Simulink系统仿真

合集下载

Simulink动态系统仿真入门

Simulink动态系统仿真入门

Simulink动态系统仿真入门Simulink是基于MA TLAB的图形化仿真设计环境,是MATLAB 提供的进行动态系统建模、仿真和综合分析的集成软件包。

它使用图形化的系统模块对动态系统进行描述,并在此基础上采用MATLAB 的计算引擎对动态系统在时域内进行求解。

它可以处理的系统包括:线性、非线性、离散、连续及混合、单任务、多任务离散事件等。

在MATLAB7.X版本中,可以直接在Simulink环境中运作的工具箱和模型库很多,已经覆盖了航天、航空、通信、控制、信号处理等等诸多领域,涉及内容专业性很强。

1、Simulink系统的启动由于Simulink和MATLAB是高度集成在一起的,因此启动Simulink必须先启动MA TLAB。

在MA TLAB启动Simulink可以通过在命令窗口输入Simulink,或者点击MATLAB工具栏的Simulink 快速启动图标。

启动Simulink后,出现Simulink的主窗口,选择主菜单File中的New\model,即可以打开系统模型编辑器。

下图依次是MATLAB 主窗口、Simulink主窗口和系统模型编辑窗口,图中的箭头表示了操作顺序。

在打开一个新的系统模型文件以后,用户可以从Simulink模块库中选择适合的系统模块或自定义模块来建立系统模型。

我们通过一个简单的例子来分步说明Simulink建模和仿真的能力。

1)在MATLAB 窗口运行Simulink。

打开Simulink模块库浏览器。

2)点击Source子库前的“+”展开库,可以看到各种信源模块。

3)点击新建图标,打开一个空白型的模型窗口。

4)用鼠标选中需要的信源模块,把它拖入新建的空白模型编辑窗口,生成一个正弦波的复制品。

5)同样将信宿库Sinks中的示波器Scope拷贝到模型窗口。

6)利用鼠标完成两个模块的连线操作,完成一个简单的模型。

7)为进行仿真,双击示波器模块,打开示波器显示屏。

第五章 Simulink系统建模与仿真

第五章 Simulink系统建模与仿真
第五章 Simulink建模与仿真
本章重点
Simulink基本结构 Simulink模块 系统模型及仿真
一、Simulink简介
Simulink 是MATLAB 的工具箱之一,提供交互式动态系统
建模、仿真和分析的图形环境
可以针对控制系统、信号处理及通信系统等进行系统的建 模、仿真、分析等工作 可以处理的系统包括:线性、非线性系统;离散、连续及 混合系统;单任务、多任务离散事件系统。
从模块库中选择合适的功能子模块并移至编辑窗口中,按 设计要求设置好各模块的参数,再将这些模块连接成系统 Simulink的仿真过程就是给系统加入合适的输入信号模块 和输出检测模块,运行系统,修改参数及观察输出结果等
过程
二、Simulink的基本结构
Simulink窗口的打开
命令窗口:simulink 工具栏图标:
三、Simulink模型创建
7、信号线的标志
信号线注释:双击需要添加注释的信号线,在弹出的文本编辑 框中输入信号线的注释内容
信号线上附加说明:(1) 粗线表示向量信号:选中菜单Forma t|Wide nonscalar lines 即可以把图中传递向量信号的信号线用粗 线标出;(2)显示数据类型及信号维数:选择菜单Format|Port data types 及Format|Signaldimensions,即可在信号线上显示前 一个输出的数据类型及输入/输出信号的维数;(3) 信号线彩 色显示:选择菜单Format|Sample Time Color,SIMULINK 将用 不同颜色显示采样频率不同的模块和信号线,默认红色表示最 高采样频率,黑色表示连续信号流经的模块及线。
同一窗口内的模块复制: (1)按住鼠标右键,拖动鼠标到目标

控制系统的Simulink仿真

控制系统的Simulink仿真
可以观察到非线性系统的动态行为,从而更好地理解其性能和行为特性。
06 结论与展望
结论
控制系统Simulink仿真是一种有 效的工具,可用于模拟和分析各 种控制系统的性能。通过使用 Simulink,研究人员和工程师可 以轻松地构建和修改控制系统模 型,并使用各种仿真工具进行系 统分析和优化。
Simulink提供了广泛的模块库和 工具,可用于构建各种类型的控 制系统模型,包括线性、非线性、 离散和连续系统。这些模块可以 方便地组合和修改,以适应特定 的控制系统需求。
非线性系统仿真
总结词
对非线性系统的动态行为进行模拟的过程。
详细描述
非线性系统在Simulink中可以通过使用非线性模块进行模拟。非线性系统是指系统的 输出与输入不成比例的系统,例如某些电子设备或机械系统。在Simulink中,可以使 用非线性模块来模拟这些系统的行为,例如非线性增益、饱和等。通过调整模块参数,
• 未来,Simulink可能会引入更多先进的仿真技术和算法,以提高仿真精度和 效率。例如,基于模型的控制设计、自适应控制、预测控制等先进控制算法可 能会被集成到Simulink中,以提供更强大的分析和优化工具。
• 此外,随着物联网和智能制造等领域的快速发展,Simulink可能会扩展其模 块库和工具箱,以支持这些领域的控制系统建模和仿真。例如,增加与传感器 、执行器和其他智能设备的接口模块,以及支持实时仿真和嵌入式系统开发的 工具箱。
保障生产安全
控制系统能够及时检测和预防潜在的安全隐患, 降低事故发生的可能性。
3
节能减排
优化控制参数,降低能耗和排放,符合绿色环保 要求。
控制系统的发展历程
01
02
03
模拟控制系统

学习使用MATLABSimulink进行系统仿真

学习使用MATLABSimulink进行系统仿真

学习使用MATLABSimulink进行系统仿真【第一章:引言】在如今数字化时代,仿真已成为系统设计与优化的重要工具。

系统仿真能够帮助工程师在产品开发的早期阶段快速验证设计,预测产品性能,并提供有关系统行为的深入洞察。

由于其易用性和广泛应用领域,MATLABSimulink成为了工程界最受欢迎的仿真工具之一。

本文将介绍如何学习使用MATLABSimulink进行系统仿真,并强调其专业性。

【第二章:MATLABSimulink概览】MATLABSimulink是一个具有图形化界面的仿真环境,可用于建模、仿真和分析各种复杂动态系统。

它使用块状图形表示系统的组成部分,并通过连接输入和输出端口模拟系统的行为。

用户可以通过简单拖拽和连接块状元件来构建仿真模型,并通过调整参数和设置仿真参数来进行模拟分析。

【第三章:基本建模技巧】在使用MATLABSimulink进行系统仿真之前,掌握基本的建模技巧至关重要。

首先,需要熟悉各种块状元件的功能和用途,例如传感器、执行器、逻辑运算器等。

其次,理解信号流和数据流的概念,以及如何在模型中正确地引导信号传递和数据流动。

最后,学习使用条件语句、循环语句等控制结构来实现特定的仿真逻辑。

【第四章:系统模型的构建】在使用MATLABSimulink进行系统仿真时,首先需要根据实际系统的需求和特点进行系统模型的构建。

这包括确定系统的输入和输出,以及分析系统的功能和性能要求。

然后,使用块状元件将系统的各个组成部分建模,并建立各个组件之间的联系和依赖关系。

在构建模型的过程中,要注意选择恰当的块状元件和参数设置,以确保模型的合理性和可靠性。

【第五章:仿真参数设置与分析】为了获得准确且可靠的仿真结果,需要合理设置仿真参数。

常见的仿真参数包括仿真时间、步长和求解器类型等。

仿真时间应根据系统的实际运行时间确定,步长要足够小以保证仿真的精度,而求解器类型则根据系统的特点选择。

完成仿真后,还需要对仿真结果进行分析,以评估系统的性能和进行优化调整。

simulink仿真实验报告

simulink仿真实验报告

simulink仿真实验报告Simulink仿真实验报告一、引言Simulink是一种基于模型的设计和仿真工具,广泛应用于各领域的工程设计和研究中。

本次实验将利用Simulink进行系统仿真实验,通过搭建模型、参数调整、仿真运行等过程,验证系统设计的正确性和有效性。

二、实验目的本实验旨在帮助学生掌握Simulink的基本使用方法,了解系统仿真的过程和注意事项。

通过本实验,学生将能够:1. 熟悉Simulink的界面和基本操作;2. 理解和掌握模型构建的基本原理和方法;3. 学会调整系统参数、运行仿真和分析仿真结果。

三、实验内容本实验分为以下几个步骤:1. 绘制系统模型:根据实验要求,利用Simulink绘制出所需的系统模型,包括输入、输出、控制器、传感器等。

2. 参数设置:针对所绘制的系统模型,根据实验要求设置系统的参数,例如增益、阻尼系数等。

3. 仿真运行:通过Simulink的仿真功能,对所构建的系统模型进行仿真运行。

4. 仿真结果分析:根据仿真结果,分析系统的动态性能、稳态性能等指标,并与理论值进行对比。

四、实验结果与分析根据实验要求,我们绘制了一个负反馈控制系统的模型,并设置了相应的参数。

通过Simulink的仿真功能,我们进行了仿真运行,并获得了仿真结果。

仿真结果显示,系统经过调整参数后,得到了较好的控制效果。

输出信号的稳态误差较小,并且在过渡过程中没有发生明显的振荡或超调现象。

通过与理论值进行对比,我们验证了系统的稳态稳定性和动态响应性能较为理想。

五、实验总结通过本次实验,我们掌握了使用Simulink进行系统仿真的基本方法和技巧。

了解了系统模型构建的基本原理,并学会了参数调整和仿真结果分析的方法。

这对于我们今后的工程设计和研究具有重要的意义。

六、参考文献1. 《Simulink使用手册》,XXX出版社,20XX年。

2. XXX,XXX,XXX等.《系统仿真与建模实践教程》. 北京:XXX出版社,20XX年。

第3章 Simulink建模与仿真

第3章  Simulink建模与仿真

将仿真数据写入 mat 文件 将仿真数据写入. mat文件 将仿真数据输出到 将仿真数据输出到 Matlab 工作空间 MATLAB 工作空间 使用 Matlab 使用MATLAB 图形显示数据 图形显示数据
图3.10 系统输出模块库及其功能
第3章 Simulink建模与仿真
模块功能说明:
模块功能说明: 有限带宽白噪声
求取输入信号的数学函数值 对输入信号进行内插运算
求取输入信号的数学函数值 对输入信号进行内插运算 输入信号的一维线性内插
输入信号的一维线性内插
输入信号的二维线性内插 输入信号的二维线性内插 输入信号的 n 维线性内插 输入信号的n维线性内插
M函数(对输入进行运算输出结果) M 函数,对输入进行运算输出结果 多项式求值
第3章 Simulink建模与仿真
模块功能说明: 模块功能说明 : 连续信号的数值微分 连续信号的数值微分 输入信号的连续时间积分 输入信号的连续时间积分 单步积分延迟,输出为前一个输入 单步积分延迟,输出为前一个输入 线性连续系统的状态空间描述 线性连续系统的状态空间描述
线性连续系统的传递函数描述 线性连续系统的传递函数描述 对输入信号进行固定时间延迟 对输入信号进行固定时间延迟 对输入信号进行可变时间延迟 对输入信号进行可变时间延迟 线性连续系统的零极点模型 线性连续系统的零极点模型
合并输入信号块控制信息 信号组合器信号组合器 信号探测器信号探测器 信号维数改变器 选择或重组信号 信号线属性修改 输入信号宽度
信号维数改变器 选择或重组信号 信号线属性修改 输入信号宽度
第3章 Simulink建模与仿真
模块功能说明: 对信号进行分配
Target模块库:主要提供各种用来进行独立可执行代码 或嵌入式代码生成,以实现高效实时仿真的模块。它 们和RTW、TLC有着密切的联系。 (6) Stateflow库:对使用状态图所表达的有限状态 机模型进行建模仿真和代码生成。有限状态机用来描 述基于事件的控制逻辑,也可用于描述响应型系统。

simulink

simulink

五.设置仿真参数



பைடு நூலகம்

仿真参数对话框simulation/configuration parameters 设置如下仿真参数: Solver(算法) Data Import/Export(数据输入输出) Diagnostics(诊断) Optimization(优化) Hardware Implementation(硬件工具) Model Referencing(模块引用)

建模仿真的一般过程是: 1.打开一个空白的编辑窗口; 2.将模块库中模块复制到编辑窗口里,并依照给定 的框图修改编辑窗口中模块的参数; 3.将各个模块按给定的框图连接起来; 4.用菜单选择或命令窗口键入命令进行仿真分析, 在仿真的同时,可以观察仿真结果,如果发现有不 正确的地方,可以停止仿真,对参数进行修正; 5.如果对结果满意,可以将模型保存。
10) 模块的输入输出信号:模块处理的信号包括标量信号和向量信号; 标量信号是一种单一信号,而向量信号为一种复合信号,是多个信 号的集合,它对应着系统中几条连线的合成。缺省情况下,大多数 模块的输出都为标量信号,对于输入信号,模块都具有一种“智能” 的识别功能,能自动进行匹配。某些模块通过对参数的设定,可以 使模块输出向量信号。

5.2 数据输入输出选项(Data Import and Export)


主要用来设置Simulink与MATLAB工作空间交换 数值的有关选项。 Load from workspace(从工作空间载入数据)选 中前面的复选框即可从MATLAB工作空间获取时 间和输入变量,一般时间变量定义为t,输入变量 定义为u。 Initial state用来定义从MATLAB工作空 间获得的状态初始值的变量名。 Save to workspace(将输出保存到工作空间) Save options(保存选项)。

MatlabSimulink系统建模和仿真

MatlabSimulink系统建模和仿真

图:电容的充电、放电过程的仿真结果。在充电仿真中,输出信号 为系统的零状态响应。在放电过程仿真中,输出信号为系统的零输 入响应。 如果要仿真系统输入信号为任意函数的情况,只需要修改仿 真程序中的输入信号设臵即可。
“实例2.3”单摆运动过程的建模和仿真。 (1)单摆的数学模型 设单摆摆线的固定长度为l ,摆线的质量忽略不计,摆锤质 量为m ,重力加速度为g ,设系统的初始时刻为t=0 ,在任 意 t 0 时刻摆锤的线速度为v(t) ,角速度为 w(t ) ,角位移 为 (t ) 。以单摆的固定位臵为坐标原点建立直角坐标系, 水平方向为x 轴方向。如下图所示。
图:电容的充电电路以及等价系统
(1)数学分析
首先根据网络拓扑和元件伏安特性建立该电路方程组
dy (t ) i (t ) C dt
dy (t ) 1 1 x(t ) y (t ) dt RC RC
y(t ) x(t ) Ri (t )
并化简得
该方程也称为系统的状态方程。在方程中,变量y 代表电 容两端的电压,是电容储能的函数。本例中它既是系统的 状态变量,又是系统的输出变量。
7.1 Matlab编程仿真的方法
7.1.1 概述 通过编程的形式建立计算机仿真模型是最基本的 计算机建模方法。Matlab编程仿真过程就是用编 写脚本文件或函数文件来描述数学模型,并实现 计算机数值求解的过程。 我们把外界对系统产生作用的物理量称为输入 信号或激励,把由于系统内部储存的能量称为系 统的状态,而将系统对外界的作用物理量称为系 统的输出信号或响应。
图:模拟真实示波器显示的调幅仿真波形,仿真中考虑了输 入信号与示波器扫描不同步,载波相位噪声以及加性信道噪 声的影响
7.1.3 连续动态系统的Matlab编程仿真 7.1.3.1 几个实例

simulink仿真流程

simulink仿真流程

simulink仿真流程标题,深入了解Simulink仿真流程。

Simulink是一种用于建模、仿真和分析动态系统的工具,它可以帮助工程师们更好地理解和设计复杂的控制系统。

在本文中,我们将深入探讨Simulink的仿真流程,以帮助读者更好地了解如何使用Simulink进行系统仿真。

Simulink仿真流程可以分为以下几个步骤:1. 模型建立,首先,我们需要在Simulink中建立系统的模型。

这可以通过拖放各种组件来实现,包括传感器、执行器、控制器等。

这些组件可以通过连接线连接起来,以构建系统的整体模型。

2. 参数设置,在建立模型后,我们需要设置各个组件的参数,包括传感器的灵敏度、执行器的动态响应等。

这些参数设置将直接影响系统的仿真结果。

3. 信号输入,接下来,我们需要确定系统的输入信号,这可以是一个预先定义的信号,也可以是一个外部输入。

这些输入信号将作为系统的激励,驱动系统进行仿真。

4. 仿真运行,一切就绪后,我们可以开始运行仿真。

Simulink将根据模型和参数设置,以及输入信号,模拟系统的动态行为,并输出相应的仿真结果。

5. 结果分析,最后,我们需要对仿真结果进行分析。

这包括系统的响应曲线、稳定性分析、频域特性等。

通过对仿真结果的分析,我们可以评估系统的性能,并进行必要的调整和优化。

总的来说,Simulink的仿真流程涉及模型建立、参数设置、信号输入、仿真运行和结果分析等多个环节。

通过深入了解Simulink的仿真流程,我们可以更好地利用这一工具来进行系统建模和分析,从而更好地理解和设计复杂的控制系统。

如何使用MATLABSimulink进行动态系统建模与仿真

如何使用MATLABSimulink进行动态系统建模与仿真

如何使用MATLABSimulink进行动态系统建模与仿真如何使用MATLAB Simulink进行动态系统建模与仿真一、引言MATLAB Simulink是一款强大的动态系统建模和仿真工具,广泛应用于各个领域的工程设计和研究中。

本文将介绍如何使用MATLAB Simulink进行动态系统建模与仿真的方法和步骤。

二、系统建模1. 模型构建在MATLAB Simulink中,可以通过拖拽模块的方式来构建系统模型。

首先,将系统的元件和子系统模块从库中拖拽到模型窗口中,然后连接这些模块,形成一个完整的系统模型。

2. 参数设置对于系统模型的各个组件,可以设置对应的参数和初始条件。

通过双击模块可以打开参数设置对话框,可以设置参数的数值、初始条件以及其他相关属性。

3. 信号连接在模型中,各个模块之间可以通过信号连接来传递信息。

在拖拽模块连接的同时,可以进行信号的名称设置,以便于后续仿真结果的分析和显示。

三、系统仿真1. 仿真参数设置在进行系统仿真之前,需要设置仿真的起止时间、步长等参数。

通过点击仿真器界面上的参数设置按钮,可以进行相关参数的设置。

2. 仿真运行在设置好仿真参数后,可以点击仿真器界面上的运行按钮来开始仿真过程。

仿真器将根据设置的参数对系统模型进行仿真计算,并输出仿真结果。

3. 仿真结果分析仿真结束后,可以通过查看仿真器界面上的仿真结果来分析系统的动态特性。

Simulink提供了丰富的结果显示和分析工具,可以对仿真结果进行绘图、数据处理等操作,以便于对系统模型的性能进行评估。

四、参数优化与系统设计1. 参数优化方法MATLAB Simulink还提供了多种参数优化算法,可以通过这些算法对系统模型进行优化。

可以通过设置优化目标和参数范围,以及定义参数约束条件等,来进行参数优化计算。

2. 系统设计方法Simulink还支持用于控制系统、信号处理系统和通信系统等领域的特定设计工具。

通过这些工具,可以对系统模型进行控制器设计、滤波器设计等操作,以满足系统性能要求。

(入门)超经典_simulink仿真

(入门)超经典_simulink仿真

学习建议及资源推荐
学习建议
建议初学者从基础概念入手,逐步掌握建模与仿真方法;同时,多动手实践,通过案例分析加深对知识的理解。
资源推荐
推荐参考书籍《MATLAB/Simulink系统仿真》、在线课程《Simulink从入门到精通》以及MATLAB官网的教程 和案例库等学习资源。
THANK YOU
感谢各位观看
自适应滤波算法
根据输入信号的统计特性自适应地调 整滤波器参数,用于信号预测、回声 消除等应用。
基于Simulink的数字信号处理实例分析
数字滤波器设计实例
通过Simulink搭建数字滤波器模型,包括滤波器系数设计和滤波器结构实现,对输入 信号进行滤波处理并观察输出结果。
FFT算法实现实例
利用Simulink中的FFT模块实现快速傅里叶变换算法,对输入信号进行频谱分析并显示 频谱图。
启动方法
在MATLAB命令窗口中输入 “simulink”命令,或点击MATLAB 工具栏中的Simulink图标,即可启动 Simulink。
模型创建与保存
创建新模型
在Simulink启动后,选择“File”菜 单中的“New”选项,然后选择 “Model”即可创建一个新的 Simulink模型。
离散时间系统
对离散时间信号进行处理的系统,可以是线性的或非线性的,时变 的或时不变的。
常见数字信号处理算法介绍
离散傅里叶变换(DFT)
将有限长序列分解为不同频率的正弦 波和余弦波之和,用于信号分析和处 理。
快速傅里叶变换(FFT)
是DFT的高效算法,用于快速计算序 列的频谱。
数字滤波器设计
根据滤波器的性能指标,设计数字滤 波器的系数和结构,用于信号的滤波 和去噪。

了解MATLABSimulink进行系统建模与仿真

了解MATLABSimulink进行系统建模与仿真

了解MATLABSimulink进行系统建模与仿真MATLAB Simulink是一款功能强大的工具,专门用于系统建模和仿真。

它可以帮助工程师和科研人员设计复杂的系统、开展仿真分析,并支持快速原型设计和自动生成可执行代码。

本文将详细介绍MATLAB Simulink的基本概念、系统建模与仿真流程,以及其在各个领域中的应用。

第一章:MATLAB Simulink简介MATLAB Simulink是MathWorks公司开发的一款图形化建模和仿真环境。

它包含了一系列模块,可以通过简单地拖拽和连接来模拟和分析复杂的系统。

Simulink中的模块代表不同的系统组件,例如传感器、执行器、控制器等。

用户可以通过连接这些模块来构建整个系统,并通过仿真运行模型以评估系统的性能。

第二章:系统建模基础系统建模是使用Simulink进行系统设计的关键步骤。

在建模之前,需要明确系统的输入、输出和所涉及的物理量。

Simulink提供了广泛的模块库,包括数学运算、信号处理、控制等,这些模块可以方便地应用到系统中。

用户可以选择合适的模块,并通过线连接它们来形成系统结构。

此外,Simulink还支持用户自定义模块,以满足特定的需求。

第三章:MATLAB与Simulink的联合应用MATLAB和Simulink是密切相关的工具,它们可以互相配合使用。

MATLAB提供了强大的数学计算和数据分析功能,可以用于生成仿真所需的输入信号,以及分析仿真结果。

同时,Simulink也可以调用MATLAB代码,用户可以在模型中插入MATLAB函数块,以实现更复杂的计算和控制逻辑。

第四章:系统仿真与验证系统仿真是利用Simulink来验证系统设计的重要步骤。

通过设置仿真参数和初始条件,用户可以运行模型来模拟系统的行为。

仿真可以包括不同的输入场景和工况,以验证系统在不同条件下的性能和稳定性。

Simulink提供了丰富的仿真分析工具,例如波形显示器、频谱分析等,可以帮助用户分析仿真结果并进行必要的调整。

Simulink系统仿真原理

Simulink系统仿真原理
仿真效率
仿真效率取决于计算机性能、模型复杂度和数值算法的优化程度。
03
Simulink模型建立
模型元素
模块
Simulink中的模块是构成模型的基本单元, 每个模块代表一个特定的功能或算法。
连接线
连接线用于将不同模块连接起来,表示数据 流或信号流。
参数设置
每个模块都有一些参数可以设置,用于调整 模块的行为或功能。
性能评估
根据仿真结果,评估系统性能指标,如响应时间、超调量、稳态误 差等。
优化设计
基于仿真结果,对系统参数和结构进行优化设计,提高系统性能和 稳定性。
05
模型优化与改进
参数优化
参数优化
在Simulink模型中,参数的选择和调整对仿真结果的影响非常大。通过调整模型中的 参数,可以优化模型的性能,提高仿真的准确性和效率。
通过点击Simulink界面上的“开 始”按钮或使用命令行指令来启 动仿真。
实时监测
02
03
结果导出
在仿真过程中,可以通过 Simulink界面实时监测系统状态、 变量值和输出结果等。
将仿真结果导出为文本、图像或 数据文件,以便进一步分析或与 其他软件进行交互。
模型性能分析
稳定性分析
通过分析仿真结果,判断系统是否稳定,并找出可能的不稳定因素。
特点
支持图形化建模、交互式仿真、动态 系统分析等,适用于多种领域的系统 建模与仿真。
Simulink的历史与发展
1980年代初
由美国MathWorks公司推出Simulink的早期版 本。
1990年代
随着计算机技术的进步,Simulink的功能不断 扩展,支持更多的系统和算法。
2000年代至今

基于matlab simulink的控制系统仿真及应用

基于matlab simulink的控制系统仿真及应用

基于matlab simulink的控制系统仿真及应用Simulink是MATLAB的一个附加组件,它提供了一种可视化建模和仿真环境,主要用于控制系统、信号处理、通信系统等领域的建模和仿真。

以下是一个简单的基于Simulink的控制系统仿真的步骤:
1. 模型建立:首先,你需要使用Simulink库中的模块来构建你的控制系统模型。

这些模块包括输入、输出、控制算法等。

你可以直接从库中拖放模块到你的模型中,然后通过连接线将它们连接起来。

2. 参数设置:在连接模块后,你需要为每个模块设置适当的参数。

例如,对于传递函数模块,你需要输入分子和分母的系数。

3. 仿真设置:在完成模型和参数设置后,你需要设置仿真参数,例如仿真时间、步长等。

4. 运行仿真:最后,你可以运行仿真并查看结果。

Simulink提供了多种方式来查看结果,包括图形和表格。

在Simulink中,你可以使用许多内建的工具和函数来分析和优化你的控制系统。

例如,你可以使用MATLAB的控制系统工具箱中的函数来分析系统的稳定性、频率响应等。

总的来说,Simulink是一个强大的工具,可以用于设计和分析各种控制系统。

通过学习和掌握这个工具,你可以更有效地进行控制系统设计和仿真。

simulink动态系统建模仿真 第6章

simulink动态系统建模仿真 第6章
第6章 Simulink动态系统仿真
第6章 Simulink动态系统仿真
6.1 Simulink动态系统仿真过程 6.2 离散系统仿真 6.3 连续系统仿真 6.4 混合系统仿真 6.5 模型离散化 6.6 诊断仿真错误 6.7 改善仿真性能和精度 6.8 综合实例
第6章 Simulink动态系统仿真
(3) 检测模块连续状态中的不连续性。是否执行这步操作是 根据用户的设置来决定的,如果用户在模型中选择了执行过零检 测,那么Simulink会利用过零检测来检测模块连续状态中的不连 续性。
第6章 Simulink动态系统仿真
(4) 计算下一个时间步的时间。Simulink在整个仿真过 程中的每个时间步内均执行(1)~(4)步操作,这个过程会一 直进行下去,直至仿真结束。
第6章 Simulink动态系统仿真
Simulink 系统
系统信息:参数、模型方程 求解器
计算得到的值:状态、输入、时间
图6-2
第6章 Simulink动态系统仿真
1.定步长求解器和变步长求解器 Simulink算法分为定步长算法和变步长算法两类,相应 的求解器即为定步长求解器和变步长求解器。 定步长求解器:顾名思义,仿真步长是固定不变的,这 些算法依据相等的时间间隔来解算模型,时间间隔称为步长。 用户可以指定步长的大小,或者由算法自己选择步长。通常, 减小步长可以提高仿真结果的精度,但同时也增加了系统仿 真所需要的时间。
Simulink的仿真循环过程如图6-1所示。
第6章 Simulink动态系统仿真 初始化
否 时间<终止时间?
是 模型输出 (ModelOutputs)
代数循环求解器
模型更新 (ModelUpdate)
仿真结束

Simulink系统仿真课程设计

Simulink系统仿真课程设计

Simulink系统仿真课程设计一、课程目标知识目标:1. 学生能理解Simulink的基本原理和功能,掌握Simulink的常用模块及其使用方法。

2. 学生能运用Simulink构建数学模型,实现对动态系统的仿真和分析。

3. 学生能掌握Simulink与MATLAB的交互操作,实现数据传递和模型优化。

技能目标:1. 学生具备运用Simulink进行系统仿真的能力,能独立完成简单系统的建模和仿真。

2. 学生能通过Simulink对实际工程问题进行分析,提出解决方案,并验证其有效性。

3. 学生具备团队协作能力,能与他人合作完成复杂系统的仿真项目。

情感态度价值观目标:1. 学生对Simulink系统仿真产生兴趣,提高对工程学科的认识和热爱。

2. 学生在仿真实践中,培养严谨的科学态度和良好的工程素养。

3. 学生通过课程学习,增强解决实际问题的信心,形成积极向上的学习态度。

课程性质:本课程为实践性较强的学科,结合理论知识,培养学生运用Simulink进行系统仿真的能力。

学生特点:学生具备一定的MATLAB基础,对Simulink有一定了解,但实际操作能力较弱。

教学要求:注重理论与实践相结合,强化动手能力训练,培养学生解决实际问题的能力。

在教学过程中,关注学生的个体差异,因材施教,提高学生的综合素质。

通过课程学习,使学生能够独立完成系统仿真项目,并为后续相关课程打下坚实基础。

二、教学内容本课程教学内容主要包括以下几部分:1. Simulink基础操作与建模- 熟悉Simulink环境,掌握基本操作。

- 学习Simulink常用模块,如数学运算、信号处理、控制等模块。

- 结合教材章节,进行实际案例分析,让学生了解Simulink建模的基本过程。

2. 系统仿真与分析- 学习Simulink仿真参数设置,掌握仿真算法和步长设置。

- 利用Simulink对动态系统进行建模与仿真,分析系统性能。

- 结合实际案例,让学生通过仿真实验,掌握系统性能分析方法。

Matlab实验4 Simulink系统仿真

Matlab实验4 Simulink系统仿真

模块形状
表 7.2 常用的输入信号源模块表 功能说明 恒值常数,可设置数值 阶跃信号 线性增加或减小的信号 正弦波输出 信号发生器,可以产生正弦、方波、锯齿波和随 机波信号 从文件获取数据 从当前工作空间定义的矩阵读数据
仿真时钟,输出每个仿真步点的时间 输入模块
2. 接收模块库(Sinks) 接收模块是用来接收模块信号的,常用的接收模块如表 7.3 所示。
Matlab实验讲义
实验四 Simulink系统仿真
要求: 1、掌握Simulink常用输入、输出、运算模块。 2、掌握Simulink模型的建立及系统仿真方法。 实验类型:综合性 学时分配:3学时 Simulink 是面向框图的仿真软件。 7.1 演示一个 Simulink 的简单程序 【例 7.1】创建一个正弦信号的仿真模型。 步骤如下: (1) 在 MATLAB 的命令窗口运行 simulink 命令,或单击工具栏中的 图标,就可以打 开 Simulink 模块库浏览器(Simulink Library Browser) 窗口,如图 7.1 所示。
7.2.2 Simulink 的模型窗口
模型窗口由菜单、工具栏、模型浏览器窗口、模型框图窗口以及状态栏组成。
菜单 工具栏
模型浏览器
模型框图
状态栏
图7.5 双窗口模型窗口
1. 状态栏
3
Matlab实验讲义
2. 工具栏 模型窗口工具栏如图 7.6 所示。
创建并编译生成exe文件
展示父系统 打开调试器
开始仿真 结束仿真
4. 模块的删除 要删除模块,应选定待删除模块,按 Delete 键;或者用菜单“Edit”Æ“Clear”或“Cut”; 或者用工具栏的“Cut”按钮。

第6章Simulink系统仿真原理

第6章Simulink系统仿真原理

图6.2中h为积分步长。注意,此图以最简单的多边 形积分近似算法为例说明积分误差的计算,在实际中 具体的方法视连续求解器的不同而不同。如果积分误 差满足绝对误差或相对误差,则仿真继续进行;如果 不满足,则求解器尝试一个更小的步长,并重复这个 过程。当然,连续求解器在选择更小步长时采用的方 法也不尽相同。如果误差上限值的选择或连续求解器 的选择不适合待求解的连续系统,则仿真步长有可能 会变得非常小,使仿真速度变得非常慢。(用户需要注 意这一点。)
6.1 Simulink求解器概念
6.1.1 离散求解器 第3章中简单介绍了动态系统的模型及其描述,其
中指出,离散系统的动态行为一般可以由差分方程描 述。众所周知,离散系统的输入与输出仅在离散的时 刻上取值,系统状态每隔固定的时间才更新一次;而 Simulink对离散系统的仿真核心是对离散系统差分方程 的求解。
6.2 系统过零的概念与解决方案
6.1 节 中 对 Simulink 的 求 解 器 进 行 了 较 为 深 入 的 介 绍 。 Simulink求解器固然是系统仿真的核心,但Simulink对 动态系统求解仿真的控制流程也是非常关键的。 Simulink对系统仿真的控制是通过系统模型与求解器之 间建立对话的方式进行的:Simulink将系统模型、模块 参数与系统方程传递给Simulink的求解器,而求解器将 计算出的系统状态与仿真时间通过Simulink环境传递给 系统模型本身,通过这样的交互作用方式来完成动态系 统的仿真。
>> semilogy(tout(1:end–1,diff(tout)) % 绘制系统仿真时刻的一阶差分(即系统仿真步长),如
图6.7所示,其中常规步长为0.2 s, % 当发生过零的情况时,系统仿真步长自动缩小至约s

第1章 Simulink系统仿真 绪论

第1章 Simulink系统仿真 绪论

表1.2 Simulink的部分软件工具包
DSP Blockset Fixed-Point Blockset Power System Blockset Dials & Gauges Blockset Communications Blockset CDMA Reference Blockset CDMA Nonlinear Control Design Blockset Motorola DSP Developer’s Kit TI DSP Developer’s Kit 数字信号处理工具包 定点运算控制系统仿真工具包 电力电动系统工具包 交互图形和控制面板设计工具包 通讯系统工具包 CDMA通讯系统设计和分析工具包 非线性控制设计工具箱 Motorola DSP开发工具箱 TI DSP开发工具箱
数学模型可以分为许多类型。按照状态变化可分
为动态模型和静态模型。用以描述系统状态变化过程 的数学模型称为动态模型。而静态模型仅仅反映系统 在平衡状态下系统特征值间的关系,这种关系常用代 数方程来描述。按照输入和输出的关系可分为确定性 模型和随机性模型。若一个系统的输出完全可以用它 的输入来表示,则称之为确定性系统。若系统的输出 是随机的,即对于给定的输入存在多种可能的输出, 则该系统是随机系统。
仿真软件是一类面向仿真用途的专用软件,它可能 是面向通用的仿真,也可能是面向某个领域的仿真。 它的功能可以概括为以下几点: (1) 为仿真提供算法支持。 (2) 模型描述,用来建立计算机仿真模型。 (3) 仿真实验的执行和控制。 (4) 仿真数据的显示、记录和分析。 (5) 对模型、实验数据、文档资料和其它仿真信息的 存储、检索和管理(即用于仿真数据信息管理的数据库 系统)。
环境,只需用鼠标拖动的方法便能迅速地建立起系统

基于Simulink进行系统仿真(微分方程、传递函数)

基于Simulink进行系统仿真(微分方程、传递函数)

实验四基于Simulink进行系统仿真(微分方程、传
递函数)之五兆芳芳创作
一.实验目的
1)熟悉Simulink的任务情况;
2)掌握Simulink数学东西箱的使用;
3)掌握在Simulink的任务情况中成立系统仿真模型.二.实验内容
模型
微分方程时的进程
Ut=1时
传递函数时的进程
结论及感触
从两种种不合办法的仿真结果,我们可以看出辨别用微分方程和传递函数在Simulink中,仿真出来的结果没有很明显的区别,说明两种办法的精度都差未几.但是,不合的电压源得出的仿真结果不一样,阶跃电源开始时震荡,后来幅度逐突变小,趋近于1;正弦电源,初相不合时,初始时刻的结果也不相同,有初相时开始震荡会更剧烈,但最后都会变成稳态值,即为正弦值.通过本次实验,我认识到了建模与仿真的一般性办法,收获甚多,也更进一步了解了Matlab,Matlab不但仅在平时的编程方面功效强大,在仿真方面也熠熠生辉.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级:通信工程
姓名:曾浩
学号:201007302123
实验四 Simulink系统仿真
一、实验目的
1、熟悉SIMULINK工作环境及特点
2、掌握SIMULINK 的建模与仿真方法
4、掌握Simulink模型的建立及系统仿真方法。

二实验基本知识
1.了解SIMULINK模块库中各子模块基本功能
2. SIMULINK 的建模与仿真方法
(1)打开模块库,找出相应的模块。

鼠标左键点击相应模块,拖拽到模型窗口中即可。

(2)创建子系统:当模型大而复杂时,可创建子系统。

(3)设置仿真控制参数。

三、实验内容
(1)系统的仿真与分析
1.创建一个正弦信号的仿真模型
在MATLAB 的命令窗口运行simulink 命令单击工具栏上的图标或选择菜
单“File”——“New”——“Model”,新建一个名为
“untitled”的空白模型窗口。

添加模块
仿真
2.建立二阶系统的仿真模型。

方法一: 输入信号源使用阶跃信号,系统使用开环传递函数s
s 6.012 ,接受模块使用示波器来
构成模型。

(1) 在“Sources ”模块库选择“Step ”模块,在“Continuous ”模块库选择“Transfer Fcn ”模
块,在“Math Operations ”模块库选择“Sum ”模块,在“Sinks ”模块库选择“Scope ”。

(2) 连接各模块,从信号线引出分支点,构成闭环系统。

仿真并分析
单击工具栏的“Start simulation ”按钮,开始仿真,在示波器上就显示出阶跃响应。

在 Simulink 模型窗口,选择菜单“Simulation ”——“Simulation parameters …”命令,在
“Solver ”页将“Stop time ”设置为15,然后单击“Start simulation ”按钮,示波器显示的就到15
秒结束。

方法二:
(1) 系统使用积分模块(Integrator)和零极点模块(zero-pole)串联,反馈使用“Math
Operations”模块库中的“Gain”模块构成反馈环的增益为-1。

(2) 连接模块,由于“Gain”模块在反馈环中,因此需要使用“Flip Block”翻转该模块。

(3) 设置模块参数,将“zero-pole”模块参数对话框中的“Zeros”栏改为“[]”,将“Poles”栏
改为[-0.6]。

将“Gain”模块的“Gain”参数改为-1。

模型如图
如果将示波器换成“Sinks”模块库中的“Out”模块;然后在仿真参数设置对话
框的“Workspace I/O”页(工作空间输入输出),将“Time”和“Output”栏勾选,并分别设置保
存在工作空间的时间量和输出变量为“tout”和“yout”。

仿真后在工作空间就可以使用这两个
变量来绘制曲线,如图7.30 所示:
plot(tout,yout)
2.离散系统仿真
控制部分为离散环节,被控对象为两个连续环节,其中一个有反馈环,反馈
环引入了零阶保持器,输入为阶跃信号。

创建模型并仿真:
(1) 选择一个“Step”模块,选择两个“Transfer Fcn”模块,选择两个“Sum”模块,选择两
个“Scope”模块,选择一个“Gain”模块,在“Discrete”模块库选择一个“Discrete Filter”和一
个“Zero-Order Hold”模块。

(2) 连接模块,将反馈环的“Gain”模块和“Zero-Order Hold”模块翻转。

(3) 设置参数,“Discrete Filter”和“Zero-Order Hold”模块的“Sample time”都设置为0.1s。

(4) 添加文本注释,系统框图如图
(2)子系统与封装
将控制对象中的第一个连续环节中的反馈环建立
为一个子系统。

在模型窗口中,将控制对象中的第一个连续环节的反馈环用鼠标拖出的虚线框框住,选择菜单“Edit”/“Create subsystem”,则系统如图
双击子系统,则会出现“Subsystem”模型窗口,如图所示。

可以看到子系统模型除了用鼠标框住的两个环节,还自动添加了一个输入模块
“In1”和一个输出模块“Out1”
(3)用MATLAB 命令创建和运行Simulink 模型
条件执行子系统
1.使能子系统
建立一个用使能子系统控制正弦信号为半波整流信号的模型。

模型由正弦信号“Sine wave”为输入信号源,示波器“Scope”为接收
模块,使能子系统“Enabled Subsystem”为控制模块,
连接模块,将“Sine wave”模块的输出作为“Enabled Subsystem”的
控制信号,模型如图
开始仿真,由于“Enabled Subsystem”的控制为正弦信号,大于零时执
行输出,小于零时就停止,则示波器显示为半波整流信号,示波器的显
示如图
2.触发子系统
建立一个用触发子系统控制正弦信号输出阶梯波形的模型模型由正弦信号“Sine wave”为输入信号源,示波器“Scope”为接收模块,触发子系统“Triggered Subsystem”为控制模块,选择“Sources”模块库中的“Pulse Generator”模块为控制信号。

连接模块,将“Pulse Generator”模块的输出作为“Triggered Subsystem”
的控制信号,模型如图
开始仿真,由于“Triggered Subsystem”的控制为“Pulse Generator”模块的输出,示波器输出如图
3.PID控制器设计
在Simulink下建立PID控制模型
其中PID封装模块内部结构如下图
仿真时取Kp=40,Ki=2,Kd=10,仿真时间为10s ,得到如下图所示结果。

相关文档
最新文档