高中数学概率统计知识万能公式文科

合集下载

概率公式大全

概率公式大全

概率公式大全概率公式大全(上篇)概率公式在概率论中起着非常重要的作用,它们用于描述随机事件的发生概率以及事件之间的关系。

本文将介绍一些常见的概率公式,帮助读者更好地理解和应用概率论。

1. 基本概率公式1) 事件的概率公式:在概率论中,事件的概率通常用P(A)表示,其中A表示一个事件。

事件A的概率可以用下述公式计算:P(A) = N(A) / N(S)其中,N(A)表示事件A发生的次数,N(S)表示样本空间S 中的总次数。

2) 样本空间的概率公式:当样本空间S的每个样本点发生的概率相同且为1/N(S)时,我们可以使用下述公式计算事件A的概率:P(A) = N(A) / N(S)这个公式在实际问题中应用广泛,是基本的概率公式之一。

2. 条件概率公式1) 条件概率的定义:在事件B发生的条件下,事件A发生的概率称为A在B 条件下的条件概率,用P(A|B)表示。

条件概率的计算公式如下:P(A|B) = P(A ∩ B) / P(B)其中,P(A ∩ B)表示事件A与事件B同时发生的概率。

2) 乘法公式:乘法公式是条件概率的推广形式,用于计算两个事件同时发生的概率。

根据乘法公式,我们可以得到:P(A ∩ B) = P(A|B) * P(B)这个公式在计算复杂事件的概率时非常有用。

3. 全概率公式全概率公式用于计算一个事件发生的总概率,它假设事件发生的样本空间可以划分为若干个互斥事件。

全概率公式如下:P(A) = Σi P(A|Bi) * P(Bi)其中,Bi表示样本空间S的一个划分,P(A|Bi)表示在Bi条件下事件A发生的概率。

这个公式可以在一些复杂问题中计算事件发生的概率,非常实用。

4. 贝叶斯公式贝叶斯公式是条件概率公式的逆运算,用于通过已知的条件概率反推出相反的条件概率。

根据贝叶斯公式,可以得到:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A)和P(B)分别表示事件A和事件B的概率。

(完整word)概率统计公式大全(复习重点),推荐文档

(完整word)概率统计公式大全(复习重点),推荐文档

第一章随机事件和概率(1)排列组合公式)!(!nmmP nm-=从m个人中挑出n个人进行排列的可能数。

)!(!!nmnmC nm-=从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用ω来表示。

基本事件的全体,称为试验的样本空间,用Ω表示。

一个事件就是由Ω中的部分点(基本事件ω)组成的集合。

通常用大写字母A,B,C,…表示事件,它们是Ω的子集。

Ω为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):BA⊂如果同时有BA⊂,AB⊃,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A Y B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者BA,它表示A发生而B不发生的事件。

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)

概率统计公式大全(复习重点)概率统计公式大全(复习重点)在学习概率统计的过程中,熟练掌握相关的公式是非常关键的。

本文将为大家详细介绍一些常用的概率统计公式,并对其进行简要的说明和应用举例,以便复习和巩固知识。

一、基本概率公式1. 事件的概率计算公式P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率;n(A)表示事件A中有利的结果数;n(S)表示样本空间S中的全部结果数。

例如:从一副扑克牌中随机抽取一张牌,求抽到红心牌的概率。

解:样本空间S中共有52张牌,红心牌有13张,所以 P(红心牌) = 13 / 52 = 1 / 4。

2. 条件概率计算公式P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的条件下事件A发生的概率;P(A∩B)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

例如:某班级男女生分别有30人和40人,从中随机选择一名学生,求选到女生并且是优等生的概率。

解:女生优等生有20人,所以 P(女生且是优等生) = 20 / (30+ 40)= 1 / 7。

二、常用离散型随机变量的数学期望与方差1. 随机变量的数学期望计算公式E(X) = ∑[x * P(X=x)]其中,E(X)表示随机变量X的数学期望;x表示随机变量X的取值;P(X=x)表示随机变量X取值为x的概率。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的数学期望。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

2. 随机变量的方差计算公式Var(X) = E((X - E(X))²)其中,Var(X)表示随机变量X的方差;E(X)表示随机变量X的数学期望。

例如:随机变量X的可能取值为1、2、3,对应的概率分别是1/4、1/2、1/4,求X的方差。

解:E(X) = 1 * (1/4) + 2 * (1/2) + 3 * (1/4) = 5/2 = 2.5。

概率与统计学的主要公式及解题技巧

概率与统计学的主要公式及解题技巧

一、基本概率公式及分布1、概率常用公式:P(A+B)=P(A)+P(B)-P(AB);P(A-B)=P(A)-P(AB);如A 、B 独立,则P(AB)=P(A)P(B);P(A )=1-P(A);B 发生的前提下A 发生的概率==条件概率:P(A|B)=P(AB)P(B);或记:P(AB)=P(A|B)*P(B);2、随机变量分布律、分布函数、概率密度分布律:离散型X 的取值是x k (k=1,2,3...),事件X=x k 的概率为:P{X=x k }=P k ,k=1,2,3...;---既X 的分布律;X X1X2....xn PkP1P2...pnX 的分布律也可以是上面的表格形式,二者都可以。

分布函数:F(x)=P{X ≤x},-∞ t ∞;是概率的累积!P(x1<X<x2)=F(x2)-F(x1);P{X>a}=1-P{X<a}离散型rv X;F(x)=P{X ≤x}=x k tp k ;(把X<x 的概率累加)连续型rvX ;F(x)=−∞xf x dx ,f(x)称密度函数;既分布函数F(X)是密度函数f(x)和X 轴上的(-∞,x)围成的面积!性质:F(∞)=1;F(−∞)=0;二、常用概率分布:①离散:二项分布:事件发生的概率为p,重复实验n次,发生k 次的概率(如打靶、投篮等),记为B(n,p)P{X=k}=n k p k(1−p)n−k,k=0,1,2,...n;E(X)=np,D(X)=np(1-p);②离散:泊松分布:X~Π(λ)P{X=k}=λk e−λk!,k=0,1,2,...;E(X)=λ,D(X)=λ;③连续型:均匀分布:X在(a,b)上均匀分布,X~U(a,b),则:密度函数:f(x)=1b−a,a t0,其它=0,x x−a b−a1,x≥b,a t分布函数F(x)=−∞x f x dx④连续型:指数分布,参数为θ,f(x)=1θe−xθ,0 t0,其它F(x)=1−e−xθ0,x 0;⑤连续型:正态分布:X~N(μ,σ2),most importment!密度函数f(x),表达式不用记!一定要记住对称轴x=µ,E(X)=µ,方差D(X)=σ2;当µ=0,σ2=1时,N(0,1)称标准正态,图形为:分布函数F(x)为密度函数f(x)从(-∞,x)围成的面积。

高中数学中的概率与统计公式整理

高中数学中的概率与统计公式整理

高中数学中的概率与统计公式整理概率与统计是高中数学中的重要内容,它们在我们日常生活中的应用非常广泛。

在学习概率与统计时,整理公式是非常重要的,它可以帮助我们更好地理解和应用这些知识。

本文将整理一些高中数学中常用的概率与统计公式,帮助大家更好地掌握这一知识点。

一、概率公式1. 事件的概率公式:对于一个事件A,它的概率可以用如下公式表示:P(A) = 事件A发生的次数 / 总的可能次数2. 互斥事件的概率公式:如果两个事件A和B是互斥事件(即两个事件不能同时发生),则它们的概率可以用如下公式表示:P(A或B) = P(A) + P(B)3. 相互独立事件的概率公式:如果两个事件A和B是相互独立事件(即一个事件的发生不受另一个事件的影响),则它们的概率可以用如下公式表示:P(A且B) = P(A) × P(B)4. 条件概率公式:如果事件B已经发生,事件A的概率可以用如下公式表示:P(A|B) = P(A且B) / P(B)5. 贝叶斯公式:如果事件A和事件B是两个相关事件,且P(B) ≠ 0,则事件B发生的条件下事件A发生的概率可以用如下公式表示:P(A|B) = P(B|A) × P(A) / P(B)二、统计公式1. 样本均值的计算公式:对于一组样本数据x1, x2, ..., xn,它们的均值可以用如下公式表示:x = (x1 + x2 + ... + xn) / n2. 总体均值的计算公式:对于一组总体数据x1, x2, ..., xn,它们的均值可以用如下公式表示:μ = (x1 + x2 + ... + xn) / N3. 样本方差的计算公式:对于一组样本数据x1, x2, ..., xn,它们的方差可以用如下公式表示:s^2 = [(x1 - x)^2 + (x2 - x)^2 + ... + (xn - x)^2] / (n - 1)4. 总体方差的计算公式:对于一组总体数据x1, x2, ..., xn,它们的方差可以用如下公式表示:σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / N5. 样本标准差的计算公式:对于一组样本数据x1, x2, ..., xn,它们的标准差可以用如下公式表示:s = √[s^2]6. 总体标准差的计算公式:对于一组总体数据x1, x2, ..., xn,它们的标准差可以用如下公式表示:σ = √[σ^2]7. 正态分布的概率计算公式:对于一个服从正态分布的随机变量X,它的概率密度函数可以用如下公式表示:f(x) = (1 / (σ√(2π))) × e^(-((x - μ)^2) / (2σ^2))以上是高中数学中常用的概率与统计公式的整理。

概率统计实用公式整理专为研究者和实践者准备的指南

概率统计实用公式整理专为研究者和实践者准备的指南

概率统计实用公式整理专为研究者和实践者准备的指南概率统计是数学中一门重要的学科,作为一种应用广泛的工具,被广泛应用于各个领域的研究和实践中。

在进行概率统计的计算和分析过程中,掌握一些实用的公式非常重要。

本文将整理一些常用的概率统计公式,旨在为广大研究者和实践者提供一个便捷的指南。

一、基本概率公式在概率统计的计算中,一些基本的概率公式是必不可少的。

下面是几个常用的基本概率公式:1. 乘法定理:P(A∩B) = P(A) × P(B|A)2. 加法定理:P(A∪B) = P(A) + P(B) − P(A∩B)3. 条件概率公式:P(A|B) = P(A∩B) / P(B)4. 全概率公式:P(B) = ∑[i=1, n] P(Ai) × P(B|Ai)二、离散分布公式在离散概率分布中,一些常见的分布公式可以用来描述随机变量的特征。

以下是几个常用的离散分布公式:1. 二项分布公式:P(X=k) = C(n,k) × p^k × (1-p)^(n-k)2. 泊松分布公式:P(X=k) = (e^(-λ) × λ^k) / k!3. 几何分布公式:P(X=k) = (1-p)^(k-1) × p三、连续分布公式连续概率分布描述的是在某一范围内随机变量取值的概率。

以下是几个常用的连续分布公式:1. 正态分布公式:f(x) = (1 / (σ * √(2π))) * e^(-(x-μ)^2 / (2σ^2))2. 指数分布公式:f(x) = λ * e^(-λx)3. 均匀分布公式:f(x) = 1 / (b-a),其中a ≤ x ≤ b四、描述统计公式描述统计是对数据进行整理和总结的过程,以下是一些常用的描述统计公式:1. 均值公式:μ = (x1 + x2 + ... + xn) / n2. 方差公式:σ^2 = [(x1-μ)^2 + (x2-μ)^2 + ... + (xn-μ)^2] / n3. 标准差公式:σ = √(σ^2)五、假设检验公式假设检验是概率统计中用来推断总体特征的方法。

高中数学概率知识点总结及公式

高中数学概率知识点总结及公式

高中数学概率知识点总结及公式高中数学概率知识点总结及公式概率是数学中一个重要的分支,广泛应用于各个领域,尤其是在统计学、经济学和工程学中。

在高中数学中,概率是一个重要的学习内容,涵盖了许多基本概念和公式。

本文将对高中数学中的概率知识点进行总结,并介绍相关的公式。

一、概率的基本概念1.试验:指对某个随机现象的观察、测量或实验,例如掷硬币、抽卡等等。

2.样本空间:指试验所有可能结果的集合,通常用S表示。

3.事件:指样本空间中的一个子集,通常用A、B、C等表示。

4.基本事件:指样本空间中的一个点,即某个具体结果。

5.概率:指某个事件发生的可能性大小,通常用P(A)表示,0 ≤ P(A) ≤ 1。

二、概率的计算方法1.古典概型:当样本空间中的基本事件具有等可能性时,可以采用古典概型计算概率。

例如掷硬币,硬币正反面各有一个基本事件,且两者等可能,所以正面出现的概率为1/2。

2.频率概率:通过进行大量试验,统计某个事件发生的频率,来近似计算概率。

例如抛硬币1000次,统计正面出现的次数,用正面出现的次数除以总次数,可以得到正面出现的频率,近似估计正面出现的概率。

3.几何概率:通过分析几何模型,计算概率。

例如在正方形纸片上随机投针,可以通过纸片上针与横线相交的概率来计算π的近似值。

三、概率的性质1.互斥事件:指两个事件不可能同时发生,两个事件的交集为空集。

例如掷骰子,事件A为出现偶数,事件B为出现奇数,显然A和B是互斥事件。

2.对立事件:指两个事件互为补事件,即一个事件发生的概率等于它的对立事件不发生的概率,两个事件的和为样本空间。

例如抽一张扑克牌,事件A为红桃,事件B为非红桃,显然A和B互为对立事件。

3.独立事件:指两个事件的发生与否互不影响,一个事件的发生不影响另一个事件发生的概率。

例如掷两个骰子,事件A为第一个骰子出现奇数,事件B为第二个骰子出现奇数,显然A和B是独立事件。

四、概率的计算公式1.加法法则:对于互斥事件A和B,有P(A∪B) = P(A) +P(B)。

(完整版)高中数学统计与概率知识点归纳(全)

(完整版)高中数学统计与概率知识点归纳(全)

高中数学统计与概率知识点(文)一、众数: 一组数据中出现次数最多的那个数据。

众数与平均数的区别: 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。

二、.中位数: 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)三 .众数、中位数及平均数的求法。

①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。

③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。

四、中位数与众数的特点。

⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。

五.平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广; ⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。

六、对于样本数据x 1,x 2,…,x n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数据x 1,x 2,…,x n 的平均数为x ,则标准差的计算公式是:七、简单随即抽样的含义一般地,设一个总体有N 个个体, 从中逐个不放回地抽取n 个个体作为样本(n≤N), 如果每次12||||||n x x xx x x n22212()()()n x x x x x x sn抽取时总体内的各个个体被抽到的机会都相等, 则这种抽样方法叫做简单随机抽样.八、根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.九、抽签法的操作步骤?第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第二步,将号签放在一个容器中,并搅拌均匀第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.十一、抽签法有哪些优点和缺点?优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.十一、利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?第一步,将总体中的所有个体编号.第二步,在随机数表中任选一个数作为起始数.第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.简单随机抽样一般采用两种方法:抽签法和随机数表法。

概率统计公式大全复习重点

概率统计公式大全复习重点

概率统计公式大全复习重点在学习概率统计这门学科时,掌握各种公式是至关重要的。

这些公式不仅是解决问题的工具,更是理解概率统计概念的关键。

本文将为您梳理概率统计中的重点公式,帮助您更好地复习和掌握这部分知识。

一、随机事件与概率1、古典概型概率公式如果一个随机试验所包含的基本事件总数为 n,事件 A 所包含的基本事件数为 m,则事件 A 发生的概率为:P(A) = m / n2、几何概型概率公式设样本空间为几何区域Ω,事件 A 对应的区域为ω,则事件 A 发生的概率为:P(A) =ω 的测度/Ω 的测度3、条件概率公式设 A、B 是两个事件,且 P(B) > 0,则在事件 B 发生的条件下,事件 A 发生的条件概率为:P(A|B) = P(AB) / P(B)4、乘法公式P(AB) = P(A|B)P(B) 或 P(AB) = P(B|A)P(A)5、全概率公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,则有:P(A) =∑ P(Bᵢ)P(A|Bᵢ)(i从 1 到 n)6、贝叶斯公式设 B₁, B₂,, Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i = 1, 2,, n),A 是Ω 中的任意一个事件,在事件 A 已经发生的条件下,事件 Bᵢ发生的概率为:P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ) /∑ P(Bₙ)P(A|Bₙ) (i从 1 到 n,k 从 1 到 n)二、随机变量及其分布1、离散型随机变量的概率分布设离散型随机变量 X 的可能取值为 x₁, x₂,, xₙ,对应的概率为p₁, p₂,, pₙ,则概率分布为:P(X = xᵢ) = pᵢ(i = 1, 2,, n),且∑pᵢ= 12、二项分布如果随机变量 X 服从参数为 n 和 p 的二项分布,记为 X ~ B(n, p),则概率质量函数为:P(X = k) = C(n, k) p^k (1 p)^(n k) (k = 0, 1, 2,, n)3、泊松分布如果随机变量 X 服从参数为λ 的泊松分布,记为 X ~P(λ),则概率质量函数为:P(X = k) =(e^(λ) λ^k) / k! (k = 0, 1, 2,)4、连续型随机变量的概率密度函数设连续型随机变量 X 的概率密度函数为 f(x),则分布函数为:F(x)=∫∞, x f(t) dt5、正态分布如果随机变量 X 服从参数为μ 和σ² 的正态分布,记为 X ~N(μ, σ²),则概率密度函数为:f(x) =(1 /(σ√(2π))) e^((x μ)² /(2σ²))三、随机变量的数字特征1、数学期望离散型随机变量 X 的数学期望为:E(X) =∑ xᵢ pᵢ(i 从 1 到 n)连续型随机变量 X 的数学期望为:E(X) =∫∞,+∞ x f(x) dx2、方差离散型随机变量 X 的方差为:D(X) =∑ (xᵢ E(X))² pᵢ(i 从 1 到n)连续型随机变量 X 的方差为:D(X) =∫∞,+∞ (x E(X))² f(x) dx3、标准差随机变量 X 的标准差为:σ(X) =√D(X)4、协方差设随机变量 X 和 Y,其协方差为:Cov(X, Y) = E((X E(X))(Y E(Y)))5、相关系数随机变量 X 和 Y 的相关系数为:ρ(X, Y) = Cov(X, Y) /(σ(X)σ(Y))四、大数定律和中心极限定理1、大数定律当 n 足够大时,样本均值X依概率收敛于总体均值μ,即:P(|Xμ| >ε) → 0 (n → ∞)2、中心极限定理设随机变量 X₁, X₂,, Xₙ 相互独立,且具有相同的分布和有限的数学期望μ 和方差σ²。

概率统计公式大全

概率统计公式大全

概率统计公式大全概率统计是研究随机现象及其规律性的一门学科,其核心就是用数学方法来描述和分析随机现象。

在概率统计的理论体系中,有很多重要的公式和定理,下面对一些常用的公式进行介绍。

1.概率公式:(1)加法规则:P(A∪B)=P(A)+P(B)-P(A∩B),其中A和B为事件,P(A)和P(B)分别是事件A和事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。

(2)乘法规则:P(A∩B)=P(A)×P(B,A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。

2.条件概率公式:(1)贝叶斯定理:P(A,B)=P(B,A)×P(A)/P(B),其中P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别是事件A和事件B发生的概率。

(2)全概率公式:P(B)=ΣP(Ai)×P(B,Ai),其中B是一个事件,Ai是样本空间的一个划分,即Ai是互不相容且并集为样本空间的一组事件。

3.期望公式:(1) 离散型随机变量的期望:E(X) = ΣxiP(X=xi),其中X是一个离散型随机变量,xi是X的取值,P(X=xi)是X取值为xi的概率。

(2) 连续型随机变量的期望:E(X) = ∫xf(x)dx,其中X是一个连续型随机变量,f(x)是X的概率密度函数。

4.方差公式:(1) 离散型随机变量的方差:Var(X) = Σ(xi-E(X))^2P(X=xi),其中Var(X)表示随机变量X的方差,xi是X的取值,E(X)是X的期望,P(X=xi)是X取值为xi的概率。

(2) 连续型随机变量的方差:Var(X) = ∫(x-E(X))^2f(x)dx,其中Var(X)表示随机变量X的方差,E(X)是X的期望,f(x)是X的概率密度函数。

高中数学《概率与统计》重要公式

高中数学《概率与统计》重要公式

高中数学《概率与统计》重要公式1.n个互斥事件发生的概率和公式为P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。

2.独立事件A,B同时发生的概率为P(A·B)= P(A)·P(B)。

3.n个独立事件同时发生的概率为P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An)。

4.等可能性事件的概率为P(A)= m/n。

5.n次独立重复试验中某事件恰好发生k次的概率为C(n,k)P^k(1-P)^(n-k)。

6.互斥事件A,B分别发生的概率的和为P(A+B)=P(A)+P(B)。

7.离散型随机变量的分布列具有两个性质:(1) Pi>=0(i=1,2.) (2) P1+P2+。

=1.8.数学期望具有两个性质:(1) E(aX+b)=aE(X)+b (2) 若X~B(n,p),则E(X)=np。

9.若随机变量X服从几何分布,且P(X=k)=g(k,p)=q^(k-1)p,则E(X)=1/p。

10.方差公式为2D(X)=(x1-E(X))^2P1+(x2-E(X))^2P2+。

+(xn-E(X))^2Pn。

11.方差具有三个性质:(1) D(aX+b)=a^2D(X) (2) 若X~B(n,p),则D(X)=np(1-p) (3) 若X服从几何分布,且P(X=k)=g(k,p)=q^(k-1)p,则D(X)=q/p^2.12.方差与期望的关系为D(X)=E(X^2)-(E(X))^2.13.标准差为σ(X)=sqrt(D(X))。

14.标准正态分布密度函数为f(x)=1/sqrt(2π)e^(-x^2/2),其中x属于实数集。

15.正态分布密度函数为f(x)=(1/(σsqrt(2π)))e^(-((x-μ)^2)/(2σ^2)),其中μ和σ(σ>0)为参数,分别表示个体的平均数与标准差。

广东高考文科数学--概率知识点

广东高考文科数学--概率知识点

广东高考文科数学-统计及概率知识点一、统计1.简单随机抽样1.1简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

1..2简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

2.系统抽样2.1系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K (抽样距离)=N (总体规模)/n (样本规模)前提条件:可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布呈某种循环性规律,不可用系统抽样。

2.2系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

3.分层抽样3.1分层抽样(类型抽样):先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

4.用样本的数字特征估计总体的数字特征4.1本均值:nx x x x n +++= 214.2样本标准差:n x x x x x x s s n 222212)()()(-++-+-== 4.3(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变(2)如果把一组数据中的每一个数据乘以一个共同的常数k ,标准差变为原来的k 倍(3)一组数据中的最大值和最小值对标准差的影响,区间)3,3(s x s x +-的应用; “去掉一个最高分,去掉一个最低分”中的科学道理5.两个变量的线性相关1、概念:(1)回归直线方程(2)回归系数2.最小二乘法:y a bx =+,其中()()()1122211n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx====⎧---⎪⎪==⎨--⎪⎪=-⎩∑∑∑∑ 3.直线回归方程的应用(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系(2)利用回归方程进行预测;把预报因子(即自变量x )代入回归方程对预报量(即因变量Y )进行估计,即可得到个体Y 值的容许区间。

高考数学冲刺之基础公式记忆—七、概率统计

高考数学冲刺之基础公式记忆—七、概率统计

七、概率统计49、平均数、方差、标准差的计算平均数:n x x x x n 21 方差:])()()[(1222212x x x x x x n s n标准差:])()()[(122221x x x x x x ns n 50、回归直线方程$y a bx ,其中 1122211n ni i i i i i n ni ii i x x y y x y nx y b x x x nx a y bx.51、独立性检验 ))()()(()(22d b c a d c b a bd ac n K52、古典概型的计算(必须要用列举法...、列表..法.、树状..图.的方法把所有基本事件表示出来,不重复、不遗漏)必记内容: 高中数学三角函数公式汇总一、任意角的三角函数在角 的终边上任取..一点),(y x P ,记:22y x r , 正弦:r y sin 余弦:r xcos 正切:xytan 余切:y x cot正割:xrsec 余割:yrcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角 的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin ,1sec cos ,1cot tan 。

商数关系: cos sin tan,sin cos cot 。

平方关系:1cos sin 22 , 22sec tan 1 , 22csc cot 1 。

三、诱导公式⑴ k 2 )(Z k 、 、 、 、 2的三角函数值,等于 的同名函数值,前面加上一个把 看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵2、2、23、23的三角函数值,等于 的异名函数值,前面加上一个把 看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式sin cos cos sin )sin( sin cos cos sin )sin( sin sin cos cos )cos( sin sin cos cos )cos(tan tan 1tan tan )tan(tan tan 1tan tan )tan(五、二倍角公式cos sin 22sin2222sin 211cos 2sin cos 2cos …)(2tan 1tan 22tan二倍角的余弦公式)( 有以下常用变形:(规律:降幂扩角,升幂缩角)2cos 22cos 1 2sin 22cos 1 2)cos (sin 2sin 1 2)cos (sin 2sin 1六、万能公式(可以理解为二倍角公式的另一种形式)2tan 1tan 22sin , 22tan 1tan 12cos ,2tan 1tan 22tan 。

高考文科数学公式汇总(精简版)

高考文科数学公式汇总(精简版)

高考文科数学公式汇总(精简版)高考文科数学公式汇总(精简版)高考数学是文科生必考的一门科目,其数学公式的掌握对于高考成绩的决定性作用。

以下是高考文科数学公式的精简版汇总。

一、代数公式:1. 幂函数公式:1) $(a^m)^n=a^{mn}$2) $a^m\cdot a^n=a^{m+n}$3) $\frac{a^m}{a^n}=a^{m-n}$2. 对数函数公式:1) $a^{\log_a{x}}=x$2) $\log_a{(xy)}=\log_a{x}+\log_a{y}$3) $\log_a{(\frac{x}{y})}=\log_a{x}-\log_a{y}$4) $\log_a{x^n}=n\log_a{x}$3. 三角函数公式:1) $\sin^2{x}+\cos^2{x}=1$2) $\sin{2x}=2\sin{x}\cdot \cos{x}$3) $\cos{2x}=\cos^2{x}-\sin^2{x}$4) $\tan{x}=\frac{\sin{x}}{\cos{x}}$5) $\sin{(a\pm b)}=\sin{a}\cdot \cos{b}\pm \sin{b}\cdot\cos{a}$6) $\cos{(a\pm b)}=\cos{a}\cdot \cos{b}\mp \sin{a}\cdot\sin{b}$4. 二次函数公式:1) $f(x)=ax^2+bx+c$ 的顶点坐标为 $(\frac{-b}{2a},\frac{-\Delta}{4a})$ ,其中 $\Delta=b^2-4ac$ 为判别式。

2) $y=a(x-h)^2+k$ 是以点 $(h,k)$ 为顶点的二次函数。

二、几何公式:1. 勾股定理:直角三角形的斜边的平方等于两腰的平方和。

$c^2=a^2+b^2$2. 正弦定理:在任意三角形中,边的比与其对应角的正弦值成正比。

$\frac{a}{\sin{A}}=\frac{b}{\sin{B}}=\frac{c}{\sin{C}}$3. 余弦定理:在任意三角形中,边的平方与其它两边的平方之和的2倍之差与其对应角的余弦成正比。

高中数学公式大全概率计算与统计分析的实例公式

高中数学公式大全概率计算与统计分析的实例公式

高中数学公式大全概率计算与统计分析的实例公式高中数学公式大全:概率计算与统计分析的实例公式一、概率计算公式1. 事件的概率计算公式:P(A) = (事件A的样本点数) / (样本空间的样本点数)2. 加法法则:对于两个互斥事件A和B,有P(A或B) = P(A) + P(B)3. 减法法则:对于事件A和B,有P(A且B的补集) = P(A的补集) - P(A且B)4. 乘法法则:对于两个独立事件A和B,有P(A且B) = P(A) × P(B)5. 条件概率公式:对于事件A和B,有P(A|B) = P(A且B) / P(B)6. 全概率公式:对于事件A和B1、B2、...、Bn构成的样本空间分割,有P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)二、统计分析的实例公式1. 平均数(均值)公式:对于一组数据x1、x2、...、xn,均值(平均数)为平均数 = (x1 + x2 + ... + xn) / n2. 加权平均数公式:对于一组数据x1、x2、...、xn及其对应的权重w1、w2、...、wn,加权平均数为加权平均数 = (x1w1 + x2w2 + ... + xnwn) / (w1 + w2 + ... + wn)3. 中位数公式:对于一组有序数据,中位数为若数据个数为奇数,中位数为第(n+1)/2个数据;若数据个数为偶数,中位数为第n/2个数据和第(n/2+1)个数据的平均数。

4. 众数公式:对于一组数据,众数为数据中出现次数最多的值。

5. 方差公式:对于一组数据x1、x2、...、xn,均值为μ,方差为方差 = ( (x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2 ) / n6. 标准差公式:对于一组数据x1、x2、...、xn,均值为μ,标准差为标准差= √方差7. 相关系数公式:对于两组数据x1、x2、...、xn和y1、y2、...、yn,其相关系数为相关系数 = (协方差) / (x的标准差 × y的标准差)其中,协方差的计算公式为协方差 = ( (x1 - μx)(y1 - μy) + ... + (xn - μx)(yn - μy) ) / n8. 样本方差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本方差为样本方差 = ( (x1 - x)^2 + (x2 - x)^2 + ... + (xn - x)^2 ) / (n - 1)9. 样本标准差公式:对于一组数据x1、x2、...、xn,样本均值为x,样本标准差为样本标准差= √样本方差综上所述,以上是高中数学中概率计算和统计分析的常用公式。

概率统计公式大全汇总

概率统计公式大全汇总

概率统计公式大全汇总1.基本概率公式:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的样本点数,n(S)表示样本空间的样本点数。

2.条件概率公式:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B的概率。

3.乘法公式:P(A∩B)=P(A)*P(B,A)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)表示事件A的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。

4.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)其中,P(A∪B)表示事件A和事件B至少有一个发生的概率,P(A)和P(B)分别表示事件A和事件B的概率,P(A∩B)表示事件A和事件B同时发生的概率。

5.贝叶斯公式:P(B,A)=P(A,B)*P(B)/P(A)其中,P(B,A)表示在事件A发生的条件下事件B发生的概率,P(A,B)表示在事件B发生的条件下事件A发生的概率,P(B)和P(A)分别表示事件B和事件A的概率。

6.期望值公式:E(X)=∑(x*P(X=x))其中,E(X)表示随机变量X的期望值,x表示X的取值,P(X=x)表示X取值为x的概率。

7.方差公式:Var(X) = E[X^2] - (E[X])^2其中,Var(X)表示随机变量X的方差,E[X^2]表示X的平方的期望值,E[X]表示X的期望值。

8.标准差公式:SD(X) = √Var(X)其中,SD(X)表示随机变量X的标准差,Var(X)表示X的方差。

9.二项分布概率公式:P(X=k)=C(n,k)*p^k*(1-p)^(n-k)其中,P(X=k)表示X取值为k的概率,C(n,k)表示从n个元素中选择k个元素的组合数,p表示每个元素成功的概率,n表示试验次数。

10.正态分布概率公式:P(X≤x)=Φ((x-μ)/σ)其中,P(X≤x)表示X小于或等于x的概率,Φ表示标准正态分布的累积分布函数,μ表示正态分布的均值,σ表示正态分布的标准差。

概率全概率公式范文

概率全概率公式范文

概率全概率公式范文P(A)=P(A,B₁)P(B₁)+P(A,B₂)P(B₂)+...+P(A,Bᵢ)P(Bᵢ)+...+P(A,Bn)P(Bn)其中,P(A)表示事件A的概率,B₁,B₂,...,Bn表示互不相交的事件,即B₁∩B₂∩...∩Bn=Ø。

P(A,Bᵢ)表示在事件Bᵢ发生的条件下事件A 发生的概率,P(Bᵢ)表示事件Bᵢ发生的概率。

在理解概率全概率公式时,可以通过一个简单的例子来说明。

假设一个学生有三门课程可选:数学、物理和化学。

已知学生选择数学、物理和化学的概率分别为0.4、0.3和0.3、另外,已知在选择数学的情况下考试通过的概率为0.7,在选择物理的情况下考试通过的概率为0.6,在选择化学的情况下考试通过的概率为0.5、现在我们想知道学生考试通过的概率。

根据概率全概率公式,我们可以得到:P(考试通过)=P(考试通过,选择数学)P(选择数学)+P(考试通过,选择物理)P(选择物理)+P(考试通过,选择化学)P(选择化学)=0.7*0.4+0.6*0.3+0.5*0.3=0.28+0.18+0.15=0.61因此,学生考试通过的概率为0.61这个例子清楚地展示了概率全概率公式的应用。

我们将样本空间分解为三个互不相交的事件,即选择数学、选择物理和选择化学。

然后,我们计算了每个事件发生的概率和在每个事件发生的条件下考试通过的概率,通过加权求和得到了整体事件的概率。

概率全概率公式在实际问题中有着广泛的应用。

例如,在统计学中,当我们面临多个可能的情况时,可以使用概率全概率公式来计算整体事件的概率。

在机器学习中,概率全概率公式被广泛用于分类问题中的贝叶斯定理。

另外,概率全概率公式还经常用于解决实际生活中的决策问题,如市场营销、保险业等。

总结起来,概率全概率公式是概率论中的一项重要公式,它提供了一种计算整体事件概率的方法。

通过将样本空间分解为多个互不相交的事件,并计算每个事件发生的概率以及在每个事件发生的条件下整体事件发生的概率,我们可以使用概率全概率公式来计算整体事件的概率。

高中文科数学概率知识点(K12教育文档)

高中文科数学概率知识点(K12教育文档)

高中文科数学概率知识点(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中文科数学概率知识点(word 版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中文科数学概率知识点(word版可编辑修改)的全部内容。

概率1。

随机事件的概率及概率的意义1、基本概念:(1)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试(2)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的概率2.概率的基本性质2。

1概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A )≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B );3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P (A ∪B)= P(A)+ P (B )=1,于是有P(A)=1—P(B);3。

古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。

(2)古典概型的解题步骤;①求出总的基本事件数;②求出事件A 所包含的基本事件数,然后利用公式P (A )=总的基本事件个数包含的基本事件数A4.几何概型及均匀随机数的产生基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;5.分层抽样先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本.两种方法:1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六部分 概率与统计万能知识点及经典题型Ⅰ
【考题分析】
1、考试题型:选择填空1个,解答题:18(必考)
2、考题分值:17分;
3、解答题考点:①频率直方图的应用,②线性回归直线的应用,③独立性检验和概率
4、难度系数:左右,(120分必须全对,100以上者全对)
【知识总结】
一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:12n
x x x x n
++⋅⋅⋅+=
②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+
3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差:2222121
[()()()]n s x x x x x x n
=
-+-+⋅⋅⋅+-
二、频率直方分布图下的频率
1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数
2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=;
三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。

2、平均数: 112233n n
x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+ 3、中位数:从左到右或者从右到左累加,面积等于时x 的值。

4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-
四、线性回归直线方程:ˆˆˆy
bx a =+ 其中:1
1
2
2
2
1
1
()()
ˆ()
n
n
i i i i i i n
n
i i i i x x y y x y nxy
b
x x x nx
====---∑∑==
--∑∑ , ˆˆa
y bx =- 1、线性回归直线方程必过样本中心(,)x y ;
2、ˆ0:b
>正相关;ˆ0:b <负相关。

3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析
1、残差:ˆˆi i i e
y y =-(残差=真实值—预报值)。

分析:ˆi e
越小越好; 2、残差平方和:21
ˆ()n
i i i y y
=-∑, 分析:①意义:越小越好; ②计算:222211221
ˆˆˆˆ()()()()n
i i n n i y y
y y y y y y =-=-+-+⋅⋅⋅+-∑ 3、拟合度(相关指数):2
21
2
1
ˆ()1()
n
i i i n
i i y y
R y y ==-∑=-
-∑,
分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数
:()()
n
n
i i i i x x y y x y nx y
r ---⋅∑∑=
=
分析:①.[1,1]r ∈-的常数; ②.0:r >正相关;0:r <负相关

.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2
2()
()()()()
n ad bc k a b c d a c b d -=
++++
②.犯错误上界P 对照表
3、独立性检验步骤
①.计算观察值k :2
()()()()()
n ad bc k a b c d a c b d -=++++;
②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k ;
③.下结论:0k k ≥:即犯错误概率不超过P 的前提下认为: ,有1-P 以上的把握认为: ; 0k k <:即犯错误概率超过P 的前提认为: ,没有1-P 以上的把握认为: ;
【经典例题】
题型1 与茎叶图的应用
例1(2014全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50位市民。

根据这50位市民 (1)分别估计该市的市民对甲、乙部门评分的中位数;
(2)分别估计该市的市民对甲、乙部门的评分做于90的概率;
(3)根据茎叶图分析该市的市民对甲、乙学科网两部门的评价。

题型2 频率直方分布图的应用
例2(2015广东)某城市100户居民的月平均用电量(单位:度),以160,180,180,200,200,220,220,240,240,260,260,280,280,300分组的频率分布直方图如图2,
(1)求直方图中x 的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为220,240,240,260,260,280,280,300的四组用户中,用分层抽样的方法抽取11户居民,则
月平均用电量在220,240的用户中应抽取多少户
1x 2x 合计
1y a b
a b +
2y
c d c d + 合计
a c +
b d + n
练习2 (2014全国1)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得质量指标值分组 [75,85) [85,95) [95,105) [105,115) [115,125)
频数 6 26 38 22 8
(1)(2)估计这种产品质量指标值的平均数及方差
(同一组中的数据用该组区间的中点值作代表); (3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定
题型3 计算线性回归方程
例3(2015重庆)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余年份 2010 2011 2012 2013 2014 时间代号t 1 2 3 4 5 储蓄存款y (千亿元) 5 6 7 8 10
(1)求y 关于t 的回归方程ˆˆˆy
bt a =+ (2)用所求回归方程预测该地区2015年(t =6)的人民币储蓄存款.
年份 2007 2008 2009 2010 2011 2012 2013 年份代号t 1 2 3 4 5 6 7 人均纯收入y (y t (2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
题型4 线性回归分析
例4(2016全国3)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1–7分别对应年份2008–2014.
(1).由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;
(2).求出y 关于t 的回归方程ˆˆˆy
bt a =+(系数精确到),预测2016年我国生活垃圾无害化处理量.
参考数据:
7
1
9.32i
i y
==∑,7
1
40.17i i i t y ==∑,
7
2
1
()
0.55i
i y y =-=∑,≈.
参考公式:1
22
1
1
()()
()(y y)n
i
i
i n n
i i i i t t y y r t t ===--=
--∑∑∑,
回归方程y a bt =+中:1
2
1
()()
()
n
i
i
i n
i i t t y y b t t ==--=-∑∑,
=.a y bt -
题型5 独立性检验综合应用
例5.为了解某班学生喜爱打篮球是否与性别有关,对本班60人进行了问卷调查得到了如下的2×2列联表: (1)用分层抽样的方法在喜爱打篮球的学生中抽6人,其中男生抽多少人 (2)在上述抽取的人中选2人,求恰有一名女生的概率;
(3)你是否有95%的把握认为喜爱打篮球与性别有关说明你的理由。

练习5. 为调查某市学生百米运动成绩,从该市学生中按照男女比例 随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之 间,将测试结果按如下方式分成五组,第一组[),14,13第二组[)15,14, 第 五组[]18,17,如图是按上述分组方法得到的频率分布直方图. (1)求这次测试成绩的平均数、众数和中位数、
(2)设n m ,表示从第一组和第五组的所有学生中任意抽取的两名学生的百米测试成绩,即[)[]18,1714,13,⋃∈n m ,求事件“2>-n m ”的概率;
(3)根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标情况如下表: 完成上表,并根据上表数据,能否有99﹪的把握认为“体育达标与性别有关”
男 女 总计 达标 24 不达标 12 总计
50。

相关文档
最新文档