分)复数的虚部为()A .B .C . 0D . 12. (2分) (2020高一下·邢台期中) 在各项均为正数的等比数列中,公比,若,,数列的前项和为,,则当取最小值时,的值为()A . 4B . 6C . 4或5D . 5或63. (2分)(2018·呼和浩特模拟) 下面程序框图的算术思路源于《几何原本》中的“辗转相除法”(如图),若输入,则输出的为()A .B .C .D .4. (2分) (2017高三下·重庆模拟) 设,,若直线与圆相切,则的取值范围是()A .B .C .D .5. (2分)如图是一个几何体的三视图,则这个几何体是()A . 棱锥B . 棱柱C . 棱台D . 以上都不对6. (2分)在△ABC中,若,则△ABC是()A . 直角三角形B . 等边三角形C . 钝角三角形D . 等腰直角三角形7. (2分) (2017高三上·珠海期末) 若变量x,y满足约束条件,则z=3x+5y的取值范围是()A . [3,+∞)B . [﹣8,3]C . (﹣∞,9]D . [﹣8,9]8. (2分) (2019高三上·株洲月考) 在中,,,,在上任取一点D,使为钝角三角形的概率为()A .B .D .9. (2分) (2019高二上·德惠期中) “k>9”是“方程表示双曲线”的()A . 充要条件B . 充分不必要条件C . 必要不充分条件D . 既不充分也不必要条件10. (2分) (2016高一下·望都期中) 在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA﹣acosB=0,且b2=ac,则的值为()A .B .C . 2D . 411. (2分)下列命题的否定为假命题的是()A .B .C . 所有能被3整除的整数都是奇数D .12. (2分)(2020·泉州模拟) 已知双曲线E的左、右焦点分别为,左、右顶点分别为.点P在E的渐近线上,,,则E的离心率为()B .C .D .二、填空题,把答案填在题中横线上. (共4题;共4分)13. (1分)(2017·息县模拟) 由数字2,0,1,7组成没有重复数字的四位偶数的个数为________.14. (1分) (2016高一上·佛山期中) 已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1﹣x)<f(2x),则x的取值范围是________.15. (1分)(2020·南京模拟) 已知数列为等比数列,若,且,,成等差数列,则的前n项和为________.16. (1分)已知f(x)=x+在区间[1,4]上的最小值为n,则二项式(x﹣)n展开式中x﹣2的系数为________三、解答题:解答应写出文字说明、证明过程或演算步骤. (共8题;共70分)17. (15分) (2016高一下·无锡期末) 已知数列{an}的前n项和Sn满足2Sn=3an﹣3,数列{bn}的前n项和Tn满足 = +1且b1=1.(1)求数列{an},{bn}的通项公式;(2)设cn= ,求数列{cn}的前n项和Pn;(3)数列{Sn}中是否存在不同的三项Sp , Sq , Sr ,使这三项恰好构成等差数列?若存在,求出p,q,r的关系;若不存在,请说明理由.18. (5分)某高校在2014年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第4组中有ξ名学生被考官L面试,求ξ的分布列和数学期望.19. (10分) (2016高三上·洛宁期中) 等腰△ABC中,AC=BC= ,AB=2,E、F分别为AC、BC的中点,将△EFC沿EF折起,使得C到P,得到四棱锥P﹣ABFE,且AP=BP= .(1)求证:平面EFP⊥平面ABFE;(2)求二面角B﹣AP﹣E的大小.20. (10分) (2019高二上·洛阳月考) 已知椭圆的长轴长为,短轴长为.(1)求椭圆方程;(2)过作弦且弦被平分,求此弦所在的直线方程及弦长.22. (5分) (2017·东台模拟) 在圆O中,AB,CD是互相平行的两条弦,直线AE与圆O相切于点A,且与CD的延长线交于点E,求证:AD2=AB•ED.23. (5分)(2019·黄山模拟) 在直角坐标系xOy中,曲线C1的参数方程为(θ为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2-12ρsinθ+35=0.(I)求曲线C1 , C2的直角坐标方程;(Ⅱ)若动直线l分别与C1 , C2交于点P、Q,求|PQ|的取值范围。

2020年山东省德州市高考数学二模试卷(理科)含答案解析

2020年山东省德州市高考数学二模试卷(理科)含答案解析

2020年山东省德州市高考数学二模试卷(理科)一、选择题:本大题共l0小题,每小题5分,共50分.把正确答案涂在答题卡上.1.R表示实数集,集合M={x|0<x<2},N={x|x2+x﹣6≤0},则下列结论正确的是()A.M∈NB.∁R M⊆NC.M∈∁R ND.∁R N⊆∁R M2.已知复数z满足z•(1﹣i)=2,则z5的虚部是()A.4B.4iC.﹣4iD.﹣43.已知命题p:∃x∈R,x2+2x+3=0,则¬p是()A.∀x∈R,x2+2x+3≠0B.∀x∈R,x2+2x+3=0C.∃x∈R,x2+2x+3≠0D.∃x∈R,x2+2x+3=04.两个相关变量满足如下关系:x 2 3 4 5 6y 25 ●50 56 64根据表格已得回归方程:=9.4x+9.2,表中有一数据模糊不清,请推算该数据是()A.37B.38.5C.39D.40.55.把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.6.一个几何体的三视图如图所示,其中正(主)视图和侧(左)视图是腰长为l的两个全等的等腰直角三角形,则该多面体的各条棱中最长棱的长度为()A.B.C.D.7.已知双曲线C:﹣=1(a>0,b>0)的焦距为2,抛物线y=x2+与双曲线C的渐近线相切,则双曲线C的方程为()A.﹣=1B.﹣=1C.x2﹣=1D.﹣y2=18.在(1+)(1+)…(1+)(n∈N+,n≥2)的展开式中,x的系数为,则x2的系数为()A.B.C.D.9.设集合M={(m,n)|0<m<2,0<n<2,m,n∈R},则任取(m,n)∈M,关于x的方程mx2+2x+n=0有实根的概率为()A.B.C.D.10.已知函数f(x)=的值域是[0,2],则实数a的取值范围是()A.(0,1]B.[1,]C.[1,2]D.[,2]二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.已知||=1,||=,|+2|=,则向量,的夹角为.12.若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是.13.已知变量x,y满足,则的最大值为.14.执行如图所示的程序框图,若输入x=6,则输出y的值为.15.已知函数f(x)=,g(x)=acos+5﹣2a(a>0),若对任意的x1∈[0,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin(2x+)﹣cos2x.(1)求f(x)的最小正周期及x∈[,]时f(x)的值域;(2)在△ABC中,角A、B、C所对的边为a,b,c,且角C为锐角,S△ABC=,c=2,f(C+)=﹣.求a,b的值.17.在一次购物抽奖活动中,假设某l0张奖券中有一等奖券1张,可获得价值100元的奖品,有二等奖券3张,每张可获得价值50元的奖品,其余6张没有奖,某顾客从此l0张奖券中任抽2张,求(I)该顾客中奖的概率;(Ⅱ)该顾客获得奖品总价值X的概率分布列和数学期望.18.已知数列{a n}满足a1=1,a1+a2+a3+…+a n=a n+1﹣1(n∈N),数列{a n}的前n项和为S n.(1)求数列{a n}的通项公式;(2)设b n=,T n是数列{b n}的前n项和,求使得T n<对所有n∈N,都成立的最小正整数m.19.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2,点M在线段PD上.(I)求证:AB⊥PC;(Ⅱ)若二面角M﹣AC﹣D的余弦值为,求BM与平面PAC所成角的正弦值.20.已知函数f(x)=ax2﹣(a﹣1)x﹣lnx(a∈R且a≠0).(I)求函数f(x)的单调递增区间;(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值和谐切线”.当a=2时,函数f(x)是否存在“中值和谐切线”,请说明理由.21.如图,椭圆E:的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且.(Ⅰ)求椭圆E的方程;(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足(O为坐标原点),当时,求实数t的取值范围.2020年山东省德州市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共l0小题,每小题5分,共50分.把正确答案涂在答题卡上.1.R表示实数集,集合M={x|0<x<2},N={x|x2+x﹣6≤0},则下列结论正确的是()A.M∈NB.∁R M⊆NC.M∈∁R ND.∁R N⊆∁R M【考点】元素与集合关系的判断.【分析】化简N={x|x2+x﹣6≤0}={x|﹣3≤x≤2},从而确定M⊊N;从而求得.【解答】解:∵N={x|x2+x﹣6≤0}={x|﹣3≤x≤2},而M={x|0<x<2},∴M⊊N;∴∁R N⊆∁R M,故选D.2.已知复数z满足z•(1﹣i)=2,则z5的虚部是()A.4B.4iC.﹣4iD.﹣4【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数z满足z•(1﹣i)=2,∴z•(1﹣i)(1+i)=2(1+i),∴z=1+i,∴z2=2i,则z5=(2i)2(1+i)=﹣4(1+i)=﹣4﹣4i的虚部是﹣4.故选:D.3.已知命题p:∃x∈R,x2+2x+3=0,则¬p是()A.∀x∈R,x2+2x+3≠0B.∀x∈R,x2+2x+3=0C.∃x∈R,x2+2x+3≠0D.∃x∈R,x2+2x+3=0【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以命题p:∃x∈R,x2+2x+3=0,则¬p是:∀x∈R,x2+2x+3≠0.故选:A.4.两个相关变量满足如下关系:x 2 3 4 5 6y 25 ●50 56 64根据表格已得回归方程:=9.4x+9.2,表中有一数据模糊不清,请推算该数据是()A.37B.38.5C.39D.40.5【考点】线性回归方程.【分析】求出代入回归方程解出,从而得出答案.【解答】解:=,∴=9.4×4+9.2=46.8.设看不清的数据为a,则25+a+50+56+64=5=234.解得a=39.故选C.5.把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.【考点】正弦函数的对称性.【分析】先对函数进行图象变换,再根据正弦函数对称轴的求法,即令ωx+φ=即可得到答案.【解答】解:图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.6.一个几何体的三视图如图所示,其中正(主)视图和侧(左)视图是腰长为l的两个全等的等腰直角三角形,则该多面体的各条棱中最长棱的长度为()A.B.C.D.【考点】简单空间图形的三视图.【分析】几何体为四棱锥,底面是正方形,根据三视图数据计算出最长棱即可.【解答】解:由三视图可知几何体为四棱锥P﹣ABCD,其中底面ABCD为正方形,PA⊥平面ABCD,且PA=AB=1,∴几何体的最长棱为PC==.故选B.7.已知双曲线C:﹣=1(a>0,b>0)的焦距为2,抛物线y=x2+与双曲线C的渐近线相切,则双曲线C的方程为()A.﹣=1B.﹣=1C.x2﹣=1D.﹣y2=1【考点】双曲线的简单性质.【分析】由题意可得c=,即a2+b2=5,求出渐近线方程代入抛物线的方程,运用判别式为0,解方程可得a=2,b=1,进而得到双曲线的方程.【解答】解:由题意可得c=,即a2+b2=5,双曲线的渐近线方程为y=±x,将渐近线方程和抛物线y=x2+联立,可得x2±x+=0,由直线和抛物线相切的条件,可得△=﹣4××=0,即有a2=4b2,解得a=2,b=1,可得双曲线的方程为﹣y2=1.故选:D.8.在(1+)(1+)…(1+)(n∈N+,n≥2)的展开式中,x的系数为,则x2的系数为()A.B.C.D.【考点】二项式系数的性质.【分析】在(1+)(1+)…(1+)(n∈N+,n≥2)的展开式中,x的系数=+…+,可得1﹣=,解得n=4.因此(1+)(1+)的展开式中x2的系数=+×+×+×,即可得出.【解答】解:在(1+)(1+)…(1+)(n∈N+,n≥2)的展开式中,x的系数=+…+==1﹣,∴1﹣=,解得n=4.∴(1+)(1+)的展开式中x2的系数为:+×+×+×=.故选:C.9.设集合M={(m,n)|0<m<2,0<n<2,m,n∈R},则任取(m,n)∈M,关于x的方程mx2+2x+n=0有实根的概率为()A.B.C.D.【考点】几何概型.【分析】首先根据关于x的方程mx2+2x+n=0有实根,推得ac≤1;然后作出图象,求出相应的面积;最后根据几何概型的概率的求法,关于x的方程mx2+2x+n=0有实根的概率即可.【解答】解:若关于x的方程mx2+2x+n=0有实根,则△=22﹣4mn≥0,∴mn≤1;∵M={(m,n)|0<m<2,0<n<2,m,n∈R},总事件表示的面积为2×2=4,方程有实根时,表示的面积为2×+2×dm=1+lnm|=1+2ln2,∴关于x的方程mx2+2x+n=0有实根的概率为,故选:B.10.已知函数f(x)=的值域是[0,2],则实数a的取值范围是()A.(0,1]B.[1,]C.[1,2]D.[,2]【考点】分段函数的应用.【分析】画出函数的图象,令y=2求出临界值,结合图象,即可得到a的取值范围.【解答】解:∵函数f(x)=的图象如下图所示:∵函数f(x)的值域是[0,2],∴1∈[0,a],即a≥1,又由当y=2时,x3﹣3x=0,x=(0,﹣舍去),∴a∴a的取值范围是[1,].故选:B.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.已知||=1,||=,|+2|=,则向量,的夹角为\frac{3π}{4}.【考点】平面向量数量积的运算.【分析】|+2|=,则两边平方,运用向量的数量积的定义和向量的平方等于向量的模的平方,即可得到答案.【解答】解:设向量,的夹角为θ,∵||=1,||=,∴|+2|2=||2+4||2+4||•||cosθ=1+4×2+4cosθ=5,∴cosθ=﹣,∵0≤θ≤π,∴θ=.故答案为:.12.若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是[﹣2,4]..【考点】绝对值不等式的解法.【分析】利用绝对值的几何意义,可得到|a﹣1|≤3,解之即可.【解答】解:在数轴上,|x﹣a|表示横坐标为x的点P到横坐标为a的点A距离,|x﹣1|就表示点P到横坐标为1的点B的距离,∵(|PA|+|PB|)min=|a﹣1|,∴要使得不等式|x﹣a|+|x﹣1|≤3成立,只要最小值|a﹣1|≤3就可以了,即|a﹣1|≤3,∴﹣2≤a≤4.故实数a的取值范围是﹣2≤a≤4.故答案为:[﹣2,4].13.已知变量x,y满足,则的最大值为\frac{5}{4}.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可求表达式的最大值.【解答】解:作出不等式组对应的平面区域:=1+的几何意义为区域内的点到P(﹣2,2)的斜率加1,由图象知,PA的斜率最大,由,得,即A(2,3),故PA的斜率k==.所求表达式的最大值为:1+=故答案为:.14.执行如图所示的程序框图,若输入x=6,则输出y的值为﹣\frac{3}{2}.【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的x,y的值,当x=﹣1,y=﹣时,满足条件|y﹣x|<1,退出循环,输出y的值为﹣,即可得解.【解答】解:模拟执行程序,可得x=6y=2不满足条件|y﹣x|<1,执行循环体,x=2,y=0不满足条件|y﹣x|<1,执行循环体,x=0,y=﹣1不满足条件|y﹣x|<1,执行循环体,x=﹣1,y=﹣满足条件|y﹣x|<1,退出循环,输出y的值为﹣.故答案为:﹣.15.已知函数f(x)=,g(x)=acos+5﹣2a(a>0),若对任意的x1∈[0,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是[\frac{5}{2},\frac{13}{3}].【考点】分段函数的应用;函数的零点与方程根的关系.【分析】根据f(x)的解析式求出其值域,再求出g(x)在x∈[0,1]上的值域,由对任意的x1∈[0,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立得到关于a的不等式组,从而求出a的取值范围.【解答】解:∵x∈(,1]时,f(x)=,∴f′(x)=,当x∈(,1]时,f′(x)>0,函数f(x)在(,1]上为增函数,∴f(x)∈(,];当x∈[0,]时,函数f(x)为减函数,∴f(x)∈[0,];∴在[0,1]上f(x)∈[0,];又g(x)=acos﹣2a+5中,当x∈[0,1]时,cos∈[0,1],∴g(x)∈[﹣2a+5,﹣a+5];若对任意的x1∈[0,1],总存在x2∈[0,1],使得f(x1)=g(x2)成立,则,解得:≤a≤,故答案为:[,].三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.已知函数f(x)=sin(2x+)﹣cos2x.(1)求f(x)的最小正周期及x∈[,]时f(x)的值域;(2)在△ABC中,角A、B、C所对的边为a,b,c,且角C为锐角,S△ABC=,c=2,f(C+)=﹣.求a,b的值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)由两角和的正弦公式及二倍角公式,化简求得f(x)═sin2x﹣,根据正弦函数的图象和性质,求出周期和f(x)的值域;(2)f(C+)=﹣,求得C=,由三角形的面积公式求得ab=4,余弦定理求得a2+b2=16,联立求得a、b的值.【解答】解:(1)f(x)=sin(2x+)﹣cos2x=sin2x+cos2x﹣(2cos2x﹣1)﹣,=sin2x﹣,f(x)的最小正周期π,x∈[,],2x∈[,],f(x)的值域[﹣,﹣];(2)f(x)=sin2x﹣,f(C+)=sin2(C+)﹣=﹣,∴sin(2C+)=,cos2C=,角C为锐角,C=,S=,S△ABC=,ab=4,由余弦定理可知:c2=a2+b2﹣2abcosC,a2+b2=16,解得b=2,a=2或b=2,a=2,17.在一次购物抽奖活动中,假设某l0张奖券中有一等奖券1张,可获得价值100元的奖品,有二等奖券3张,每张可获得价值50元的奖品,其余6张没有奖,某顾客从此l0张奖券中任抽2张,求(I)该顾客中奖的概率;(Ⅱ)该顾客获得奖品总价值X的概率分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)由题意求出该顾客没有中奖的概率,由此利用对立事件概率计算公式能求出该顾客中奖的概率.(Ⅱ)根据题意可得X的所有可能取值为0,50,100,150(元),分别求出相应的概率,由此能求出X的分布列和数学期望.【解答】解:(Ⅰ)由题意得该顾客没有中奖的概率为=,∴该顾客中奖的概率为:P=1﹣=,∴该顾客中奖的概率为.(Ⅱ)根据题意可得X的所有可能取值为0,50,100,150(元),∴P(X=0)==,P(X=50)==,P(X=100)==,P(X=150)==,∴X的分布列为:X 0 50 100 150P∴X的数学期望为EX==50.18.已知数列{a n}满足a1=1,a1+a2+a3+…+a n=a n+1﹣1(n∈N),数列{a n}的前n项和为S n.(1)求数列{a n}的通项公式;(2)设b n=,T n是数列{b n}的前n项和,求使得T n<对所有n∈N,都成立的最小正整数m.【考点】数列的求和;数列递推式.【分析】(1)通过a1+a2+a3+…+a n﹣1+a n=a n+1﹣1与a1+a2+a3+…+a n﹣1=a n﹣1作差,进而计算可知=(n∈N),利用累乘法计算可知数列{a n}的通项公式;(2)通过(1),利用等差数列的求和公式裂项可知b n=2(﹣),进而利用并项相消法可知T n=,从而问题转化为数列{T n}的最大值,计算即得结论.+a n=a n+1﹣1(n∈N),【解答】解:(1)∵a1+a2+a3+…+a n﹣1∴当n≥2时,a1+a2+a3+…+a n=a n﹣1,﹣1两式相减得:a n=a n+1﹣a n,即=,又∵==满足上式,∴=(n∈N),∴当n≥2时,a n=••…••a1=••…•2•1=n,又∵a1=1满足上式,∴数列{a n}的通项公式a n=n;(2)由(1)可知b n===2(﹣),∴T n=2(1﹣+﹣+…+﹣)=2(1﹣)=,∵随着n的增大而增大,∴不等式T n<对所有n∈N都成立⇔求数列{T n}的最大值,又∵=2,∴≥2,即m≥20,故满足题意的最小正整数m=20.19.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2,点M在线段PD上.(I)求证:AB⊥PC;(Ⅱ)若二面角M﹣AC﹣D的余弦值为,求BM与平面PAC所成角的正弦值.【考点】直线与平面所成的角;直线与平面垂直的性质.【分析】(I)取BC的中点E,连接AE,则可证AB⊥AC,又PA⊥AB,得出AB⊥平面PAC,从而AB⊥PC;(II)设,以A为原点建立坐标系,求出平面ACM的法向量,令|cos<,>|=解出λ,得出的坐标,则|cos<>|为BM与平面PAC所成角的正弦值.【解答】证明:(I)取BC的中点E,连接AE,∵AD∥BC,AD⊥CD,且AD=CD=2,BC=4,∴四边形ADCE是正方形,△ABE是到腰直角三角形,∴∠BAE=45°,∠EAC=45°,∴∠BAC=90°,即AB⊥AC.∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB,又PA⊂平面PAC,AC⊂平面PAC,PA∩AC=A,∴AB⊥平面PAC,∵PC⊂平面PAC,∴AB⊥PC.(II)以A为原点,分别以AE,AD,AP为坐标轴建立空间直角坐标系A﹣xyz,则A(0,0,0),B(2,﹣2,0),C(2,2,0),P(0,0,2),D(0,2,0).∴=(0,2,﹣2).=(2,2,0),=(0,0,2).设=(0,2,﹣2λ),则==(0,2,2﹣2λ).设平面ACM的一个法向量为=(x,y,z),则,∴,令y=得=(﹣,,).∵z轴⊥平面ACD,∴=(0,0,1)为平面ACD的一个法向量.∴cos<>==.∵二面角M﹣AC﹣D的余弦值为,∴=.解得.∴=(0,,),∵=(2,﹣2,0),∴==(﹣2,,).∵AB⊥平面PAC,∴为平面PAC的一个法向量.cos<,>===﹣.∴BM与平面PAC所成角的正弦值为.20.已知函数f(x)=ax2﹣(a﹣1)x﹣lnx(a∈R且a≠0).(I)求函数f(x)的单调递增区间;(Ⅱ)记函数y=F(x)的图象为曲线C.设点A(x1,y1),B(x2,y2)是曲线C上的不同两点.如果在曲线C上存在点M(x0,y0),使得:①x0=;②曲线C在点M处的切线平行于直线AB,则称函数F(x)存在“中值和谐切线”.当a=2时,函数f(x)是否存在“中值和谐切线”,请说明理由.【考点】利用导数研究函数的单调性.【分析】(I)根据对数函数的定义求得函数的定义域,再根据f(x)的解析式求出f(x)的导函数,然后分别令导函数大于0和小于0得到关于x的不等式,求出不等式的解集即可得到相应的x的范围即分别为函数的递增和递减区间;(II)假设函数f(x)的图象上存在两点A(x1,y1),B(x2,y2),使得AB存在“中值相依切线”,根据斜率公式求出直线AB的斜率,利用导数的几何意义求出直线AB的斜率,它们相等,再通过构造函数,利用导数研究函数的单调性和最值即可证明结论.【解答】解:(Ⅰ)函数f(x)的定义域是(0,+∞),由已知得,f′(x)=,(1)当a>0时,令f′(x)>0,解得x>1;令f′(x)<0,解得0<x<1.所以函数f(x)在(1,+∞)上单调递增;(2)当a<0时,①当﹣<1时,即a<﹣1时,令f′(x)>0,解得:﹣<x<1;∴函数f(x)在(﹣,1)上单调递增;②当﹣=1时,即a=﹣1时,显然,函数f(x)在(0,+∞)上单调递减,无增区间;③当﹣>1时,即﹣1<a<0时,令f′(x)>0,解得1<x<﹣∴函数f(x)在(1,﹣)上单调递增;综上所述,(1)当a>0时,函数f(x)在(1,+∞)上单调递增;(2)当a<﹣1时,函数f(x)在(﹣,1)上单调递增;(3)当a=﹣1时,函数f(x)无单调递增区间;(4)当﹣1<a<0时,函数f(x)在(1,﹣)上单调递增;(Ⅱ)假设函数f(x)存在“中值相依切线”.设A(x1,y1),B(x2,y2)是曲线y=f(x)上的不同两点,且0<x1<x2,则y1=﹣x1﹣lnx1,y2=﹣x2﹣lnx2.k AB==x2+x1﹣1﹣,曲线在点M(x0,y0)处的切线斜率:k=f′(x0)=f′()=x1+x2﹣1﹣,x2+x1﹣1﹣=x1+x2﹣1﹣,∴=,即ln﹣=0,令t=>1设h(t)=lnt﹣,则h′(t)=>0,∴h(t)在(0,+∞)递增,∴h(t)>h(1)=0,故h(t)=0在(0,+∞)无解,假设不成立,综上所述,假设不成立,所以,函数f(x)不存在“中值相依切线”.21.如图,椭圆E:的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且.(Ⅰ)求椭圆E的方程;(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足(O为坐标原点),当时,求实数t的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的简单性质.【分析】(Ⅰ)由抛物线方程,得焦点坐标,从而设出椭圆E的方程,解方程组得C(1,2),D(1,﹣2),根据抛物线、椭圆都关于x轴对称,建立关于参数b的方程,解得b2=1并推得a2=2.最后写出椭圆的方程.(Ⅱ)由题意知直AB的斜率存在.AB:y=k(x﹣2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得k值取值范围,再结合向量的坐标运算利用点P在椭圆上,建立k与t的关系式,利用函数的单调性求出实数t取值范围,从而解决问题【解答】解:(Ⅰ)由抛物线方程,得焦点F2(1,0).所以椭圆E的方程为:.解方程组得C(1,2),D(1,﹣2).由于抛物线、椭圆都关于x轴对称,∴,,∴.因此,,解得b2=1并推得a2=2.故椭圆的方程为.(Ⅱ)由题意知直AB的斜率存在.AB:y=k(x﹣2),设A(x1,y1),B(x2,y2),P(x,y)代入椭圆方程,得(1+2k2)x2﹣8k2x+8k2﹣2=0,△=64k4﹣4(2k2+1)(8k2﹣2)>0,k2<∴x1x2=,x1+x2=,∵,∴,∴(1+k2)[﹣4×]<,∴(4k2﹣1)(14k2+13)>0,∴k2>,∴<k2<,∵满足,∴(x1+x2,y1+y2)=t(x,y),∴x=,y=,∵点P在椭圆上,∴∴16k2=t2(1+2k2)∴t2=,由于<k2<,∴﹣2<t<﹣或<t<2∴实数t取值范围为:﹣2<t<﹣或<t<2.2020年7月15日第21页(共21页)。

山东济南市2020届高三二模数学试题卷理科 (解析版)

山东济南市2020届高三二模数学试题卷理科  (解析版)

2020年济南市高考数学二模试卷(理科)一、选择题(共12小题).1.已知集合A ={y |y =e x ﹣1},B ={x |y =ln (x +1)},则A ∩B =( ) A .(1,+∞)B .(0,+∞)C .(﹣1,+∞)D .(﹣1,0)2.设复数z 满足(2﹣i )z =2+i ,则z 在复平面内所对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.若双曲线C :x 22−y 23m=λ的一条渐近线方程为2x +3y =0,则m =( )A .32B .23C .827D .2784.某地区城乡居民储蓄存款年底余额(单位:亿元)如图所示,下列判断一定不正确的是( )A .城乡居民储蓄存款年底余额逐年增长B .农村居民的存款年底余额所占比重逐年上升C .到2019年农村居民存款年底总余额已超过了城镇居民存款年底总余额D .城镇居民存款年底余额所占的比重逐年下降5.设x ,y 满足约束条件{y ≤x +1y ≥x2y ≤−x2,则z =x ﹣4y 的最大值为( )A .﹣2B .2C .0D .46.在△ABC 中,A ,B ,C 的对边分别是a ,b ,c ,且b =3,c =3√3,B =30°,a >b ,则AC 边上的高线的长为( )A .3√32B .32C .92D .3√37.如图,在△ABC 中,D 为BC 中点,AE →=2EC →,AD 与BE 相交于G ,若AG →=x GD →,BG →=y GE →,则x +y =( )A .4B .143C .92D .1128.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,BC ,A 1D 1的中点,有下列四个结论:①AP 与CM 是异面直线;②AP ,CM ,DD 1相交于一点;③MN ∥BD 1; ④MN ∥平面BB 1D 1D .其中所有正确结论的编号是( )A .①④B .②④C .①③④D .②③④9.已知M (1,0),N 是曲线y =e x 上一点,则|MN |的最小值为( )A.1 B.√2C.e D.√e4+1 10.“斐波那契数列”由十三世纪意大利数学家列昂纳多•斐波那契发现,因为斐波那契以兔子繁殖为例子而提出,故又称该数列为“兔子数列”,斐波那契数列{a n}满足a1=1,a2=1,a n=a n﹣1+a n﹣2(n≥3,n∈N*).如图是输出斐波那契数列的一个算法流程图,现要输出斐波那契数列的前50项,则图中的空白框应填入()A.A=B,B=C B.B=A,C=B C.C=A,B=C D.A=C,C=B11.已知函数f(x)=√3sin2ωx2+12sinωx−√32(ω>0),若f(x)在(π2,3π2)上无零点,则ω的取值范围是()A.(0,29]∪[89,+∞)B.(0,29]∪[23,89]C.(0,29]∪[89,1]D.(29,89]∪[1,+∞)12.点P(1,1)是抛物线C:y=x2上一点,斜率为k的直线l交抛物线C于点A,B,且PA⊥PB,设直线PA,PB的斜率分别为k1,k2,则()A.k=k1+k2B.1k =1k1+1k2C.直线l过点(1,﹣2)D.直线l过点(﹣1,2)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.已知函数f (x )={3x ,x ≥2f(x+1)3,x <2,则f (log 32)的值为 .14.设α为锐角,若cos(α+π8)=45,则cos2α= .15.某县城中学安排5位教师(含甲)去3所不同的村小(含A 小学)支教,每位教师只能支教一所村小学,且每所村小学都有老师支教.甲不去A 小学,则不同的安排方法数为 .16.一个圆锥恰有三条母线两两夹角为60°,若该圆锥的侧面积为3√3π,则该圆锥外接球的表面积为 .三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.(一)必考题:共60分.17.在公比大于0的等比数列{a n }中,已知a 3a 5=a 4,且a 2,3a 4,a 3成等差数列. (1)求{a n }的通项公式;(2)已知S n =a 1a 2…a n ,试问当n 为何值时,S n 取得最大值,并求S n 的最大值. 18.厂家在产品出厂前,需对产品做检验,第一次检测厂家的每件产品合格的概率为0.5,如果合格,则可以出厂;如果不合格,则进行技术处理,处理后进行第二次检测.每件产品的合格率为0.8,如果合格,则可以出厂,不合格则当废品回收. (1)求某件产品能出厂的概率;(2)若该产品的生产成本为800元/件,出厂价格为1500元/件,每次检测费为100元/件,技术处理每次100元/件,回收获利100元/件.假如每件产品是否合格相互独立,记ξ为任意一件产品所获得的利润,求随机变量ξ的分布列与数学期望.19.在三棱锥D ﹣ABC 中,AB =BC =2√2,DA =DC =AC =4,平面ADC ⊥平面ABC ,点M 在棱BC 上.(1)若M 为BC 的中点,证明:BC ⊥DM .(2)若DC与平面DAM所成角的正弦值为√34,求AM.20.已知椭圆x 2a +y2b=1(a>b>0)上的点P到左、右焦点F1,F2的距离之和为2√2,且离心率为√22.(1)求椭圆的标准方程;(2)过F2的直线l交椭圆于A,B两点,点C与点B关于x轴对称,求△AF2C面积的最大值.21.已知函数f(x)=e x+ax+(a+1)lnx−x−a.(1)讨论f(x)的导函数f′(x)零点的个数;(2)若f(x)的最小值为e﹣1,求a的取值范围.[选修4-4:坐标系与参数方程]22.在极坐标系中,极点为O,一条封闭的曲线C由四段曲线组成:ρ=4cosθ(θ∈[0,π4)∪[7π4,2π)),ρ=4sinθ(θ∈[π4,3π4)),ρ=−4cosθ(θ∈[3π4,5π4)),ρ=−4sinθ(θ∈[5π4,7π4)).(1)求该封闭曲线所围成的图形面积;(2)若直线l:ρsin(θ+π4)=k与曲线C恰有3个公共点,求k的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x|+|2x﹣1|.(1)求不等式f(x)<3的解集;(2)若存在α∈(0,π),使得关于x的方程f(x)=m sinα恰有一个实数根,求m 的取值范围.参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={y|y=e x﹣1},B={x|y=ln(x+1)},则A∩B=()A.(1,+∞)B.(0,+∞)C.(﹣1,+∞)D.(﹣1,0)【分析】可以求出集合A,B,然后进行交集的运算即可.解:∵A=(0,+∞),B=(﹣1,+∞),∴A∩B=(0,+∞).故选:B.【点评】本题考查集合的交集运算,考查运算求解能力,指数函数的值域,对数函数的定义域,属于基础题.2.设复数z满足(2﹣i)z=2+i,则z在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】把已知等式变形,再由复数代数形式的乘除运算化简,求出z的坐标得答案.解:由(2﹣i)z=2+i,得z=2+i2−i =(2+i)(2+i)(2−i)(2+i)=3+4i5=35+45i,则z在复平面内所对应的点的坐标为(35,45),位于第一象限.故选:A.【点评】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.3.若双曲线C:x 22−y23m=λ的一条渐近线方程为2x+3y=0,则m=()A.32B.23C.827D.278【分析】由题意知m>0,且双曲线是焦点在x轴上的双曲线,写出其渐近线方程,结合已知可得关于m的方程,则m值可求.解:由题意知双曲线的渐近线方程为y=±√3m2x(m>0),2x+3y=0可化为y=−23x,则√3m2=23,解得m=827.故选:C.【点评】本题考查双曲线的渐近线方程,考查运算求解能力,是中档题.4.某地区城乡居民储蓄存款年底余额(单位:亿元)如图所示,下列判断一定不正确的是()A.城乡居民储蓄存款年底余额逐年增长B.农村居民的存款年底余额所占比重逐年上升C.到2019年农村居民存款年底总余额已超过了城镇居民存款年底总余额D.城镇居民存款年底余额所占的比重逐年下降【分析】根据扇形统计图和条形统计图即可判断出答案.解:到2019年,在城乡居民储蓄存款年底总余额中,农村居民储蓄存款所占的比例仍然小于城镇居民储蓄存款所占的比例,因此农村居民的存款年底总余额仍然少于城镇居民的存款总额,选项C 说农村居民的存款年底总余额已经超过了城镇居民的存款总额显然是错误的. 故选:C .【点评】本题考查表的应用,考查数据分析能力以及运算求解能力.5.设x ,y 满足约束条件{y ≤x +1y ≥x 2y ≤−x 2,则z =x ﹣4y 的最大值为( )A .﹣2B .2C .0D .4【分析】作出不等式组对应的平面区域,平移直线x ﹣4y =0,判断最优解,利用数形结合即可的得到结论.解:由题可知,再画出可行域如图,{y =x +1y =x 2解得A (﹣2,﹣1), 当l :x ﹣4y =0平移到过点(﹣2,﹣1)时,z 取得最大值, 最大值为:2. 故选:B .【点评】本题考查线性规划问题,考查数形结合的思想以及运算求解能力.6.在△ABC 中,A ,B ,C 的对边分别是a ,b ,c ,且b =3,c =3√3,B =30°,a >b ,则AC 边上的高线的长为( )A .3√32B .32C .92D .3√3【分析】由已知利用余弦定理可得a 2﹣9a +18=0,结合a >b ,可求a 的值,进而根据三角形的面积公式即可求解AC 边上的高线的长. 解:因为b =3,c =3√3,B =30°,所以由余弦定理b 2=a 2+c 2﹣2ac cos B ,可得9=a 2+27−2×a ×3√3×√32,整理可得a 2﹣9a +18=0, 又a >b , 所以a =6.因为S △ABC =12acsinB =9√32,所以AC 边上的高线的长为2S △ABCb=3√3.故选:D .【点评】本题考查余弦定理以及三角形面积公式,考查运算求解能力,属于基础题. 7.如图,在△ABC 中,D 为BC 中点,AE →=2EC →,AD 与BE 相交于G ,若AG →=x GD →,BG →=y GE →,则x +y =( )A.4 B.143C.92D.112【分析】先结合平面向量的线性运算和AG→=x GD→可得AG→=x2(1+x)AB→+3x4(1+x)AE→,再由三点共线的条件可知,x2(1+x)+3x4(1+x)=1,解之可得x的值,同理可求出y的值,进而得解.解:∵AG→=x GD→,∴AG→=x1+x AD→=x2(1+x)AB→+x2(1+x)AC→=x2(1+x)AB→+3x4(1+x)AE→.∵B,G,E三点共线,∴x2(1+x)+3x4(1+x)=1,解得x=4,同理可得,y=32,∴x+y=112.故选:D.【点评】本题考查平面向量基本定理的应用,熟练掌握三点共线的条件是解题的关键,考查学生的逻辑推理的能力和运算能力,属于基础题.8.如图,在正方体ABCD﹣A1B1C1D1中,M,N,P分别是C1D1,BC,A1D1的中点,有下列四个结论:①AP与CM是异面直线;②AP,CM,DD1相交于一点;③MN∥BD1;④MN∥平面BB1D1D.其中所有正确结论的编号是()A.①④B.②④C.①③④D.②③④【分析】本题利用线线间的关系,以及线线平行和线面平行的条件求解.解:因为MP∥AC,MP≠AC,所以AP与CM是相交直线,又面A1ADD1∩面C1CDD1=DD1,所以AP,CM,DD1相交于一点,则①不正确,②正确.③令AC∩BD=O,因为M,N分别是C1D1,BC的中点,所以ON∥D1M∥CD,ON=D1M=12CD,则MNOD1为平行四边形,所以MN∥OD1,因为MN⊄平面BD1D,OD1⊂平面BD1D,所以MN∥平面BD1D,③不正确,④正确.综上所述,②④正确,故选:B.【点评】本题考查了空间中点、线、面的位置关系,需要学生有较强的空间想象能力,逻辑分析能力.9.已知M(1,0),N是曲线y=e x上一点,则|MN|的最小值为()A.1 B.√2C.e D.√e4+1【分析】y=e x的导数为y'=e x.设N(m,e m),可得过N的切线的斜率为e m.当MN垂直于切线时,|MN|取得最小值,可得e mm−1=−1e,解得m进而得出.解:y=e x的导数为y'=e x.设N(m,e m),可得过N的切线的斜率为e m.当MN垂直于切线时,|MN|取得最小值,可得e mm−1=−1e,则e2m+m=1.因为f(x)=e2x+x单调递增,且f(0)=1,所以m=0.所以|MN|的最小值为√12+12=√2.【点评】本题考查导数几何意义的应用、考查化归与转化思想、数形结合思想,考查了推理能力与计算能力,属于基础题.10.“斐波那契数列”由十三世纪意大利数学家列昂纳多•斐波那契发现,因为斐波那契以兔子繁殖为例子而提出,故又称该数列为“兔子数列”,斐波那契数列{a n}满足a1=1,a2=1,a n=a n﹣1+a n﹣2(n≥3,n∈N*).如图是输出斐波那契数列的一个算法流程图,现要输出斐波那契数列的前50项,则图中的空白框应填入()A.A=B,B=C B.B=A,C=B C.C=A,B=C D.A=C,C=B 【分析】由已知中的程序语句,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:模拟程序的运行,可得执行第1次,A=1,B=1,C=2,i=4,循环,因为第二次应该计算C=1+2,i=i+1=5,循环,执行第3次,因为第三次应该计算C=2+3,由此可得图中的空白框应填入A=B,B=C.【点评】本题考查数学文化在算法中的应用,考查赋值语句的应用,考查逻辑推理能力,属于基础题.11.已知函数f(x)=√3sin 2ωx 2+12sinωx −√32(ω>0),若f (x )在(π2,3π2)上无零点,则ω的取值范围是( ) A .(0,29]∪[89,+∞)B .(0,29]∪[23,89]C .(0,29]∪[89,1]D .(29,89]∪[1,+∞)【分析】先结合二倍角公式和辅助角公式将函数进行化简,得f(x)=sin(ωx −π3),由于f (x )在(π2,3π2)上无零点,因此(3ωπ2−π3)−(ωπ2−π3)≤T 2=πω,且{kπ≤ωπ2−π3(k +1)π≥3ωπ2−π3,k ∈Z ,在ω>0的限制条件下,解不等式即可得解. 解:f(x)=√32(1−cosωx)+12sinωx −√32=12sinωx −√32cosωx =sin(ωx −π3),若π2<x <3π2,则ωπ2−π3<ωx −π3<3ωπ2−π3,∵f (x )在(π2,3π2)上无零点, ∴(3ωπ2−π3)−(ωπ2−π3)≤T 2=πω,则ω2≤1, ∵ω>0,解得0<ω≤1.又{kπ≤ωπ2−π3(k +1)π≥3ωπ2−π3,解得3ω2−43≤k ≤ω2−13,k ∈Z , 当k =0时,23≤ω≤89;当k =﹣1时,0<ω≤29.∴ω∈(0,29]∪[23,89].【点评】本题主要考查三角函数的图象与性质,还涉及二倍角公式和辅助角公式,考查学生数形结合的思想、逻辑推理能力和运算能力,属于中档题.12.点P (1,1)是抛物线C :y =x 2上一点,斜率为k 的直线l 交抛物线C 于点A ,B ,且PA ⊥PB ,设直线PA ,PB 的斜率分别为k 1,k 2,则( ) A .k =k 1+k 2B .1k =1k 1+1k 2C .直线l 过点(1,﹣2)D .直线l 过点(﹣1,2)【分析】设A(x 1,x 12),B(x 2,x 22),求出直线的斜率,推出k =k 1+k 2﹣2.得到直线l的方程为y −x 12=(x 1+x 2)(x −x 1),利用PA ⊥PB ,得到直线系方程y ﹣2=(x 1+x 2)(x +1),求出定点坐标. 解:设A(x 1,x 12),B(x 2,x 22),则k 1=x 12−1x 1−1=x 1+1,k 2=x 22−1x 2−1=x 2+1,k =x 12−x 22x 1−x 2=x 1+x 2,所以k =k 1+k 2﹣2.直线l 的方程为y −x 12=(x 1+x 2)(x −x 1), 因为PA ⊥PB ,所以(x 1+1)(x 2+1)=﹣1,即x 1+x 2+2=﹣x 1x 2,代入方程得y ﹣2=(x 1+x 2)(x +1), 则直线l 过点(﹣1,2). 故选:D .【点评】本题考查直线与抛物线的综合应用,考查数形结合的思想及运算求解能力,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.已知函数f (x )={3x ,x ≥2f(x+1)3,x <2,则f (log 32)的值为 2 .【分析】由log 32<1,得f(log 32)=13f(log 32+1)=19f(log 32+2)=3log 32+29.由此能求出结果.解:因为函数f (x )={3x ,x ≥2f(x+1)3,x <2,log 32<1,所以f(log 32)=13f(log 32+1)=19f(log 32+2)=3log 32+29=2×99=2.故答案为:2.【点评】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.14.设α为锐角,若cos(α+π8)=45,则cos2α=31√250. 【分析】由已知利用同角三角函数基本关系式可求sin(α+π8)=35,进而根据二倍角公式即可求解.解:因为α为锐角,cos(α+π8)=45,所以sin(α+π8)=35,则cos(2α+π4)=2×(45)2−1=725,sin(2α+π4)=2425, 所以cos2α=cos(2α+π4−π4)=√22(725+2425)=31√250.故答案为:31√250. 【点评】本题主要考查了同角三角函数基本关系式,二倍角公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.15.某县城中学安排5位教师(含甲)去3所不同的村小(含A 小学)支教,每位教师只能支教一所村小学,且每所村小学都有老师支教.甲不去A 小学,则不同的安排方法数为 100 .【分析】以到A 学校人数1,2,3为标准分成3类,再由排列组合知识分别求出每一类的安排方法,相加即可.【解答】解.A 小学若安排3人,则有C 43A 22=8种,A 小学若安排2人,则有C 42C 32A 22=36种,A 小学安排1人,则有C 41(C 43+C 42C 22A 22)A 22=56种,故共有100种.故答案为:100.【点评】本题考查排列组合的综合应用,考查分类讨论的思想与逻辑推理能力,属于中档题.16.一个圆锥恰有三条母线两两夹角为60°,若该圆锥的侧面积为3√3π,则该圆锥外接球的表面积为27π2.【分析】如图,设∠ASB =∠BSC =∠CSA =60°,则SA =SB =SC =AB =AC =BC .设AB =x ,则底面圆的直径为2r =x sin60°=2x3,利用该圆锥的侧面积计算公式得出方程,解得x ,可得OS ,r .设圆锥外接球的半径为R ,所以(√6−R)2+r 2=R 2,解得R ,即可得出外接球的表面积.解:如图,设∠ASB =∠BSC =∠CSA =60°,则SA =SB =SC =AB =AC =BC . 设AB =x ,则底面圆的直径为2r =x sin60°=2x 3,该圆锥的侧面积为12π•√3•x =3√3π,解得x =3,高OS =√32−(√3)2=√6. ∴r =3=√3. 设圆锥外接球的半径为R ,所以(√6−R)2+r 2=R 2,解得R =3√64,则外接球的表面积为4πR 2=27π2.故答案为:27π2.【点评】本题考查圆锥以及球的结构特征,考查空间想象能力及运算求解能力,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.(一)必考题:共60分.17.在公比大于0的等比数列{a n}中,已知a3a5=a4,且a2,3a4,a3成等差数列.(1)求{a n}的通项公式;(2)已知S n=a1a2…a n,试问当n为何值时,S n取得最大值,并求S n的最大值.【分析】(1)设{a n}的公比为q,(q>0),运用等比数列的通项公式和等差数列的中项性质,解方程可得首项和公比,即可得到所求通项公式;(2)由等比数列的通项公式和等差数列的求和公式,可得S n,结合二次函数的最值求法,可得所求最大值和n的值.解:(1)设{a n}的公比为q,(q>0),由a3a5=a42=a4,得a4=1,即a1q3=1,因为a2,3a4,a3成等差数列,所以a2+a3=6a4,即a1q+a1q2=6a1q3,即6q2﹣q﹣1=0,解得q=12(−13舍去),a1=8,所以a n=8•(12)n﹣1=24﹣n,n∈N*;(2)Sn =a1a2⋯a n=23+2+1+⋯+(4−n)=2(7−n)n2,由n(7﹣n)=﹣(n−72)2+494,所以当n=3或4时,S n取得最大值,(S n)max=64.【点评】本题考查等比数列和等差数列的通项公式和求和公式的运用,考查方程思想和化简运算能力、推理能力,属于中档题.18.厂家在产品出厂前,需对产品做检验,第一次检测厂家的每件产品合格的概率为0.5,如果合格,则可以出厂;如果不合格,则进行技术处理,处理后进行第二次检测.每件产品的合格率为0.8,如果合格,则可以出厂,不合格则当废品回收.(1)求某件产品能出厂的概率;(2)若该产品的生产成本为800元/件,出厂价格为1500元/件,每次检测费为100元/件,技术处理每次100元/件,回收获利100元/件.假如每件产品是否合格相互独立,记ξ为任意一件产品所获得的利润,求随机变量ξ的分布列与数学期望.【分析】(1)设事件A为“某件产品第一次检验合格”,事件B为“某件产品第二次检验合格”,利用互斥事件的概率求解即可.(2)求出ξ的所有可能取值为﹣1000,400,600.求出概率,然后得到分布列,即可求解期望.解:(1)设事件A为“某件产品第一次检验合格”,事件B为“某件产品第二次检验合格”,则P(A)=0.5,P(B)=0.5×0.8=0.4.所以某件产品能够出厂的概率P=0.5+0.4=0.9.(2)由已知,若该产品不合格,则ξ=(800+100×2+100)+100=﹣1000,该产品经过第二次检验才合格,则ξ=﹣1500﹣(800+100×2+100)=400,该产品第一次检验合格,则ξ=1500﹣(800+100)=600,所以ξ的所有可能取值为﹣1000,400,600.P(ξ=﹣1000)=(1﹣0.5)×(1﹣0.8)=0.1,P(ξ=400)=(1﹣0.5)×0.8=0.4,P(ξ=600)=0.5.ξ的分布列为400600ξ﹣1000P0.10.40.5Eξ=﹣1003×0.1+403×0.4+600×0.5=360元.【点评】本题考查了互斥事件的概率计算公式,离散型随机变量的分布列以及期望的求法,考查了推理能力与计算能力,属于中档题.19.在三棱锥D﹣ABC中,AB=BC=2√2,DA=DC=AC=4,平面ADC⊥平面ABC,点M在棱BC上.(1)若M为BC的中点,证明:BC⊥DM.,求AM.(2)若DC与平面DAM所成角的正弦值为√34【分析】(1)取AC的中点O,连接OB,OD.说明OD⊥AC.证明OD⊥OB,证明AB⊥BC,推出DB=DC,且M为BC的中点,即可证明BC⊥DM.(2)以O为坐标原点,OB→的方向为x轴正方向,建立空间直角坐标系O﹣xyz,求出平面DAM的法向量,结合直线与平面所成角,求出a,然后求解AM即可.【解答】(1)证明:取AC 的中点O ,连接OB ,OD .因为DA =DC ,所以OD ⊥AC . 又因为平面ADC ⊥平面ABC ,且相交于AC ,所以OD ⊥平面ABC ,所以OD ⊥OB .因为AB 2+BC 2=AC 2,所以AB ⊥BC ,所以OB =OC ,所以△OBD ≌△OCD ,所以DB =DC ,且M 为BC 的中点,所以BC ⊥DM .(2)解:如图.以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O ﹣xyz ,由已知得A (0,﹣2,0),C (0,2,0),D(0,0,2√3),AD →=(0,2,2√3),DC →=(0,2,−2√3),设M (a ,2﹣a ,0)(0≤a ≤2),则AM →=(a ,4−a ,0).设平面DAM 的法向量为n →=(x ,y ,z).由AD →⋅n →=0,AM →⋅n →=0,得{2y +2√3z =0ax +(4−a)y =0,可取n →=(√3(a −4),√3a ,−a),所以sinθ=|cos〈DC →,n →〉|=|2√3a+2√3a|4√3(a−4)+3a +a =√34,解得a =﹣4(舍去),a =43,所以AM =√(43)2+(83)2=4√53.【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,二面角的平面角的求法,平面法向量的求法,考查空间想象能力以及计算能力.如果是考试用题:建议评分:(1)第一问也可以先建立空间直角坐标系,用向量方法证明,证出得满分;(2)第二问中,建立空间直角坐标系,写出相关点的坐标得(1分),计算出平面DAM的法向量得;(3)若用传统做法,作出二面角得,简单证明得,整个试题完全正确得满分.20.已知椭圆x 2a +y2b=1(a>b>0)上的点P到左、右焦点F1,F2的距离之和为2√2,且离心率为√22.(1)求椭圆的标准方程;(2)过F2的直线l交椭圆于A,B两点,点C与点B关于x轴对称,求△AF2C面积的最大值.【分析】(1)利用椭圆的定义以及离心率,转化求解椭圆的标准方程.(2)已知F2(1,0),直线斜率显然存在,设直线的方程为y=k(x﹣1),A(x1,y1),B(x2,y2),联立直线与椭圆的方程,利用韦达定理,结合三角形的面积通过基本不等式转化求解即可.解:(1)|PF1|+|PF2|=2a=2√2,所以a=√2,e=ca=√22,所以c=√22×√2=1,所以b2=a2﹣c2=2﹣1=1,椭圆的标准方程为x 22+y2=1.(2)由题可知直线l的斜率必存在,又F2(1,0),设直线l的方程为y=k(x﹣1)(k≠0),A(x1,y1),B(x2,y2),C(x2,﹣y2).联立直线与椭圆的方程,化简得(1+2k2)x2﹣4k2x+2k2﹣2=0,所以x1+x2=4k21+2k2,x1x2=2k2−21+2k2.S△AF2C =S△ABC−S△F2BC=12|2y2||(x1−x2)−(1−x2)|=|y2(x1﹣1)|=|k(x1−1)(x2−1)|=|k(x1x2−x1−x2+1)|=|k1+2k2|=|12k+1k|≤√24,当且仅当k=±√22时,取得最大值.所以△AF2C面积的最大值为√24.【点评】本题考查椭圆的简单性质的应用,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.如果是考试用题:建议:(1)第一问得出a=√2,b=1各得,写出椭圆的标准方程得(1分);(2)第二问未说明直线l的斜率存在扣(1分);(3)若采用其他方法解题,参照本评分标准按步骤给分.21.已知函数f(x)=e x+ax+(a+1)lnx−x−a.(1)讨论f(x)的导函数f′(x)零点的个数;(2)若f(x)的最小值为e﹣1,求a的取值范围.【分析】(1)先对函数求导,然后结合导数与单调性的关系及函数的性质即可求解;(2)结合导数与单调性及最值的关系对a进行分类讨论可求.解:(1)f(x)的定义域为(0,+∞),f′(x)=(x−1)e x−x2+(a+1)x−ax2=(x−1)e x−(x−1)(x−a)x2=(x−1)(ex−x+a)x2,令f′(x)=0,解得x=1或e x﹣x=﹣a,令g(x)=e x﹣x(x>0),则g′(x)=e x﹣1>0,故g(x)在(0,+∞)上单调递增.当a≥﹣1或a=1﹣e时,f′(x)只有一个零点;当1﹣e<a<﹣1或a<1﹣e时,f′(x)有两个零点.(2)当a≥﹣1时,e x﹣x+a>0,所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,则f(x)在x=1处取得最小值且最小值为f(1)=e﹣1+a﹣a=e﹣1,符合题意.当a<﹣1时,则y=e x﹣x在(0,+∞)上单调递增,则必存在正数x0使得e x0−x0+a=0.若a<1﹣e,则x0>1,f(x)在(0,1)和(x0,+∞)上单调递增,在(1,x0)上单调递减,又f(1)=e﹣1>f(x0),故不符合题意.若a=1﹣e,则x0=1,所以f′(x)≥0,f(x)在(0,+∞)上单调递增,又f(1)=e﹣1,故不符合题意.若1﹣e<a<﹣1,则0<x0<1,f(x)在(0,x0)和(1,+∞)上单调递增,在(x0,1)上单调递减,当x→0,f(x)→﹣∞时,与f(x)的最小值为e﹣1矛盾.综上,a的取值范围为[﹣1,+∞).【点评】本题主要考查了利用导数与函数的性质求解函数的零点个数,及由函数的最值与单调性关系求解参数范围问题,体现了分类讨论思想的应用.[选修4-4:坐标系与参数方程]22.在极坐标系中,极点为O,一条封闭的曲线C由四段曲线组成:ρ=4cosθ(θ∈[0,π4)∪[7π4,2π)),ρ=4sinθ(θ∈[π4,3π4)),ρ=−4cosθ(θ∈[3π4,5π4)),ρ=−4sinθ(θ∈[5π4,7π4)). (1)求该封闭曲线所围成的图形面积;(2)若直线l :ρsin(θ+π4)=k 与曲线C 恰有3个公共点,求k 的值.【分析】(1)首先把参数方程极坐标方程和直角坐标方程之间进行转换,进一步求出封闭图形的面积.(2)利用直线和曲线的位置关系的应用求出k 的值.解:(1)以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系,则曲线C 的直角坐标方程为(x ﹣2)2+y 2=4(2≤x ≤4),x 2+(y ﹣2)2=4(2≤y ≤4),(x +2)2+y 2=4(﹣4≤x ≤﹣2),x 2+(y +2)2=4(﹣4≤y ≤﹣2).曲线C 由弧ABĈ,弧CDE ̂,弧EFG ̂,弧GHA ̂四段圆弧组成,每段圆弧均在半径为2的圆上,则该封闭曲线所围成的图形面积S =4(2×2+2π)=8π+16.(2)直线l 的直角坐标方程为√22x +√22y =k ,即x +y −√2k =0. 当直线l 经过点H ,A ,B 时,k =2√2.当直线l 经过点E ,F ,D 时,k =−2√2,故k 的值为±2√2. 【点评】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,分割法的应用,直线和曲线的位置关系的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.[选修4-5:不等式选讲]23.已知函数f (x )=|x |+|2x ﹣1|.(1)求不等式f (x )<3的解集;(2)若存在α∈(0,π),使得关于x 的方程f (x )=m sin α恰有一个实数根,求m 的取值范围.【分析】(1)写出分段函数解析式,作出图象,数形结合可得不等式f (x )<3的解集;(2)存在α∈(0,π),使得关于x 的方程f (x )=m sin α恰有一个实数根,即存在α∈(0,π),使得m sin α=12,即m =12sinα,由α的范围求得12sinα的范围得答案. 解:(1)f (x )=|x |+|2x ﹣1|={ −3x +1,x <0−x +1,0≤x <123x −1,x ≥12, 作出函数的图象如图:由3x ﹣1=3,得x =43,由﹣3x +1=3,得x =−23.∴不等式f (x )<3的解集为(−23,43);(2)存在α∈(0,π),使得关于x 的方程f (x )=m sin α恰有一个实数根, 即存在α∈(0,π),使得m sin α=12,即m =12sinα, ∵12sinα∈(12,+∞),∴m 的取值范围是(12,+∞).【点评】本题考查绝对值不等式的解法,考查分段函数的应用,考查数学转化思想方法与数形结合的解题思想方法,是中档题.。

山东省2020年高考理科数学模拟试题及答案(二)

山东省2020年高考理科数学模拟试题及答案(二)

山东省2020年高考理科数学模拟试题及答案(二)(满分150分,考试时间120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知集合M ={x|x 2﹣2x ﹣3≤0},N ={x|y =lg (x ﹣2)},则M∪N =( )A. [﹣1,+∞)B. (﹣1,+∞)C. (2,3]D. (1,3)2. 若复数(2﹣i )(a+i )的实部与虚部互为相反数,则实数a =( )A. 3B.C.D. ﹣33.若,则“”是“”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件4.已知()()4,f x g x =-函数()g x 是定义在R 上的奇函数,若(2017)2017,f =则(-2017)f = ( )。

A .-2017B .-2021C .-2025D .20255. 已知过球面上三点A 、B 、C 的截面到球心距离等于球半径的一半,且AC =BC =6,AB =4,则球面面积为( ) A. 42πB. 48πC. 54πD. 60π6是R 上的增函数,则实数a 的取值范围是( ) A .()1,8B .()1,+∞C .()4,8D .[)4,87. 已知α为第二象限角,sin cos αα+=,则cos2α= ( ) A.B.CD8. 如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有( )A. 24B. 48C. 96D. 1209. 定义运算:32414321a a a a a a a a -=,将函数xx x f ωωcos 1sin 3)(=(0>ω)的图像向左平移32π 个单位所得图像对应的函数为偶函数,则ω的最小值是( ) A.45 B.41 C.47 D.43 10.设x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+2211y x y x y x ,若目标函数y ax z 3+=仅在点(1,0)处取得最小值,则a的取值范围( )A.(-6,-3)B.(-6,3)C.(0,3)D.(-6,0]11.已知过点A (a ,0)作曲线C :y =x•e x的切线有且仅有两条,则实数a 的取值范围是( ) A. (﹣∞,﹣4)∪(0,+∞) B. (0,+∞) C. (﹣∞,﹣1)∪(1,+∞) D. (﹣∞,﹣1)12.在平面直角坐标系中,已知双曲线的左焦点为F ,点B 的坐标为(0,b),若直线BF 与双曲线C 的两条渐近线分别交于P ,Q 两点,且,则双曲线C 的离心率为( ) A.B.C.D. 2二、填空题(本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 2)若 T3 21,求 S3 .
18.( 本小题满分 12 分 )
为迎接 2022 年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动
. 该滑雪场的收费标准
是:滑雪时间不超过 1 小时免费,超过小时的部分每小时收费标准为
40 元 ( 不足小时的部分按 1 小
时计算 ). 有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过
17~ 21 题为必考题,每个
试题考生都必须作答.第 22、 23 为选考题,考生根据要求作答。)
(一)必考题(共 60 分)
17. (本题满分 12 分)
已知等差数列 an 的前 n 项和为 Sn ,等比数列 bn 的前 n 项和为 Tn , a1 1 , b1 1 ,
a2 b2 2 .
( 1)若 a3 b3 5 ,求 bn 的通项公式;
如果方程
x2 a2
y2
1 表示焦点在 x 轴上的椭圆 , 则实数 a 的取值范围 __________.
a6
15.某几何体的三视图如下图所示,则其表面积为
.
2
16. 在 (ax 3)9( a R )的展开式中, x 的偶数次的项系数之和比 x 的奇数次的项系数之和大 1,
则 a 的值为

三、解答题(共 70 分。解答应写出文字说明、证明过程或演算步骤。第
山东省 2020 年高考理科数学模拟试题及答案
(二)
(满分 150 分,考试时间 120 分钟) 一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符
合题目要求的。)
1. 已知集合 M= {x|x 2﹣ 2x﹣3≤0} , N= {x|y = lg ( x﹣ 2) } ,则 M∪ N=(
4
cos x , sin y
直线 l 普通方程为: x y 8 0
设 P(2 3 cost ,2sin t) ,则点 P 到直线 l 的距离:
d
| 2 3cost 2sin t 2
8|
| 4sin( t ) 8 | 3 2
2 2 | sin(t
) 2| 3
当 sin(t
) 3
1 时, dmin
22
点 P 到直线 l 的距离的最小值为 2 2
( 2)设曲线 C 上任意点 P(a cost,2sin t ) ,由于曲线 C 上所有的点都在直线 l 的右下方,
10
a cost 2sin t 8 0 对任意 a 0 恒成立
a2 4 sin(t ) 8 ,其中 cos
2 , sin
a2 4
从而 a2 4 8
由于 a 0 ,解得: 0 a 2 15
15. 3 16. -4
三、解答题
17.(1) 设
的公差为 ,
的公差为 ,
有已知的
解得
,所以

(2) 由 (1) 及已知的得
解得

.
18.(1) 若两人所付费用相同,则相同的费用可能为
两人都付 0 元的概率为

0 元, 40 元, 80 元,
两人都付 40 元的概率为

两人都付 80 元的概率为
,则两人所付费用相同的概率为
②当
时,

(i) 当
时,
时,
, 递减,


递减,
不恒成立 .
(ii )当
时,
,在
,在
递增,

恒成立 .
综上,
.
递增,
( 2)证明:由( 1)知当
时,
恒成立 .


得 个不等式相加得
9
下面只要证明

再由不等式



得 个不等式累加得
成立 .
故原不等式成立 .
22. ( 1)由 cos(
) 4 2 ,得到 (cos sin ) 8

A. [ ﹣ 1,+∞)
B. (﹣ 1,+∞)
C. ( 2, 3]
D. ( 1, 3)
2. 若复数( 2﹣i )( a+i )的实部与虚部互为相反数,则实数 a=( )
A. 3
B.
C.
D. ﹣ 3
3.若
,则“
”是“
”的( )
A. 充分而不必要条件 C. 充要条件
B. 必要而不充分条件 D. 既不充分又不必要条件
联立
可得

代入

可得
8
同理,联立 PF2 和椭圆方程,可得

及 m1﹣3m2= 2(由( 1)得)可解得
,或

所以直线方程为


所以点 P 的坐标为( 0, 2)或
21. 证明 :( Ⅰ)

处的切线方程为

处的切线方程为
所以切线重合 .
(Ⅱ)( 1)令


①当
时,
当且仅当

递减,
时,取等号, 不成立 .
( 1)证明 : ( 2)求二面角
的余弦值 .
20. ( 本小题满分 12 分 )
已知椭圆

为椭圆的左、右焦点,点 在直线
上且不在 轴上,直线
与椭圆的交点分别为
和 , 为坐标原点 .
设直线
的斜率为
,证明:
问直线 上是否存在点 ,使得直线
的斜率
满足
?若存在,求出所有满足条件的点
的坐标;若不存在,说明理由 .
11. 已知过点 A( a, 0)作曲线 C: y =x?e x 的切线有且仅有两条,则实数 a 的取值范围是(

A. (﹣∞,﹣ 4)∪( 0,+∞)
B. (0,+∞)
C. (﹣∞,﹣ 1)∪( 1,+∞)
D. (﹣∞,﹣ 1)
12. 在平面直角坐标系
中,已知双曲线
的左焦点为 F,点 B 的坐标为 (0 ,
21. 已知函数

(Ⅰ)求证:曲线

(Ⅱ)若
对任意
( 1)求实数 的取值范围;
( 2)求证:
. 在 处的切线重合;
恒成立 .
(其中
).
(二)选考题(共 10 分。请考生在第 22、 23 题中任选一题作答。如果多做,则按所做的第一题计 分。)
22. [ 选修 4— 4:坐标系与参数方程 ] ( 10 分)
3 sin x

1
cos x
2 0 )的图像向左平移
3
个单位所得图像对应的函数为偶函数,则
的最小值是( )
5
1
7
3
A.
B.
C.
D.
4
4
4
4
10. 设 x, y 满足约束条件
x y1 x y 1 ,若目标函数 z ax 3y 仅在点( 1,0 )处取得最小值,则 a
2x y 2

的取值范围( )
A. ( -6 , -3 ) B. ( -6,3 ) C. ( 0,3 ) D. ( -6,0]
1 小时离开的概率分别为

1 小时以上且不超过 2 小时离开的概率分别为
;两人滑雪时间都不会超过 3 小时 .
( 1)求甲、乙两人所付滑雪费用相同的概率;
( 2)设甲、乙两人所付的滑雪费用之和为随机变量,求的分布列与数学期望

19. ( 本小题满分 12 分 )
四边形
是菱形 ,
中点
是矩形 ,
3
,是 的
b) ,若直线 BF 与双曲线 C 的两条渐近线分别交于 P,Q两点,且
为(

,则双曲线 C的离心率
A.
B.
C.
D. 2
二、填空题(本题共 4 小题,每小题 5 分,共 20 分。)
13. 已知 ABC 的顶点为 A(1,2) ,B(3,1) ,C(3 ,4) ,则 AB边的中线所在直线的斜率为

14.
()
3
5
A.
3
5
B.
9
5
C.
9
5
D.
3
8. 如图,给 7 条线段的 5 个端点涂色,要求同一条线段的两个端点不能同色,现有
可供选择,则不同的涂色方法种数有(

4 种不同的颜色
1
A. 24
B. 48
C. 96
D. 120
9. 定义运算: a1 a2 a3 a4
a1a4 a2a3 ,将函数 f ( x)

AC=BC= 6, AB= 4,则球
A. 42 π
B. 48 π
C. 54 π
D. 60 π
6.已知函数 f x
ax,x 1
a
是 R 上的增函数,则实数
4
x 2, x 1
2
a 的取值范围是 ( )
A. 1,8
B. 1,
C. 4,8
D. 4,8
3
7. 已知 为第二象限角 , sin cos
, 则 cos2
23. [ 选修 4— 5:不等式选讲 ] (10 分)

.
( 1)解不等式

( 2)若存在实数 满足
,试求实数 的取值范围 .
参考答案
5
一、选择题
1.A 2.D 3.A 4.C 5.C 6.D 7.A 8.C 9.A 10.B 11.A 12.B
二、填空题
5
13.
2
14. a>3
或 -6<a<-2
4.已知 f ( x) g ( x) 4, 函数 g( x) 是定义在 R上的奇函数 , 若 f (2017) 2017,则 f (-2017)
相关文档
最新文档