电力系统谐波
电力系统中谐波分析与治理
电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,谐波问题却成为了影响电力系统质量的一个不容忽视的因素。
谐波不仅会导致电力设备的损坏,还会增加电能损耗,降低电力系统的可靠性。
因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有十分重要的意义。
一、谐波的产生要理解谐波,首先需要了解它的产生原因。
谐波主要来源于电力系统中的非线性负载。
常见的非线性负载包括各种电力电子设备,如变频器、整流器、逆变器等,以及电弧炉、荧光灯等。
以变频器为例,它通过对电源进行快速的通断控制来实现对电机转速的调节。
在这个过程中,电流和电压的波形不再是标准的正弦波,而是包含了各种频率的谐波成分。
整流器在将交流电转换为直流电的过程中,由于其工作特性,也会产生谐波。
同样,电弧炉在工作时,电弧的不稳定燃烧会导致电流的剧烈变化,从而产生谐波。
二、谐波的危害谐波的存在给电力系统带来了诸多危害。
对电力设备而言,谐波会使变压器、电动机等设备产生额外的损耗,导致设备发热增加,缩短使用寿命。
对于电容器来说,谐波电流可能会使其过载甚至损坏。
在电能质量方面,谐波会导致电压和电流波形的畸变,使电能质量下降,影响用电设备的正常运行。
例如,对于计算机等精密电子设备,谐波可能会引起数据丢失、误操作等问题。
此外,谐波还会增加电力系统的无功功率,降低功率因数,从而增加线路损耗和电能浪费。
三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析。
目前,常用的谐波分析方法主要有傅里叶变换、小波变换和瞬时无功功率理论等。
傅里叶变换是谐波分析中最常用的方法之一。
它可以将一个复杂的周期性信号分解为不同频率的正弦波分量,从而得到各次谐波的幅值和相位信息。
然而,傅里叶变换在处理非平稳信号时存在一定的局限性。
小波变换则能够很好地处理非平稳信号,它通过对信号进行多尺度分析,可以更准确地捕捉到信号在不同时间和频率上的特征。
电力系统中谐波问题如何治理
电力系统中谐波问题如何治理在当今的电力系统中,谐波问题日益凸显,给电力设备的正常运行和电力质量带来了诸多挑战。
那么,究竟什么是谐波?它又是如何产生的?更重要的是,我们应该如何有效地治理它呢?首先,让我们来了解一下谐波的概念。
简单来说,谐波是指在电力系统中,电流或电压的频率不是基波频率(通常为 50Hz 或 60Hz)整数倍的分量。
这些谐波分量会导致电力系统中的电流和电压波形发生畸变,从而影响电力设备的性能和使用寿命。
谐波的产生原因是多种多样的。
其中,电力电子设备的广泛应用是主要原因之一。
例如,变频器、整流器、逆变器等在工作时会产生大量的谐波电流注入到电力系统中。
此外,电弧炉、电焊机等非线性负载也会产生谐波。
那么,谐波问题会给电力系统带来哪些危害呢?一方面,它会增加电力设备的损耗,导致设备发热、效率降低,缩短设备的使用寿命。
例如,变压器在谐波的作用下,铁芯损耗会显著增加,容易出现过热现象。
另一方面,谐波会影响电力系统的稳定性,可能导致继电保护装置误动作,影响电力系统的安全可靠运行。
同时,谐波还会对通信系统产生干扰,影响通信质量。
既然谐波问题如此严重,我们应该如何治理呢?目前,主要的治理方法可以分为无源滤波和有源滤波两大类。
无源滤波是一种传统的谐波治理方法,它通过电感、电容等无源元件组成滤波器,对特定频率的谐波进行滤波。
无源滤波器结构简单、成本较低,但存在一些局限性。
例如,它的滤波效果容易受到系统参数变化的影响,而且只能对固定频率的谐波进行有效滤波。
有源滤波则是一种较为先进的谐波治理技术。
它通过实时检测电力系统中的谐波电流,并产生与之大小相等、方向相反的补偿电流注入到系统中,从而实现谐波的动态补偿。
有源滤波器具有响应速度快、滤波效果好、能够适应系统参数变化等优点,但成本相对较高。
除了滤波技术,改善电力系统的设计和运行管理也是治理谐波的重要措施。
在电力系统规划和设计阶段,应合理选择电力设备,尽量减少非线性负载的接入。
电力系统中的谐波问题与分析技术研究
电力系统中的谐波问题与分析技术研究引言:现代社会对电力的需求越来越大,电力系统的稳定运行对于社会经济的发展至关重要。
然而,电力系统在运行过程中会面临一些问题,如谐波问题。
谐波是电力系统中的一种普遍现象,它对系统的稳定性和设备的正常运行产生了不可忽视的影响。
因此,对电力系统中的谐波问题进行深入研究和分析,提出相应的解决方法和技术手段是非常必要的。
一、谐波问题的定义与影响1. 谐波的定义谐波是指电力系统中存在的频率是基波频率整数倍的谐振现象。
电力系统中产生谐波的主要原因包括非线性负载、发电机组的谐波励磁和谐波源的接入等。
谐波问题主要表现在电压和电流波形畸变、系统损耗增加以及设备寿命缩短等方面。
2. 谐波问题的影响谐波对电力系统的影响主要体现在以下几个方面:(1)设备损坏:谐波会导致电力设备的工作电流和温度升高,进而加速设备的老化和损坏;(2)电网损失:谐波会导致电网中的有功和无功损失增加,降低系统的效率;(3)通信干扰:谐波会对通信设备产生干扰,降低通信质量和可靠性。
二、谐波分析技术为了解决电力系统中的谐波问题,需要进行谐波分析,找出谐波源,并提出相应的处理措施。
目前,谐波分析技术主要包括频谱分析和时域分析两种方法。
1. 频谱分析频谱分析是通过观察电力系统中各频率成分的振幅和相位关系,以及谐波频率分布情况来分析谐波问题。
常用的频谱分析方法包括傅里叶变换和小波变换。
(1)傅里叶变换傅里叶变换能够将信号在频域中分解成各个频率成分,并得到各频率成分的幅度和相位信息。
通过对电压或电流波形进行傅里叶变换,可以得到具体的谐波频率及其振幅,从而判断谐波的产生原因。
(2)小波变换小波变换是一种时频分析方法,能够同时提供时间和频率信息。
它通过对信号进行连续的分解,得到各个频率成分在时域和频域上的分布情况,更能反映谐波在时间上的变化特性。
2. 时域分析时域分析是通过观察电力系统中各时刻的电压和电流波形来分析谐波问题。
常用的时域分析方法包括快速傅里叶变换和窗函数法。
电力系统中谐波的危害与产生
电力系统中谐波的危害与产生电力系统中谐波是指频率是电力系统基波频率的整数倍的电压或电流波形,其频率通常为50Hz或60Hz。
谐波是电力系统中的一种电磁干扰,可能引起许多问题和危害,包括设备的过热、降低效率、产生故障以及影响电力网络的稳定性。
谐波的产生主要是由于非线性负载和电源引起的,下面将详细讨论谐波的危害与产生。
谐波的危害:1. 电力设备过热:谐波会导致设备内部的电压和电流波形畸变,造成设备的过载和过热。
设备过热会导致设备寿命缩短,甚至发生火灾等危险。
2. 降低设备效率:设备在谐波环境下工作时,可能会发生电流滞后和电压损失,导致设备的效率降低。
例如,变压器在谐波环境下由于电流滞后而产生降温,这会导致能量损失和电力供应的不稳定。
3. 产生设备故障:谐波会导致设备的电压和电流波形失真,从而损坏设备的绝缘性能和电线连接,引发故障。
例如,变频器引起的谐波可能导致电机绝缘击穿,造成电机损坏。
4. 影响电力网络的稳定性:谐波会改变电力系统的频谱特性,降低系统的稳定性。
谐波的存在可能导致电力网络中的共振现象,引起电压和电流的不稳定性,进一步导致电力系统的故障。
谐波的产生:1. 非线性负载:非线性负载是指对电压和电流响应非线性的负载设备。
这些设备通常包括整流器、变频器、电弧炉、放电灯等。
非线性负载会引起谐波电流的产生,造成电力系统的谐波问题。
2. 电源:电源本身也可能产生谐波。
例如,由于电力系统中存在电压降低和电压暂降,电源系统中的设备可能引入谐波频率。
3. 并联谐波滤波器:并联谐波滤波器通常用于减少负载设备引起的谐波,但滤波器本身可能引入谐波频率。
4. 反射和谐波:电力系统中的传输线上的谐波可能会反射,并返回到电源系统中,从而产生额外的谐波。
为减少谐波的危害,可以采取以下措施:1. 负载侧的措施:使用非线性负载时,可以采取滤波器、谐波限制器等措施来减少谐波的产生。
2. 电源侧的措施:电源系统应具备良好的谐波抑制能力,可以采用对称三相电源供应、提高电源的电压和频率稳定性等措施。
电力系统谐波基本原理
电力系统谐波基本原理一、谐波定义谐波是指一个周期电气量的正弦波分量,其频率为基波频率的整数倍。
在电力系统中,谐波产生的根本原因是由于非线性负载所致。
当电流流经非线性负载时,负载不能吸收全部的基波能量,剩余的部分就会以高次谐波的形式释放出来。
二、谐波产生电力系统中的谐波主要来源于两方面:一方面是由于发电机和变压器等元件的非线性特性;另一方面是由于电力电子设备、整流器、逆变器等的大量应用。
这些设备在正常工作时会产生大量的谐波电流,注入到电力系统中,对电力系统造成影响。
三、谐波频率谐波的频率是基波频率的整数倍。
对于50Hz的基波频率,其产生的谐波主要为50Hz、100Hz、150Hz等。
对于400Hz的基波频率,其产生的谐波主要为400Hz、800Hz、1200Hz等。
四、谐波影响谐波对电力系统的影响是多方面的,主要表现在以下几个方面:1. 增加电力损耗:由于谐波的存在,会导致线损增加,特别是在高次谐波的场合下,线损会更加明显。
2. 影响设备正常运行:谐波会导致变压器、电动机等设备的效率降低,甚至引发设备故障。
3. 干扰通信系统:高次谐波会对通信线路产生干扰,影响通信质量。
4. 引发继电保护误动作:谐波会导致继电保护装置误动作,从而引发停电事故。
5. 影响电子设备:对于电子设备来说,谐波会影响其正常工作,导致设备性能下降。
五、谐波抑制为了减小谐波对电力系统的影响,需要采取相应的措施来抑制谐波的产生和传播。
常用的抑制谐波的方法包括:1. 改善供电系统设计:采用合适的变压器连接方式和合理的供电布局,降低系统中各元件的谐波产生量。
2. 增加无功补偿装置:通过在系统中增加无功补偿装置,可以提高系统的功率因数,减小谐波电流。
3. 采用滤波器:滤波器是抑制谐波的重要手段之一,可以通过滤波器将特定频率的谐波进行过滤。
4. 使用有源滤波器:有源滤波器能够主动产生与谐波大小相等、方向相反的电流,对系统中的谐波进行补偿,达到消除谐波的目的。
电力系统中的谐波及其抑制措施
电力系统中的谐波及其抑制措施谐波是电力系统中常见的一种电信号,它是由电力系统中非线性设备引起的。
谐波会导致电力系统不稳定、设备损坏和通信干扰等问题,因此谐波的抑制是电力系统设计和运行中的重要问题。
谐波的产生原理是电力系统中的非线性元件(如整流器、变频器、电弧炉等)在电压或电流作用下,产生不对称的电压或电流波形,导致谐波频率的波形在电力系统中传播和扩散。
常见的谐波频率包括3次、5次、7次等奇次谐波,以及2次、4次、6次等偶次谐波。
谐波对电力系统的影响包括以下几个方面:1.电力系统不稳定:谐波产生的电压波形失真会导致电力系统的电压稳定性下降,可能导致设备的过电压或欠电压现象,进而影响到电力系统的正常运行。
2.设备损坏:谐波电流会导致电力设备内部的电机、变压器等元件温度升高,进而影响到设备的寿命和可靠性。
3.通信干扰:谐波会在电力线上传播,通过电网对通信系统产生干扰,降低通信系统的传输质量。
为了抑制谐波,可以采取以下几种措施:1.使用谐波滤波器:谐波滤波器是一种专门用于抑制谐波的滤波器。
它可以根据谐波频率的不同,选择相应的滤波器进行安装,从而削弱或消除谐波成分。
2.控制负载谐波含量:减少非线性装置的使用,或者采用符合电力系统标准的电气设备,可以降低谐波的产生和传播。
3.设备绝缘和保护:合理选择电力设备的额定容量和绝缘等级,增加设备的绝缘保护,提高设备的抗谐波能力。
4.进行谐波分析和监测:对电力系统中的谐波进行分析和监测,及时了解谐波的产生和传播情况,以便采取相应的措施进行调整和优化。
5.增加电力系统的容量和稳定性:通过增加线路容量、改善电力系统的稳定性,可以降低谐波对电力系统的影响。
综上所述,谐波是电力系统中的一个重要问题,对电力系统的稳定性和设备的正常运行产生不利影响。
通过采取谐波滤波器、控制负载谐波含量、设备绝缘和保护、谐波分析和监测、以及增加电力系统的容量和稳定性等措施,可以有效地抑制谐波,维护电力系统的正常运行。
电力系统中谐波的危害与产生
电力系统中谐波的危害与产生电力系统中谐波的危害与产生谐波指的是频率为基波频率的倍数的电信号成分,在电力系统中的原因有很多,比如电力设备的非线性负载、电子设备的交流-直流变换等。
虽然谐波信号的功率一般较低,但由于其具有频率较高、波形失真的特点,对电力系统和电力设备的运行安全和电能质量造成了一定的影响和危害。
一、对电力设备的危害1.导致设备过热:谐波信号导致电流和电压波形失真,使电力设备的磁路饱和,导致设备出现额外的损耗,产生额外的热量,从而导致设备过热、老化、性能降低。
2.损害设备绝缘:谐波会提高设备绝缘材料的介质损耗角正切值,使设备的绝缘等级下降,从而导致电气设备的绝缘性能降低。
3.损伤电动机:谐波信号会使电动机的转矩波形失真,加剧机械振动,引起转子的加速损伤或者负载不平衡问题,从而降低电动机的性能。
4.降低电力设备的寿命:谐波会使电力设备的运行稳定性降低,电力设备的寿命也随之降低。
二、对电能质量的危害1.导致电能损耗:谐波会使电能的传输损耗增大,电能的利用效率降低,从而造成电能浪费。
2.引起电压波动:谐波会使电源电压的总谐波畸变THD值增大,从而导致电源电压的变化、波动明显。
3.引起电流不平衡:谐波信号会加剧相间电流之间的差异,导致电流的不平衡问题,从而影响电力系统的运行稳定性和性能。
4.影响电力系统的稳定性:谐波会使电力系统的总谐波畸变THD值较大,从而影响电力系统的稳定性和电能质量。
为减小谐波的危害,可采取以下措施:1.选择适当的电力设备,如交流电动机、逆变器、电子变压器等,以减小非线性负载对电力系统产生的谐波。
2.配置滤波器装置,用于消除电力系统中的谐波信号。
3.加强电力设备的维护与管理,延长设备的寿命,减少谐波产生的数量。
4.优化电力系统的运行参数,如改善电力系统的谐波阻抗,减小电力系统的谐波电流等。
电力系统中谐波分析与治理
电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,谐波问题却成为了影响电力系统性能的一个重要因素。
谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。
因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。
一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。
在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。
2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。
3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。
二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。
2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。
3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。
4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。
三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。
常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。
通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。
2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。
电力系统谐波的危害及其常用抑制方法
电力系统谐波的危害及其常用抑制方法电力系统中的谐波是指频率为基波频率的整数倍的电压和电流成分,它们在电力系统中的存在会引起一系列的问题和危害。
下面将详细介绍电力系统谐波的危害及其常用抑制方法。
一、谐波的危害1.电压失真:谐波的存在会使电压波形发生畸变,进而导致电压的失真,使电力设备无法正常运行。
电压失真还会对电力设备造成较大的冲击和损害,缩短设备的寿命。
2.系统能效下降:谐波会导致电力系统中电流的失真,由于谐波电流引起的额外功耗,使得系统能效下降。
这会导致电力设备的能耗增加,降低整个系统的效率。
4.电磁兼容性问题:谐波信号会干扰电力系统周围的其他电子设备,导致电磁兼容性问题。
这会对邻近的电子设备造成干扰,影响设备的正常运行。
5.高频谐波产生的热问题:高频谐波会导致电力设备产生过多的热量,进而引起绝缘材料的老化和烧损,甚至造成火灾。
这对电力系统的安全性构成严重威胁。
二、谐波抑制的常用方法1.变压器和电机的设计优化:在变压器和电机的设计中考虑谐波的影响,通过选择合适的材料和结构,减小谐波对设备的影响。
例如,在电机设计中,可以增加骨架的厚度或配置合适的磁路副将谐波分向其他通道。
2.滤波器的应用:安装合适的滤波器可以有效地抑制谐波。
滤波器可以通过改变电源电路的阻抗特性,将谐波电流引向滤波器,从而减小谐波的水平。
4.负载侧的谐波抑制:对于谐波敏感的设备,可以在负载侧采取一些措施来抑制谐波。
例如,使用谐波阻抗装置或磁性隔离器等。
5.教育和培训:提高电力系统从业人员对谐波问题的认识和理解,增强其对谐波抑制方法的应用能力,能够及时发现和解决谐波问题。
总之,谐波对电力系统的危害不容忽视。
为了保证电力系统的正常运行和设备的安全性,需要采取有效的措施来抑制谐波。
以上所提到的方法是目前常用的谐波抑制方法,但需要根据具体情况选择合适的方法。
电力系统谐波的研究与治理
分析方法包括:频域分析、时域分析和统 计方法等。
分析过程中需要考虑电力系统的运 行状态、负荷特性和设备参数等因 素,以便更准确地分析谐波的影响 。
03
电力系统谐波治理方案
无源滤波器
总结词
无源滤波器是一种常见的谐波治理方案,具有结构简单、运行可靠、成本低等优 点。
详细描述
无源滤波器主要由电感、电容和电阻组成,通过设计合理的电路参数,可以滤除 电力系统中的谐波电流。无源滤波器通常安装在电力系统中,对特定频率的谐波 电流进行滤除,同时还可以改善系统的功率因数。
有源滤波器
总结词
有源滤波器是一种先进的谐波治理方案,能够实时监测和补 偿电力系统中的谐波电流。
详细描述
有源滤波器通过采样和计算,实时监测系统中的谐波电流, 并产生相应的补偿电流进行抵消。有源滤波器具有灵活性和 可扩展性,可以同时补偿多个谐波频段,对谐波电流进行动 态跟踪和补偿。
混合滤波器
总结词
混合滤波器是一种综合方案,结合了无源滤波器和有源滤波器的优点,具有更高的治理效果和更低的成本。
未来发展趋势
智能化发展
随着人工智能和大数据技术的进步,电力系统谐波治理将更加智 能化,包括智能检测、智能分析和智能控制等方面。
模块化与集成化发展
未来电力系统谐波治理将更加注重模块化和集成化,以提高治理 效果和降低成本。
绿色环保发展
随着环保意识的提高,电力系统谐波治理将更加注重绿色环保,减 少对环境的影响。
该电网公司采用了无源滤波器、有源 滤波器、静止无功补偿装置等多种技 术手段进行治理。其中,无源滤波器 主要针对特定频率的谐波进行滤除, 有源滤波器则主动消除谐波,而静止 无功补偿装置则用于动态调节无功功 率。
电力系统中的谐波分析技术及应用教程
电力系统中的谐波分析技术及应用教程简介:在电力系统中,谐波分析技术被广泛应用于电力质量监测与评估、设备故障诊断与排除、谐波滤波器的设计等方面。
本文将介绍电力系统中谐波分析的基本原理、常用的谐波分析方法以及谐波分析在电力系统中的应用。
一、谐波分析的基本原理1.1 谐波的概念谐波是指波形与基波具有相同频率但具有不同幅值和相位的波形。
在电力系统中,谐波是由非线性负载和电力设备引起的。
常见的负载谐波包括电弧炉、变频器、电子设备等。
1.2 谐波分析的原理谐波分析的基本原理是将电力系统中的电压和电流信号经过傅里叶变换,将复杂的波形分解为一系列的正弦波,然后通过计算得到各个谐波分量的频率、幅值和相位。
根据这些参数,可以评估电力系统中的谐波程度,进而采取相应的措施进行修复或优化。
二、谐波分析方法2.1 快速傅里叶变换(FFT)快速傅里叶变换是最常用的谐波分析方法之一,它可以将时域信号转换为频域信号。
通过FFT分析,可以得到电力系统中各个谐波分量的频率、幅值和相位,并进一步计算谐波总畸变率(THD)等参数。
FFT算法的优势在于高速、高效,并且可以利用现有的计算平台进行实时分析。
2.2 小波变换小波变换是一种时频分析方法,可以同时提供时间域和频域信息。
相比于FFT,小波变换在时域和频域的分辨率上更具优势,能够更准确地分析瞬态过程和短时谐波。
小波变换在电力系统中的应用越来越广泛。
2.3 自适应滤波器法自适应滤波器法结合了信号处理和协方差分析原理,可以自动识别和消除电力系统中的谐波。
通过建立自适应滤波器,可以实时跟踪电力系统中的谐波分量,并对其进行有效的滤波补偿。
自适应滤波器法在电力系统的谐波控制中具有重要的应用价值。
三、谐波分析在电力系统中的应用3.1 电力质量监测与评估谐波对电力质量产生显著的影响,会导致电压波动、电流畸变、设备损坏等问题。
通过谐波分析,可以准确评估电力系统中的谐波情况,及时发现潜在问题,并采取措施改善电力质量。
电力系统的谐波分析与抑制研究
电力系统的谐波分析与抑制研究谐波是电力系统中一个普遍存在的问题,由于谐波的存在会降低系统的效率,引起设备损坏甚至系统崩溃,因此对于电力系统的谐波分析与抑制研究具有重要的意义。
本文将深入探讨谐波的概念、产生原因以及相应的分析与抑制方法。
一、谐波的概念与产生原因谐波是指电力系统中频率是基波频率的整数倍的非基波信号。
在电力系统中,谐波的产生主要有两个原因:非线性负载和谐波源。
非线性负载是指在电力系统中存在的像电子设备、调速电机等具有非线性特性的负载。
由于这些负载的特性,当负载电流不是正弦波时,会产生谐波。
谐波源是指在系统中存在的一些直接产生谐波的设备,例如电弧炉、电弧炉变压器等。
这些设备会直接产生谐波,对系统造成干扰。
二、谐波分析方法为了准确分析电力系统中的谐波问题,我们需要采用适当的谐波分析方法。
常用的谐波分析方法主要有频谱分析法、时间域分析法和组成分析法。
频谱分析法是通过将信号分解为一系列不同频率的正弦波来分析谐波成分。
这种方法基于傅里叶级数展开的理论,对信号进行变换后得到谐波的幅值和相位信息。
时间域分析法主要是针对非周期性谐波进行谐波分析,适用于信号比较复杂的情况。
而组成分析法则是通过对谐波进行分离和归类,进一步研究谐波的频谱特性和波形特征。
三、谐波抑制方法谐波对电力系统的影响必须得到合理的抑制,以保证系统的正常运行。
目前常用的谐波抑制方法主要包括滤波器、变压器设计和降低负载对谐波的响应等。
滤波器是最常见的谐波抑制设备,可以根据不同的谐波成分选择不同类型的滤波器进行抑制。
常用的滤波器包括谐波干扰抑制器、谐波滤波器、有源滤波器等。
这些滤波器可以有效地消除谐波干扰,保证系统的稳定运行。
变压器设计也可以用来抑制谐波。
通过改变变压器的设计参数,例如导电屏蔽、磁纳阻和铜损耗等,可以降低谐波的影响。
此外,合理规划电力系统中的变压器容量分配和联结方式,也可以有效减少谐波问题。
降低负载对谐波的响应也是一种有效的抑制方法。
电力系统中的谐波治理
电力系统中的谐波治理电力系统中的谐波是指频率为基波频率的整数倍的电压或电流的波动。
它们可能是由非线性负载引起的,如电脑、UPS、LED照明、变频器、电动机等。
谐波不仅会影响电力系统的稳定性和电能质量,还会给设备带来潜在的损害。
因此,对电力系统中的谐波进行治理至关重要。
在进行谐波治理之前,需要先了解谐波的特性。
谐波的主要特性包括:频率、振幅、相位、波形和谐波总畸变率(THD)。
其中,THD是指总谐波含量与基波电压或电流的比值。
THD越高,电能质量越差,设备受到的影响也越大。
治理谐波的方法主要包括:被动治理和主动治理。
被动治理是通过安装谐波滤波器等被动元件来限制谐波传播,从而达到治理的目的。
主动治理则是通过控制非线性负载,减少谐波的产生。
被动治理不仅可以减少谐波对电网的影响,还能够提高设备的寿命和可靠性。
但是,被动治理有其局限性,比如无法处理谐波产生的根本问题。
主动治理则可以从根本上解决谐波产生的问题,但成本较高,需要配备高度控制的设备。
被动治理中最常见的方法是安装滤波器,如谐波停波器、谐波抑制器等。
谐波停波器是一种被动电子设备,它可以用来过滤电路中的谐波。
谐波停波器主要由电感、电容和电阻等元件组成,其作用是消除电路中的高频噪声。
谐波抑制器是一种被动元件,它可以消除电力系统中谐波对设备的影响。
谐波抑制器主要由电感、电容和电阻等元件组成。
主动治理主要有以下几个方面:调整电脑、LED照明、UPS等非线性负载的工作状态;使用有源滤波器和多电平变频器等技术;使用LCL型滤波器等,从而控制谐波的产生和分布。
调整非线性负载的工作状态,可以减少谐波的产生,从而降低谐波的总畸变率。
有源滤波器可以根据实际需要自动选择不同的滤波器参数,从而达到滤波的目的。
多电平变频器可以产生多种不同频率的电压,从而控制谐波的产生和分布。
LCL型滤波器则可以限制谐波的传播,从而提高电能质量和设备的寿命。
在电力系统中,谐波治理需要遵循以下几个原则:首先,应尽可能采取前端控制措施,控制接入电网的非线性负载;其次,应优先考虑被动治理措施,如安装谐波滤波器等;最后,如果被动治理无法满足要求,应考虑采用主动治理措施。
2024年电力系统中谐波的危害与产生(三篇)
2024年电力系统中谐波的危害与产生电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。
本文全面论述了电力系统中谐波的危害及产生情况,希望能引起我们的高度重视。
谐波的危害电力系统中谐波的危害是多方面的,概括起来有以下几个方面:1.对供配电线路的危害(1)影响线路的稳定运行供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。
但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下不能全面有效地起到保护作用。
晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。
这样,谐波将严重威胁供配电系统的稳定与安全运行。
(2)影响电网的质量电力系统中的谐波能使电网的电压与电流波形发生畸变。
如民用配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较多,可达40%;三相配电线路中,相线上的3的整数倍谐波在中性线上会叠加,使中性线的电流值可能超过相线上的电流。
另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。
2.对电力设备的危害对电力电容器的危害当电网存在谐波时,投入电容器后其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。
对于膜纸复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。
尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。
另外,谐波的存在往往使电压呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。
电力系统谐波
11
0
( 4 ) 控制角 0 ,即相当于不可控整流。
2、A相电压和A相电流
13
图2-4
A相电压和简化后A相电流的波形
3、对A相电流进行傅立叶级数分解
1 1 ia (sin t sin 5 t sin 7 t 5 7 1 1 1 sin 11 t sin 13 t sin 17 t 11 13 17 1 sin 19 t ) 19 2 3Id
24
三、谐波特点:
1、谐波电流与输出电流脉动系数有关. 2、 5次谐波的幅值最高,而且随着r的 增加单调增加 . 3、其它谐波则只在一定的范围内变化.
25
图2-17 具有电感负载的6脉动整流 In与r 的关系
第四节 变压器的非正弦励磁电流
一、空载变压器的励磁电流
1、畸变原因: 若外施电压为: u U m sin t 则磁通 Um Φ cost Φm sin(t ) w 2 由于 f (i0 ) 为非线性曲线,故励磁电 流 i0 为尖顶波
26
28
第五节 电力机车产生的谐波
一、电力机车的工作原理
29
图2-24
电力机车整流回路原理接线图
图2-23 韶山—I型电力机车原理 接线图( 牵引工作状态 )
31
图 2-25 (a) 整流回路电流;
机车电流波 (b) 整流变压器原方电流
31
三、电力机车产生谐波电流的特点
1、机车电流的波形中只包含奇次谐 波。 2、谐波成分和大小随机车载重和行 车速度的变化而变化。 3、当考虑到换相重叠角时,波形更 接近于正弦波,高次谐波幅值减小。
0.219 0.0103
24
3、波形的傅立叶分解 基波幅值:
电力系统中的谐波
2)电子荧光灯镇流器: 电子荧光灯镇流器近年被大量采用.它的优点 是在工作于高频时可显著提高灯管的效率,而其缺 点是其逆变器在电源电流中产生谐波和电气噪声. 使用带有功率因数校正的型号产品可减少谐波,但 成本昂贵. (3)直流调速传动装置: 直流电动机的调速控制器通常采用三相桥式整 流电路,它也称作六脉冲桥式整流电路,因为在直 流输出侧每周波内有六个脉冲(在每相的半波上有一 个).直流电动机的电感是有限的,故在直流电流中 有300Hz的脉动波(即为供电频率的6倍),这就改变 了供电电流的波形.
率是基频的整倍数,例如基频为50Hz,二次 率是基频的整倍数, 谐波为100Hz,三次谐波则为150Hz.因此畸
2,产生谐波的设备
所有的非线性负荷都能产生谐波电流,产生谐波的设备 类型有:开关模式电源(SMPS),电子荧火灯镇流器,调速 传动装置,不间断电源(UPS),磁性铁芯设备及某些家用电
器如电视机等.
电力系统中的谐波分析
谐波的产生,危害及抑制
电气工程07-2 董洪凯
一 ,谐波的定义 二 ,谐波的产生 三 ,电力系统中谐波的危害 四 ,电力系统中谐波的分析和抑制 五 ,小结 六 ,参考文献 七 ,致谢
一,谐波的定义
什么叫谐波? 有关谐波的数学分析在18世纪和19世纪已经奠定了良好的 基础.傅里叶等人提出的谐波分析方法至今仍被广泛应用.谐 波是一个数学或物理学概念,是指周期函数或周期性的波形中 不能用常数,与原函数的最小正周期相同的正弦函数和余弦函 数的线性组合表达的部分. "谐波"一词起源于声学. 电力系统的谐波问题早在20世纪20年代和30年代就引起了 人们的注意.当时在德国,由于使用静止汞弧变流器而造成了 电压,电流波形的畸变.1945年J.C.Read发表的有关变流器 谐波的论文是早期有关谐波研究的经典论文. 定义:谐波是指电流中所含有的频率为基波的整数倍的电 量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其 余大于基波频率的电流产生的电量.
电力系统中谐波的危害与产生
电力系统中谐波的危害与产生电力系统中的谐波是指频率不同于基波频率的周期性电压或电流成分。
谐波是由非线性负载引起的,诸如电力电子装置(如变频器、整流装置、电弧炉)等。
它们产生的谐波电流会通过电力系统的线路和设备传播,对电力系统和相关设备产生一定的危害。
下面将详细讨论谐波的危害和产生原因。
首先,谐波对电力系统的主要危害包括以下几个方面:1. 电力质量损害:谐波会导致电网电压波形失真,破坏电网电压的纯度和稳定性。
谐波电流进入电网后,会导致电网频率响应下降,严重时会引发电网失供故障。
2. 线路过载:谐波电流会导致电力系统中的导线和变压器等设备过载。
这是因为谐波电流具有较高的频率,使得设备的额定电流在该频率范围内有效值变大。
3. 电磁干扰:谐波产生的电磁场会对电力系统周围的通讯设备、调控系统和其他敏感设备产生干扰。
这些干扰可能导致设备的误操作或数据传输错误。
4. 电力设备损坏:谐波会引起电力设备内部的电场和磁场分布不均匀,导致绝缘损坏和局部热点。
同时,谐波还会产生机械振动和声音,对设备的机械结构造成损害。
其次,谐波的产生主要源于以下几个因素:1. 非线性负载:非线性电子元器件和负载(如电力电子装置)是主要的谐波源。
它们的工作原理要求电流和电压之间的关系不是线性的,这就会产生非基波的电流和电压成分。
2. 不平衡负载:不平衡电网或不平衡负载会引入谐波电流。
此类条件下的非对称性会产生额外的谐波电流成分。
3. 非线性磁性元件:磁性元件(如变压器和电感器)的饱和和非线性特性也会导致谐波的产生。
这是因为在这些元件中,电流和磁场之间的关系不是线性的。
4. 电力电子装置的开关操作:电力电子装置的开关(如IGBT 和MOSFET)引起了电流和电压瞬时变化,从而引入谐波电流和电压。
为了减轻谐波对电力系统的危害,可以采取以下措施:1. 选择低谐波负载和电力电子设备:在设计和采购阶段选择低谐波负载和电力电子设备,这将减少谐波电流和电压的产生。
电力系统中的谐波分析与抑制技术研究
电力系统中的谐波分析与抑制技术研究引言谐波是指在电力系统中存在的一个常见问题,它是非线性负载所造成的电流和电压波形畸变现象。
谐波会给电力系统带来一系列的负面影响,如电力设备的损坏、电能计量错误以及对周围电子设备的干扰等。
因此,对于电力系统中的谐波进行分析和抑制研究,具有重要的理论意义和工程应用价值。
本文将对电力系统中的谐波问题进行深入探讨,并介绍一些常见的谐波分析与抑制技术。
一、电力系统中谐波的生成机理电力系统中的谐波主要是由非线性负载产生的。
非线性负载的电阻、电感和电容特性会导致电流波形畸变,进而产生谐波。
例如,电力电子器件如整流器、逆变器、变频器等都是典型的非线性负载,它们工作时会引入大量的谐波。
此外,一些家电如电冰箱、空调等也是常见的非线性负载。
二、谐波的分析方法1.频谱分析法频谱分析法是一种常用的谐波分析方法。
它通过将电压或电流信号变换到频域,得到频谱图,从而判断谐波的存在与否以及谐波的频率和幅值。
常用的频谱分析方法有离散傅里叶变换(DFT)、快速傅里叶变换(FFT)等。
这些方法可以方便地获得频谱信息,并提供参考数据用于后续的谐波抑制设计。
2.时域分析法时域分析法是另一种常见的谐波分析方法。
它通过对电流或电压信号的波形进行观察,判断其是否存在谐波成分以及谐波的波形特征。
时域分析法可以直观地表达谐波的波形特性,有助于对谐波进行定性和定量分析。
三、谐波抑制技术1.主动滤波器技术主动滤波器技术是一种常用的谐波抑制技术。
它通过对电网电流进行实时监测,然后根据监测结果设计控制算法,控制主动滤波器输出谐波电流,与电网中的谐波相消。
主动滤波器具有调整灵活、抑制效果好等优点,但是成本较高,适用于对电能质量要求较高的地方。
2.无源滤波器技术无源滤波器技术是一种经济有效的谐波抑制技术。
它通过选择合适的无源滤波器电路,利用谐波的特性将其消耗或抑制。
无源滤波器技术具有成本低、抑制效果稳定等优点,适用于对电能质量要求不那么高的场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安理工大学研究生课程论文/研究报告课程名称:电能质量分析与控制任课教师:余健明论文/研究报告题目电力系统谐波综述完成日期:2014年 4 月 5 日学科:电力系统及其自动化学号:1308080916姓名:魏帅成绩:摘要:随着电力工业的发展和电力市场的开放,各种非线性元件在电力系统中大量使用,这些非线性元件产生大量的谐波导致电压和电流的波形产生畸变,严重威胁着电网安全和经济运行。
同时谐波对电力系统其他用电设备也产生了严重的危害及影响。
本文主要介绍了谐波基本概念、评价指标,并联电容器对谐波放大的分析及无源滤波器的原理、参数和设计方法。
关键词: 谐波;谐波放大;无源滤波器Abstract: With the development of electrical industry and the opening of the electricity market,various electric components of nonlinear that can generate high-order harmonics are widely used in the power system,the harmonics cause the voltage and current waveform distortion and it has been a threat to the safe operation and economic operation of power grids.Meanwhile,harmonics have influence and harm to other electrical equipment of power system.This paper introduces the basic concepts of harmonic, evaluation, principles of shunt capacitors for harmonic analysis and amplified passive filter, parameters and design methods.Keywords: harmonic; harmonic amplification; passive filter0 引言20 世纪80 年代后期,伴随着计算机技术、通信技术、控制技术3 大技术的发展,电子技术得到迅速发展,各种电子产品更新换代用于各行各业,电子产品中各种非线性元件的大量使用,对带动经济的发展起到了积极作用,同时它们作为电源与用电设备之间的非线性接口,都不可避免的产生非正弦波注入电网,对电力系统元件的安全经济运行造成严重的威胁,所以电力系统谐波问题已经成为工程管理人员和电力科技领域的重大问题。
电力系统谐波含量严重上升的原因主要是各种非线性元件的大量使用和电容器组对谐波的放大和谐振作用。
因此本文将主要分析电容器组对谐波的放大作用及无源滤波器的工作原理及设计方法。
1 谐波的基本概念及评价指标1、1谐波的概念谐波是一种频率为基波整数倍的系列正弦波。
这些不同频率、幅值的系列正弦波, 使系统正弦电流、电压产生不对称。
1、2谐波的产生当电力系统向非线性设备及负荷供电时, 这些设备和负荷在传递、变换、吸收系统发电机所供给的基波能量的同时, 又把部分基波能量转换为谐波能量,向系统倒送大量的高次谐波。
使电力系统中的电压和电流波形发生了严重畸变。
1、3谐波的评价指标1 谐波电压限值:公共电网谐波电压(相电压)限值见表1。
表1第h 次谐波电压含有率h HRU :)1(%1001⨯=U U HRU hh 式中 h U ——第h 次谐波电压(方均根值);I U ——基波电压(方均根值)。
电压总谐波畸变率u THD :)2(%1001⨯=U U THD Hu 其中H U 为谐波电压含量:)3()(22 ∑∞==h hH UU2 谐波电流允许值(1)公共联接点的全部用户向该点注入的谐波电流分量(方均根值)不应超过表2种规定的允许值。
当公共联接点处的最小短路容量不同于基准短路容量时。
表2 注入公共联接点的谐波电流允许值(第1部分)注:220kV基准短路容量取2000 MVA。
(2)同一公共联接点的每个用户向电网注入的谐波电流允许治按此用户在该点的协议容量与其公共连接点的供电设备容量之比进行分配。
分配的计算方法见附录C(补充件)。
2 并联电容器对谐波的影响在用户供电系统中,并联电容器作为无功功率补偿设备得到广泛的应用。
通过无功补偿装置可以提高供电系统的功率因数,有益于电能的充分利用和电能的节约。
同时,由于供电系统中有大量的非线性负载,电网又接有冲击性、波动性负荷,如电弧炉、大型轧钢机等,在运行中会产生大量的高次谐波。
一方面由于电容器谐波阻抗小,系统高次谐波电压会在其中产生显著的高次谐波电流,,使电容器过热,,严重影响其使用寿命;另一方面,电容器在高次谐波的作用下,只要参数配合适当, 都可能引起系统谐波严重放大。
因此, 必须采取措施加以限制。
2、1 电容器对谐波的放大原理图1为供电系统并联电容后的简图,图2 为此供电系统的等值电路,根据等值电路可以求出各支路的谐波电流。
设并联电容器基波电抗为C X ,S X 为系统等值感抗,R 为系统等值电阻,h I 为谐波源注入的h 次谐波电流。
由等值电路图可得:)4()( h c s c sh I h X hX j R hjX i -+-=)5()( h C S Sc I h X hX j R jhX R i -++=图1 图2从上面两个式子中可以得到,当h X hX C s =时, 满足谐振条件, 并联电容器与系统阻抗会发生并联谐振,由于s X 比R 大许多, 发生谐振时Sh I 和C I 均大于h I ,即谐波电流被放大,并且全部通过电容器使其过负荷。
特别是当h X hX c s -时,即电容器组回路呈容性时,谐波的扩大可能使母线电压波形发生畸变。
由h X hX C s =可以得到,谐振点的谐波次数为S C X X h =2,即当谐波源中含有次数为S C X X 的谐波时,将引起谐振。
若谐波源中含有次数接近S C X X的谐波,虽不会发生谐振,但也会导致该次谐波被放大。
无功补偿电容器会使谐波放大,而谐波放大又会危害到电容器,电容器由于超温和过压而损坏,同时, 还会危及电网中的其他电气设备, 严重时会造成电气设备损坏, 甚至破坏电网的正常运行, 因此, 必须要解决好电容器对谐波电流的放大问题。
2、2 串联电抗器防止谐波放大并联电容器能够引起谐波放大, 是由于电容器回路在谐波频率范围内呈出容性。
如果在并联补偿电容器回路中串接一个电抗器, 通过选择电抗值使各次谐波过补偿, 也就是使电容器回路的总电抗呈现出感性而不是容性, 则可消除谐波放大现象。
串联电抗器的电路图和等值电路图如图3 和图4 所示。
图3 图4由等值电路图可得:)6()( h C L S C L Sh I h X hX hX hX hX I -+-=)7()( h X hX hX hX I C L S SC -+=)8( SC L hX hX hX -=α)9(11 α+=h ch II)10(1 αα+=h sh I I α≤0时,谐波放大,且当α=-1时,谐波放大的程度最大。
3 无源滤波器的设计在谐波的治理方法中, 采用无源滤波装置是一个非常普遍和经济的方法,它通过调整电容器和电抗器的参数, 对某次谐波(单调谐滤波器) 或某个频率范围的谐波(高通滤波器、低通滤波器) 呈现非常低阻抗的通道, 从而避免其流入系统。
根据无源滤波器滤除的谐波频率特点, 可分为单调谐滤波器、双调谐滤波器、三调谐滤波器和高通调谐滤波器以及失谐滤波器。
单调谐滤波器,见图1(a ),主要滤除某一次频率的谐波电流,做成在某次频率下串联谐振回路,即0=-Ln Cn X X 。
双调谐滤波器,见图1(b ),有两个谐振频率,同时吸收两个频率的谐波,相当于两个并联的单调谐滤波器。
高通调谐滤波器又称阻尼滤波器,在某一特定的频率以上时呈现低阻抗,以下时则呈现高阻抗。
高通调谐滤波器从结构上有一阶、二阶、三阶和C 型之分, 二阶高通滤波器见图1(c ), 型滤波器见图1(d ),常用的为二阶高通调谐滤波器。
失谐滤波器的谐振频率通常低于电网的最低次特征谐波频率, 通常设定为基波频率的3. 8 ~ 4. 2 倍, 只能吸收少量谐波, 主要用途是防止谐波放大, 其结构和阻抗特性类似于单调谐滤波器, 只是谐振频率有区别。
双调谐和三调谐滤波器由于占地少、损耗小,常用于高压直流输电系统, 但结构复杂、调谐困难,很少用于低压系统。
低压系统常采用单调谐、失谐以及二阶高通调谐滤波器。
\图1 单调谐滤波器 图3 二阶高通滤波器图2 双调谐滤波器 3、1单调谐滤波器的参数及设计方法单调谐滤波器如图1所示, 滤波器对h 次谐波的阻抗为:)11()1( Ch L h j R Z s s fh fh ωω-+=式中: 下标h f 表示第h 次单调谐滤波器的频率;s ω为基波角频率。
工作原理: 单调谐滤波器是利用串联L 、C 谐振原理构成的,谐振次数h 为:)12(1 LCh s ω=在谐振点处, fh fh R Z =, 因fh R 很小, h 次谐波电流主要由fh R 分流, 很少流入电网中, 对于其他次数的谐波, fh fhR Z >>, 谐波分流很少。
因此, 只要将滤波器的谐振次数设定为与需要滤除的谐波次数一样, 则该次谐波将流入无源滤波器, 从而起到滤除该次谐波的目的。
单调谐滤波器的设计:单调谐滤波器由电感L 、电容器C 和电阻R 组成, 它的工作原理是利用电感和电容对某次谐波频率产生串联谐振使得滤波器的阻抗很小, 从而把负载中的该次谐波电流引入滤波器。
滤波器对h 次谐波的阻抗为式(8)所示,滤波器的谐振频率如式(9)所示。
从式( 3)和式( 4)可以看出, 单调谐无源滤波器对基波的阻抗是呈容性的, 也就是说, 单调谐无源滤波器能够提供一定的无功功率。
为减少因电网频率偏差原因使滤波器与系统在特征频率上出现并联谐振的几率, 在确定单调谐滤波器的调谐频率时应将其设置为稍低于相应的特征频率, 即使滤波器从感性域上接近串联谐振。
在根据谐波治理对象的谐波含量特点确定单调谐无源滤波器的具体滤波次数后, 电容器C 和电感L 具体参数设计主要由以下几个方面考虑:①确定电容器容量C Q (单位为Mvar) 等于补偿谐波源所需要的无功功率。
②由C Q 来确定电容器的电抗为:)13(2 CCC Q U k X =③滤除h 次谐波, 电抗器大小为:)14(2 hX X CL =④电抗器的电阻为:(15) QX R h=式中: Q 为滤波器的品质因数, 一般取30<Q < 100。