2008年资阳市高中阶段学校招生统一考试中考数学试卷及解析
四川省资阳市高中阶段学校招生统一考试数学试卷.doc
四川省资阳市高中阶段学校招生统一考试数学试卷全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.–3的绝对值是()A.3 B.–3 C.±3 D.92.下列计算正确的是()A.a+2a2=3a3B.a2·a3=a6C.32()a=a9D.a3÷a4=1a-(a≠0)3.吴某打算用同一大小的正多边形地板砖铺设家中的地面,则该地板砖的形状不能是()A.正三角形B.正方形C.正六边形D.正八边形4.若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则()A.k<0 B.k>0 C.b<0 D.b>05的结果是()A.2x B.±2x C.D.±6.在数轴上表示不等式组11,21xx⎧≥-⎪⎨⎪->-⎩的解集,正确的是()7.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°8.按下图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是()9.用a、b、c、d四把钥匙去开X、Y两把锁,其中仅有a钥匙能够打开X锁,仅有b钥匙能打开Y锁.在求“任意取出一把钥匙能够一次打开其中一把锁”的概率时,以下分析正确的是()A.分析1、分析2、分析3 B.分析1、分析2C.分析1 D.分析210.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是()A.563B.25 C.1123D.56第Ⅱ卷(非选择题共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.甲、乙两人进行跳远训练时,在相同条件下各跳10次的平均成绩相同,若甲的方差为0.3,乙的方差为0.4,则甲、乙两人跳远成绩较为稳定的是_________(填“甲”或“乙”).12.方程组25,4x yx y-=⎧⎨+=⎩的解是_____________.13.若两个互补的角的度数之比为1∶2,则这两个角中较小..角的度数是_____________.14.如图,已知直线AD、BC交于点E,且AE=BE,欲证明△AEC≌△BED,需增加的条件可以是__________________(只填一个即可).15.若点A(–2,a)、B(–1,b)、C(1,c)都在反比例函数y=kx(k<0)的图象上,则用“<”连接a 、b 、c 的大小关系为___________________. 16.若n 为整数,且n ≤x <n +1,则称n 为x 的整数部分.通过计算301111198019801980+++个和301111200920092009+++个的值,可以确定x =11111119801981198220082009+++++的整数部分是______.三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)解方程:2103x x --=.18.(本小题满分7分)如图,已知□ABCD 的对角线AC 、BD 相交于点O ,AC =12,BD =18,且△AOB 的周长l =23,求AB 的长.19.(本小题满分8分)已知Z 市某种生活必需品的年需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y 1= –4x +190,y 2=5x –170.当y 1=y 2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y 1<y 2时,称该商品的供求关系为供过于求;当y 1>y 2时,称该商品的供求关系为供不应求.(1)(4分) 求该商品的稳定价格和稳定需求量;(2)(4分) 当价格为45(元/件)时,该商品的供求关系如何?为什么? 20.(小题满分8分)根据W 市统计局公布的数据,可以得到下列统计图表.请利用其中提供的信息回答下列问题:W市近3年人均GDP(元)(1)(3分)从2006年到2008年,W市的GDP哪一年比上一年的增长量最大?(2)(3分)2008年W市GDP分布在第三产业的约是多少亿元?(精确到0.1亿元)(3)(2分)2008年W市的人口总数约为多少万人?(精确到0.1万人)21.(本小题满分8分)某市在举行“5.12汶川大地震”周年纪念活动时,根据地形搭建了一个台面为梯形(如图所示)的舞台,且台面铺设每平方米售价为a元的木板.已知AB=12米,AD=16米,∠B=60°,∠C=45°,计算购买铺设台面的木板所用资金是多少元.(不计铺设损耗,结果不取近似值)22.(本小题满分8分)已知关于x的一元二次方程x2+kx–3=0,(1)(4分)求证:不论k为何实数,方程总有两个不相等的实数根;(2)(4分)当k=2时,用配方法解此一元二次方程.23.(本小题满分8分)如图,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).(1)(6分)求证:BE=DG,且BE⊥DG;(2)(2分)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB 所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)24.(本小题满分9分)如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C.连结BC,作CD⊥BC,交AY于点D.(1)(3分)求证:△ABC∽△ACD;(2)(6分)若P是AY上一点,AP=4,且sin A=35,①如图2,当点D与点P重合时,求R的值;②当点D与点P不重合时,试求PD的长(用R表示).图1 图2 25.(本小题满分9分)如图,已知抛物线y=12x2–2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y 轴于点C,连结O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.(1)(3分)求直线l的函数解析式;(2)(3分)求点D的坐标;(3)(3分)抛物线上是否存在点Q,使得S△DQC= S△DPB? 若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.。
2008年四川省成都市高中阶段教育学校统一招生考试数学试卷及答案(word)
某某市二00八年高中阶段教育学校统一招生考试试卷(含某某市初三毕业会考)数学全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ为其它类型的题。
第Ⅰ卷(选择题,共30分)注意事项:1. 第Ⅰ卷共2页。
答第Ⅰ卷前,考生务必将自己的某某、某某号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2. 第Ⅰ卷全是选择题。
各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动骼橡皮摖干净后,再先涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
A 卷(共100分)一、选择题。
(每小题3分,共30分)1.2cos45°的值等于(A )22(B )2(C )42(D )22 2.化简(-3x 2)·2x 3的结果是(A )-6x 5(B )-3x 5(C )2x 5(D )6x 53.奥运会火炬传递以“和谐之旅”为主题,以“点燃激情 传递梦想”为口号进行,其传递总路程约为1370000千米,这个路程用科学记数法表示为×104千米×105千米×105千米×106千米4.用若干个大小相同,棱长为1的小正方体搭成一个几何体模型,其三视图如图所示,则搭成这个几何体模型所用的小正方体的个数是(A)4 (B)5 (C)6 (D)75.下列事件是必然事件的是(A)打开电视机,任选一个频道,屏幕上正在播放天气预报(B)到电影院任意买一X电影票,座位号是奇数(C)在地球上,抛出去的篮球会下落(D)掷一枚均匀的骰子,骰子停止转动后偶数点朝上x 中,自变量x的取值X围是6.在函数y=3(A)x≥- 3 (B)x≤- 3 (C)x≥3 (D )x≤ 37.如图,在△ABC与△DEF中,已有条件AB=DE,还需添加两个条件才能使△ABC≌△DEF,不能添加的一组条件是(A)∠B=∠E,BC=EF (B)BC=EF,AC=DF(C)∠A=∠D,∠B=∠E (D)∠A=∠D,BC=EF8.一交通管理人员星期天在市中心的某十字路口,对闯红灯的人次进行统计,根据上午7∶00 ~ 12∶00中各时间段(以1小时为一个时间段)闯红灯的人次,制作了如图所示的条形统计图,则各时间段闯红灯人次的众数和中位数分别为(A)15,15 (B)10,15 (C)15,20 (D)10,209. 如图,小红同学要用纸板制作一个高4cm ,底面周长是6πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是(A )12πcm 2 (B )15πcm 2 (C )18πcm 2 (D )24πcm 210. 有下列函数:①y = - 3x ;②y = x – 1:③y = - x1 (x < 0);④y = x2 + 2x + 1.其中当x 在各自的自变量取值X 围内取值时,y 随着x 的增大而增大的函数有(A )①② (B )①④ (C )②③ (D )③④第Ⅱ卷(非选择题,共70分)注意事项:1. A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上。
资阳市中考题及答案
资阳市2008年高中阶段教育学校招生统一考试英语全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至8页,第Ⅱ卷9至11页。
全卷满分120分。
考试时间共120分钟。
答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回。
第Ⅰ卷(选择题共80分)Good Luck!注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑。
如需改动,用橡皮擦擦净后,再选涂其它答案。
第一部分英语知识运用(共两节,满分40分)第一节单项填空(共20小题;每小题1分,满分20分)从A、B、C、D四个选项中,选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
1. —Could I get you something to drink?—_______. I’m thirsty.A. Yes, pleaseB. No, thanksC. You are welcomeD. Here you are2. Don’t talk to Tom like that. He is only _______ eleven-year-old boy.A. aB. anC. theD.不填3. Betty arrived in London _______ the morning of May 25th.A. onB. atC. inD. for4. _______ many children like sugar, I think they had better try not to eat it too often.A. BecauseB. WhenC. AlthoughD. If5. —How much does it cost to build the school library?—Four _______ yuan.A. million ofB. millions ofC. millionsD. million6. The house is too small for his family _______.A. to live inB. living inC. live inD. lives in7. All the _______ teachers enjoyed themselves on March 8th, because it was their own holiday.A. manB. menC. womanD. women8. “_______ exercise every day, my child. It’s good for your health,” Father said.A. TakingB. To takeC. TakeD. Takes9. It’s so crowded here. Let’s make some _______ for the baby.A. groundB. roomC. seatsD. chairs10. Most young people find _______ exciting to watch a football match.A. itB. thisC. thatD. one11. China is the third _______ country in the world.A. largeB. largestC. largerD. as large as12. Try to guess its meaning when you meet a new word. Don’t _______ your dictionary all the time.A. work onB. try onC. keep onD. depend on13. —_______ do you call your parents?—Every day.A. How longB. How soonC. How oftenD. How far14. They _______ for Shanghai on Friday. Shall we go to see them off at the train station?A. leftB. were leavingC. have leftD. are leaving15. Schools _______ allow students at least one hour a day for sports.A. wouldB. mightC. shouldD. could16. —What about playing football this afternoon, Sam?—I would rather _______ at home than _______ football. It’s too hot outside.A. stay; playingB. stay; playC. to stay; to playD. to stay; playing17. Would you mind _______ me how to remember English words?A. tellB. to tellC. tellingD. told18. —What did you say just now?—I asked _______.A. that I could open the doorB. could I open the doorC. how could I open the doorD. how I could open the door19. Many people learn English because it _______ widely _______ in the world.A. is; usedB. was; usedC. is; usingD. was; using20. —_______?—He’s a tall man with short hair.A. How is heB. What does he likeC. What is heD. What does he look like第二节完形填空(共20小题;每小题1分,满分20分)阅读下面短文,从短文后各题所给的A、B、C、D四个选项中选出能填入空白处的最佳选项,并在答题卡上将该项涂黑。
2008年全国中考数学试题分类精编
2008年全国中考数学试题分类精编二次函数专题一、选择题1.(2008资阳市) 在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是 ( ) A .y =2(x -2)2+ 2 B .y =2(x + 2)2-2 C .y =2(x -2)2-2D .y =2(x + 2)2+ 22.(2008四川达州市)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,当0y <时,x 的取值范围是( )A .13x -<<B .3x >C .1x <-D .3x >或1x <-3.(2008泰州市)二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( )A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位4.(2008山西省)抛物线5422---=x x y 经过平移得到22x y -=,平移方法是( )A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位5.(2008年陕西省)已知二次函数2y ax bx c =++(其中000a b c >><,,),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧. 以上说法正确的个数为( ) A .0 B .1 C .2D .36、(2008年吉林省长春市)抛物线()223y x =++的顶点坐标是 【 】A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)7、(2008年吉林省长春市)二次函数362+-=x kx y 的图象与x 轴有交点,则k 的取值范围是【 】A .3<kB .03≠<k k 且C .3≤kD .03≠≤k k 且8.(2008年吉林省长春市)已知反比例函数xky =的图象如下右图所示,则二次函数222k x kx y +-=的图象大致为【 】9.(2008年浙江省嘉兴市)一个函数的图象如图,给出以下结论: ①当0x =时,函数值最大; ②当02x <<时,函数y 随x 的增大而减小; ③存在001x <<,当0x x =时,函数值为0. 其中正确的结论是( )A .①②B .①③C .②③D .①②③10.(2008 湖北 荆门)把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则( )(A) b =3,c =7. (B) b =6,c =3. (C) b =-9,c =-5. (D) b =-9,c =21. 11.(2008 河北)如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )12.(2008 湖南 长沙)二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )A 、a <0B 、abc >0C 、c b a ++>0D 、ac b 42->013.(2008江西)函数243y x x =-+化成2()y a x h k =-+的形式是( ) A .2(2)1y x =-- B .2(2)1y x =+- C .2(2)7y x =-+D .2(2)7y x =++14.(2008 湖北 恩施) 将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( ) A. 7 B. 6 C. 5 D. 4A .B .C .xD .(第10题)..15.(2008湖北鄂州)小明从图5所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( ) A .2个B .3个C .4个D .5个16、(2008 福建龙岩)已知函数c bx ax y ++=2的图象如图所示,则下列结论正确的是A .a >0,c >0B .a <0,c <0C .a <0,c >0 D .a >0,c <0 17、(2008 山东 临沂)如图,已知正三角形ABC 的边长为1,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数的图象大致是( )18、(2008贵州贵阳)二次函数2(1)2y x =-+的最小值是( )A.2-B .2C .1-D .119. (2008甘肃兰州)已知二次函数2y ax bx c =++(0a ≠)的图象如图5所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A.1个B .2个C .3个D .4个20. (2008甘肃兰州)下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A .6x <B .C .6.18 6.19x <<D .6.19 6.20x <<图5第14题图F A GEB C21. (2008江苏镇江)福娃们在一起探讨研究下面的题目:参考下面福娃们的讨论,请你解该题,你选择的答案是( )贝贝:我注意到当0x =时,0y m =>. 晶晶:我发现图象的对称轴为12x =. 欢欢:我判断出12x a x <<.迎迎:我认为关键要判断1a -的符号. 妮妮:m 可以取一个特殊的值.22. (2008上海市)在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( )A .3B .2C .1D .023. (2008湖北仙桃等) 如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 ( )A. 0B. -1C. 1D. 224. (2008齐齐哈尔).对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,25、(2008年荷泽市)若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+- 的图象上的三点,则1,y 2,y 3y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<26、(20082 )A.243y x x =-+B.234y x x =-+C.233y x x =-+D.248y x x =-+27.(2008山东 滨州)若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 3<y 1<y 2D.y 1<y 3<y 2 28.(2008四川 凉山州)已知二次函数21y ax bx =++的大致图象如图所示,那么函数y ax b =+的图象不经过( )A .一象限B .二象限C .三象限D .四象限29.(2008齐齐哈尔).对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,30、(2008湖北武汉)下列命题: ①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根;④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是( ).A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④.31、(2008湖北孝感)把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A. 2(1)3y x =--- B. 2(1)3y x =-+- C. 2(1)3y x =--+ D. 2(1)3y x =-++32.(2008山东泰安)函数1y x x=+的图象如图所示,下列对该函数性质的论断不可能正确.....的是( ) A .该函数的图象是中心对称图形B .当0x >时,该函数在1x =时取得最小值2C .在每个象限内,y 的值随x 值的增大而减小D .y 的值不可能为133.(2008山东泰安)在同一直角坐标系中,函数y mx m =+和222y mx x =-++(m 是常数,且0m ≠)的图象可能..是()34、(2008 台湾)如图坐标平面上有一透明片,透明片上有一拋物线及一点P ,且拋物线为二次函数y =x2的图形,P 的坐标(2,4)。
资阳市2008年高中阶段学校招生统一考试答案
图7资阳市2008年高中阶段学校招生统一考试数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB. 二、填空题:(每小题3分,共6个小题,满分18分) 11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可;12或34;13.答案不唯一,x 1<x 2<0,或 0<x 1<x 2,或210x x <<或122,3x x ==-等之一均可; 14. 4; 15.10 ; 16.9,12; 三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - ······································································ 3分=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x - =12–2(2)x x - ·················································································································· 4分 =22(2)x x --–2(2)x x - =12x- ····························································································································· 5分 当x =1时,原式=121- ······················································································································ 6分= 1 ··································································································································· 7分 说明:以上步骤可合理省略 . 18.(1) 内. ··················································································································· 2分 (2) 证法一:连接CD , ································································································· 3分 ∵ DE ∥AC ,DF ∥BC , ∴ 四边形DECF 为平行四边形, ················································································· 4分 又∵ 点D 是△ABC 的内心, ∴ CD 平分∠ACB ,即∠FCD =∠ECD , ········································································ 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , ··················································································································· 6分 ∴ □DECF 为菱形. ······································································································ 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ·········································· 3分∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH .∴DH =DI . ······················································································································ 4分 ∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ··················································································· 5分 ∴S □DECF =CE ·DH =CF ·DI , ∴CE =CF . ····················································································································· 6分 ∴□DECF 为菱形. ······································································································· 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, ························································· 1分 ∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区. ········································································································································ 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x )辆, ················································ 3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩ ······················································································ 5分解得:1.5≤x ≤5 ············································································································· 6分注意到x 为正整数,∴x =2,3,4,5 ············································································ 7分 ∴方 ······························ 8分 说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程...也给全分. 20.(1) 大双的设计游戏方案不公平. ········································································· 1分 可能出现的所有结果列表如下:或列树状图如下:0·································································· 4分∴P(大双得到门票)= P(积为偶数)=46=23, P(小双得到门票)= P(积为奇数)=13, ············································································ 6分∵23≠13,∴大双的设计方案不公平. ··········································································· 7分 (2) 小双的设计方案不公平. ························································································ 9分参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y =2kx的图象经过点(1,1), ∴1=2k ····························································································································· 1分 解得k =2, ······················································································································ 2分∴反比例函数的解析式为y =1x. ··················································································· 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, ································································· 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A (12-,–2). ·············································································································· 6分(3) P 1(32,–2),P 2(52-,–2),P 3(52,2).(每个点各1分) ········································ 9分22. (1) 在Rt △BPQ 中,PQ =10米,∠B =30°,则BQ =cot30°×PQ=··················································································· 2分 又在Rt △APQ 中,∠P AB =45°, 则AQ =cot45°×PQ =10,即:AB=(米); ·································································5分 (2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B =30°,AB=, ∴ AE =sin30°×AB =12(), ······················································· 7分 ∵∠CAD =75°,∠B =30°,∴ ∠C =45°, ············································································································ 8分 在Rt △CAE 中,sin45°=AEAC, ∴AC)米) ······························································ 10分 23. (1) 由题意,得∠A =90°,c =b ,a,∴a 2–b 2)2–b 2=b 2=bc . ······························································ 3分 (2) 小明的猜想是正确的. ······························································· 4分 理由如下:如图3,延长BA 至点D ,使AD =AC =b ,连结CD , ··········································································································· 5分 则ΔACD 为等腰三角形.∴∠BAC =2∠ACD ,又∠BAC =2∠B ,∴∠B =∠ACD =∠D ,∴ΔCBD为等图9-3图8图10答案图1 腰三角形,即CD =CB =a , ······································································· 6分又∠D =∠D ,∴ΔACD ∽ΔCBD , ······················································ 7分∴AD CD CD BD =.即b aa b c =+.∴a 2=b 2+bc .∴a 2–b 2= bc ···················· 8分 (3) a =12,b =8,c =10. ································································· 10分24.(1) ∵以AB 为直径作⊙O ′,交y 轴的负半轴于点C , ∴∠OCA +∠OCB =90°, 又∵∠OCB +∠OBC =90°, ∴∠OCA =∠OBC , 又∵∠AOC = ∠COB =90°, ∴ΔAOC ∽ ΔCOB ,·········································································································· 1分 ∴OA OC OC OB =. 又∵A (–1,0),B (9,0), ∴19OC OC =,解得OC =3(负值舍去). ∴C (0,–3), ········································································································································ 3分 设抛物线解析式为y =a (x +1)(x –9),∴–3=a (0+1)(0–9),解得a =13,∴二次函数的解析式为y =13(x +1)(x –9),即y =13x 2–83x –3. ········································ 4分(2) ∵AB 为O ′的直径,且A (–1,0),B (9,0), ∴OO ′=4,O ′(4,0), ····································································································· 5分 ∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,∴∠BCD =12∠BCE =12×90°=45°,连结O ′D 交BC 于点M ,则∠BO ′D =2∠BCD =2×45°=90°,OO ′=4,O ′D =12AB =5.∴D (4,–5).··················································································································· 6分 ∴设直线BD 的解析式为y =kx +b (k ≠0) ∴90,4 5.k b k b +=⎧⎨+=-⎩········································································· 7分 解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y =x –9. ················································ 8分 (3) 假设在抛物线上存在点P ,使得∠PDB =∠CBD ,解法一:设射线DP 交⊙O ′于点Q ,则 BQCD =. 分两种情况(如答案图1所示):①∵O ′(4,0),D (4,–5),B (9,0),C (0,–3). ∴把点C 、D 绕点O ′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q 1重合,因此,点Q 1(7,–4)符合 BQCD =, ∵D (4,–5),Q 1(7,–4),∴用待定系数法可求出直线DQ 1解析式为y =13x –193. ·············································· 9分。
2008年辽宁省十二市中考数学试题及答案
2008年辽宁省十二市初中毕业生学业考试数学试卷(六三制)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号填入下面1.截止2008年6月7日12时,全国各地支援四川地震灾区的临时安置房已经安装了40600套.这个数用科学记数法表示为( ) A .50.40610⨯套 B .44.0610⨯套C .340.610⨯套D .240610⨯套2.如图1,直线12l l ∥,l 分别与12l l ,相交,如果2120∠=, 那么1∠的度数是( ) A .30B .45C .60D .753.下列事件中是必然事件的是( ) A .阴天一定下雨B .随机掷一枚质地均匀的硬币,正面朝上C .男生的身高一定比女生高D .将油滴在水中,油会浮在水面上4.图2是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )5.下列命题中正确的是( )A .两条对角线互相平分的四边形是平行四边形B .两条对角线相等的四边形是矩形C .两条对角线互相垂直的四边形是菱形D .两条对角线互相垂直且平分的四边形是正方形 6.若反比例函数(0)ky k x=≠的图象经过点(21)-,,则这个函数的图象一定经过点( ) A .122⎛⎫- ⎪⎝⎭,B .(12),C .112⎛⎫- ⎪⎝⎭,D .(12)-,7.不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是( )图2A .B .C .D .l l 1 l 212图18.图3是对称中心为点O 的正八边形.如果用一个含45角的直角三角板的角,借助点O (使角的顶点落在点O 处)把这个正八边形的面积n 等分. 那么n 的所有可能的值有( ) A .2个 B .3个 C .4个 D .5个 二、填空题(每小题3分,共24分) 9.分解因式:34x y xy -= .10.体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是26.4S =甲,乙同学的方差是28.2S =乙,那么这两名同学跳高成绩比较稳定的是 同学.11.一元二次方程2210x x -+=的解是 .12.如图4,D E ,分别是ABC △的边AB AC ,上的点,DE BC ∥,2ADDB=,则:ADE ABC S S =△△ .13.如图5,假设可以在图中每个小正方形内任意取点(每个小正方形除颜色外完全相同),那么这个点取在阴影部分的概率是 .14.一个圆锥底面周长为4πcm ,母线长为5cm ,则这个圆锥的侧面积是 . 15.如图6,观察下列图案,它们都是由边长为1cm 的小正方形按一定规律拼接而成的,依此规律,则第16个图案中的小正方形有 个.图616.如图7,直线3y x =+与x 轴、y 轴分别相交于A B , 两点,圆心P 的坐标为(10),,P 与y 轴相切于点O .若将P 沿x 轴向左移动,当P 与该直线相交时,横坐标为整数的点P图5A .B .C .D .图案1图案2图案3 图案4……AE CD B图4图3有 个. 三、(每小题8分,共16分)17.先化简,再求值:23111a a a a a a-⎛⎫- ⎪-+⎝⎭,其中2a =. 18.如图8所示,在网格中建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD 绕坐标原点O 按顺时针方向旋转180后得到四边形1111A B C D . (1)直接写出1D 点的坐标;(2)将四边形1111A B C D 平移,得到四边形2222A B C D ,若2(45)D ,,画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)四、(每小题10分,共20分)19.如图9,有四张背面相同的纸牌A B C D ,,,,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A B C D ,,,表示);(2)求两次摸牌的牌面图形既是中心对称图形又是轴对称图形的概率.图8图920.如图10,AB 为O 的直径,D 为弦BE 的中点,连接OD 并延长交O 于点F ,与过B 点的切线相交于点C .若点E 为 AF 的中点,连接AE .求证:ABE OCB △≌△.五、(每小题10分,共20分)21.某中学开展以“我最喜欢的职业”为主题的调查活动.通过对学生的随机抽样调查得到一组数据,下面两图(如图11、图12)是根据这组数据绘制的两幅不完整的统计图.请你根据图中所提供的信息解答下列问题:(1)求在这次活动中一共调查了多少名学生?(2)在扇形统计图中,求“教师”所在扇形的圆心角的度数. (3)补全两幅统计图.22.在“汶川地震”捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数比乙班捐款人数多3人,甲班共捐款2400元,乙班共捐款1800元,乙班平均每人捐款的钱数是甲班平均每人捐款钱数的45倍.求甲、乙两班各有多少人捐款? 六、(每小题10分,共20分)23.如图13,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离()AB 是1.7m ,看旗杆顶部M 的仰角为45;小红的眼睛与地面的距离()CD 是1.5m ,图10 O D B CF E A其它 教师 医生公务员 军人10% 20% 15% 图11 图12看旗杆顶部M 的仰角为30.两人相距28米且位于旗杆两侧(点B N D ,,在同一条直线上).请求出旗杆MN 的高度.1.41.7,结果保留整数)24.2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产A B ,两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产A 种购物袋x 个,每天共获利y 元.(1)求出y 与x (2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元? 七、(本题12分)25.如图14,在Rt ABC △中,90A ∠=,AB AC =,BC =另有一等腰梯形DEFG (GF DE ∥)的底边DE 与BC 重合,两腰分别落在AB AC ,上,且G F ,分别是AB AC ,的中点.(1)求等腰梯形DEFG 的面积;(2)操作:固定ABC △,将等腰梯形DEFG 以每秒1个单位的速度沿BC 方向向右运动,直到点D 与点C 重合时停止.设运动时间为x 秒,运动后的等腰梯形为DEF G ''(如图15). 探究1:在运动过程中,四边形BDG G '能否是菱形?若能,请求出此时x 的值;若不能,请说明理由.M NB A DC 30° 45° 图13 A F G (D )BC (E ) 图14探究2:设在运动过程中ABC △与等腰梯形DEFG 重叠部分的面积为y ,求y 与x 的函数关系式. 八、(本题14分)26.如图16,在平面直角坐标系中,直线y =x 轴交于点A ,与y 轴交于点C ,抛物线2(0)y ax x c a =+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.FGAF 'G 'BDCE图152008年辽宁省十二市初中毕业生学业考试数学试卷(六三制)答案9.(2)(2)xy x x +-10.甲11.121x x ==12.4:913.72514.210cm π(丢单位扣1分) 15.13616.3三、(每小题8分,共16分)17.解法一:原式223(1)(1)11a a a a a a a+---=⨯- ································································ 2分 24a =+ ·································································································································· 6分 当2a =时,原式2248=⨯+= ··························································································· 8分解法二:原式3(1)(1)(1)(1)11a a a a a a a a a a +-+-=⨯-⨯-+ ··············································· 2分 24a =+ ·································································································································· 6分 当2a =时,原式2248=⨯+= ··························································································· 8分 18.解:(1)1(31)D -, ······················································································································ 2分(2)2A ,222B C D ,,描对一个点给1分. ······································································ 6分 画出正确图形(见图1) ········································································································ 8分图1四、(每小题10分,共20分) 19.(1························································ 6分 (2)从表中可以得到,两次摸牌所有可能出现的结果共有16种,其中既是中心对称图形又是轴对称图形的有9种. ······································································································· 8分 故所求概率是916. ·············································································································· 10分 19.(1)解法二:所以可能出现的结果:(A ,A ),(A ,B ),(A ,C ),(A ,D ),(B ,A ),(B ,B ),(B ,C ),(B ,D ),(C ,A ),(C ,B ),(C ,C ),(C ,D ),(D ,A ),(D ,B ),(D ,C ),(D ,D ). ·························································································· 6分 (2)以下同解法1. 20.解:(1)证明:如图2. AB 是O 的直径.90E ∴∠= ··············································································· 1分 又BC 是O 的切线,90OBC ∴∠=E OBC ∴∠=∠ ········································································ 3分 OD 过圆心,BD DE =,EFFB ∴= BOC A ∴∠=∠. ·················································································································· 6分 E 为AF 中点, EF BF AE ∴==30ABE ∴∠= ······················································································································· 8分 90E ∠=A B C DA ABC DB A BC DC A B C DD 开始第一次牌面的字母第二次牌面的字母 图2OD BC F EA12AE AB OB ∴== ·············································································································· 9分 ABE OCB ∴△≌△. ········································································································· 10分 五、(每小题10分,共20分)21.(1)被调查的学生数为4020020=%(人) ········································································· 2分 (2)“教师”所在扇形的圆心角的度数为70115201010036072200⎛⎫----⨯⨯=⎪⎝⎭%%%% ··························································· 5分 (3)如图3,补全图 ·············································································································· 8分如图4,补全图 ····················································································································· 10分22.解法一:设乙班有x 人捐款,则甲班有(3)x +人捐款. ············································· 1分 根据题意得:24004180035x x⨯=+ ··················································································································· 5分 解这个方程得45x =. ·········································································································· 8分 经检验45x =是所列方程的根. ··························································································· 9分 348x ∴+=(人)答:甲班有48人捐款,乙班有45人捐款. ······································································· 10分 解法二:设甲班有x 人捐款,则乙班有(3)x -人捐款. ····················································· 1分 根据题意得:24004180053x x ⨯=- ··················································································································· 5分 解这个方程得48x =. ·········································································································· 8分 经检验48x =是所列方程的根. ··························································································· 9分 345x ∴-=(人)答:甲班有48人捐款,乙班有45人捐款. ······································································· 10分 六、(每小题10分,共20分) 23.解法一:解:过点A 作AE MN ⊥于E ,过点C 作CF MN ⊥于F , ··········································· 1分 则 1.7 1.50.2EF AB CD =-=-= ······················································································ 2分 在Rt AEM △中,90AEM ∠=,45MAE ∠=其它 教师医生 公务员军人10% 20%15%图3图435%20%AE ME ∴= ··························································································································· 3分 设AE ME x ==(不设参数也可) 0.2MF x ∴=+,28FC x =- · (5)分 在Rt MFC △中,90MFC ∠=,30MCF ∠=tan MF CF MCF ∴=∠0.2)3x x ∴+=- ····················································· 7分 10.0x ∴≈12MN ∴≈···························································································································· 9分 答:旗杆高约为12米. ······································································································· 10分解法二:解:过点A 作AE MN ⊥于E ,过点C 作CF MN ⊥于F , ···························· 1分 则 1.7 1.50.2EF AB CD =-=-= ······················································································ 2分 在Rt AEM △中,90AEM ∠=,45MAE ∠=AE ME ∴=设AE x =,则0.2MF x =+ ································································································ 3分在Rt MFC △中,90MFC ∠=,30MCF ∠=tan 600.2)CF MF x ==+ ························································································· 5分BN ND BD +=0.2)28x x ∴+= ·········································································································· 7分解得10.2x ≈12MN ∴≈···························································································································· 9分 答:旗杆高约为12米. ······································································································· 10分 (注:其他方法参照给分) 24.解:(1)根据题意得:(2.32)(3.53)(4500)0.22250y x x x =-+--=-+ ························· 2分 (2)根据题意得:23(4500)10000x x +-≤ ··································································· 5分 解得3500x ≥元 ···················································································································· 6分 0.20k =-< ,y ∴随x 增大而减小 ·················································································· 8分 ∴当3500x =时0.2350022501550y =-⨯+= ···························································································· 9分 答:该厂每天至多获利1550元. ························································································ 10分 七、(本题12分) 25.解:如图6,(1)过点G 作GM BC ⊥于M .AB AC = ,90BAC ∠= ,BC =G 为AB 中点MN BA DC30° 45°图5EF。
2008年中考数学试题按知识点分类汇编(整式的运算)
知识点:整式的运算一.选择题1.(2008年四川省宜宾市)下列各式中,计算错误的是()A. 2a+3a=5aB. –x2·x= -x3C. 2x-3x= -1D.(-x3)2= x6 答案:C2.(08山东日照)下列计算结果正确的是()A.B.=C.D.答案:C3.(2008浙江金华)化简a+b+(a-b)的最后结果是()A、2a+2bB、2bC、2aD、0答案:C4.(2008浙江宁波) .下列运算正确的是()A.B.C.D.答案:B5.(2008山东威海)下列计算正确的是( )A.B.C.D.答案:D6.(2008湖南益阳)下列计算中,正确的是( )A. B. C. D.答案:D7.(2008年山东省滨州市)下列计算结果正确的是()A、B、C、28D、答案:C8.(2008年山东省临沂市)下列各式计算正确的是()A.B.C.D.答案:D13.(2008年山东省潍坊市)下列运算正确的是()A.x5-x3=x2B.x4(x3)2=x10C.(-x12)÷(-x3)=x9D.(-2x)2x-3=8答案:B14. (2008年成都市)化简(- 3x2)·2x3的结果是( )(A)- 6x5(B)- 3x5 (C)2x5 (D)6x5答案:A15.(2008年乐山市)下列计算正确的是DA、B、C、D、答案:D18.(2008年大庆市)等于()A.B.C.D.答案:B19.(2008年山东省菏泽市)下列计算结果正确的是A.B.=C.D.答案:C20.(2008年江苏省连云港市)化简的结果是()A.B.C.D.答案:B21. (2008湖北咸宁)化简的结果为【】A.B.C.D.答案:C22. (2008湖北鄂州)下列计算正确的是()A.B.C.D.答案:D23.(2008年云南省双柏县)下列运算正确的是()A.B.C.D.答案:B24.(2008年山东省枣庄市)下列运算中,正确的是( )A.B.C.D.答案:D29.(2008年浙江省嘉兴市)下列运算正确的是()A.B.C.D.答案:A30. (2008湖南郴州)下列计算错误的是()A.-(-2)=2 B.C.2+3=5D.答案:D31.(2008青海西宁)计算:的结果有()A. B. C. D.答案:D32.(2008江苏南京)计算(ab2)3的结果是()A.ab5B.ab6C.a2b3D.a3b6答案:D33.(2008山东济南)下列计算正确的是()A.a3+a4=a7B. a3·a4=a7C. (a3)4=a7D. a6÷a3=a2答案:B34.(2008江苏宿迁) 下列计算正确的是A.B.C.D.答案:B35.(2008 湖南怀化)下列运算中,结果正确的是( )(A)(B)(C)(D)答案:B36.(2008 重庆)计算的结果是()A、B、C、D、答案:B37.(2008 河北)计算的结果是()A.B.C.D.答案:B38.(2008 湖南长沙)下面计算正确的是()A、B、C、()2=D、答案:D39. (2008福建省泉州市)·=( )A. B. C. D.答案:A40.(2008年湖南省邵阳市)计算的结果是()A.B.C.D.答案:A41.(2008山东德州)下列计算结果正确的是( )A.B.=C.D.答案:C42.(2008新疆乌鲁木齐市)若且,,则的值为()A.B.1 C.D.答案:C43.(2008江苏淮安)下列计算正确的是( )A.a2+a2=a4 B.a5·a2=a7 C. D.2a2-a2=2答案:B44.(2008年山东省)下列计算结果正确的是 CA.B.=C.D.答案:C45.(2008佛山)化简的结果是()A. B. C. D.答案:C46.(2008广东肇庆市)若,则的值是()A.3 B.C.0 D.6 答案:A47.(2008山东东营)下列计算结果正确的是()A. B.=C. D.答案:C48.(2008年上海市)计算的结果是()A.B.C.D.答案:D49.(2008年上海市)计算的结果是()A.B.C.D.答案:B50.(2008泰安)下列运算正确的是()A. B. C.D.答案:D51.(08绵阳市)若关于x的多项式x2-px-6含有因式x-3,则实数p的值为().A.-5 B.5 C.-1 D.1答案:A52.(08福建莆田市)下列运算正确的是()A.B.C.D.答案:D53.(08乌兰察布市)中央电视台2套“开心辞典”栏目,有一题的题目如图所示,两个天平都平衡,则三个球体的重量等于多少个正方体的重量()A.2个B.3个C.4个D.5个答案:D54.(2008黑龙江哈尔滨).下列运算中,正确的是().(A)x2+x2=x4 (B)x2÷x=x2(C)x3-x2=x (D)x·x2=x3答案:D55.(2007湖南邵阳)等于()A.B.C.D.答案:D56.(2008广东)下列式子中是完全平方式的是()A.B.C.D.答案:D57.(2008广东深圳)下列运算正确的是()A.B.C.D.÷答案:B58.(2008湖北襄樊)下列运算正确的是()A.x3·x4=x12B.(-6x6)÷(-2x2)=3x3C.2a-3a=-aD.(x-2)2=x2-4 答案:C59.(2008湖北孝感)下列运算中正确的是()A. B. C. D.答案:D60.(2008江苏盐城)下列运算正确的是()A.B.C.D.答案:B61.(2008泰州市)下列运算结果正确的是()A.B.C.D.答案:C62.(2008资阳市).下列运算正确的是()A.(ab)5=ab5 B.a8÷a2=a6C.(a2)3=a5D.(a-b)2=a2-b2答案:B63.(2008浙江湖州)计算(-x)2·x3所得的结果是()A、x5B、-x5C、x6D、-x6答案:A64.(2008湘潭市)下列式子,正确的是()A. B.C. D.答案:B65.(2008四川凉山州)下列计算正确的是()A.B. C.D.答案:B66、(2008江苏镇江)用代数式表示“的3倍与的差的平方”,正确的是()A. B.C. D.67.(08大连)下列各式运算正确的是()A.B.C.D.答案:C68.(08福建南平)计算:()A. B. C. D.答案:A69. (2008黑龙江)下列各运算中,错误的个数是()①②③④A.1 B.2 C.3 D.4答案:A70.(2008安徽芜湖)下列运算正确的是()A. B. C. D.答案:B71.(2008徐州)下列运算中,正确的是()A.x3+x3=x6B. x3·x9=x27C.(x2)3=x5D. x x2=x-1答案:D二、填空题1.(2008浙江宁波) .计算.答案:2.2008年成都市)已知y = x – 1,那么x2– 2xy + 3y2– 2的值是.答案:13.(2008年陕西省)计算:.答案:4.(2008年江苏省南通市)计算:=________.答案:8a35.(2008年江苏省连云港市)当时,代数式的值为.答案:6.(2008湖北鄂州)在“”方框中,任意填上“”或“”.能够构成完全平方式的概率是.答案:7.(2008山东济南).当x=3,y=1时,代数式(x+y)(x-y)+y2的值是__________. 答案:38.(2008 湖北恩施)计算(-a)= .答案:a9.(2008 四川广安)计算:.答案:-3x210.(2008 湖北荆门)= ___________.答案:-8x611.计算:.答案:12.(2008湖南株洲)化简: .答案:13.(2008山西省高中)计算:。
四川省资阳市中考数学真题试题含答案
-1资阳市高中阶段教育学校招生统一考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
全卷满分120分。
考试时间共120分钟。
注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号。
考试结束,将试卷和答题卡一并交回。
2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目....的答案标号涂黑。
如需改动,用橡皮擦擦净后,再选涂其它答案。
非选择题须用黑色墨水的钢笔或签字笔在答题卡上对应题号位置作答,在试卷上作答,答案无效。
第Ⅰ卷(选择题共30分)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。
1.6-的绝对值是A.6 B.6-C.16D.16-2.如图1是一个圆台,它的主视图是3.下列运算结果为a6的是A.a2+a3B.a2·a3C.(-a2)3D.a8÷a2 4.一组数据3、5、8、3、4的众数与中位数分别是A.3,8 B.3,3 C.3,4 D.4,35.如图2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为A.30°B.35°C.40°D.45°6.如图3,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-5的点P应落在线段A.AO上B.OB上C.BC上D.CD上7.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定-2是A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形8.如图4,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O →C →D →O 的路线匀速运动,设∠APB =y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是9.如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是A .13cmB .261cmC .61cmD .234cm10.如图6,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB =2;②当点E 与点B 重合时,MH =12;③AF+BE=EF ;④MG •MH =12,其中正确结论为A .①②③B .①③④C .①②④D .①②③④第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)11.太阳的半径约为696000千米,用科学记数法表示为_______千米.12.一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______. 13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.14.已知:()226230a b b ++--=,则224b b a --的值为_________. 15.如图7,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M的直线l ∥y 轴,且直线l 分别与反比例函数8y x =(x >0)和k y x =(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为__________.16.已知抛物线p :y =ax 2+bx +c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的每周课外阅读时间(小时) 0~1 1~2 (不含1) 2~3(不含2)超过3人 数7101419图5- 3抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为_____________________.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。
资阳市2008年高中阶段学校招生统一考试
08年的中考真题资阳市2008年高中阶段学校招生统一考试文科综合全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(综合题)两部分。
第Ⅰ卷1至6页,第Ⅱ卷7至12页。
全卷满分150分,考试时间120分钟。
答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)亲爱的同学,请注意:每小题选出的答案不能答在试卷上,必须用铅笔把对应题目的答案填涂在答题卡上,如需改动,用橡皮擦擦净后,再选涂其它答案。
一、选择题:本大题共30小题,每小题2分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求。
1.2007年10月24日,我国首颗绕月探测卫星“______”在西昌卫星发射中心成功发射,标志着我国已经进入世界具有深空探测能力的国家行列。
A.神舟六号B.月球一号C.长征三号D.嫦娥一号2.2007年10月15日至21日,中国共产党第十七次全国代表大会在北京召开,全会通过了胡锦涛代表第十六届中央委员会向大会作的题为《高举______伟大旗帜为夺取全面建设小康社会新胜利而奋斗》的报告,通过了《中国共产党______(修正案)》。
A.马克思主义党章B.三个代表党章C.邓小平理论章程D.中国特色社会主义章程3.中共中央、国务院2008年1月8日在北京举行国家科学技术奖励大会。
胡锦涛向获得2007年度国家最高科学技术奖的______和______颁发了奖励证书。
A.李振声袁隆平B.闵恩泽吴征镒C.叶笃正吴孟超D.刘东生王永志4.2008年3月31日,象征着和平、友谊、希望的奥林匹克圣火抵达北京。
_____在圣火欢迎暨火炬接力启动仪式上亲手点燃圣火盆,并宣布北京2008年奥运会火炬接力开始。
A.刘淇B.刘翔C.胡锦涛D.温家宝5.对于人的成长来说,承担责任是①自尊自信的具体表现②自立自强的必然选择③走向成熟的重要标志④父母对子女履行的义务A.①②③B.①②④C.②③④D.①③④6.2007年度感动中国人物荣誉获得者谢延信,在妻子去世前,答应好好照顾妻子的爹妈和智障兄弟,此后,他用33年辛劳,延展爱心,信守承诺。
2008年四川省资阳市高中阶段学校招生数学试题及答案
资阳市2008年高中阶段学校招生统一考试数 学一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是 A .4B .2C .-2D .2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有 A .D 点B .A 点C .A 点和D 点D .B 点和C 点3.下列运算正确的是 A .(ab )5=ab5B .a 8÷a 2=a 6C .(a 2)3=a 5D .(a -b )2=a 2-b 24.如图2,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是 A .α的余角只有∠B B .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补5.下列说法正确的是A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为(结果保留整数)A .-26°CB .-22°CC .-18°CD .22°C7.已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2 + 2cx + (a + b )=0的根的情况是 A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根8.已知矩形ABCD 的边AB =15,BC =20,以点B 为圆心作圆,使A 、C 、D三点至少有一点图2图1在⊙B 内,且至少有一点在⊙B 外,则⊙B 的半径r 的取值范围是A .r >15B .15<r <20C .15<r <25D .20<r <259.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 210.如图3,已知Rt △ABC ≌Rt △DEC ,∠E =30°,D 为AB 的中点,AC =1,若△DEC 绕点D 顺时针旋转,使ED 、CD 分别与Rt △ABC 的直角边BC 相交于M 、N ,则当△DMN 为等边三角形时,AM 的值为A.B.3C3D .1二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD 中,对角线AC 、BD 交于点O ,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080__________.13.若A (1x ,1y )、B (2x ,2y )在函数12y x的图象上,则当1x 、2x 满足_______________时,1y >2y .14.如图5,校园内有一块梯形草坪ABCD ,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF ,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x ,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)图4图5图3图6先化简,再求值:(21 2x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.19.(本小题满分8分)图7惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1)3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区?(2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A袋中放着分别标有数字1、2、3的三个小球,B袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放..回.地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;(2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2k x的图象都经过点(1,1).(1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.·22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少?(结果可保留根号)23.(本小题满分10分)阅读下列材料,按要求解答问题:如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C图8=90°,c=2b,a=,得a2-b2=)2-b2=2b2=b·c.即a2-b2=bc.于是,小明猜测:对于任意的ΔABC,当∠A=2∠B时,关系式a2-b2=bc都成立.(1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A=2∠B,请直接写出这个三角形三边的长,不必说明理由.24.(本小题满分12分)如图10,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.(1)求抛物线的解析式;(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD 的解图9-1图9-2图9-3析式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD ?如果存在,请求出点P 的坐标;如果不存在,请说明理由.资阳市2008年高中阶段学校招生统一考试数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB. 二、填空题:(每小题3分,共6个小题,满分18分) 11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可;124(或34;13.答案不唯一,x 1<x 2<0,或 0<x 1<x 2,或210x x <<或122,3x x ==-等之一均可; 14. 4; 15.10 ; 16.9,12; 三、解答题:(共9个小题,满分72分) 17.原式=[1(2)x x -–21(2)x -]×(2)2x x - ························································· 3分图10图7 =1(2)x x -×(2)2x x -–21(2)x -×(2)2x x -=12–2(2)x x - ································································································· 4分=22(2)x x --–2(2)xx -=12x- ··········································································································· 5分当x =1时, 原式=121- ····································································································· 6分= 1 ················································································································· 7分说明:以上步骤可合理省略 . 18.(1) 内. ··································································································· 2分 (2) 证法一:连接CD , ·················································································· 3分 ∵ DE ∥AC ,DF ∥BC , ∴ 四边形DECF 为平行四边形, ··································································· 4分 又∵ 点D 是△ABC 的内心, ∴ CD 平分∠ACB ,即∠FCD =∠ECD ,··························································· 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , ·································································································· 6分 ∴ □DECF 为菱形.······················································································· 7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ······························· 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH .∴DH =DI . ····································································································· 4分 ∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ····································································· 5分 ∴S □DECF =CE ·DH =CF ·DI , ∴CE =CF .····································································································· 6分 ∴□DECF 为菱形.························································································ 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, ············································· 1分 ∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区. ······················································································································ 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x )辆,····································· 3分 由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩ ········································································ 5分解得:1.5≤x ≤5····························································································· 6分 注意到x 为正整数,∴x =2,3,4,5 ······························································· 7分∴····················· 8分 说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程...也给全分. 20.(1) 大双的设计游戏方案不公平.···························································· 1分或列树状图如下:0····················································· 4分∴P(大双得到门票)= P(积为偶数)=46=23,P(小双得到门票)= P(积为奇数)=13,······························································· 6分∵23≠13,∴大双的设计方案不公平. ····························································· 7分(2) 小双的设计方案不公平.·········································································· 9分参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y =2k x的图象经过点(1,1),∴1=2k ············································································································ 1分解得k =2, ····································································································· 2分 ∴反比例函数的解析式为y =1x. ···································································· 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, ···················································· 5分 ∵点A 在第三象限,且同时在两个函数图象上, ∴A (12-,–2). ······························································································ 6分 (3) P 1(32,–2),P 2(52-,–2),P 3(52,2).(每个点各1分) ····························· 9分22. (1) 在Rt △BPQ 中,PQ =10米,∠B =30°,则BQ =cot30°×PQ=······································································ 2分又在Rt △APQ 中,∠PAB =45°, 则AQ =cot45°×PQ =10,即:AB=(米);···················································· 5分 (2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B =30°,AB=, ∴ AE =sin30°×AB =12(),············································ 7分∵∠CAD =75°,∠B =30°,∴ ∠C =45°, ····························································································· 8分 在Rt △CAE 中,sin45°=AE AC,∴AC )米) ················································· 10分 23. (1) 由题意,得∠A =90°,c =b ,a ,∴a 2–b 2)2–b 2=b 2=bc . ················································· 3分 (2) 小明的猜想是正确的. ·················································· 4分 理由如下:如图3,延长BA 至点D ,使AD =AC =b ,连结CD , ··························································································· 5分 则ΔACD 为等腰三角形.∴∠BAC =2∠ACD ,又∠BAC =2∠B ,∴∠B =∠ACD =∠D ,∴ΔCBD 为等腰三角形,即CD =CB =a , ·················································· 6分又∠D =∠D ,∴ΔACD ∽ΔCBD , ·········································· 7分图9-3图8图10答案图1∴AD CD CDBD=.即b a ab c=+.∴a 2=b 2+bc .∴a 2–b 2= bc ·········· 8分(3) a =12,b =8,c =10.····················································· 10分24.(1) ∵以AB 为直径作⊙O ′,交y 轴的负半轴于点C , ∴∠OCA +∠OCB =90°, 又∵∠OCB +∠OBC =90°, ∴∠OCA =∠OBC , 又∵∠AOC = ∠COB =90°, ∴ΔAOC ∽ ΔCOB ,·························································································· 1分 ∴O A O C O C O B =.又∵A (–1,0),B (9,0), ∴19O C O C=,解得OC =3(负值舍去).∴C (0,–3), ······················································································································ 3分 设抛物线解析式为y =a (x +1)(x –9), ∴–3=a (0+1)(0–9),解得a =13,∴二次函数的解析式为y =13(x +1)(x –9),即y =13x 2–83x –3. ······························ 4分(2) ∵AB 为O ′的直径,且A (–1,0),B (9,0), ∴OO ′=4,O ′(4,0), ······················································································ 5分 ∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D , ∴∠BCD =12∠BCE =12×90°=45°,连结O ′D 交BC 于点M ,则∠BO ′D =2∠BCD =2×45°=90°,OO ′=4,O ′D =12AB =5.∴D (4,–5). ·································································································· 6分 ∴设直线BD 的解析式为y =kx +b (k ≠0) ∴90,4 5.k b k b +=⎧⎨+=-⎩ ··························································· 7分解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y =x –9. ····································· 8分 (3) 假设在抛物线上存在点P ,使得∠PDB =∠CBD ,解法一:设射线DP 交⊙O ′于点Q ,则 BQC D =. 分两种情况(如答案图1所示): ①∵O ′(4,0),D (4,–5),B (9,0),C (0,–3). ∴把点C 、D 绕点O ′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q 1重合,因此,点Q 1(7,–4)符合 BQC D =,。
2007年四川资阳市高中阶段学校招生统一考试数学试卷
2007年四川资阳市高中阶段学校招生统一考试数学试卷参考答案说明:1.解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2.参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3.评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4.给分和扣分都以1分为基本单位;5.正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同。
一、选择题:每小题3分,共10个小题,满分30分。
1.A2.C3.C4.B5.A6.B7.D8.B9.D10.D二、填空题:每小题3分,共6个小题,满分18分。
11.36;12.180;13.x=3;14.10;15.–x+1;16.2476099说明:第12题填180°、第13题填3、第16题填195均可得分。
三、解答题:共9个小题,满分72分 .17.原式=223121()112x x x x x x −−+−−−− ·············································································1分 =2(2)(2)(1)12x x x x x +−−−×−− ························································································2分 =-(x +2)(x -1) ··································································································3分=-x 2-x +2 ··················································································································4分当x=-原式=2((2----+ ······················································································5分 =-分····························································································································7分说明:以上步骤可合理省略。
四川省资阳市中考数学试题(word版-有答案)汇编
更多精品文档资阳市2011年高中阶段教育学校招生考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -4的相反数是( ) A. 4B. -4C.14D. 14-2. 某运动品牌经销商到一所学校对某年级学生的鞋码大小进行抽样调查,经销商最感兴趣的是所得数据的( )A. 中位数B. 众数C. 平均数D. 方差3. 下列计算中,正确的是( )A. =B. =C.3D. 3=-4. 如图1,已知射线OP 的端点O 在直线MN 上,∠2比∠1的2倍少30°,设∠2的度数为x ,∠1的度数为y ,则x 、y 满足的关系为( )A. 180,230x y x y +=⎧⎨=+⎩B. 180,230x y x y +=⎧⎨=-⎩C. 90,230x y y x +=⎧⎨=-⎩D. 180,230x y y x +=⎧⎨=-⎩5. 图2所示的几何体的左视图是( )图2图1更多精品文档6. 将一张正方形纸片如图3所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是( )7. 如图4( ) A. 点M B. 点N C. 点PD. 点Q8. 如图5,若正方形EFGH 由正方形ABCD 绕某点旋转得到,则可以作为旋转中心的是( )A. M 或O 或NB. E 或O 或CC. E 或O 或ND. M 或O 或C9. 在某校校园文化建设活动中,小彬同学为班级设计了一个班徽,这个班徽图案由一对大小相同的较大半圆挖去一对大小相同的较小半圆而得.如图6,若它们的直径在同一直线上,较大半圆O 1的弦AB ∥O 1O 2,且与较小半圆O 2相切, AB =4,则班徽图案的面积为( )A. 25πB. 16πC. 8πD. 4π10. 给出下列命题:①若m =n +1,则22120m mn n -+-=;② 对于函数(0)y kx b k =+≠,若y 随x 的增大而增大,则其图象不能同时经过第二、四象限;③ 若a 、b (a ≠b )为2、3、4、5这四个数中的任意两个,则满足2a b ->4的有序数组(a ,b )共有5组.其中所有正确....命题的序号是( )A . ①②B . ①③C . ②③D. ①②③资阳市2011年高中阶段教育学校招生考试数 学图4图3图5图6更多精品文档注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 一元二次方程x 2+x =0的两根为________________. 12. 若正n 边形的一个外角等于40°,则n =____________ .13. 在资阳市团委发起的“暖冬行动”中,某班50名同学响应号召,纷纷捐出零花钱.若不同捐款金额的捐款人数百分比统计结果如图7所示,则该班同学平均每人捐款________元.14. 如图8,在△ABC 中,若AD ⊥BC 于D ,BE ⊥AC 于E ,且AD 与BE 相交于点F ,BF =AC ,则∠ABC =_________°.15. 将抛物线221y x =-沿x 轴向右平移3个单位后,与原抛物线交点的坐标为________.16. 甲、乙、丙三位同学组成乒乓球兴趣小组参加课外活动,约定活动规则如下:两人先打,输了的被另一人换下,赢了的继续打,下一次活动接着上一次进行.假设某段时间内甲打的场次为a ,乙打的场次为b ,丙打的场次为c .若a =b ,显然有c 最大值=a +b ;若a ≠b ,通过探究部分情况,得到c 的最大值如上表所示. 进一步探究可得,当a =27,b =20时,c 的最大值是____________.三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17. (本小题满分6分)化简:219(1)44x x x --÷++.图8图7更多精品文档18. (本小题满分7分)如图9,已知四边形ABCD 为平行四边形,AE ⊥BD 于E ,CF ⊥BD 于F . (1) 求证:BE = DF ;(5分)(2) 若 M 、N 分别为边AD 、BC 上的点,且DM =BN ,试判断四边形MENF 的形状(不必说明理由).(2分)19. (本小题满分7分)某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1) 需租用48座客车多少辆? (5分)解 设需租用48座客车x 辆.则需租用64座客车_________辆.当租用64座客车时,未坐满的那辆车还有___________________个空位(用含x 的代数式表示).由题意,可得不等式组:__ ____解这个不等式组,得:_ ____ 因此,需租用48座客车 辆.(2) 若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?(2分)20. (本小题满分8分)小国同学的父亲参加旅游团到某地旅游,准备买某种礼物送给小国.据了解,沿旅游线路依次有A 、B 、C 三个地点可以买到此种礼物,其质量相当,价格各不相同,但不知哪家更便宜.由于时间关系,随团旅游车不会掉头行驶.(1) 若到A 处就购买,写出买到最低价格礼物的概率;(2分)(2) 小国同学的父亲认为,如果到A 处不买,到B 处发现比A 处便宜就马上购买,否则到C 处购买,这样更有希望买到最低价格的礼物.这个想法是否正确?试通过树状图分析说明.(6分)21. (本小题满分8分)如图10,A 、B 、C 、D 、E 、F 是⊙O 的六等分点.(1) 连结AB 、AD 、AF ,求证:AB +AF = AD ;(5分)(2) 若P 是圆周上异于已知六等分点的动点,连结PB 、PD 、PF ,写出这三条线段长度的数量关系(不必说明理由).(3分)图10图9更多精品文档22. (本小题满分8分)如图11,已知反比例函数y =mx(x >0)的图象与一次函数y =-x +b 的图象分别交于A (1,3)、B 两点.(1) 求m 、b 的值;(2分)(2) 若点M 是反比例函数图象上的一动点,直线MC ⊥x 轴于C ,交直线AB 于点N ,MD ⊥y 轴于D ,NE ⊥y 轴于E ,设四边形MDOC 、NEOC 的面积分别为S 1、S 2,S =S 2 –S 1,求S 的最大值.(6分)23. (本小题满分9分)如图12-1,在梯形ABCD 中,已知AD ∥BC ,∠B =90°,AB =7,AD =9,BC =12,在线段BC 上任取一点E ,连结DE ,作EF DE ,交直线AB 于点F .(1) 若点F 与B 重合,求CE 的长;(3分)(2) 若点F 在线段AB 上,且AF =CE ,求CE 的长; (4分)(3) 设CE =x ,BF =y ,写出y 关于x 的函数关系式(直接写出结果即可).(2分)24. (本小题满分9分)在一次机器人测试中,要求机器人从A 出发到达B处.如图13-1,已知点A 在O 的正西方600cm 处,B 在O 的正北方300cm 处,且机器人在射线AO 及其右侧(AO 下方)区域的速度为20cm/秒,在射线AO 的左侧(AO 上方)区域的速度为10cm/秒.(1) 分别求机器人沿A →O →B 路线和沿A →B 路线到达B 处所用的时间(精确到秒);(3分)(2) 若∠OCB =45°,求机器人沿A →C →B 路线到达B 处所用的时间(精确到秒);(3分)(3) 如图13-2,作∠OAD =30°,再作BE ⊥AD 于E ,交OA 于P .试说明:从A 出发到达B 处,机器人沿A →P →B 路线行进所用时间最短.(3分) (1.4141.732≈2.236≈2.449)25. (本小题满分10分)已知抛物线C :y =ax 2+bx +c (a <0)过原点,与x 轴的另一个交点为B (4,0),A为抛物线C 的顶点.(1) 如图14-1,若∠AOB =60°,求抛物线C的图11解析式;(3分)(2) 如图14-2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3分)(3) 在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB PA'=的点P的坐标.(4分)资阳市2011年高中阶段教育学校招生考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABCBD;6-10. CCADD.更多精品文档更多精品文档二、填空题(每小题3分,共6个小题,满分18分):11. x 1=0,x 2=-1;12. 9;13. 14;14. 45;15. (32,72);16. 35.三、解答题(共9个小题,满分72分):17. 219(1)44x x x --÷++ =(4)14x x +-+÷294x x -+ ························································································· 2分=(4)14x x +-+÷(3)(3)4x x x +-+ ················································································ 4分=34x x ++×4(3)(3)x x x ++- ······················································································ 5分 =13x -. ······································································································ 6分 18. (1) ∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD , ····················································································· 1分 ∴∠ABD =∠CDB . ························································································ 2分 ∵AE ⊥BD 于E ,CF ⊥BD 于F ,∴∠AEB =∠CFD =90°. ······································· 3分 ∴△ABE ≌△CDF (A.A.S.), ············································································· 4分 ∴BE =DF . ··································································································· 5分 (2) 四边形MENF 是平行四边形. ···································································· 7分 19. (1) (x -1) ··································································································· 1分(16x -64)(此空没有化简同样给分). ······························································ 2分 16640,166432.x x ->⎧⎨-<⎩ ······························································································· 4分 (注:若只列出一个正确的不等式,得1分) 解得 4<x <6.∵ x 为整数,∴x =5. ··································································· 5分 因此需租用48座客车5辆.(2) 租用48座客车所需费用为5×250=1250(元), 租用64座客车所需费用为(5-1)×300=1200(元), ················································· 6分 ∵ 1200<1250,∴ 租用64座客车较合算. ························································· 7分 因此租用64座客车较合算.20. (1) P A 处买到最低价格礼物=13. ··················································································· 2分(2) 作出树状图如下:·························································· 6分由树状图可知:P 购到最低价格礼物=36=12, ································································· 7分更多精品文档∵12>13,∴他的想法是正确的. ······································································ 8分 (注:若判断了想法正确,但没有说理,得1分) 21. (1) 连结OB 、OF . ······················································································· 1分∵A 、B 、C 、D 、E 、F 是⊙O 的六等分点, ∴ AD 是⊙O 的直径,····················································································· 2分 且∠AOB =∠AOF =60°, ··················································································· 3分 ∴ △AOB 、△AOF 是等边三角形. ···································································· 4分 ∴AB =AF =AO ,∴AB +AF = AD . ······································································· 5分(2) 当P 在BF 上时,PB +PF = PD ;当P 在BD 上时,PB +PD = PF ;当P 在DF 上时,PD +PF =PB . ························································································································ 8分(注:若只写出一个关系式且未注明点P 的位置,不得分;若写出两个关系式且未注明点P 的位置,得1分;若写出三个关系式且未注明点P 的位置,得2分.)22. (1) 把A (1,3)的坐标分别代入y =mx、y =-x +b ,可求得m =3,b =4. ······················· 2分(2) 由(1)知,反比例函数的解析式为y =3x,一次函数的解析式为y =-x +4.∵ 直线MC ⊥x 轴于C ,交直线AB 于点N ,∴ 可设点M 的坐标为(x ,3x),点N 的坐标为(x ,-x +4),其中,x >0. ···················· 3分又∵ MD ⊥y 轴于D ,NE ⊥y 轴于E ,∴ 四边形MDOC 、NEOC 都是矩形, ··············· 4分∴ S 1=x ·3x=3,S 2=x ·(-x +4)=-x 2+4x , ································································ 5分∴ S =S 2 –S 1=(-x 2+4x )-3=-(x -2)2+1.其中,x >0. ············································· 6分 ∴ 当x =2时,S 取得最大值,其最大值为1. ······················································ 8分 23. (1) ∵F 与B 重合,且EF ⊥DE ,∴DE ⊥BC , ····················································· 1分∵AD ∥BC ,∠B =90°,∴∠A =∠B =90°, ∴四边形ABED 为矩形, ················································································· 2分 ∴BE =AD =9, ∴CE =12-9=3. ···························································································· 3分 (2) 作DH ⊥BC 于H ,则DH = AB =7,CH =3.设AF =CE =x ,∵F 在线段AB 上,∴点E 在线段BH 上,∴HE =x -3,BF =7 –x , ·········································································· 4分∵∠BEF +90°+∠HED =180°,∠HDE +90°+∠HED =180°, ∴∠BEF =∠HDE ,又∵∠B =∠DHE =90°, ∴△BEF ∽△HDE , ······················································································· 6分 ∴73127x x x --=-,整理得x 2-22x +85=0,(x -5)(x -17)=0,∴x =5或17,经检验,它们都是原方程的解,但x =17不合题意,舍去.∴x =CE =5. ······················································ 7分(3) y =2211536(03),77711536(312).777x x x x x x ⎧-+≤<⎪⎪⎨⎪-+-≤≤⎪⎩ ··································································· 9分(注:未写x 取值范围不扣分,写出一个关系式得1分) 24. (1) 沿A →O →B 路线行进所用时间为:600÷20+300÷10=60(秒), ····························· 1分更多精品文档在Rt △OBA 中,由勾股定理,得AB(cm). ··························· 2分 ∴沿A →B 路线行进所用时间为:÷10≈300×2.236÷10≈67(秒).························ 3分(2) 在Rt △OBC 中,OB =300,∠OCB =45°,∴OC = OB =300cm,BC =300sin 45º····· 4分∴AC =600-300=300(cm).∴沿A →C →B 路线行进所用时间为:AC ÷20+BC ÷10=300÷÷10≈15+42.42≈57(秒). ·················································································································· 6分 (3) 在AO 上任取异于点P 的一点P ′,作P ′E ′⊥AD 于E ′,连结P ′B ,在Rt △APE 和Rt △AP ′E ′中,sin30°=EP AP =E P AP ''',∴EP =2AP ,E ′P ′=2AP '.················· 7分∴沿A →P →B 路线行进所用时间为:AP ÷20+PB ÷10= EP ÷10+PB ÷10=(EP +PB )÷10=110BE (秒),沿A →P ′→B 路线行进所用时间为:AP ′÷20+P ′B ÷10= E ′P ′÷10+P ′B ÷10=(E ′P ′+P ′B )÷10= 110(E ′P ′+P ′B )(秒). ······················· 8分连结BE ′,则E ′P ′+P ′B > BE ′>BE ,∴110BE <110(E ′P ′+P ′B ).∴ 沿A →P →B 路线行进所用时间,小于沿A →P ′→B 路线行进所用时间. 即机器人沿A →P →B 路线行进所用时间最短. ····················································· 9分 25. (1) 连接AB .∵ A 点是抛物线C 的顶点,且C 交x 轴于O 、B ,∴AO =AB ,又∵∠AOB =60°,∴ △ABO 是等边三角形. ······················································ 1分过A 作AD ⊥x 轴于D ,在Rt △OAD 中,易求出OD =2,AD=∴ 顶点A 的坐标为(2,. ········································································ 2分设抛物线C的解析式为2(2)y a x =-+a ≠0),将O (0,0)的坐标代入,可求a=,∴ 抛物线C的解析式为2y =+. ······················································ 3分 (2) 过A 作AE ⊥OB 于E ,∵ 抛物线C :2(0)y ax bx c a =++<过原点和B (4,0),顶点为A ,∴ OE =12OB =2,又∵ 直线OA 的解析式为y =x ,∴ AE =OE =2,∴ 点A 的坐标为(2,2) . ··············· 4分 将A 、B 、O 的坐标代入2(0)y ax bx c a =++<中,易求a =12-, ∴ 抛物线C 的解析式为2122y x x =-+. ···························································· 5分又∵ 抛物线C 、C ′关于原点对称,∴ 抛物线C ′的解析式为2122y x x =+. ················ 6分(3) 作A ′B 的垂直平分线l ,分别交A ′B 、x 轴于M 、N (n ,0), 由前可知,抛物线C ′的顶点为A ′(-2,-2),故A ′B 的中点M 的坐标为(1,-1), 作MH ⊥x 轴于H ,易证△MHN ∽△BHM ,则2MH HN HB =,即21(1)(41)n =--,∴ 23n =,即N 点的坐标为(23,0).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资阳市2008年高中阶段学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是 A .4B .2C .-2D .2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有 A .D 点B .A 点C .A 点和D 点D .B 点和C 点3.下列运算正确的是 A .(ab )5=ab 5B .a 8÷a 2=a 6C .(a 2)3=a 5D .(a -b )2=a 2-b 24.如图2,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是 A .α的余角只有∠BB .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补5.下列说法正确的是A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度6.2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,图2图1于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C,峰顶的温度为(结果保留整数)A.-26°C B.-22°C C.-18°C D.22°C7.已知a、b、c分别是三角形的三边,则方程(a + b)x2 + 2cx + (a + b)=0的根的情况是A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根8.已知矩形ABCD的边AB=15,BC=20,以点B为圆心作圆,使A、C、D三点至少有一点在⊙B 内,且至少有一点在⊙B外,则⊙B的半径r的取值范围是A.r>15 B.15<r<20 C.15<r<25 D.20<r<259.在平面直角坐标系中,如果抛物线y=2x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A.y=2(x-2)2 + 2 B.y=2(x + 2)2-2C.y=2(x-2)2-2 D.y=2(x + 2)2 + 210.如图3,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED、CD分别与Rt△ABC的直角边BC相交于M、N,则当△DMN为等边三角形时,AM的值为A.3B.23C.3D.1图3资阳市2008年高中阶段学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人1718192021222324得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD 中,对角线AC 、BD 交于点O ,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20080+233=__________. 13.若A (1x ,1y )、B (2x ,2y )在函数12y x的图象上,则当1x 、2x 满足_______________时,1y >2y . 14.如图5,校园内有一块梯形草坪ABCD ,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF ,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).15.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x ,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.图4图5图6三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(21 2x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.图719.(本小题满分8分)惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1) 3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区?(2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A袋中放着分别标有数字1、2、3的三个小球,B袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放回...地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;(2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.·22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少?(结果可保留根号)23.(本小题满分10分)阅读下列材料,按要求解答问题:图8如图9-1,在ΔABC中,∠A=2∠B,且∠A=60°.小明通过以下计算:由题意,∠B=30°,∠C=90°,c =2b,a=3b,得a2-b2=(3b)2-b2=2b2=b·c.即a2-b2=bc.于是,小明猜测:对于任意的ΔABC,当∠A=2∠B时,关系式a2-b2=bc都成立.(1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A=2∠B,请直接写出这个三角形三边的长,不必说明理由.图9-1图9-2图9-324.(本小题满分12分)如图10,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y 轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.(1)求抛物线的解析式;(2)点E 是AC延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,连结BD ,求直线BD 的解析式; (3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD ?如果存在,请求出点P 的坐标;如果不存在,请说明理由.资阳市2008年高中阶段学校招生统一考试数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB.二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可;12.343+(或34+3);13.答案不唯一,x 1<x 2<0,或 0<x 1<x 2,或210x x <<或122,3x x ==-等之一均可; 14. 4; 15.10 ; 16.9,12;三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - ··················································3分图10图7=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x - =12–2(2)x x -·····················································································4分 =22(2)x x --–2(2)x x - =12x - ·····························································································5分 当x =1时,原式=121- ·······················································································6分= 1 ··································································································7分 说明:以上步骤可合理省略 . 18.(1) 内. ······················································································2分 (2) 证法一:连接CD , ···········································································3分 ∵ DE ∥AC ,DF ∥BC ,∴ 四边形DECF 为平行四边形, ····························································4分 又∵ 点D 是△ABC 的内心,∴ CD 平分∠ACB ,即∠FCD =∠ECD , ·····················································5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC ∴ FC =FD , ·······················································································6分 ∴ □DECF 为菱形. ···········································································7分 证法二:过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ······························3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH .∴DH =DI . ·······················································································4分∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ······························································5分 ∴S □DECF =CE ·DH =CF ·DI , ∴CE =CF . ·······················································································6分 ∴□DECF 为菱形. ···········································································7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, ···········································1分∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区. ······································································································2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x )辆, ·····································3分由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩ ·································································5分解得:1.5≤x ≤5 ···················································································6分注意到x 为正整数,∴x =2,3,4,5 ·······························································7分∴安排甲、乙两种货车方案共有下表4种:方案方案一方案二方案三方案四甲种货车 2 3 4 5乙种货车7 6 5 4 ······································································································8分说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程...也给全分. 20.(1) 大双的设计游戏方案不公平.····················································1分可能出现的所有结果列表如下:1 2 34 4 8 125 5 10 15或列树状图如下:0··············································4分∴P(大双得到门票)= P(积为偶数)=46=23,P(小双得到门票)= P(积为奇数)=13, ·························································6分∵23≠13,∴大双的设计方案不公平. ······················································7分(2) 小双的设计方案不公平.································································9分参考:可能出现的所有结果列树状图如下:A袋积B袋21.(1) ∵反比例函数y =2k x 的图象经过点(1,1), ∴1=2k ·····························································································1分 解得k =2, ··························································································2分∴反比例函数的解析式为y =1x. ···························································3分 (2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, ··············································5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A (12-,–2). ···················································································6分 (3) P 1(32,–2),P 2(52-,–2),P 3(52,2).(每个点各1分) ·····································9分 22. (1) 在Rt △BPQ 中,PQ =10米,∠B =30°,则BQ =cot30°×PQ =103, ···························································· 2分 又在Rt △APQ 中,∠P AB =45°,则AQ =cot45°×PQ =10,即:AB =(103+10)(米); ··············································· 5分(2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B =30°,AB =103+10,∴ AE =sin30°×AB =12(103+10)=53+5, ··········································· 7分 ∵∠CAD =75°,∠B =30°,∴ ∠C =45°, ················································································· 8分 在Rt △CAE 中,sin45°=AE AC, ∴AC =2(53+5)=(56+52)(米) ··············································· 10分23. (1) 由题意,得∠A =90°,c =b ,a =2b ,∴a 2–b 2=(2b )2–b 2=b 2=bc . ·········································· 3分(2) 小明的猜想是正确的. ··········································· 4分理由如下:如图3,延长BA 至点D ,使AD =AC =b ,连结CD ,·············································································· 5分则ΔACD 为等腰三角形.∴∠BAC =2∠ACD ,又∠BAC =2∠B ,∴∠B =∠ACD =∠D ,∴ΔCBD为等腰三角形,即CD =CB =a , ················································ 6分又∠D =∠D ,∴ΔACD ∽ΔCBD , ······································ 7分图9-3图8∴AD CDCD BD=.即b aa b c=+.∴a2=b2+bc.∴a2–b2= bc······· 8分(3) a=12,b=8,c=10. ··················································10分24.(1) ∵以AB为直径作⊙O′,交y轴的负半轴于点C,∴∠OCA+∠OCB=90°,又∵∠OCB+∠OBC=90°,∴∠OCA=∠OBC,又∵∠AOC= ∠COB=90°,∴ΔAOC∽ ΔCOB, ···············································································1分∴OA OC OC OB=.又∵A(–1,0),B(9,0),∴19OCOC=,解得OC=3(负值舍去).∴C(0,–3), ······································································································3分设抛物线解析式为y=a(x+1)(x–9),∴–3=a(0+1)(0–9),解得a=1 3 ,∴二次函数的解析式为y=13(x+1)(x–9),即y=13x2–83x–3.····························4分(2) ∵AB为O′的直径,且A(–1,0),B(9,0),∴OO′=4,O′(4,0), ·················································································5分∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,∴∠BCD=12∠BCE=12×90°=45°,连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D=12AB=5.∴D(4,–5).·······················································································6分∴设直线BD的解析式为y=kx+b(k≠0)∴90,4 5.k bk b+=⎧⎨+=-⎩·················································· 7分解得1,9. kb=⎧⎨=-⎩∴直线BD的解析式为y=x–9. ································ 8分(3) 假设在抛物线上存在点P,使得∠PDB=∠CBD,解法一:设射线DP交⊙O′于点Q,则BQ CD=.分两种情况(如答案图1所示):①∵O′(4,0),D(4,–5),B(9,0),C(0,–3).∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q1重合,因此,点Q1(7,–4)符合BQ CD=,图10答案图1。