第八节 圆锥曲线的综合问题
9.8圆锥曲线的综合问题
答题模板系列(12) 圆锥曲线中的探索性问题 x2 y2 【示例】 (13 分)如图,椭圆 E:a2+b2=1(a>b>0)的左焦点为 1 F1,右焦点为 F2,离心率 e=2.过 F1 的直线交椭圆于 A、B 两点, 且△ABF2 的周长为 8. a 2 4c 2 4a 8
4 9 a2+b2=1, 解得 b2=12,b2=-3(舍去).a2=16. 且有 a2-b2=4.
x2 y2 所以椭圆 C 的方程为16+12=1.
题型三 圆锥曲线中的探索性问题 【例 3】 已知中心在坐标原点 O 的椭圆 C 经过点 A(2,3), 且点 F(2,0) 3 0 y x t 为其右焦点. 2 (2)是否存在平行于 OA 的直线 l,使得直线 l 与椭圆 C 有公共点, 且直线 OA 与 l 的距离等于 4?若存在,求出直线 l 的方程;若不存 在,说明理由. d 4 3 (2)假设存在符合题意的直线 l,设其方程为 y=2x+t. 3 y=2x+t, 由 2 得 3x2+3tx+t2-12=0. 2 x + y =1, 16 12 ∵直线 l 与椭圆 C 有公共点, ∴Δ=(3t)2-4×3×(t2-12)≥0,
(2)求解圆锥曲线中的最值问题一般有两种方法:一是代数法, 即将圆锥曲线中的最值问题坐标化,建立目标函数,转化为函数的 最值求解,多利用均值不等式与函数单调性判断最值;二是几何法, 即根据圆锥曲线的定义和性质, 将其转化为平面几何中的最值问题, 利用已知的结论判断最值.在求解最值问题时要注意圆锥曲线的范 围,即自变量的取值范围的限制; (3)在解析几何中,诸如斜率、距离、面积、比值及基本几何量 与变量无关,则称之为定值问题,定点与定值问题的解法同证明题 类似,首先利用特殊值确定定点和定值,然后大胆设参,进行准确 运算,消掉参数之后即得定点和定值.
高考数学一轮复习 第八章 平面解析几何 8.8 圆锥曲线的综合问题课件
p
已知抛物线y2=2px(p>0)的弦AB的中点M(x0,y0)(y0≠0) ,则kAB=⑧ yc0 . 若涉及直线过圆锥曲线焦点的问题,则一般利用圆锥曲线的定义去解决.
4.定点、定值问题 (1)求定值问题常见的方法 (i)从特殊入手,求出定值,再证明这个值与变量无关. (ii)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. (2)定点问题的常见解法 (i)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该 方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解 为坐标的点即所求定点; (ii)从特殊位置入手,找出定点,再证明该点适合题意.
6.求定值、最值问题等圆锥曲线综合问题要四重视 (1)重视定义在解题中的作用; (2)重视平面几何知识在解题中的作用; (3)重视根与系数的关系在解题中的作用; (4)重视曲线的几何特征与方程的代数特征在解题中的作用. 7.存在性问题 一般采用“假设反证法”或“假设验证法”来解决存在性问题.
1.设抛物线y2=4x的焦点弦被焦点分为长是m和n的两部分,则m与n的关系 是( ) A.m+n=4 B.mn=4 C.m+n=mn D.m+n=2mn 答案 C 解法一:焦点为F(1,0),设焦点弦为AB,其中A(x1,y1),B(x2,y2),当直 线AB的斜率存在时,依题意设AB的方程为y=k(x-1)(k≠0). 由焦半径公式得AF=x1+1=m,BF=x2+1c =n,又 y2 4x,
1 k2
c
|y1-y2|(k≠0)
.
3.已知弦AB的中点,研究AB的斜率和方程
(1)AB是椭圆
x2 a2
+
y2 b2
=1(a>b>0)的一条弦,AB中点M的坐标为(x0,y0)(y0≠0),
高考数学 第八章 第八节 圆锥曲线的综合问题(视情况选用)课件 文
[以题试法 1] 选 C 易知抛物线 y2=8x 的准线 x=-2 与 x 轴 的交点为 Q(-2,0),于是,可设过点 Q(-2,0)的直线 l 的方程为 y=k(x+2)(由题可知 k 是存在的), 联立yy2==k8xx,+2 ⇒k2x2+(4k2-8)x+4k2=0. 当 k=0 时,易知符合题意;当 k≠0 时,其判别式为 Δ=(4k2 -8)2-16k4=-64k2+64≥0, 可解得-1≤k≤1.
7). 所以当且仅当 m=1- 7时,u(m)取到最大值. 故当且仅当 m=1- 7时,S 取到最大值. 综上,所求直线 l 的方程为 3x+2y+2 7-2=0.
第十三页,共18页。
[以题试法 2] 选 B 设抛物线上关于直线 x+y=1 对称的两点是 M(x1,y1)、N(x2,y2),设直线 MN 的方程为 y=x+b.将 y=x+b 代入抛物线方程,得 x2+(2b-2p)x+b2=0,则 x1+x2=2p-2b, y1+y2=(x1+x2)+2b=2p,则 MN 的中点 P 的坐标为(p-b,p).因 为点 P 在直线 x+y=1 上,所以 2p-b=1,即 b=2p-1.又 Δ=(2b-2p)2-4b2=4p2-8bp>0,将 b=2p-1 代入 得 4p2-8p(2p-1)>0,即 3p2-2p<0,解得 0<p<23.
故双曲线方程为 y2-x32=1.
第二页,共18页。
2.选 A 由于直线 y=kx-k+1=k(x-1)+1 过定点(1,1),而(1,1)
在椭圆内,故直线与椭圆必相交.
3.选 C 结合图形分析可知,满足题意的直线共有 3 条:直线 x
=0,过点(0,1)且平行于 x 轴的直线以及过点(0,1)且与抛物线
圆锥曲线的综合问题(含解析)
圆锥曲线的综合问题点点突破热门考点01 圆锥曲线中的定点问题圆锥曲线中定点问题的求解方法圆锥曲线中的定点问题往往与圆锥曲线中的“常数”有关,如椭圆的长、短轴,双曲线的虚、实轴,抛物线的焦参数等.解答这类题要大胆设参,运算推理,到最后参数必清.【典例1】(2020·全国高考真题(理))已知A、B分别为椭圆E:2221xya+=(a>1)的左、右顶点,G为E的上顶点,8AG GB⋅=,P为直线x=6上的动点,P A与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【答案】(1)2219xy+=;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)xE y aa+=>可得:(),0A a-,(),0B a,()0,1G∴(),1AG a =,(),1GB a =- ∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y += (2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭. 当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭. 故直线CD 过定点3,02⎛⎫⎪⎝⎭. 【典例2】(2019年高考北京卷理)已知抛物线C :x 2=−2py 经过点(2,−1). (1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点. 【答案】(1)抛物线C 的方程为24x y =-,准线方程为1y =;(2)见解析.【解析】(1)由抛物线2:2C x py =-经过点(2,1)-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. (2)抛物线C 的焦点为(0,1)F -. 设直线l 的方程为1(0)y kx k =-≠.由21,4y kx x y=-⎧⎨=-⎩得2440x kx +-=. 设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为11y y x x =. 令1y =-,得点A 的横坐标11A x x y =-. 同理得点B 的横坐标22B x x y =-. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=---=--- ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++2 122212(1)44x xnx x=++⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭21216(1)nx x=++24(1)n=-++.令0DA DB⋅=,即24(1)0n-++=,则1n=或3n=-.综上,以AB为直径的圆经过y轴上的定点(0,1)和(0,3)-.【规律方法】圆锥曲线中定点问题的两种解法热门考点02 圆锥曲线中的定值问题圆锥曲线中定值的求解方法圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长、短轴,双曲线的虚、实轴,抛物线的焦参数等.定值问题的求解与证明类似,在求定值之前,已经知道定值的结果(题中未告知,可用特殊值探路求之),解答这类题要大胆设参,运算推理,到最后参数必清,定值显现.【典例3】(2020·山东海南省高考真题)已知椭圆C:22221(0)x ya ba b+=>>的离心率为22,且过点A(2,1).(1)求C的方程:(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.【答案】(1)22163x y+=;(2)详见解析.【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,① 当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=,2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,, 于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫-⎪⎝⎭,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 2212142212333⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭). 由于()21,32,13,A E ⎛⎫- ⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭.故存在点41,33Q ⎛⎫ ⎪⎝⎭,使得|DQ|为定值. 【典例4】(2020·浙江高三月考)已知椭圆2222:1x y C a b+=(0a b >>)的焦距为23(2,0)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)若点(0,1)B ,设P 为椭圆C 上位于第三象限内一动点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值,并求出该定值.【答案】(Ⅰ)2214x y +=;(Ⅱ)四边形ABNM 的面积S 为定值2;证明见解析. 【解析】(Ⅰ)由题意,223c =2a =,求得3c =,所以1b =.所以椭圆C 的方程为2214x y +=;(Ⅱ)设()00,Px y (00x <,00y <),则220044x y +=.又()2,0A ,()0,1B ,所以直线PA 的方程为()0022y y x x =--. 令0x =,得0022M y y x =--,从而002112M y BM y x =-=+-.直线PB 的方程为0011y y x x -=+. 令0y =,得001N x x y =--,从而00221Nx AN x y =-=+-. 所以四边形ABNM 的面积()220000000000000024448411212212222x y x y x y x y S AN BM y x x y x y ⎛⎫⎛⎫++--+=⋅=+⋅+=⎪ ⎪----+⎝⎭⎝⎭ 000000004222222x y x y x y x y --+==--+()()所以四边形ABNM 的面积S 为定值2. 【总结提升】1.圆锥曲线中的定值问题的常见类型及解题策略2.两种解题思路①从特殊入手,求出定值,再证明这个值与变量无关;②引进变量法:其解题流程为:热门考点03 圆锥曲线中的最值与范围问题与圆锥曲线相关的最值、范围问题综合性较强,常用以下方法:1.结合定义利用图形中几何量之间的大小关系.将要讨论的几何量如长度、面积等用参数表示出来,再对表达式进行讨论,应用不等式、三角函数等知识求最值.2.由题目中的限制条件求范围,如直线与圆锥曲线的位置关系中Δ的范围,方程中变量的范围,角度的大小等;3.不等式(组)求解法:根据题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围.4.函数值域求解法:把所讨论的参数作为一个函数、另一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围.5.利用代数基本不等式:代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思.6.构造一个一元二次方程,利用判别式Δ≥0来求解.【典例5】(2020·江苏省高考真题)在平面直角坐标系xOy中,已知椭圆22:143x yE+=的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求OP QP⋅的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【解析】(1)∵椭圆E 的方程为22143x y +=∴()11,0F -,()21,0F 由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠. ∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥ ∴31,2A ⎛⎫⎪⎝⎭∵准线方程为4x = ∴()4,Q Q y∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d . ∵31,2A ⎛⎫⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+ ∵点O 到直线AB 的距离为35,213S S =∴2113133252S S AB AB d ==⨯⨯⨯=⋅∴95d =∴113439x y -+=①∵2211143x y +=②∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【典例6】(2019年高考全国Ⅱ卷理21)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值. 【答案】(1)见解析;(2)169. 【解析】(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uky k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i )得2||21PQ u k =+,2221||2uk k PG k+=+,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k ,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.【典例7】(2018·湖南宁乡一中高三月考)已知椭圆2222:1(0)x y C a b a b +=>>的左,右焦点分别为12F F 、,该椭圆的离心率为2,以原点为圆心,椭圆的短半轴长为半径的圆与直线2y x =+相切.(I )求椭圆C 的方程;(Ⅱ)如图,若斜率为()0k k ≠的直线l 与x 轴,椭圆C 顺次交于,,(P Q R P 点在椭圆左顶点的左侧)且121RF F PFQ ∠=∠,求证:直线l 过定点;并求出斜率k 的取值范围.【答案】(I )2212x y +=;(Ⅱ)证明见解析,⎫⎛⋃⎪ ⎪ ⎝⎭⎝⎭. 【解析】(Ⅰ)解:椭圆的左,右焦点分别为()()12,0,,0F c F c -,椭圆的离心率为2,即有2c a =,即a =,b c ==,以原点为圆心,椭圆的短半轴长为半径的圆方程为222x y b +=,直线y x =+1b ==,即有a =则椭圆C 的方程为2212x y +=;(Ⅱ)证明:设()()()11221,,,,1,0Q x y R x y F -, 由121RF F PFQ ∠=∠,可得直线1QF 和1RF 关于x 轴对称 即有110QF RF k k +=,即1212011y yx x +=++, 即有1222110x y y x y y +++=,①设直线:PQ y kx t =+,代入椭圆方程,可得()222124220kxktx t +++-=,判别式()()222216412220k t k t ∆=-+->,即为2221t k -<②,21212224t 22,1212k t x x x x k k--==+++③1122,y kx t y kx t =+=+,代入①可得,()()1212220k t x x t kx x ++++=, 将③代入,化简可得2t k =,则直线l 的方程为2y kx k =+,即()2y k x =+.即有直线l 恒过定点()2,0-. 将2t k =代入②,可得221k <,解得0k <<或0k <<则直线l 的斜率k 的取值范围是⎫⎛⋃⎪ ⎪ ⎝⎭⎝⎭. 【总结提升】1.处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解. 2.解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.热门考点04 圆锥曲线中的探索性问题探索性问题的求解方法:先假设成立,在假设成立的前提下求出与已知、定理或公理相同的结论,说明结论成立,否则说明结论不成立.处理这类问题,一般要先对结论做出肯定的假设,然后由此假设出发,结合已知条件进行推理论证.若推出相符的结论,则存在性随之解决;若推出矛盾,则否定了存在性;若证明某结论不存在,也可以采用反证法.【典例8】(2019·全国高考真题(文))已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径.(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由. 【答案】(1)2或6; (2)见解析. 【解析】 (1)A 在直线22gR r上 ∴设(),A t t -,则(),B t t -又4AB = 2816t ∴=,解得:t =M 过点A ,B ∴圆心M 必在直线y x =上设(),M a a ,圆的半径为rM 与20x +=相切 2r a ∴=+又MA MB r ==,即((222a a r ++=((()2222a a a ∴-+=+,解得:0a =或4a =当0a =时,2r ;当4a =时,6r =M ∴的半径为:2或6(2)存在定点()1,0P ,使得1MA MP -= 说明如下:A ,B 关于原点对称且4AB =∴直线AB 必为过原点O 的直线,且2OA =①当直线AB 斜率存在时,设AB 方程为:y kx = 则M 的圆心M 必在直线1=-y x k上设(),M km m -,M 的半径为rM 与20x +=相切 2r km ∴=-+又r MA ===2km ∴-+=,整理可得:24m km =-即M 点轨迹方程为:24y x =,准线方程为:1x =-,焦点()1,0FMA r =,即抛物线上点到2x =-的距离 ∴1MA MF =+ 1MA MF ∴-=∴当P 与F 重合,即P 点坐标为()1,0时,1MA MP -=②当直线AB 斜率不存在时,则直线AB 方程为:0x =M 在x 轴上,设(),0M n224n n ∴+=+,解得:0n =,即()0,0M若()1,0P ,则211MA MP -=-=综上所述,存在定点()1,0P ,使得MA MP -为定值. 【例9】(2018届广东省东莞市考前冲刺)在直角坐标系中,已知抛物线的焦点为,若椭圆:经过点,抛物线和椭圆有公共点,且.(1)求抛物线和椭圆的方程; (2)是否存在正数,对于经过点且与抛物线有两个交点的任意一条直线,都有焦点在以为直径的圆内?若存在,求出的取值范围;若不存在,请说明理由. 【答案】(1),(2)【解析】 (1)因为抛物线经过点,且. 所以,解得,所以抛物线,焦点,由题意知解得所以椭圆:故抛物线的方程为,椭圆的方程为.(2)假设存在正数适合题意,由题意知直线的斜率一定存在,设直线的方程为由消去,整理得因为直线与抛物线有两个交点且,所以设,则所以因为,所以由题意知恒成立,所以恒成立 因为,所以,解得又因为,所以故存在正数适合题意,此时 d 取值范围为.【总结提升】解析几何中存在性问题的求解方法:1.通常采用“肯定顺推法”,将不确定性问题明朗化,其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于特定参数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在,否则(点、直线、曲线或参数)不存在. 2.反证法与验证法也是求解存在性问题的常用方法.热门考点05 直线、圆及圆锥曲线的交汇问题【典例10】(2019年高考江苏卷)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=,解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x xy ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【典例11】(2019年高考全国Ⅲ卷理)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【答案】(1)见详解;(2)3或42【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- .整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()212||21AB x t =-==+.设12,d d 分别为点D ,E 到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行, 所以()220t t t +-=.解得t =0或1t =±. 当t =0时,S =3;当1t=±时,S =因此,四边形ADBE 的面积为3或【总结提升】直线、圆及圆锥曲线的交汇问题,要认真审题,学会将问题拆分成基本问题,然后综合利用数形结合思想、化归与转化思想、方程的思想等来解决问题,这样可以渐渐增强自己解决综合问题的能力.热门考点06 轨迹问题求一般的动点的轨迹方程要根据动点满足的条件选择合理的方法(如待定系数法、代入法、参数法等),在动点满足一个几何表达式时,一般采用直接把动点坐标代入几何表达式,得到关于动点坐标的代数方程,化简整理这个方程的方法求解(直接法),要注意变换过程的同解性、特殊的点以及动点的变化范围等,使求得的方程恰好是满足几何条件的动点的轨迹方程.【典例12】(2019·宁波市第四中学高二期中)设点A ,B 的坐标分别为()5,0-,()5,0动点M 满足:直线AM ,BM 的斜率之积为925-,则点M 的轨迹方程为______,三角形AMB 面积的最大值为_______. 【答案】221,(5)259x y x +=≠± 15 【解析】设(,)M x y ,因为(5,0)A -,(5,0)B 所以(5)5AM y k x x =≠-+,(5)5BM y k x x =≠- 由已知,25955y y x x =-+-化简,得22925225(5)x y x +=≠±即221,(5)259x y x +=≠±. 即动点M 的轨迹为以A ,B 为长轴顶点的椭圆,显然当M 点位于上下顶点时AMB 面积取得最大值,故()max 1121031522AMB Sa b =⨯⨯=⨯⨯= 故答案为:221,(5)259x y x +=≠±;15. 【典例13】(2017课标II ,理)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F. 【答案】(1) 222x y +=. (2)证明略. 【解析】(2)由题意知()1,0F -.设()()3,,,Q t P m n -,则()()3,,1,,33OQ t PF m n OQ PF m tn =-=---⋅=+-, ()(),,3,OP m n PQ m t n ==---.由1=OP PQ 得2231m m tn n --+-=, 又由(1)知222m n +=,故330m tn +-=. 所以0=OQ PF ,即⊥OQ PF . 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F. 【总结提升】求轨迹方程的常用方法有:(1)直接法:直接利用条件建立x ,y 之间的关系F(x ,y)=0. (2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程. (4)代入(相关点)法:动点P(x ,y)依赖于另一动点Q(x 0,y 0)的变化而运动,常利用代入法求动点P(x ,y)的轨迹方程.巩固提升1.(2019·江苏启东中学高一月考)设P 是椭圆22195x y +=上一点,,M N 分别是两圆()221:21C x y ++=和()222:21C x y -+=上的点,则PM PN +的最小值和最大值分别为( )A .4,8B .2,6C .6,8D .8,12【答案】A 【解析】根据题意作出如下图像,其中12,F F 是椭圆的左,右焦点,在1PMF 中可得:1111PF PM PF -≤≤+…①, 当且仅当1,,P M F 三点共线时,等号成立, 在2PNF 中可得:2211PF PN PF -≤≤+…②,当且仅当2,,P N F 三点共线时,等号成立, 由①+②得:12121111PF PF PM PN PF PF +--≤+≤+++,由椭圆方程22195x y +=可得:29a =,即3a =由椭圆定义可得:1226PF PF a +==,所以12121111PF PF PM PF PF +--≤≤+++可化为:48PM ≤≤. 故选:A.2.(2019·四川石室中学高二月考(理))已知椭圆和双曲线有共同焦点12,F F ,P 是它们的一个交点,1260F PF ∠=︒,记椭圆和双曲线的离心率分别12,e e ,则2212e e +的最小值是( )A .31+B 3C 23D .3【答案】A【解析】由题意设焦距为2c,椭圆长轴长为2a,双曲线实轴为2m,令P在双曲线的右支上,由双曲线的定义|PF1|-|PF2|=2m,由椭圆定义|PF1|+|PF2|=2a,可得|PF1|=m+a,|PF2|=a-m,又∠F1PF2=60°,根据余弦定理得:|PF1|2+|PF2|2-|PF1|•|PF2|=4c2,可得(m+a)2+(a-m)2-(m+a)(a-m)=4c2,整理得a2+3m2=4c2,即222234 ca mc+=,可得2221314e e+=,则()()222222211212222212123113113442314442e ee e e ee e e e⎛⎫⎛⎫+=++=++≥+=+⎪ ⎪⎝⎭⎝⎭当且仅当222122123e ee e=时,取等号,故选A .3.(2019·北京高考真题(理))数学中有许多形状优美、寓意美好的曲线,曲线C:221||x y x y+=+就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C2;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是A.①B.②C.①②D.①②③【答案】C【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不超过2. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.4.(2019·广西高三(理))已知双曲线()2222:10,0x y E a b a b-=>>的右顶点为A ,抛物线2:8C y ax =的焦点为F .若在E 的渐近线上存在点P ,使得AP FP ⊥,则E 的离心率的取值范围是 ( )A .1,2B .32⎛ ⎝⎦C .32⎫+∞⎪⎪⎣⎭D .2,【答案】B 【解析】由题意得,(,0),(2,0)A a F a ,设00(,)b P x x a ,由AP FP ⊥,得2220020320c AP PF x ax a a⋅=⇒-+= ,因为在E 的渐近线上存在点P ,则0∆≥,即2222222994209884c a a a c e e a -⨯⨯≥⇒≥⇒≤⇒≤,又因为E 为双曲线,则14e <≤ ,故选B.5. (2019·江苏高二月考)在平面直角坐标系xOy 中,设点A 是抛物线22(0)y px p =>上的一点,以抛物线的焦点F 为圆心、以FA 为半径的圆交抛物线的准线于B ,C 两点,记BFC θ∠=,若22sin sin 23cos sin θθθθ-=-,且ABC ∆的面积为1283,则实数p 的值为( )A .8B .4C .D .【答案】A 【解析】因为22sin sin 23cos sin θθθθ-=-,且sin 2θ+cos 2θ=1,解得cosθ12=∴θ3π=,结合图象可知,△BFC 为等边三角形, ∵|FD |=p ,∴|BC |=|FB |=p ,即圆的半径|F A |=p , 设A (x 0,y 0),∴S △ABC 12=|BC |•|x 02p +|12=|BC |•|F A |12=p 1283=, 解得p =8, 故选:A .6. (2020·山东东港 日照一中高三其他)【多选题】已知点F 是抛物线()220y px p =>的焦点,,AB CD是经过点F 的弦且AB CD ⊥,AB 的斜率为k ,且0k >,,C A 两点在x 轴上方.则下列结论中一定成立的是()A .1112AB CD p+= B .若243AF BF p ⋅=,则3k =C .OA OB OC OD ⋅=⋅ D .四边形ABCD 面积最小值为216p【答案】AC 【解析】因为AB 的斜率为k ,AB CD ⊥,所以1CD k k=-, 设11(,)A x y ,22(,)B x y ,AB 的方程为2p y k x ⎛⎫=-⎪⎝⎭, 由222p y k x y px ⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩可得,222221(2)04k x p k xk p ,2122212(2)14p k x x k x x p ⎧++=⎪⎪⎨⎪=⎪⎩, 所以221222(2)2(1)++=++=+=p k p k AB x x p p k k, 同理可得22212(1)2(1)1p k CD p k k +==+ 则有1112AB CD p +=,所以A 正确; 221212121422⎛⎫⎛⎫⋅=+=+-- ⎪⎪⎝⎭⎝⎭p p OA OB x x y y p k x x ()22222222212121111(2)34244224+⎡⎤=+-++=+-=-⎢⎥⎣⎦p p k p k x x x x p p k p p 与k 无关,同理234⋅=-OC OD p ,故OA OB OC OD ⋅=⋅,C 正确; 若243AF BF p ⋅=,由21212121()2224⎛⎫⎛⎫++=+++ ⎪⎪⎝⎭⎝⎭p p p x x x x x x p 得222222221(2)4223++=+=p k p p p p k k ,解得k =B 错; 因为AB CD ⊥,所以四边形ABCD 面积22222222222112(1)2(1)12(1)22822++⎛⎫==⋅⋅+==++≥ ⎪⎝⎭ABCDp k p k S AB CD p k p k p k k k 当且仅当221k k=,即1k =时,等号成立;故D 错; 故选AC7.(2020·山东淄博 高三月考)【多选题】已知椭圆22143x y +=的左、右焦点分别为F 、E ,直线x m =(11)m -<<与椭圆相交于点A 、B ,则( )A .当0m =时,FAB 的面积为3B .不存在m 使FAB 为直角三角形C .存在m 使四边形FBEA 面积最大D .存在m ,使FAB 的周长最大【答案】AC 【解析】 如图:对于A 选项,经计算显然正确;对于B 选项,0m =时,可以得出3AFE π∠=,当1m =时,4AFE π∠<,根据对称性,存在m 使FAB为直角三角形,故B 错误;对于C 选项,根据椭圆对称性可知,当0m =时,四边形FBEA 面积最大,故C 正确; 对于D 选项, 由椭圆的定义得:FAB 的周长(2)(2)4AB AF BF AB a AE a BE a AB AE BE =++=+-+-=+--;∵AE BE AB +≥;∴0AB AE BE --≤,当AB 过点E 时取等号; ∴44AB AF BF a AB AE BE a ++=+--≤; 即直线x m =过椭圆的右焦点E 时,FAB 的周长最大;此时直线1x m c ===;但11m -<<,所以不存在m ,使FAB 的周长最大.故D 错误.故选:AC8.(2020·浙江高三其他)设F 为抛物线2:4C y x =的焦点,过点()2,0P -斜率为k 的直线l 交抛物线C 于不重合的A ,B 两点.则k 的取值范围是________,若60AFB ∠=︒,则2k =_________.【答案】22k -<<且0k ≠ 411 【解析】由题意知:0k ≠,设直线l 的方程为()2y k x =+, 把直线l 的方程代入24y x =得:()2222222404440k x x k x k x x k +-=⇒+-+=,则()222221444402k k k k ∆=--⨯>⇒<,所以22k -<<且0k ≠; 设()()1122,,,A x y B x y ,又()1,0F , 则()()11221,,1,FA x y FB x y =-=-,由韦达定理得:212212444k x x k x x ⎧-+=⎪⎨⎪⋅=⎩,则128y y ==,由抛物线的定义可知:121,1FA x FB x =+=+,()()1212241117FA FB x x y y k⋅=--+=-+, ()()1224111FA FB x x k⋅=++=+, cos60FA FB FA FB ⋅=⋅︒,则2411k =. 故答案为:22k -<<且0k ≠;411.9.(2019·江苏高二月考)椭圆22:143x yC+=的左、右焦点分别为12,F F,A为C上的动点,点P在线段1F A 的延长线上,且()220AP AF F P+•=,则P到y轴距离的最大值为__________.【答案】5【解析】取2F P的中点Q,连接AQ,2AP AF+=2AQ,则2•0AQ F P=,可知|AP|=|A2|F,由椭圆定义可知|A1211|A A AP4F F F F P+=+==,则点P的轨迹是以1F为圆心,以4为半径的圆,由图可知当点P和点M重合时,到y轴距离最大值为5.故答案为:510.(2019·江西高考模拟(文))设1F,2F为椭圆1C:221122111(0)x ya ba b+=>>与双曲线2C的公共左、右焦点,椭圆1C与双曲线2C在第一象限内交于点M,12MF F∆是以线段1MF为底边的等腰三角形,且1=2MF.若椭圆1C的离心率152,145e⎡⎤∈⎢⎥⎣⎦,则双曲线2C的离心率2e的取值范围是_______.【答案】5,24⎡⎤⎢⎥⎣⎦【解析】设双曲线2C的方程为()2222222210,0x ya ba b-=>>,由题意知11222,2MF F F MF c===,其中222222211c a b a b=+=-,又根据椭圆与双曲线的定义得1211222|2MF MF aMF MF a⎧+=⎪⎨-=⎪⎩,则12222222c ac a+=⎧⎨-=⎩,即122a a c-=其中122,2a a 分别为椭圆的长轴长和双曲线的实轴长.所以12112e e -=因为椭圆的离心率152,145e ⎡⎤∈⎢⎥⎣⎦, 所以2111142,25e e ⎡⎤=-∈⎢⎥⎣⎦所以25,24e ⎡⎤∈⎢⎥⎣⎦,即双曲线2C 的离心率的取值范围是5,24⎡⎤⎢⎥⎣⎦.11.(2019·四川高考模拟(理))已知F 为抛物线2:4C x y =的焦点,过点F 的直线l 与抛物线C 相交于不同的两点,A B ,抛物线C 在,A B 两点处的切线分别是12,l l ,且12,l l 相交于点P ,则32PF AB+的小值是___. 【答案】6 【解析】设直线l 的方程为:y =kx+1,A (11x ,y ),B (22x ,y ).联立2y kx 1x 4y=+⎧⎨=⎩,化为:x 2﹣4kx ﹣4=0,可得:12x x +=4k ,12x x =﹣4,|AB|=12y y p ++=k (12x x +)+4=4k 2+4.对x 2=4y 两边求导可得:y′1x 2=, 可得切线PA 的方程为:y ﹣11xy 2=(x ﹣1x )切线PB 的方程为:y ﹣22xy 2=(x ﹣2x ),联立解得:x 12=(12x x +)=2k ,y 121x x 4==﹣1.∴P (2k ,﹣1).∴|PF|=∴|PF|23232AB 4k 4+=+,=t≥2. 则|PF|32AB +=t 232t +=f (t ),f′(t )=1()()233t 4t 4t 1664t t-++-=,当t>4, f′(t )>0;2≤t<4, f′(t )<0可得t =4时,函数f (t )取得极小值即最小值f (4)=6.当且仅当k =时取等号. 故答案为:6.12.(2019·四川高三月考(理))已知抛物线28x y =,过点04M (,)的直线与抛物线交于,A B 两点,又过,A B 两点分别作抛物线的切线,两条切线交于P 点. (1)证明:直线,PA PB 的斜率之积为定值; (2)求PAB △面积的最小值【答案】(1)见解析;(2)【解析】(1)证明:由题意设l 的方程为4y kx =+ ,联立248y kx x y=+⎧⎨=⎩ ,得28320x kx --= 因为2(8)4(32)0k ∆=--⨯-> , 所以设()()1122,,,A x y B x y ,则1232x x =- 设直线PA PB , 的斜率分别为12,k k ,对28x y =求导得4x y '= , 所以1212,44x xk k == , 所以,121212322444416x x x x k k -=⋅===-⨯(定值) (2)解:由(1)可得直线PA 的方程为()211184x x y x x -=- ①直线PB 的方程为()222284x xy x x -=- ②联立①②,得点P 的坐标为1212,28x x x x +⎛⎫⎪⎝⎭,由(1)得12128,32x x k x x +==- , 所以44P k -(,).于是||AB =, 点P 到直线AB 的距离242k d +=,所以)22PAB S k ∆=+ ,当20k =,即0k =时,PAB ∆的面积取得最小值13.(2019·安徽高三月考(理))已知点A ,B 是抛物线2:2(0)C y px p =>上关于轴对称的两点,点E 是抛物线C 的准线与x 轴的交点.(1)若EAB 是面积为4的直角三角形,求抛物线C 的方程; (2)若直线BE 与抛物线C 交于另一点D ,证明:直线AD 过定点.【答案】(1) 24y x =;(2) 证明见解析【解析】(1)由题意,EAB 是等腰直角三角形,且EA EB ⊥ 不妨设点A 位于第一象限,则直线EA 的方程为2p y x =+, 联立方程,222y px p y x ⎧=⎪⎨=+⎪⎩,解得2p x y p ⎧=⎪⎨⎪=⎩ 所以点,2p A p ⎛⎫⎪⎝⎭,,2p B p ⎛⎫- ⎪⎝⎭,,02p E ⎛⎫- ⎪⎝⎭21242EABSp p p =⨯⨯==,解得2p =, 故抛物线C 的方程为24y x =(2)(方法一)设()00,A x y ,()00,B x y -,则直线EB 的方程为022y p y x p x ⎛⎫=-+ ⎪⎝⎭+联立方程,200222y px y p y x p x ⎧=⎪⎪⎛⎫⎨=-+ ⎪⎪⎝⎭+⎪⎩,消去x ,得关于y 的方程20000222y py p y x y p ⎛⎫+++= ⎪⎝⎭ 该方程有一个根0y -,两根之积为2p ,则另一个根为20p y -,所以点D 的坐标为32200,2p p y y ⎛⎫- ⎪⎝⎭ 直线AD 的斜率为22000003232200022002222p p y y y y py p y p y p x y p y ++==--- 所以AD 的方程为200022022py y y y x y p p ⎛⎫-=- ⎪-⎝⎭化简得022022py p y x y p ⎛⎫=- ⎪-⎝⎭所以直线AD 过定点,02p ⎛⎫⎪⎝⎭(方法二)设()11,B x y ,()22,D x y ,()11,A x y -,直线BE 的方程为2p x ny =-, 联立方程,222y px p x ny ⎧=⎪⎨=-⎪⎩,消去x ,得关于x 的方程2220y npy p -+=,所以212122,y y np y y p +==则212121212222AD y y np pk p p x x y y ny ny +===--⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭ 直线AD 的方程为()22212py x x y y y =-+-化简得22212212121212222px y y y p p p y x x y y y y y y y y -⎛⎫=-+=- ⎪----⎝⎭所以直线AD 过定点,02p ⎛⎫⎪⎝⎭14.(2019·湖北高三月考)已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点1F ,2F ,M 是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆恰好经过椭圆的焦点,且12MF F ∆的周长为4+ (1)求椭圆C 的方程; (2)设直线l 是圆O :2243x y +=上动点()()0000,0P x y x y ⋅≠处的切线,l 与椭圆C 交与不同的两点Q ,R ,证明:QOR ∠的大小为定值.【答案】(1)22142x y +=;(2)证明见解析. 【解析】(1)因为以坐标原点为圆心,椭圆短轴长为直径的圆经过椭圆的焦点,所以b c =可得a =,又因为12PF F ∆的周长为4+,可得2a c +=+c =2a =,b =C 的方程为22142x y +=. (2)证明:直线l 的方程为0043x x y y +=,且220043x y +=,记以()11,Q x y ,()22,R x y , 联立方程22001,424,3x y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩消去y 得()22220000163224039y x x x x y +-+-=, ∴01222001632x x x y x +=+,212220032492y x x y x -=+,12y y =()2012012201164 93x x x x x x y ⎡⎤-++⎢⎥⎣⎦20220016492x y x -=+,从而1212x x y y +2200222200003216449922y x y x y x --=+++()2200220016432x y y x -+=+220016163302y x -==+, ∴90QOR ∠=︒为定值. 【点睛】(1)椭圆的焦点三角形的周长为定值:22a c +;(2)圆222x y R +=,圆上一点()00,x y 处的切线方程为:200x x y y R +=.15.(2019·宾阳县宾阳中学高二月考(文))已知椭圆2222:1x y C a b+=()0a b >>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -+=相切,过点()4,0P 且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点. (1)求椭圆C 的方程;(2)若点B 关于x 轴的对称点是点E ,证明:直线AE 与x 轴相交于定点.【答案】(1)22143x y +=(2)详见解析【解析】(1)由题意知,离心率12c e a ==,所以22222214c a b e a a -===,即2243a b =又b ==24a =,23b =, 所以椭圆的方程为22143x y +=.(2)由题意知直线AB 的斜率存在,设直线PB 的方程为()4y k x =-,由22(4)143y k x x y =-⎧⎪⎨+=⎪⎩得:()2222433264120k x k x k +-+-=,设()11,A x y ,()22,B x y ,则21223243k x x k +=+,2122641243k x x k -=+, ①因为B 、E 两点关于x 轴对称,所以()22,E x y -, 直线AE 的方程为()121112y y y y x x x x +-=--,令0y =得:()112112y x xx x y y -=-+,又由()114y k x =-,()224y k x =-,所以()121212248x x x x x x x -+=+-由将①代入得1x =,所以直线AE 与x 轴交于定点()1,0.16.(山东高考真题(理))已知抛物线2:2(0)C y px p =>的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D ,且有FA FD =.当点A 的横坐标为3时,ADF ∆为正三角形.(Ⅰ)求C 的方程;(Ⅱ)若直线1//l l ,且1l 和C 有且只有一个公共点E , (ⅰ)证明直线AE 过定点,并求出定点坐标;(ⅱ)ABE ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【答案】(I )24y x =.(II )(ⅰ)直线AE 过定点(1,0)F .(ⅱ)ABE ∆的面积的最小值为16.【解析】 (I )由题意知(,0)2PF 设(,0)(0)D t t >,则FD 的中点为2(,0)4p t+, 因为FA FD =,由抛物线的定义知:322p p t +=-, 解得3t p =+或3t =-(舍去). 由234p t+=,解得2p =. 所以抛物线C 的方程为24y x =.(II )(ⅰ)由(I )知(1,0)F ,设0000(,)(0),(,0)(0)D D A x y x y D x x ≠>,因为FA FD =,则011D x x -=+, 由0D x >得02D x x =+,故0(2,0)D x +, 故直线AB 的斜率为02AB y k =-, 因为直线1l 和直线AB 平行, 设直线1l 的方程为02y y x b =-+, 代入抛物线方程得200880b y y y y +-=, 由题意20064320b y y ∆=+=,得02b y =-. 设(,)E E E x y ,则04E y y =-,204E x y =. 当204y ≠时,0000220002044444E ABE y y y y y k y x x y y +-==-=---, 可得直线AE 的方程为000204()4y y y x x y -=--, 由2004y x =,整理可得0204(1)4y y x y =--, 直线AE 恒过点(1,0)F .当204y =时,直线AE 的方程为1x =,过点(1,0)F ,所以直线AE 过定点(1,0)F .(ⅱ)由(ⅰ)知,直线AE 过焦点(1,0)F , 所以000011(1)(1)2AE AF FE x x x x =+=+++=++, 设直线AE 的方程为+1x my =,因为点00(,)A x y 在直线AE 上, 故001x m y -=, 设11(,)B x y ,直线AB 的方程为000()2y y y x x -=--, 由于00y ≠, 可得0022x y x y =-++, 代入抛物线方程得2008840y y x y +--=, 所以0108y y y +=-, 可求得1008y y y =--,10044x x x =++, 所以点B 到直线AE 的距离为d ===. 则ABE ∆的面积00112)162S x x =⨯++≥, 当且仅当001x x =即01x =时等号成立. 所以ABE ∆的面积的最小值为16.。
平面解析几何8-7圆锥曲线的综合问题(理)
整理ppt
5
2.直线与圆锥曲线相交弦长问题 (1)斜率为 k 的直线与圆锥曲线交于两点 P1(x1,y1), P2(x2,y2),则所得弦长|P1P2|= 1+k2|x2-x1|或|P1P2|= 1+k12|y2-y1|,其中求|x2-x1|与|y2-y1|时,通常作如下 变 形 |x2 - x1| = x1+x22-4x1x2 , |y2 - y1| = y1+y22-4y1y2,使用韦达定理即可解决. (2)当斜率 k 不存在时,直线为 x=m 的形式,可直接 代入求出交点的纵坐标 y1、y2 得弦长|y1-y2|.
整理ppt
1
整理ppt
2
重点难点
重点:直线与圆锥曲线位置关系的判定,弦 长与距离的求法
难点:直线与圆锥曲线位置关系的判定、弦 长与中点弦问题
整理ppt
3
知识归纳
1.(1)直线与圆、椭圆的方程联立后,消去 一个未知数得到关于另一个未知数的一元二 次方程,可据判别式Δ来讨论交点个数.
相 交
答案:A
整理ppt
17
已知直线l1为曲线y=x2+x-2在点(1,0)处的 切线. l2为该曲线的另一条切线,且l1⊥l2.
(1)求直线l2的方程; (2)求由直线l1、l2和x轴所围成的三角形的面
积.
整理ppt
18
解析:(1)y′=2x+1.∴l1 的斜率 k1=3 直线 l1 的方程为 y=3x-3. 设直线 l2 过曲线 y=x2+x-2 上的点 B(b,b2+b-2), 则 l2 的方程为 y=(2b+1)x-b2-2. 因为 l1⊥l2,则有 2b+1=-13,b=-23. 所以直线 l2 的方程为 y=-13x-292. 即 3x+9y+22=0
圆锥曲线的综合问题(答案版)
圆锥曲线的综合问题【考纲要求】1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入 和设而不求的思想.2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向 量等在解决问题中的综合运用. 【复习指导】本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 【基础梳理】1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时 为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或 变量y )的一元方程. 即⎩⎨⎧==++0),(0y x F c By Ax ,消去y 后得02=++c bx ax(1)当0≠a 时,设方程02=++c bx ax 的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C 相切;Δ<0⇔直线与圆锥曲线C 无公共点.(2)当0=a ,0≠b 时,即得一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点, 此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线, 则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长(1)定义:直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做 圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长. (2)圆锥曲线的弦长的计算设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=]4))[(1(212212x x x x k -++=ak ∆⋅+21=1+1k2·|y 1-y 2|.(抛物线的焦点弦长|AB |=x 1+x 2+p =2psin 2θ,θ为弦AB 所在直线的倾斜角). 3、一种方法点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数. 4、一条规律“联立方程求交点,根与系数的关系求弦长,根的分布找范围,曲线定义不能忘”双基自测1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定解:y =kx -k +1=k (x -1)+1过定点(1,1),点在椭圆内部,故线与椭圆相交.答案A 2.“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( ).A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 解析:与渐近线平行的直线也与双曲线有一个公共点. 答案 A3.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( ).A .3 2B .2 6C .27D .4 2解析:根据题意设椭圆方程为x 2b 2+4+y 2b2=1(b >0),则将x =-3y -4代入椭圆方程,得4(b 2+1)y 2+83b 2y -b 4+12b 2=0,∵椭圆与直线x +3y +4=0有且仅有一个交点,∴Δ=(83b 2)2-4×4(b 2+1)·(-b 4+12b 2)=0,即(b 2+4)(b 2-3)=0,∴b 2=3,长轴长为2b 2+4=27. 答案 C4.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( ).A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2),则有:⎪⎪⎩⎪⎪⎨⎧=-=-11222222221221b y a x by a x ,两式作差得:y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b 25a 2,又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得a 2=4,b 2=5,所以双曲线的标准方程是x 24-y 25=1. 答案 B5.y =kx +2与y 2=8x 有且仅有一个公共点,则k 的取值为________.解析:由⎩⎪⎨⎪⎧y =kx +2,y 2=8x ,得ky 2-8y +16=0,若k =0,则y =2;若k ≠0,则Δ=0,即64-64k =0,解得k =1.故k =0或k =1.答案 0或1【考向探究导析】考向一 直线与圆锥曲线的位置关系【例1】(2011·合肥模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ). A.]21,21[-B .[-2,2]C .[-1,1]D .[-4,4] [审题视点] 设直线l 的方程,将其与抛物线方程联立,利用Δ≥0解得.解析 由题意得Q (-2,0).设l 的方程为y =k (x +2),代入y 2=8x 得k 2x 2+4(k 2-2)x +4k2=0,∴当k =0时,直线l 与抛物线恒有一个交点;当k ≠0时,Δ=16(k 2-2)2-16k 4≥0,即k 2≤1,∴-1≤k ≤1,且k ≠0,综上-1≤k ≤1.答案 C研究直线和圆锥曲线的位置关系,一般转化为研究直线方程与圆锥曲线方程组成的方程组解的个数,但对于选择、填空题,常充分利用几何条件,利用数形结合的方法求解. 【训练1】 若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆 x 29+y 24=1的交点个数是( ).A .至多为1 B .2 C .1 D .0 解:由题意知:4m 2+n 2>2,即m 2+n 2<2,∴点P (m ,n )在椭圆x 29+y 24=1的内部,故所求交点个数是2个.答案 B考向二 弦长及中点弦问题 【例2】若直线l 与椭圆C :x 23+y 2=1交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.[审题视点] 联立直线和椭圆方程,利用根与系数关系后代入弦长公式,利用基本不等式求出弦长的最大值即可.解 设A (x 1,y 1),B (x 2,y 2).(1)当AB ⊥x 轴时,|AB |=3; (2)当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m .由已知,得|m |1+k2=32,即m 2=34(k 2+1).把y =kx +m 代入椭圆方程,整理,得(3k 2+1)x 2+6kmx +3m 2-3=0. ∴x 1+x 2=-6km 3k +1,x 1x 2=3m 2-13k +1. ∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)·⎣⎢⎡⎦⎥⎤36k 2m 23k 2+12-12m 2-13k 2+1=12k 2+13k 2+1-m 23k 2+12=3k 2+19k 2+13k 2+12=3+12k29k 4+6k 2+1. 当k ≠0时,上式=3+129k 2+1k2+6≤3+122×3+6=4,当9k 2=1k 2,即k =±33时等号成立.此时|AB |=2;当k =0时,|AB |=3,综上所述|AB |max =2.∴当|AB |最大时,△AOB 面积取最大值S max =12×|AB |max ×32=32.当直线(斜率为k )与圆锥曲线交于点A (x 1,y 1),B (x 2,y 2)时,则|AB |=1+k 2·|x 1-x 2|=1+1k2|y 1-y 2|,而|x 1-x 2|=x 1+x 22-4x 1x 2,可根据直线方程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后再进行整体代入求解.【训练2】 椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若 AB =22,OC 的斜率为22,求椭圆的方程. 法一:设A (x 1,y 1)、B (x 2,y 2),代入椭圆方程作差a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0.而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k oc =22,代入上式可得b =2a ,再由|AB |=1+k 2|x 2-x 1|= 2|x 2-x 1|=22,其中x 1、x 2是方程(a +b )x 2-2bx +b -1=0的两根,故⎝ ⎛⎭⎪⎫2b a +b 2-4·b -1a +b =4,将b =2a 代入得a =13,∴b =23.∴椭圆的方程是x 23+2y 23=1. 法二 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0,设A (x 1,y 1)、B (x 2,y 2),则|AB |=k 2+1x 1-x 22=2·4b 2-4a +bb -1a +b2.∵|AB |=22,∴a +b -ab a +b =1.① ,设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =aa +b ,∵OC 的斜率为22,∴a b =22.代入①,得a =13,b =23.∴椭圆方程为x 23+23y 2=1.考向三 圆锥曲线中的定点定值问题常见的类型(1)直线恒过定点问题;(2)动圆恒过定点问题;(3)探求定值问题;(4)证明定值问题.例3、(2011·山东)在平面直角坐标系xOy 中,已知椭圆C :x23+y 2=1.如图所示,斜率为k (k >0)且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C于点G ,交直线x =-3于点D (-3,m ).(1)求m 2+k 2的最小值; (2)若|OG |2=|OD |·|OE |,求证:直线l 过定点. (1)解:设直线l 的方程为y =kx +t (k >0),由题意,t >0.由方程组⎩⎪⎨⎪⎧y =kx +t ,x 23+y 2=1,得(3k 2+1)x 2+6ktx +3t 2-3=0.由题意Δ>0,所以3k 2+1>t 2.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=-6kt3k 2+1,所以y 1+y 2=2t 3k 2+1.由于E 为线段AB 的中点,因此x E =-3kt 3k 2+1,y E =t3k 2+1,此时k OE =y E x E =-13k .所以OE 所在直线方程为y =-13k x ,又由题设知D (-3,m ),令x =-3,得m =1k,即mk =1,所以m 2+k 2≥2mk =2,当且仅当m =k =1时上式等号成立,此时由Δ>0得0<t <2,因此当m =k =1且0<t <2时,m 2+k 2取最小值2.(2)证明 由(1)知OD 所在直线的方程为y =-13kx ,将其代入椭圆C 的方程,并由k >0,解得G ⎝ ⎛⎭⎪⎫-3k 3k 2+1,13k 2+1.又E ⎝ ⎛⎭⎪⎫-3kt3k 2+1,t 3k 2+1,D ⎝ ⎛⎭⎪⎫-3,1k ,由距离公式及t >0得 |OG |2=⎝⎛⎭⎪⎫-3k 3k 2+12+⎝ ⎛⎭⎪⎫13k 2+12=9k 2+13k 2+1,|OD |= 32+⎝ ⎛⎭⎪⎫1k 2=9k 2+1k , |OE |= ⎝ ⎛⎭⎪⎫-3kt 3k 2+12+⎝ ⎛⎭⎪⎫t 3k 2+12=t 9k 2+13k 2+1,由|OG |2=|OD |·|OE |得t =k , 因此直线l 的方程为y =k (x +1),所以直线l 恒过定点(-1,0).【训练3】椭圆有两顶点A (-1,0)、B (1,0),过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点,并与x 轴交于点P .直线AC 与直线BD 交于点Q . (1)当|CD |=322时,求直线l 的方程.(2)当点P 异于A 、B 两点时,求证:O P →·O Q →为定值. [审题视点] (1)设出直线方程与椭圆方程联立.利用根与系数的关系和弦长公式可求出斜率从而求出直线方程;(2)关键是求出Q 点坐标及其与P 点坐标的关系,从而证得OP →·OQ →为定值.证明过程中要充分利用已知条件进行等价转化.(1)解:因椭圆焦点在y 轴上,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0),由已知得b =1,c =1,所以a =2,椭圆方程为y 22+x 2=1.直线l 垂直于x 轴时与题意不符.设直线l 的方程为y =kx +1,将其代入椭圆方程化简得(k 2+2)x 2+2kx -1=0. 设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=-2k k +2,x 1·x 2=-1k +2,|CD |=k 2+1·x 1+x 22-4x 1x 2=22k 2+1k +2,由已知得22k 2+1k +2=322, 解得k =±2,所以直线l 的方程为y =2x +1或y =-2x +1. (2)证明 直线l 与x 轴垂直时与题意不符.设直线l 的方程为y =kx +1(k ≠0且k ≠±1),所以P 点坐标为]0,1[k-,设C (x 1,y 1),D (x 2,y 2),由(1)知x 1+x 2=-2k k 2+2,x 1·x 2=-1k 2+2,直线AC 的方程为y =y 1x 1+1(x +1),直线BD 的方程为y =y 2x 2-1(x -1),将两直线方程联立,消去y 得x +1x -1=y 2x 1+1y 1x 2-1,因为-1<x 1,x 2<1,所以x +1x -1与y 2y 1异号.⎝ ⎛⎭⎪⎫x +1x -12=y 22x 1+12y 21x 2-12=2-2x 222-2x 21·x 1+12x 2-12=1+x 11+x 21-x 11-x 2=1+-2k k 2+2+-1k 2+21--2k k 2+2+-1k 2+2=⎝ ⎛⎭⎪⎫k -1k +12.又y 1y 2=k 2x 1x 2+k (x 1+x 2)+1=21-k1+k k 2+2=-21+k 2k 2+2·k -1k +1, ∴k -1k +1与y 1y 2异号,x +1x -1与k -1k +1同号,∴x +1x -1=k -1k +1,解得x =-k . 因此Q 点坐标为(-k ,y 0).O P →·O Q →=⎝ ⎛⎭⎪⎫-1k ,0·()-k ,y 0=1.故O P →·O Q →为定值.[训练4](2012年高考福建卷)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1,右焦点为F 2,离心率e =12.过F 1的直线交椭圆于A 、B 两点,且△ABF 2的周长为8.(1)求椭圆E 的方程; (2)设动直线l :y =kx +m 与椭圆E 有且只有一个公共点P ,且与直线x =4相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.[解析] (1)因为|AB |+|AF 2|+|BF 2|=8,即|AF 1|+|F 1B |+|AF 2|+|BF 2|=8.又|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a ,所以4a =8,a =2.又因为e =12,即c a =12,所以c =1,所以b =a 2-c 2= 3.故椭圆E 的方程是x 24+y 23=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,消去y 得(4k 2+3)x 2+8kmx +4m 2-12=0.因为动直线l 与椭圆E 有且只有一个公共点P (x 0,y 0),所以m ≠0且Δ=0, 即64k 2m 2-4(4k 2+3)(4m 2-12)=0,化简得4k 2-m 2+3=0.(*)所以P (-4k m ,3m).由⎩⎪⎨⎪⎧x =4,y =kx +m ,得Q (4,4k +m ) 假设平面内存在定点M 满足条件,由图形对称性知,点M 必在x 轴上. 设M (x 1,0),则0MP MQ ⋅=对满足(*)式的m ,k 恒成立.因为MP =(-4k m -x 1,3m),MQ =(4-x 1,4k +m ),由0MP MQ ⋅=,得-16k m +4kx 1m -4x 1+x 21+12k m +3=0,整理,得(4x 1-4)k m+x 21-4x 1+3=0. (* *)由于(* *)式对满足(*)式的m ,k 恒成立,所以⎩⎪⎨⎪⎧4x 1-4=0,x 21-4x 1+3=0,解得x 1=1.故存在定点M (1,0),使得以PQ 为直径的圆恒过点M .【训练5】已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则|AB |·|CD |的值正确的是( )A .等于1B .最小值是1C .等于4D .最大值是4解析:设直线l :x =ty +1,代入抛物线方程,得y 2-4ty -4=0.设A (x 1,y 1),D (x 2,y 2),由抛物线定义AF =x 1+1,DF =x 2+1,故|AB |=x 1,|CD |=x 2, 故|AB |·|CD |=x 1x 2=y 214·y 224=(y 1y 2)216,而y 1y 2=-4,代入上式,得|AB |·|CD |=1.故选A.考向四 最值与范围问题1.求参数范围的方法:据已知条件建立等式或不等式的函数关系,再求参数范围. 2.求最值问题的方法(1)几何法:题目中给出的条件有明显的几何特征,则考虑用图象来解决;(2)代数法:题目中给出的条件和结论几何特征不明显则可以建立目标函数,再求这个函数 的最值,求最值的常见方法是判别式法、基本不等式法,单调性法等.例4、已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点. (1)求过点O 、F ,并且与直线l :x =-2相切的圆的方程; (2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点, 线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.[审题视点] (1)求出圆心和半径,得出圆的标准方程; (2)设直线AB 的点斜式方程,由已知得线段AB 的垂直平分线方程,利用求值域的方法求解.解 (1)∵22=a ,12=b ,∴1=c ,F (-1,0),∵圆过点O ,F ,∴圆心M 在直线x =-12上.设M ),21(t -,则圆半径r =23)2()21(=---,由|OM |=r ,得23)21(22=+-t ,解得t =±2,∴所求圆的方程为49)2()21(22=±++y x(2)设直线AB 方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,得(1+2k 2)x 2+4k 2x +2k 2-2=0.∵直线AB 过椭圆的左焦点F 且不垂直于x 轴,∴方程有两个不等实根.如图,设A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0),则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k 2k 2+1,∴AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 22k 2+1=-k 22k 2+1=-12+14k 2+2,∵k ≠0,∴-12<x G <0,∴点G 横坐标的取值范围为)0,21(-【训练6】已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当 直线l 的斜率是12时,AC →=4AB →.(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.解 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 斜率是12时,l 方程为y =12(x +4),即x =2y -4.由⎩⎪⎨⎪⎧x 2=2py ,x =2y -4得2y 2-(8+p )y +8=0,∴⎪⎩⎪⎨⎧+=+=②①2842121py y y y 又∵AC →=4AB →,∴y 2=4y 1③,由①②③及p >0得:y 1=1,y 2=4,p =2,得抛物线G 方程为x 2=4y .(2)设l :y =k (x +4),BC 中点为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4得x 2-4kx -16k =0,④∴x 0=x C +x B2=2k ,y 0=k (x 0+4)=2k 2+4k .∴线段BC 中垂线为y -2k 2-4k =-1k(x -2k ),∴线段BC 的中垂线在y 轴上的截距为:b =2k 2+4k +2=2(k +1)2, 对于方程④,由Δ=16k 2+64k >0得k >0或k <-4.∴b ∈(2,+∞).[训练7]已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A .(-23,0)B .(0,23)C .(-32,0)D .(0,32)解析:设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23.考向五 探索性问题【问题研究】 解析几何中探索性问题的结论往往不明确,需要根据已知条件通过推理论证或是计算对结论作出明确的肯定或是否定,因此解决起来具有较大的难度.【解决方案】 明确这类问题的解题思想:即假设其结论成立、存在等,在这个假设下进行推理论证,如果得到了一个合情合理的推理结果,就肯定假设,对问题作出正面回答,如果得到一个矛盾的结果,就否定假设,对问题作出反面回答.[例5】已知一条曲线C 在y 轴右边,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1. (1)求曲线C 的方程;(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有 FA →·FB →<0?若存在,求出m 的取值范围;若不存在,请说明理由. 解:(1)设P (x ,y )是C 上任意一点,那么点P (x ,y )满足:x -12+y 2-x =1(x >0).化简得y 2=4x (x >0).(2)设过点M (m,0)(m >0)的直线l 与曲线C 的交点为A (x 1,y 1),B (x 2,y 2).设l 的方程为x =ty +m ,由⎩⎪⎨⎪⎧x =ty +m ,y 2=4x ,得y 2-4ty -4m =0,Δ=16(t 2+m )>0,于是⎩⎪⎨⎪⎧y 1+y 2=4t ,y 1y 2=-4m .①又FA →=(x 1-1,y 1),FB →=(x 2-1,y 2).FA →·FB →<0⇔(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+y 1y 2<0.②又x =y 24,于是不等式②等价于y 214·y 224+y 1y 2-⎝ ⎛⎭⎪⎫y 214+y 224+1<0⇔y 1y 2216+y 1y 2-14[(y 1+y 2)2-2y 1y 2]+1<0,③,由①式,不等式③等价于m 2-6m +1<4t 2,④对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0, 即3-22<m <3+22,由此可知,存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA →·FB →<0,且m 的取值范围是(3-22,3+22).【训练8】(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =23,且椭圆C 上的点到点Q (0,2)的距离的最大值为3. (1)求椭圆C 的方程; (2)在椭圆C 上,是否存在点M (m ,n ),使得直线l :mx +ny =1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及对应的△OAB 的面积;若不存在,请说明理由.[解析] (1)∵e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2.设椭圆上的点到点Q (0,2)的距离为d ,则d =(x -0)2+(y -2)2=x 2+(y -2)2=3b 2-3y 2+(y -2)2=-2(y +1)2+3b 2+6,∴当y =-1时,d 取得最大值,d max =3b 2+6=3,解得b 2=1,∴a 2=3.∴椭圆C 的方程为x 23+y 2=1.(2)假设存在点M (m ,n )满足题意,则m 23+n 2=1,即m 2=3-3n 2.设圆心到直线l 的距离为d ′,则d ′<1,d ′=|m ·0+n ·0-1|m 2+n 2=1m 2+n 2.∴|AB |=212-d ′2=21-1m 2+n 2.∴S △OAB =12|AB |d ′=12·21-1m 2+n 2·1m 2+n 2=1m 2+n 2(1-1m 2+n 2).∵d ′<1,∴m 2+n 2>1,∴0<1m 2+n 2<1,∴1-1m 2+n 2>0. ∴S △OAB =1m 2+n 2(1-1m 2+n 2)≤ ⎝ ⎛⎭⎪⎪⎫1m 2+n 2+1-1m 2+n 222=12, 当且仅当1m 2+n 2=1-1m 2+n 2,即m 2+n 2=2>1时,S △OAB 取得最大值12.由⎩⎪⎨⎪⎧m 2+n 2=2,m 2=3-3n 2得⎩⎪⎨⎪⎧m 2=32,n 2=12,∴存在点M 满足题意,M 点坐标为(62,22),(62,-22),(-62,22)或(-62,-22), 此时△OAB 的面积为12.。
高中总复习第一轮数学 (新人教A)第八章 8.7 圆锥曲线的综合问题
8.7 圆锥曲线的综合问题巩固·夯实基础一、自主梳理解析几何考查的重点是圆锥曲线,在历年的高考中,占解析几何总分值的四分之三以上.解析几何的综合问题也主要以圆锥曲线为载体,通常从以下几个方面进行考查:1.位置问题,直线与圆锥曲线的位置关系问题,是研究解析几何的重点内容,常涉及直线与曲线交点的判断、弦长、面积、对称、共线等问题.其解法是充分利用方程思想以及韦达定理.2.最值问题,最值问题是从动态角度去研究解析几何中的数学问题的主要内容.其解法是设变量、建立目标函数、转化为求函数的最值.3.范围问题,范围问题主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围,其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.以上这些问题由于综合性较强,所以备受命题者的青睐.常用来综合考查学生在数形结合、等价转化、分类转化、逻辑推理等多方面的能力.二、点击双基1.方程22)2()2(-++y x =|x-y+3|表示的曲线是( )A.直线B.双曲线C.椭圆D.抛物线 解析:原方程变形为2|3|)2()2(22+--++y x y x =2.它表示点(x,y)到点(-2,2)与定直线x-y+3=0的距离比是2.故选B.答案:B2.若点(x,y )在椭圆4x 2+y 2=4上,则2-x y 的最小值为( ) A.1 B.-1 C.-323 D.以上都不对 解析:2-x y 的几何意义是椭圆上的点与定点(2,0)连线的斜率.显然直线与椭圆相切时取得最值,设直线y=k(x-2),代入椭圆方程消去y 得(4+k 2)x 2-4k 2x+4k 2-4=0.令Δ=0,k=±323. ∴k min =-323.答案:C 3.双曲线22a x -22b y =1的离心率为e 1,双曲线22b y -22ax =1的离心率为e 2,则e 1+e 2的最小值为( ) A.42 B.2 C.22 D.4解析:(e 1+e 2)2=e 12+e 22+2e 1e 2=222a b a ++222b a b ++2·a b a 22+·b a b 22+ =2+22a b +22b a +2(a b +ba ) ≥2+2+2×2=8.当且仅当a=b 时取等号.故选C.答案:C4.若椭圆x 2+a 2y 2=a 2的长轴长是短轴长的2倍,则a=___________________.解析:方程化为22ax +y 2=1, 若a 2>1,∴2|a|=2×2,a=±2.当0<a 2<1,∴2=4|a|.∴a=±21. 答案:±2,±21 5.P 是双曲线32x -y 2=1的右支上一动点,F 是双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为____________________________.解析:设F ′为双曲线的左焦点,∴|PF ′|-|PF|=23.∴|PA|+|PF|=|PA|+|PF ′|-23≥|AF ′|-23=26-23.答案:26-23诱思·实例点拨【例1】如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b(a>0,b ≠0),且交抛物线y 2=2px(p>0)于M(x 1,y 1),N(x 2,y 2)两点.(1)写出直线l 的截距式方程;(2)证明11y +21y =b1; (3)当a=2p 时,求∠MON 的大小.剖析:易知直线l 的方程为a x +b y =1,欲证11y +21y =b 1,即求2121yy y y +的值,为此只需求直线l 与抛物线y 2=2px 交点的纵坐标.由根与系数的关系易得y 1+y 2、y 1y 2的值,进而证得11y +21y =b 1.由OM ·ON =0易得∠MON=90°.亦可由k OM ·k ON =-1求得∠MON=90°.(1)解:直线l 的截距式方程为a x +by =1. ① (2)证明:由①及y 2=2px 消去x 可得by 2+2pay-2pab=0. ②点M 、N 的纵坐标y 1、y 2为②的两个根,故y 1+y 2=bpa 2-,y 1y 2=-2pa. 所以11y +21y =2121y y y y +=pa b pa22--=b1. (3)解:设直线OM 、ON 的斜率分别为k 1、k 2,则k 1=11x y ,k 2=22x y . 当a=2p 时,由(2)知,y 1y 2=-2pa=-4p 2,由y 12=2px 1,y 22=2px 2,相乘得(y 1y 2)2=4p 2x 1x 2,x 1x 2=22214)(p y y =2224)4(pp -=4p 2,因此k 1k 2=2121x x y y =2244p p -=-1. 所以OM ⊥ON,即∠MON=90°.讲评:本题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.【例2】已知椭圆C 的方程为22a x +22b y =1(a>b>0),双曲线22a x -22by =1的两条渐近线为l 1、l 2,过椭圆C 的右焦点F 作直线l,使l ⊥l 1,又l 与l 2交于P 点,设l 与椭圆C 的两个交点由上至下依次为A 、B.(如图)(1)当l 1与l 2夹角为60°,双曲线的焦距为4时,求椭圆C 的方程;(2)当=λ时,求λ的最大值.剖析:(1)求椭圆方程即求a 、b 的值,由l 1与l 2的夹角为60°易得a b =33,由双曲线的距离为4易得a 2+b 2=4,进而可求得a 、b. (2)由=λ,欲求λ的最大值,需求A 、P 的坐标,而P 是l 与l 1的交点,故需求l 的方程.将l 与l 2的方程联立可求得P 的坐标,进而可求得点A 的坐标.将A 的坐标代入椭圆方程可求得λ的最大值.解:(1)∵双曲线的渐近线为y=±a b x,两渐近线夹角为60°, 又ab <1, ∴∠POx=30°,即a b =tan30°=33. ∴a=3b.又a 2+b 2=4,∴a 2=3,b 2=1.故椭圆C 的方程为32x +y 2=1. (2)由已知l:y=b a (x-c),与y=ab x 解得P(c a 2,c ab ), 由=λ得A(λλ+•+12c a c ,λλ+•1c ab ). 将A 点坐标代入椭圆方程得(c 2+λa 2)2+λ2a 4=(1+λ)2a 2c 2.∴(e 2+λ)2+λ2=e 2(1+λ)2.∴λ2=2224--e e e =-[(2-e 2)+222e-]+3≤3-22. ∴λ的最大值为2-1.讲评:本题考查了椭圆、双曲线的基础知识,及向量、定比分点公式、重要不等式的应用.解决本题的难点是通过恒等变形,利用重要不等式解决问题的思想.本题是培养学生分析问题和解决问题能力的一道好题.【例3】 已知直线y=-2上有一个动点Q ,过Q 作直线l 垂直于x 轴,动点P 在直线l 上,且⊥,记点P 的轨迹为C 1.(1)求曲线C 1的方程.(2)设直线l 与x 轴交于点A ,且=(≠0).试判断直线PB 与曲线C 1的位置关系,并证明你的结论.(3)已知圆C 2:x 2+(y-a)2=2,若C 1、C 2在交点处的切线互相垂直,求a 的值. 解:(1)设P 的坐标为(x,y),则点Q 的坐标为(x,-2).∵⊥,∴·=0.∴x 2-2y=0.∴点P 的轨迹方程为x 2=2y(x ≠0).(2)直线PB 与曲线C 1相切,设点P 的坐标为(x 0,y 0),点A 的坐标为(x 0,0). ∵=,∴=(0,-y 0).∴点B 的坐标为(0,-y 0).∵≠0,∴直线PB 的斜率为k=002x y . ∵x 02=2y 0,∴k=x 0.∴直线PB 的方程为y=x 0x-y 0.代入x 2=2y,得x 2-2x 0x+2y 0=0.∵Δ=4x 02-8y 0=0,∴直线PB 与曲线C 1相切.(3)不妨设C 1、C 2的一个交点为N(x 1,y 1),C 1的解析式即为y=21x 2,则在C 1上N 处切线的斜率为k ′=x 1,圆C 2过N 点的半径的斜率为k=11x a y . ① 又∵点N(x 1,y 1)在C 1上,所以y 1=21x 12. ② 由①②得y 1=-a,x 12=-2a,∵N(x 1,y 1)在圆C 2上,∴-2a+4a 2=2.∴a=-21或a=1. ∵y 1>0,∴a<0. ∴a=-21.。
圆锥曲线的综合问题(含答案)
课题:圆锥曲线的综合问题 【要点回顾】1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2), 则弦长|AB |=1+k 2|x 1-x 2|或 1+1k2|y 1-y 2|.【热身练习】1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1 C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条B .2条C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63.5.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=0 【方法指导】1.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 【直线与圆锥曲线的位置关系】[例1] (2012·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y=k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. [自主解答] (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k x -,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=+k2x 1+x 22-4x 1x 2]=2+k 2+6k21+2k2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为S =12|MN |· d =|k |4+6k 21+2k .由|k |4+6k 21+2k =103,解得k =±1. 【由题悟法】研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.【试一试】1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1] D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k x +⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0, 可解得-1≤k ≤1. 【最值与范围问题】[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得 ⎩⎪⎨⎪⎧+c 2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2.因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2, 设点P 到直线AB 的距离为d ,则d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则S =12|AB |·d =36·m -2-m2.其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,2 3 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值. 综上,所求直线l 的方程为3x +2y +27-2=0. 【由题悟法】1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法; (2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围. 【试一试】2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23. 【定点定值问题】[例3] (2012·辽宁高考)如图,椭圆C 0:x 2a 2+y 2b2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值.[自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).② 由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|, 故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2.由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值. 【由题悟法】1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况. 【试一试】3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p,得y 1=by 0-2pa y 0-b ,同理由点B ,M ,M 2共线得y 2=2pa y 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x ,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b ,y 2=2pay 0, 则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0. 当x =a ,y =2pa b时上式恒成立,即定点为⎝ ⎛⎭⎪⎫a ,2pa b .答案:⎝⎛⎭⎪⎫a ,2pa b。
圆锥曲线的综合问题PPT教学课件
令x=0,得y2-2y0y+y02-a2=0 ∴y1y2=y02-a2 ∵|OA|是|OM|与|ON|的等差中项∴. |OM|+|ON|=|y1|+|y2|=2|OA|=2a.
知|PB|-|PA|=4,故知P在双曲线 x2 y2 =1的右支上.
45 直线与双曲线的交点为(8,5),此即为动物P的位置, 利用两点间距离公式,可得|PA|=10. 据已知两点的斜率公式,得
kPA= 3, 所以直线PA的倾斜角为60°,于是舰A发射炮弹的方位角
应是北偏东30°.
则 2v0 sin
解:取AB所在直线为x轴,以AB的中点为原点,建立如图所示的
直角坐标系.由题意可知,A、B、C舰的坐标为(3,0)、(-3,0)、 (-5,2). 由于B、C同时发现动物信号,
记动物所在位置为P,则|PB|=|PC|.
于是P在线段BC的中垂线上,易求得其方程
为 3x-3y +7 3=0.
又由A、B两舰发现动物信号的时间差为4秒,
一、基本知识概要:
重点难点: 正确熟练地运用解析几何的方法解决圆锥 曲线的综合问题,从中进一步体会分类讨 论、等价转化等数学思想的运用.
思维方式: 数形结合的思想,等价转化,分类讨论, 函数与方程思想等.
一、基本知识概要:
特别注意: 要能准确地进行数与形的语言转换和运算、 推理转换,并在运算过程中注意思维的严 密性,以保证结果的完整。
二、例题:
例1. A,B是抛物线 y 2 2 px( p 0) 上的两 点,且OA OB(O为坐标原点)求证:
高考数学大一轮复习 第八章 平面解析几何 第8课时 圆锥曲线的综合问题 文 北师大版
1.(2016·沈阳模拟)若直线 y=kx+2 与双曲线 x2-y2=6 的右
支交于不同的两点,则 k 的取值范围是( )
A.-
315,
15 3
C.- 315,0
B.0,
15 3
D.- 315,-1
解析:由yx=2-kyx2+=26,, 得(1-k2)x2-4kx-10=0,
(2)圆锥曲线的弦长的计算 设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点, A(x1,y1),B(x2,y2),则|AB|= x2-x12+y2-y12 = 1+k2 |x1-x2|= 1+k12·|y1-y2|.(抛物线的焦点弦长|AB|= x1+x2+p=si2np2θ,θ为弦AB所在直线的倾斜角).
审题视点 (1)利用离心率公式直接求解;(2)求直线AB的方 程,利用原点到直线AB的距离判断直线与圆的位置关系.
解 (1)由题意,椭圆C的标准方程为x42+y22=1, 所以a2=4,b2=2, 从而c2=a2-b2=2. 因此a=2,c= 2.
故椭圆C的离心率e=ac= 22.
(2)直线AB与圆x2+y2=2相切.证明如下: 设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0. 因为OA⊥OB,所以 O→A ·O→B =0,即tx0+2y0=0,解得t=- 2xy00. 当x0=t时,y0=-t22,代入椭圆C的方程,得t=± 2, 故直线AB的方程为x=± 2,圆心O到直线AB的距离d= 2. 此时直线AB与圆x2+y2=2相切.
所在直线的斜率k=yp0.
[基础自测]
1.(教材改编题)直线y=kx-k+1与椭圆
x2 9
+
y2 4
=1的位置关
系为( )
第八节 第四课时 圆锥曲线的综合性问题
[关键点拨] 1.遇到求直线斜率为定值问题,要想到将直线斜率表示出 来后进行约分得定值; 2.遇到对称条件时,要想到点差法的运用或点的坐标的设 法及有没有对称图形等,运用对称性解题; 3.遇到求解最值时,要想到构造函数求最值或运用基本不 等式(特别是出现定和或定积条件); 4.遇到弦长问题时,在表示弦长时要想到两根之和、积及 差之间的关系.
将x1=
y1 k
+2,x2=
y2 k
+2及y1+y2,y1y2的表达式代入①式分
子,可得x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
所以kBM+kBN=0,可知BM,BN的倾斜角互补, 所以∠ABM=∠ABN.
综上,∠ABM=∠ABN成立.
题型三 圆锥曲线中的对称问题
[针对训练] 1.已知椭圆C:xa22+by22=1(a>b>0)过点(0,1),其右焦点为F(1,0).
(1)求椭圆C的方程和离心率; (2)过点M(2,0)的直线与椭圆C交于P,Q两点,Q关于x轴对称的 点为N,判断P,F,N三点是否共线?并加以证明.
解:(1)依题意:b=1,c=1,所以a2=b2+c2=2, 所以椭圆C的方程为x22+y2=1,离心率e=ac= 22. (2)依题意可知直线PQ的斜率存在, 设直线PQ的方程为y=k(x-2),
因为 D,B 两点都在椭圆上,所以x421+y212=1,x422+y222=1, 两式相减,得xy11--xy22=-12×xy11+ +xy22,
因为 kAB=xy11+ +yx22=-1,所以 k=xy11--xy22=12, 故直线 BD 的斜率为定值12.
(2)连接OB,因为A,D两点关于原点对称,所以S△ABD= 2S△OBD,由(1)可知直线BD的斜率k=12,
圆锥曲线的综合问题课件
圆锥曲线在生活中的应用和价值
展望未来研究方向
探索圆锥曲线在各个领域的应用前景
关注圆锥曲线研究的最新进展和趋势
深入研究圆锥曲线的性质和几何特征
探讨圆锥曲线与其他数学分支的联系与融合
汇报人:
感谢观看
立体与圆锥曲线的交点求解方法
典型例题的解析与讨论
立体与圆锥曲线的最值问题
定义:最值问题是指求解某个函数在一定范围内的最大值或最小值
解题方法:常用的解题方法有代数法、几何法、三角法等
注意事项:在解题过程中需要注意函数的定义域、取值范围等限制条件
分类:根据不同的分类标准,可以分为不同的类型
06
圆锥曲线在实际问题中的应用
椭圆
双曲线
抛物线
圆锥曲线的一般方程
03
圆锥曲线与直线的综合问题
直线与圆锥曲线的关系
直线与圆锥曲线的基本性质
直线与圆锥曲线的位置关系
直线与圆锥曲线的交点求解
直线与圆锥曲线的综合应用
直线与圆锥曲线的交点问题
直线与圆锥曲线的基本性质
直线与圆锥曲线的交点求解方法
直线与圆锥曲线交点的应用
直线与圆锥曲线交点问题的注意事项
,a click to unlimited possibilities
圆锥曲线的综合问题课件
目录
01
添加目录标题
02
圆锥曲线的定义和性质
03
圆锥曲线与直线的综合问题
04
圆锥曲线与平面的综合问题
05
圆锥曲线与立体的综合问题06圆锥来自线在实际问题中的应用07
总结与展望
01
添加章节标题
02
圆锥曲线的定义和性质
直线与圆锥曲线的最值问题
2021高考数学总复习第八章第八节 圆锥曲线的综合问题
)A.1B.2源自C.1 或 2D.0
解析:因为直线 y=bax+3 与双曲线的渐近线 y=bax 平行,所
以它与双曲线只有 1 个交点.
答案:A
4.过点(0,1)作直线,使它与抛物线 y2=4x 仅有一个公共点,这
样的直线有
()
A.1 条
B.2 条
C.3 条
D.4 条
解析:结合图形分析可知,满足题意的直线共有 3 条:直线 x
考点二 与弦长、面积有关的问题
在高考中,圆锥曲线的弦长与图形的面积可以单独成 题,也可以结合在一起综合考查,联立直线方程与圆锥曲 线方程是求解此类问题的第一步,涉及到的题目一般为中 高难度的解答题.
[典题领悟] (2016·全国卷Ⅱ)已知椭圆 E:xt2+y32=1 的焦点在 x 轴上,A 是 E 的左顶点,斜率为 k(k>0)的直线交 E 于 A,M 两点,点 N 在 E 上,MA⊥NA. (1)当 t=4,|AM|=|AN|时,求△AMN 的面积; (2)当 2|AM|=|AN|时,求 k 的取值范围.
解析:依题意,当直线 l 经过椭圆的右焦点(1,0)时,其方程为 y -0=tan 45°(x-1),即 y=x-1,代入椭圆方程x22+y2=1 并 整理得 3x2-4x=0,解得 x=0 或 x=43,所以两个交点坐标分 别为(0,-1),43,13,∴―O→A ·―O→B =-13,同理,直线 l 经过椭 圆的左焦点时,也可得―O→A ·―O→B =-13.故―O→A ·―O→B 的值为-13. 答案:B
解:(1)如图,由已知得 M(0,t),P2t2p,t.
又 N 为 M 关于点 P 的对称点,故 Ntp2,t, 故直线 ON 的方程为 y=pt x, 将其代入 y2=2px 整理得 px2-2t2x=0, 解得 x1=0,x2=2pt2.因此 H2pt2,2t. 所以 N 为 OH 的中点,即||OOHN||=2.
2013届高考数学圆锥曲线的综合问题
第八节 圆锥曲线的综合应用一、基本知识概要: 1知识精讲:圆锥曲线的综合问题包括:解析法的应用,数形结合的思想,与圆锥曲线有关的定值、最值等问题,主要沿着两条主线,即圆锥曲线科内综合与代数间的科间综合,灵活运用解析几何的常用方法,解决圆锥曲线的综合问题;通过问题的解决,进一步掌握函数与方程、等价转化、分类讨论等数学思想.2重点难点:正确熟练地运用解析几何的方法解决圆锥曲线的综合问题,从中进一步体会分类讨论、等价转化等数学思想的运用.3思维方式:数形结合的思想,等价转化,分类讨论,函数与方程思想等.4特别注意:要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。
二、例题:例1. A ,B 是抛物线)0(22>=p px y 上的两点,且OA OB ⊥(O 为坐标原点)求证:(1)A ,B 两点的横坐标之积,纵坐标之积分别是定植; (2)直线AB 经过一个定点 证明:(1)设,,2,2),,(),,(21212221212211=+∴⊥==y y x x OB OA px y px y y x B y x A 则两式相乘得2212214,4p x x p y y =-=)0,2),0,2),2(2).(2,2,),(2)2(212112112121212221p x x p p x y y py x x y y p y y AB y y pk x x x x p y y AB 时,显然也过点(当过定点(化简得的方程所以直线当=-+=-+=-+=≠-=-所以直线AB 过定点(2p,0)例2、(2005年春季北京,18)如图,O 为坐标原点,直线l 在x 轴和y轴上的截距分别是a 和b )0,0(≠>b a ,且交抛物线)(),(于22112,N ,M )0(2y x y x p px y >=两点。
(1) 写出直线l 的截距式方程 (2) 证明:by y 11121=+ (3) 当p a 2=时,求MON ∠的大小。
8.8 圆锥曲线的综合问题
第八节圆锥曲线的综合问题1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C ________; Δ=0⇔直线与圆锥曲线C ________; Δ<0⇔直线与圆锥曲线C ________.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时, 若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是_______; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是________ 2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 = 1+1k 2·|y 1-y 2| =1+1k2·(y 1+y 2)2-4y 1y 2.[小题体验]1.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过点F 且垂直于x 轴的直线与椭圆相交所得的弦长为2.则椭圆C 的方程为________.1.直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点.2.直线与抛物线交于一点时,除直线与抛物线相切外易忽视直线与对称轴平行时也相交于一点.[小题纠偏]1.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条2.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0考点一 直线与圆锥曲线的位置关系(重点保分型考点——师生共研)[典例引领](2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.[由题悟法]1.直线与圆锥曲线位置关系的判定方法(1)代数法:即联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.(2)几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数. 2.判定直线与圆锥曲线位置关系的注意点(1)联立直线与圆锥曲线的方程消元后,应注意讨论二次项系数是否为零的情况.(2)判断直线与圆锥曲线位置关系时,判别式Δ起着关键性的作用,第一:可以限定所给参数的范围;第二:可以取舍某些解以免产生增根.[即时应用]1.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k 的值为( ) A .1 B .1或3 C .0D .1或02.已知双曲线x 2a 2-y 2b 2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1,5]C .(5,+∞)D .[5,+∞)考点二 弦长问题(重点保分型考点——师生共研)[典例引领](2016·宜春中学与新余一中联考)设椭圆M :y 2a 2+x 2b 2=1(a >b >0)的离心率与双曲线x 2-y 2=1的离心率互为倒数,且椭圆的长轴长为4.(1)求椭圆M 的方程;(2)若直线y =2x +m 交椭圆M 于A ,B 两点,P (1,2)为椭圆M 上一点,求△P AB 面积的最大值.[由题悟法]弦长的3种常用计算方法(1)定义法:过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义,可优化解题.(2)点距法:将直线的方程和圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长. (3)弦长公式法:它体现了解析几何中设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系得到的.[提醒] 直线与圆锥曲线的对称轴平行或垂直的特殊情况.[即时应用]设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值.考点三 圆锥曲线的综合问题(重点保分型考点——师生共研)[典例引领](2016·四川高考)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P ⎝⎛⎭⎫3,12在椭圆E 上. (1)求椭圆E 的方程;(2)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM与椭圆E 交于C ,D ,证明:|MA |·|MB |=|MC |·|MD |.[由题悟法]1.圆锥曲线中的最值问题解决方法(1)代数法:从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值.(2)几何法:从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值. 2.求定点及定值问题常见的方法(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(可参阅副本压轴题命题区间六)[即时应用](2016·兰州市实战考试)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且经过点P ⎝⎛⎭⎫1,32,过它的两个焦点F 1,F 2分别作直线l 1与l 2,l 1交椭圆于A ,B 两点,l 2交椭圆于C ,D 两点,且l 1⊥l 2.(1)求椭圆的标准方程;(2)求四边形ABCD 的面积S 的取值范围.一保高考,全练题型做到高考达标1.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条2.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A .⎝⎛⎭⎫-153,153 B .⎝⎛⎭⎫0,153 C .⎝⎛⎭⎫-153,0 D .⎝⎛⎭⎫-153,-1 3.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点.设O 为坐标原点,则OA ―→·OB ―→等于( )A .-3B .-13C .-13或-3D .±134.已知抛物线y 2=2px 的焦点F 与椭圆16x 2+25y 2=400的左焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则点A 的横坐标为( )A .2B .-2C .3D .-35.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m 的值为( )A .32B .52C .2D .36.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是__________________.7.如图,过抛物线y =14x 2的焦点F 的直线l 与抛物线和圆x 2+(y -1)2=1交于A ,B ,C ,D 四点,则AB ―→·DC ―→=________.8.若椭圆的中心在原点,一个焦点为(0,2),直线y =3x +7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为________________.9.如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.10.(2016·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.二上台阶,自主选做志在冲刺名校1.(2017·海口调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点分别为A ,B ,其离心率e =12,点M为椭圆上的一个动点,△MAB 面积的最大值是23.(1)求椭圆的方程;(2)若过椭圆C 右顶点B 的直线l 与椭圆的另一个交点为D ,线段BD 的垂直平分线与y 轴交于点P ,当PB ―→·PD ―→=0时,求点P 的坐标.2.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程.(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.1.(2015·广东高考)已知椭圆x 25+y m 2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .92.(2016·全国丙卷)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A .13B .12C .23D .343.(2016·全国乙卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13B .12C .23D .344.(2015·浙江高考)椭圆x 2a 2+y 2b 2=1(a >b >0 )的右焦点F (c,0)关于直线y =bc x 的对称点Q 在椭圆上,则椭圆的离心率是________.5.(2015·全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.1.(2016·全国乙卷)已知方程x m 2+n -y 3m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)2.(2015·全国卷Ⅱ)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A . 5B .2C . 3D . 23.(2016·全国甲卷)已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A . 2B .32C . 3D .24.(2015·全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.5.(2016·北京高考)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a =________.1.(2015·全国卷Ⅰ)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .122.(2015·浙江高考)如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A .|BF |-1|AF |-1B .|BF |2-1|AF |2-1C .|BF |+1|AF |+1D .|BF |2+1|AF |2+13.(2015·山东高考)平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________.4.(2015·全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.1.(2016·全国甲卷)已知A 是椭圆E :x 4+y 3=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N在E上,MA⊥NA.(1)当|AM|=|AN|时,求△AMN的面积;(2)当2|AM|=|AN|时,证明:3<k<2.2.(2016·全国乙卷)设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A 于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、例题:
例1. A,B是抛物线 y 2 px( p 0) 上的两 点,且OA OB (O为坐标原点)求证:
2
(1)A,B两点的横坐标之积,纵坐标之积分 别是定值; (2)直线AB经过一个定点。
例2、(2005年春季北京,18)如图,O为 坐标原点,直线 l 在 x轴和 y轴上的截距分别 是a和 b (a 0, b 0) ,且交抛物线 两点。 y 2 2 px( p 0)于M(x1 , y1),N(x2 , y2)
(1)写出直线的截距式方程
1 1 1 y1 y 2 b (3)当 a 2 p时,求 MON 的大小。(图见教材
(2)证明: P135页例1) 说明:本题主要考查直线、抛物线等基本知识,考 查运用解析几何的方法分析问题和解决问题的能力。
例3、(2005年黄冈高三调研考题)已知椭圆C的方
圆锥曲线的综合应用
高三备课组
一、基本知识概要:
知识精讲: 圆锥曲线的综合问题包括:解析法的应用, 数形结合的思想,与圆锥曲线有关的定值、 最值等问题,主要沿着两条主线,即圆锥 曲线科内综合与代数间的科间综合,灵活 运用解析几何的常用方法,解决圆锥曲线 的综合问题;通过问题的解决,进一步掌 握函数与方程、等价转化、分类讨论等数 学思想.
2、对于求曲线方程中参数范围问题,应根据 题设条件及曲线的几何性质构造参数满足的不 等式,通过解不等式求得参数的范围;或建立 关于参数的目标函数,转化为函数的值域来解
一、基本知识概要:
重点难点: 正确熟练地运用解析几何的方法解决圆锥 曲线的综合问题,从中进一步体会分类讨 论、等价转化等数学思想的运用. 思维方式: 数形结合的思想,等价转化,分类讨论, 函数与方程思想等.
一、基本知识概要:
特别注意: 要能准确地进行数与形的语言转换和运算、 推理转换,并在运算过程中注意思维的严 密性,以保证结果的完整。
(2)当 FA AP 时,求 的最大值。
说明:本题考查了椭圆、双曲线 的基础知识,及向量、定比分点 公式、重要不等式的应用。解决 本题的难点是通过恒等变形,利 用重要不等式解决问题的思想。 本题是培养学生分析问题和解决 问题能力的一道好题。
( y 1) 2 ( x 1) 2 例4、A,F分别是椭圆 1 的一 16 12
x2 y2 x2 y2 程为 2 1(a b 0) ,双曲线 2 2 1 2 a b a b 的两条渐近线为 l1 ,l 2,过椭圆C的右焦点F作直线 l ,
使 l l1 ,又 l与 l 2交于P点,设 l与椭圆C的两个交 点由上而下依次为A、B。(图见教材P135页例2) (1)当 l1与l 2 夹角为 60 ,双曲线的焦距为4时,求 椭圆C的方程
个上顶点与上焦点,F的连线交射线OA于Q,求:
(1)点A,F的坐标及直线TQ的方程; (2)三角形OTQ的面积S与t的函数关系式及该函数的 最小值 (3)写出该函数的单调递增区间,并证明.
三、课堂小结:
1、解决圆锥曲线的综合问题应根据曲线的几 何特征,熟练运用圆锥曲线的知识将曲线的几 何特征转化为数量关系,再结合代数等知识来 解。