奥数(组合图形的面积)
五年级奥数组合图形的面积
![五年级奥数组合图形的面积](https://img.taocdn.com/s3/m/284376fee45c3b3567ec8be4.png)
五年级奥数组合图形的面积Document number:NOCG-YUNOO-BUYTT-UU986-1986UT组合图形的面积1.基本平面图形特征及面积公式特征面积公式正方形①四条边都相等。
②四个角都是直角。
③有四条对称轴。
S=a2长方形①对边相等。
②四个角都是直角。
③有二条对称轴。
S=ab平行四边形①两组对边平行且相等。
②对角相等,相邻的两个角之和为180°③平行四边形容易变形。
S=ah三角形①两边之和大于第三条边。
②两边之差小于第三条边。
③三个角的内角和是180°。
④有三条边和三个角,具有稳定性。
S=ah÷2梯形①只有一组对边平行。
②中位线等于上下底和的一半。
S=(a+b)h÷22.基本解题方法:由两个或多个简单的基本几何图形组合成的组合图形,要计算这样的组合图形面积,先根据图形的基本关系,再运用分解、组合、平移、割补、添辅助线等几种方法将图形变成基本图形分别计算。
1.已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积。
2.右图是两个相同的直角三角形叠在一起,求阴影部分的面积。
(单位:厘米)3.如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内阴影部分的面积。
4.在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC的长和宽分别为6厘米、4厘米,DF的长是多少厘米5.正方形ABCD的面积是100平方厘米,AE=8厘米,CF=6厘米,求阴影部分的面积。
6.右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。
7.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大9.如图,一个三角形的底长5米,如果底延长1米,那么面积就增加2平方米。
五年级奥数-组合图形的面积(二)姜璐
![五年级奥数-组合图形的面积(二)姜璐](https://img.taocdn.com/s3/m/f4067fa5960590c69ec37641.png)
分析 :
1,因为三角形ABD与三角形ACD等底 等高,所以面积相等。因此,三角形 ABO的面积和三角形DOC的面积相等, 也是6平方厘米。 2,因为三角形BOC的面积是三角形 DOC面积的2倍,所以BO的长度是OD 的2倍,即三角形ABO的面积也是三角 形AOD的2倍。所以,三角形AOD的面 积是6÷2=3平方厘米。
练 习 三 2、下图的梯形ABCD中,下底是上底的2倍, E是AB的中点。那么梯形ABCD的面积是 三角形BDE面积的多少倍?
因为梯形和三角形等高 梯形ABCD的面积比三角形BDE面积为梯形上下底之和与三角 形底边长的比 即(1+2):1=3:1 梯形ABCD的面积是三角形BDE面积的3倍
例4 、在三角形ABC中,DC=2BD,
△ADE的面积=4×4÷2=8(平方厘米) ∵F长是9厘米的正三角形的面积是
边长为3厘米的正三角形面积的多少倍?
分析: 题中的已知条件不能计算出两种三 角形的面积,我们可以用边长是3厘 米的正三角形拼一个边长是9厘米的 正三角形,从而看出它们之间的倍 数关系。从下图中可以看出:边长9 厘米的正三角形是边长3厘米的正三 角形面积的9倍。
练 习 二
1、下图中,三角形ABC的面积是36平方厘米,三角
形ABE与三角形AEC的面积相等,如果AB=9厘米, FB=FE,求三角形AFE的面积。
36÷2=18(平方厘米) 18×2÷9=4(厘米) 0.5×4×4=8(平方厘米) 18-8=10(平方厘米)
2、图中两个正方形的边长分别是
10厘米和6厘米,求阴影部分的面积。
2、求图中阴影部分的面积。 (单位:厘米) 28×20=560(平方厘米)
例2 、下图中,边长为10和15的两个正方体并
五年级奥数组合图形面积
![五年级奥数组合图形面积](https://img.taocdn.com/s3/m/3970578502d276a200292e42.png)
组合图形面积
1、求四边形ABCD的面积。
(单位:厘米)
2、下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点。
求AEF的面积。
3、图中的甲和乙都是正方形,求阴影部分的面积。
(单位:厘米)
4、求图中阴影部分的面积。
5、图中ABCD是长方形,三角形EFD的面积比ABF的面积大6平方厘米,求ED的长。
6、下图中三个正方形的边长分别是1厘米、2厘米和3厘米。
求图中阴影部分的面积。
7、求下图长方形ABCD的面积。
(单位:厘米)
8、如图,已知四条线段的长分别是:AB=2厘米,CE=6厘米,CD=5厘米,AF=4厘米,并且有两个直角。
求四边
形ABCD的面积。
9、正方形的边长是2(a+b),已知图中阴影部分B的面积是7平方厘米,求阴影部分A和C的和是多少平方厘
米?。
五年级奥数组合图形的面积
![五年级奥数组合图形的面积](https://img.taocdn.com/s3/m/49268fcd770bf78a6529543c.png)
五年级奥数组合图形的面积3.如图,这个长方形的长是9厘米,宽是8厘米,A和B是宽的中点,求长方形内阴影部分的面积。
4.在右图中,三角形EDF的面积比三角形ABE的面积大6平方厘米,已知长方形ABDC的长和宽分别为6厘米、4厘米,DF的长是多少厘米?5.正方形ABCD的面积是100平方厘米,AE=8厘米,CF=6厘米,求阴影部分的面积。
6.右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。
7.如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少?8.如下图,是一块长方形草地,长方形的长是16米,宽是10米,中间有两条宽2米的道路,一条是长方形,一条是平行四边形,那么有草部分(阴影部分)的面积有多大?9.如图,一个三角形的底长5米,如果底延长1米,那么面积就增加2平方米。
问原来的三角形的面积是多少平方米?组合图形的面积作业1.在右图中,三角形EDF 的面积比三角形ABE 的面积大75平方厘米,已知正方形ABCD 的边长为15厘米,DF 的长是多少厘米?2.如图,ABCD 是一个长12厘米,宽5厘米的长方形,求阴影部分三角形ACE 的面积。
13.已知正方形乙的边长是8厘米,正方形甲的面积是36平方厘米,那么图中阴影部分的面积是多少?4.如图,A、B两点是长方形长和宽的中点,那么阴影部分占长方形的面积是多少?5.如图,在平行四边形ABCD中,E、F分别是AC、BC的三等分点,且平行四边形的面积为54平方厘米,求S。
△BEF6.计算右边图形的面积。
(至少用3种方法)(单位:米)。
五年级奥数组合图形的面积
![五年级奥数组合图形的面积](https://img.taocdn.com/s3/m/44cb78dc49649b6648d7475e.png)
组合图形的面积我们已经学过长方形、正方形、三角形、平行四边形、梯形面积的计算方法,组合图形面积的计算,就要综合运用各种面积计算公式。
解组合图形常用的方法有分解法和割补法。
对于稍复杂的组合图形,有时还要用到运动变换法。
画出辅助线,更容易找到各部分之间的关系。
例1:如图所示,正方形的边长为6厘米,求阴影部分的面积是多少?1、如图所示,两个完全一样的直角三角形重叠在一起,求阴影部分的面积。
(单位:cm)2、把边长是10cm的正方形卡片按下图的方法重叠起来,3张这样的卡片重叠以后组成的图形的面积是多少?3、有一块长方形草地,长16m,宽12m,中间有一条宽2m的小路,求草地(阴影部分)的面积。
例2、如图所示,两个正方形,求图中阴影部分的面积。
(长度单位:厘米)1、下面大正方形边长为3厘米,小正方形边长为2厘米,求阴影部分的面积。
2、如图所示,长方形ABCD,三角形ABP的面积为20平方厘米,三角形CDQ的面积为35平方厘米,求阴影部分的面积。
3、如图所示,四边形ACEH是梯形,ACEG是平行四边形,ABGH是正方形,CDFG是长方形。
已知AC=8厘米,HE=13厘米,求三角形CDE和三角形GFE的面积之和。
例3:如图所示,三角形ABC被分成四个小三角形,其中三个三角形的面积分别为8平方厘米,6平方厘米,12平方厘米,求阴影部分的面积。
1、平行四边形ABCD中,AE=EF=FB,AG=2CG,三角形GEF的面积是6平方厘米,平行四边形的面积是多少平方厘米?2、下图中ABCD是直角梯形,两条对角线把梯形分成4个三角形(O是AC和BD的交点)。
已知其中两个三角形的面积为3平方厘米和6平方厘米,求直角梯形ABCD的面积。
自主练习:1、在腰长为10cm,面积为34cm²的等腰三角形的底边上任取一点,设这个点到两腰的垂线段分别长为a cm,b cm,那么a+b的长度是多少厘米?2、长方形ABCD的周长是16cm,在它的每条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68 cm²,求长方形ABCD的面积。
组合图形的面积——小学奥数专题
![组合图形的面积——小学奥数专题](https://img.taocdn.com/s3/m/5262587efc4ffe473368ab6e.png)
组合图形的面积(一)例1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习一1、求四边形ABCD的面积。
(单位:厘米)2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3、有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
练习二1、已知大正方形的边长是12厘米,求中间最小正方形的面积。
2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
3、求下图长方形ABCD的面积(单位:厘米)。
例3四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分面积。
2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习四1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形的面积。
例5图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
练习五1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。
五年级举一反三奥数题:组合图形的面积
![五年级举一反三奥数题:组合图形的面积](https://img.taocdn.com/s3/m/3dd6359f90c69ec3d4bb7503.png)
6.如图所示,长方形的长是8cm,宽是6cm,A、面积B是宽的中点,求长方形内阴影部分的4. 如图所示,三角形ABC被分为四个小三角形,
12cm2,求阴影部分的面积。
其中三个三角形的面积分别为8cm2、
6cm2、
组合图形的面积(一)
基础卷
1. 如图所示,两个完全一样的直角三角形重叠在一起,求阴影部分的面积。
(单位:cm)
2. 把边长是10cm的正方形卡片按下图的方法重叠起来,3张这样的卡片重叠以后组成的图形的面积是多少?
3. 有一块长方形草地,长 16m,宽12m,中间有一条宽2m的小路,求草地(阴影部分)的面积。
B5 F
提高卷
1.在腰长为 线分别长 10cm ,面积为34cm 2的等腰三角形的底边上任取一点,设这个点到两腰的垂
bcm ,那么a+b 的长度是多少厘米? acm 、
2. 如图所示,ABCD 是正方形,三角形
4 cm, 求 DE 的的长度。
3.
如图所示,大正方形和小正方形的边长分别是4 cm , 3cm ,求阴影部分的面积。
4. 长方形ABCD 的周长是16cm ,在它的每条边上各画一个以该边为边长的正方形,已知 这四个正方形
的面积和是 68cm 2
,求长方形ABCD 的面积。
A
C
■
D
5.
如图
DEF 的面积比三角形
所示,在边长为 12cm的正方形 ABCD中,E、F是BC边上的三等分点, M、N是对角线BD上的三等分点,邱三角形 EMN的面积。
.
6.梯形 ABCF 的下底 BC 是 12cm,高 AB 是 18cm,CE=2DE,求 DF。
五年级奥数举一反三--组合图形面积
![五年级奥数举一反三--组合图形面积](https://img.taocdn.com/s3/m/a9c8126f4693daef5ef73dfb.png)
第18周组合图形面积(一)例1、一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?1、求四边形ABCD的面积。
(单位:厘米)2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3、有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
例2、正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
1、(如下图)已知大正方形的边长是12厘米,求中间最小正方形的面积。
2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
3、求下图长方形ABCD的面积(单位:厘米)。
例3、四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分的面积。
2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积(单位:厘米)3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?例4、下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形的面积。
例5、图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多少厘米?2、图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。
2022-2023学年小学五年级奥数(全国通用)测评卷24《组合图形的面积》(解析版)
![2022-2023学年小学五年级奥数(全国通用)测评卷24《组合图形的面积》(解析版)](https://img.taocdn.com/s3/m/e002381c02d8ce2f0066f5335a8102d276a261f8.png)
【五年级奥数举一反三—全国通用】测评卷24《组合图形的面积》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________ 一.选择题(共8小题,满分16分,每小题2分)1.(2分)如图中长方形的面积相等,则图中阴影部分面积相比较,()A.甲的面积大B.乙的面积大C.甲和乙的面积相等D.无法确定【解答】解:甲的面积=长方形的长⨯长方形的宽2÷;乙的面积=长方形的长⨯长方形的宽2÷;即:甲乙的面积都是长方形面积的一半,它们的面积一样大.故选:C。
2.(2分)在图中,平行线间的三个图形,它们的面积()A.平行四边形最大B.三角形最大C.梯形最大D.一样大【解答】解:设他们的高为h,平行四边形的面积4h=三角形的面积184 2h h =⨯⨯=梯形面积(26)24h h=+⨯÷=所以它们的面积相比,都相等;故选:D。
3.(2分)甲长方形包含16个小正方形,乙长方形包含12个小正方形.甲长方形与乙长方形的面积相比,结果是什么?()A.甲的面积大B.乙的面积大C.无法确定【解答】解:因为不能确定甲、乙长方形包含的小正方形的面积是否相等,所以无法比较甲长方形与乙长方形面积的大小;故选:C.4.(2分)如图所示,把一个长方形分成一个梯形和一个三角形.已知梯形的面积比三角形的面积大18厘米2,那么梯形的上底长为()厘米.A.2 B.3 C.4 D.6【解答】解:设梯形的上底为a厘米,那么三角形的底为(12)a-厘米,根据题意可得:+⨯÷--⨯÷=(12)62(12)6218a a+⨯--⨯=a a(12)3(12)318+-+=a a33636318a=618a=3答:梯形的上底是3厘米.故选:B.5.(2分)如图,甲、乙两个平行四边形中阴影部分面积的大小为()A.甲>乙B.甲=乙C.甲<乙D.无法确定【解答】解:如图:甲+丙=乙+丙,丙是公共部分,所以甲=乙,答:甲的面积等于乙的面积.故选:B .6.(2分)如图的长方形中有三个三角形,它们面积间的关系是( )A .123S S S +=B .13S S =C .23S S =D .321S S S =-【解答】解:由图可知:2S 的面积是长方形形面积的一半,3S 和1S 的面积和也是长方形面积的一半,由此可得:132S S S +=,即:321S S S =-.故选:D .7.(2分)图中,直线//a b ,比较三角形ADC 和三角形ABD 面积的大小,结果是( )A .三角形ADC 面积大B .三角形ABD 面积大C .它们的面积相等D .无法比较【解答】解:由题意可知:三角形ADC 和三角形ABD 等底等高,所以角形ADC 和三角形ABD 面积相等. 故选:C .8.(2分)如图ABCD 是长方形,已知4AB =厘米,6BC =厘米,三角形EFD 的面积比三角形ABF 的面积大6平方厘米,求(ED = )厘米.A .9B .7C .8D .6【解答】解:长方形ABCD 的面积:4624⨯=(平方厘米);三角形EBC的面积:+=(平方厘米);24630⨯÷=(厘米);CE的长:302610DE的长:1046-=(厘米).故选:D.二.填空题(共9小题,满分18分,每小题2分)9.(2分)如图,图中2=,阴影部分的面积是6平方厘米,求梯形ABCD的面积是27平方厘米.BO DO【解答】解:因为2=,BO DO所以三角形CDO的面积=三角形BCO面积的一半,即三角形CDO的面积3=平方厘米;三角形BCD与三角形ACD同底等高,所以三角形BCD与三角形ACD的面积相等,三角形AOD的面积=三角形BCO的面积,即三角形AOD的面积6=平方厘米;=,三角形ABO的面积是三角形AOD面积的2倍,BO DO2即三角形AOB的面积12=平方厘米;梯形ABCD的面积为:6361227+++=(平方厘米),答:梯形ABCD的面积为27平方厘米.故答案为:27.10.(2分)如图涂色部分的面积是322cm.【解答】解:8866⨯+⨯=+6436=(平方厘米)100(86)62882+⨯÷+⨯÷=+423274=(平方厘米)⨯-÷6(86)2=⨯÷6226=(平方厘米)-+100746=+266=(平方厘米)32答:涂色部分的面积是232cm.故答案为:32.11.(2分)如图,它是由两个正方形拼成的,小正方形的边长为2厘米,大正方形的边长为4厘米,阴影部分的面积为6平方厘米.【解答】解:(24)22+⨯÷=⨯÷622=(平方厘米)6答:阴影部分的面积是6平方厘米.故答案为:6.12.(2分)六个等腰三角形如图摆放,那么四个空白三角形的面积和是两个阴影三角形的面积和的6倍.【解答】解:如下图:把这六个等腰直角三角形从小到大分别编号为①②③④⑤⑥,设①号三角形的面积为1,则②号的面积为2,③号的面积为4,④号的面积为8,⑤号的面积为16,⑥号的面积为32,+++÷+(241632)(18)=÷5496=答:四个空白三角形的面积和是两个阴影三角形的面积和的6倍.故答案为:6.13.(2分)如图,梯形的面积是18.【解答】解:如图:已知45BAC∠=︒,90ABC∠=︒,所以180904545ACB∠=︒-︒-︒=︒,所以AB BC=;因为90ACE∠=︒,所以180904545ECD∠=︒-︒-︒=︒,则45DEC∠=︒,所以DE CD=,梯形的面积()62DE AB=+⨯÷()62BC CD=+⨯÷662=⨯÷18=.故答案为:18.14.(2分)如图:ABCD是一个面积为36平方厘米的长方形,E为BC中点,则阴影部分的面积是15平方厘米.【解答】解:据分析可知:三角形ABE的面积为13694⨯=(平方厘米);三角形DHC的面积和三角形ADH的面积比是1:2,而三角形ADC的面积是36218÷=(平方厘米),所以三角形DHC 的面积为18(12)6÷+=(平方厘米),则三角形AHE 的面积也是6平方厘米.所以阴影部分的面积是9615+=(平方厘米).答:阴影部分的面积是15平方厘米.故答案为:15.15.(2分)如图,ABCD 是直角梯形,5AD =厘米,3DC =厘米,三角形DOC 的面积是1.5平方厘米,则阴影部分的面积是 6 平方厘米.【解答】解:352 1.5⨯÷-,7.5 1.5=-,6=(平方厘米); 答:阴影部分的面积是6平方厘米.故答案为:6.16.(2分)图中直角三角形里有3个正方形,已知25AD cm =,100BD cm =,阴影部分的面积是 10754 2cm .【解答】解:100:25100254=÷=4BC AB =4(25100)=⨯+500=(厘米)设最小正方形的边长为x 厘米4()1005004x x x x ++++= 6.25100500x ++=6.25100100500100x +-=-6.25400x =6.25 6.25400 6.25x ÷=÷64x =中正方形的边长:4x x + 64644=+6416=+80=(厘米)500(25100)2(10010080806464)⨯+÷-⨯+⨯+⨯5001252(1000064004096)=⨯÷-++3125020496=-10754=(平方厘米)答:阴影部分的面积是10754平方厘米.故答案为:10754.17.(2分)如图,已知正方形ABCD 的周长是40厘米, 6.4DE =厘米,阴影部分的面积是 32 平方厘米.【解答】解:由分析可知阴影部分的面积为:6.4(404)2⨯÷÷6.4102=⨯÷642=÷32=(平方厘米); 答:阴影部分的面积是32平方厘米.故答案为:32.三.计算题(共3小题,满分18分,每小题6分)18.(6分)求阴影部分面积.【解答】解:(1)222+=,空白三角形是一个直角三角形,304050空白三角形的面积:30402⨯÷=÷12002=(平方分米)600斜边上的高:⨯÷600250=÷120050=(分米)24+⨯÷(4050)242=⨯÷90242=(平方分米)1080-=(平方分米)1080600480答:阴影部分的面积是480平方分米.(2)40403030⨯+⨯=+1600900=(平方分米)2500⨯÷=(平方分米)40402800+⨯÷(4030)302=⨯÷70302=÷21002=(平方分米)1050--25008001050=-17001050=(平方分米)650答:阴影部分的面积是650平方分米.19.(6分)平行四边形ABCD的边BC长10厘米,直角三角形的直角边EC长8厘米.已知阴影部分的面积比三角形EGF的面积大9平方厘米.求CF的长.【解答】解:设EF长为x厘米,则CF就是8x-厘米,根据题干分析可得方程:x⨯-=⨯÷+10(8)10829-=801049xx=1031x=3.1-=(厘米);8 3.1 4.9答:CF长为4.9厘米.20.(6分)求图中阴影部分的面积.【解答】解:6644662(64)42⨯+⨯-⨯÷-+⨯÷3616181042=+--⨯÷=+--36161820=(平方厘米)14答:阴影部分的面积是14平方厘米.四.应用题(共5小题,满分29分)21.(5分)如图是一幢楼房占地的平面图,算一算它的占地面积有多大?(单位:)m你能想出几种算法?【解答】解:方法一如图:⨯+-⨯-÷6048(6030)(7248)2=+⨯÷288030242=+28803603240=(平方米)方法二如图:⨯-+⨯-÷7260(6030)(7248)2432090242=-⨯÷=-43201080=(平方米)3240答:它的占地面积有3240平方米。
六年级上册奥数(课件)第11讲:组合图形的面积
![六年级上册奥数(课件)第11讲:组合图形的面积](https://img.taocdn.com/s3/m/f18dd35fa7c30c22590102020740be1e650ecca0.png)
正方形面积:
S a2
四分之一圆面积:
Sr2 4
三角形面积:
Sah 2
阴影部分的面积:
(19.625-12.5)×2=14.25(平方厘米)
答:阴影部分的面积是14.25平方厘米。
2 2
练习三
已知下面图形的两条线段长2厘米,并互相 垂直,求阴影部分的面积。
正方形的面积: 2×2=4(平方厘米) 四分之一圆面积: 3.14×22÷4=3.14(平方厘米) 阴影部分的面积: 4-3.14=0.86(平方厘米) 答:阴影部分的面积是0.86平方厘米。
扇形面积:
S 圆心角 r2
360
总结
先把组合图形分成几个简单的图形,再 把每个简单图形的面积相加或相减,就是所 求的组合图形的面积;或将组合图形添补成 基本图形再进行求解。
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may圆面积:
Sr2 2
例题二
求下面图形阴影部分的面积。(单位:厘米)
4
梯形面积: (8+4)×4÷2=24(平方厘米) 四分之一圆面积: 3.14×42÷4=12.56(平方厘米)
梯形面积:
S ( a b ) h 2
四分之一圆面积:
Sr2 4
阴影部分的面积: 24-12.56=11.44(平方厘米)
子天
是开
梅放
花;
,有
选的
择孩
五年级上册奥数(课件)第12讲:组合图形的面积
![五年级上册奥数(课件)第12讲:组合图形的面积](https://img.taocdn.com/s3/m/c957246aeffdc8d376eeaeaad1f34693daef1080.png)
答:阴影部分的面积为140平方厘米。
米德思考
总结
(一)组合图形面积的计算方法: 1.分割法:把一个复杂的组合图形分割成我们学过的几 个简单的基本图形,通过求这几个简单的基本图形的面积来 得到组合图形的面积。 2.添补法:充分利用已知的数据,恰当地使用辅助线, 用添补的方法,把复杂的组合图形转化为简单的图形,从而 计算出组合图形的面积。
3.挖空法:就是把多边形看成是一个完整的规则图 形,计算它的面积以后,再减去空缺部分的面积。
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may rise tomorrow.
子天
是开
梅放
花;
,有
选的
择孩
在子
例题三
求下面图形的面积(单位:m)
把它看成一个 三角形和梯形 的面积组合
三角形面积:11×8÷2=44(平方米) 梯形的面积:(11+22)×10÷2=165(平方米) 图形的面积:165+44=209(平方米)
答:这个图形的面积是209平方米。
练习三
求下面图形的面积。(单位:m)
8.5 4
13
答:图形的面积为525平方米。
练习一
求下面图形的面积。(单位:m)
22
52
20
31
48
上面为三角形, 下面为梯形。
三角形的面积:52×22÷2=572(平方米) 梯形的面积:(31+20)×48÷2=1224(平方米) 图形的面积:1224+572=1796(平方米)
五年级奥数学习讲义 第19讲 组合图形的面积(二) 练习及答案
![五年级奥数学习讲义 第19讲 组合图形的面积(二) 练习及答案](https://img.taocdn.com/s3/m/23fbd234915f804d2b16c153.png)
第19讲组合图形的面积(二)一、知识要点在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:1.两个三角形等底、等高,其面积相等;2.两个三角形底相等,高成倍数关系,面积也成倍数关系;3.两个三角形高相等,底成倍数关系,面积也成倍数关系。
二、精讲精练【例题1】如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)练习1:1.求下图中阴影部分的面积。
2.求图中阴影部分的面积。
(单位:厘米)3.下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。
【例题2】下图中,边长为10和15的两个正方体并放在一起,求三角形ABC (阴影部分)的面积。
练习2:1.下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。
2.图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3.图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。
【例题3】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)练习3:1.如下图,图中BO=2DO,阴影部分的面积是4平方厘米,求梯形ABCD的面积是多少平方厘米?2.下图的梯形ABCD中,下底是上底的2倍,E是AB的中点。
那么梯形ABCD的面积是三角形BDE面积的多少倍?3.下图梯形ABCD中,AD=7厘米,BC=12厘米,梯形高8厘米,求三角形BOC的面积比三角形AOD的面积大多少平方厘米?【例题4】在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
练习4:1.把下图三角形的底边BC四等分,在下面括号里填上“>”、“<”或“=”。
甲的面积()乙的面积。
2.如图,在三角形ABC中,D是BC的中点,E、F是AC的三等分点。
五年级数学《组合图形的面积》试题及答案
![五年级数学《组合图形的面积》试题及答案](https://img.taocdn.com/s3/m/177bfab17c1cfad6195fa7df.png)
五年级数奥数:《组合图形的面积》1、求图形的面积(单位:厘米)梯形面积:三角形面积:(8+12)×÷2 12×3÷2= 20×÷2 = 36÷2= 170÷2 = 18(cm2)= 85(cm2)图形面积= 梯形面积–三角形面积: 85-18=67(cm2)2、校园里有两块花圃(如图),你能计算出它们的面积吗(单位:m)图形面积=长方形面积6×(5-2)+ 正方形面积(2×2)图形面积=长方形面积 - 梯形面积6×(5-2)+ 2×2 10×6 –[(3+6)×2÷2 ]= 6×3 + 4 = 60 -[ 9×2÷2 ]= 18 + 4 = 60 - 9= 22(m2) = 51(m2)3、下图直角梯形的面积是49平方分米,求阴影部分的面积。
直角梯形的高=直角三角形的高(阴影部分面积)直角梯形的高= 49÷(6+8)×2 直角三角形面积= 6×7÷2= 49÷14×2 = 42÷2= ×2 = 21(dm²)= 7(dm²)4、图中梯形中空白部分是直角三角形,它的面积是45平方厘米,求阴影部分面积。
直角梯形的高=直角三角形的高梯形面积=(5+12)×÷2= 45÷12×2 = 17×÷2= ×2 = ÷2= (cm2) = (cm2)阴影部分面积=梯形面积–空白部分面积: - 45 = (cm2)5、阴影部分面积是40平方米,求空白部分面积。
(单位:米)梯形的高=三角形的高(阴影部分三角形)梯形面积=(6+10)×8÷2= 40÷10×2 = 16×8÷2= 4×2 = 128÷2= 8(m2) = 64(m2)空白部分面积=梯形面积–阴影部分面积:64–40 = 24(m2)6、如图,平行四边形面积240平方厘米,求阴影部分面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阴影部分面积专题练习
一、求下列各图中阴影部分的面积。
(单位:厘米)1、
2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。
3、如图长方形的面积是45平方厘米,宽是5厘米,求阴影部分的面积。
4、如图,两个大小不等的正方形拼成一个图形,已知小正方形的边长是4厘米,阴影部分的面积是30平方厘米,求空白部分的面积是多少?
5、将直角三角形ABC向右平移6厘米,再向下平移1.5厘米,得到一个图形如图,已知三角形的底边BC长16厘米,求阴影部分的面积。
长方形ABCD内的阴影部分的面积之和为70,AB=8,AD=15四边形EFGO 的面积为______.
解答:根据容斥关系:四边形EFGO的面积=三角形AFC+三角形DBF-白色部分的面积,三角形AFC+三角形DBF=长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即120-70=50所以四边形EFGO 的面积=60-50=10
如图,已知边长为5的额正方形ABCD和边长为的正方形CEFG共顶点C,正方形CEFG绕点C旋转60°,连接BE、DG,则ΔBCE的面积与ΔCDG的面积比是_____.
几何图形面积答案:将ΔCDG绕点C逆时针旋转900,得到ΔCBH,这样点E、C、H在同一直线上,且CE=CG=CH,所以ΔBCE的面积=ΔBCH的面积=ΔCDG的面积,所求面积比为1:1。