质谱例题解析分解38页PPT
合集下载
质谱解析基础 ppt课件
i断裂和α断裂同时存在, α断裂的几率大于i断裂。但由于α断裂生成的m/z 59还 有进一步的断裂,因此,在乙醚的质谱中,m/z 59 并不比m/z 29强。
(2)诱导断裂
• 酮类也经常会发生下面的i-断裂
•卤素有很强的i断裂反应的趋势
如1-溴丁烷发生i-断裂 产生的碎片(C4H9+, 57) 是丰度最大的基峰
•醛、酮、羧酸、酯、酰胺、碳酸酯、磷酸酯、肟、 腙、烯、炔以及烷基苯等的含有γ-H的有机化合物 很容易发生麦氏重排
以长链羧酸甲酯为例,裂解过程如下:
(2)逆迪尔斯-阿尔德重排(retro Diels-Alder fragmentation,
三、EI有机化合物裂解的一般规律
(一)、影响有机化合物在质谱仪中裂解的主要因素 • 1.裂解产物(包括碎片离子、中性分子、自由基)的稳
定性以及产生这一稳定碎片离子所需要能量的高低。碎片 离子的稳定性越大,其相对强度越高。 • 2.电荷自由基定域理论(Charge Localization)
假定电离后,在分子离子上的电荷或自由基被认为是 定域在分子离子中的某一特定位置上,由它通过转移一个 电子或两个电子而使裂解反应发生。 • 3.键断裂的难易程度,键越弱越容易断裂。 • 4.产生五、六元环过渡态的难易程度。一般形成五元或 六元环的过渡态,随后消除一个中性分子的裂解反应较易 发生。 • 5.丢失最大烃基规则(Loss of Largest Alkyl Group)
三、EI有机化合物裂解的一般规律
• EI质谱除分子离子峰外,可观察到极丰富的碎片 离子
• 碎片离子峰的相对丰度,与分子中键的相对强度、 断裂产物的稳定性及原子或基团的空间排列有关, 其中裂解产物的稳定性是主要因素
• 由于碎片离子峰,特别是相对丰度大的碎片离子 峰,与化合物的分子结构有密切的关系,因此研 究分子离子的裂解规律和裂解机理有助于推测和 解析化合物的结构
(2)诱导断裂
• 酮类也经常会发生下面的i-断裂
•卤素有很强的i断裂反应的趋势
如1-溴丁烷发生i-断裂 产生的碎片(C4H9+, 57) 是丰度最大的基峰
•醛、酮、羧酸、酯、酰胺、碳酸酯、磷酸酯、肟、 腙、烯、炔以及烷基苯等的含有γ-H的有机化合物 很容易发生麦氏重排
以长链羧酸甲酯为例,裂解过程如下:
(2)逆迪尔斯-阿尔德重排(retro Diels-Alder fragmentation,
三、EI有机化合物裂解的一般规律
(一)、影响有机化合物在质谱仪中裂解的主要因素 • 1.裂解产物(包括碎片离子、中性分子、自由基)的稳
定性以及产生这一稳定碎片离子所需要能量的高低。碎片 离子的稳定性越大,其相对强度越高。 • 2.电荷自由基定域理论(Charge Localization)
假定电离后,在分子离子上的电荷或自由基被认为是 定域在分子离子中的某一特定位置上,由它通过转移一个 电子或两个电子而使裂解反应发生。 • 3.键断裂的难易程度,键越弱越容易断裂。 • 4.产生五、六元环过渡态的难易程度。一般形成五元或 六元环的过渡态,随后消除一个中性分子的裂解反应较易 发生。 • 5.丢失最大烃基规则(Loss of Largest Alkyl Group)
三、EI有机化合物裂解的一般规律
• EI质谱除分子离子峰外,可观察到极丰富的碎片 离子
• 碎片离子峰的相对丰度,与分子中键的相对强度、 断裂产物的稳定性及原子或基团的空间排列有关, 其中裂解产物的稳定性是主要因素
• 由于碎片离子峰,特别是相对丰度大的碎片离子 峰,与化合物的分子结构有密切的关系,因此研 究分子离子的裂解规律和裂解机理有助于推测和 解析化合物的结构
质谱定性分析及图谱解析PPT课件
比最大的峰是否在所有的峰中最后消
失。最后消失的峰即为分子离子峰。
整理版课件
12
MS
有机化合物的质谱分析,最常应
用电子轰击源作离子源,但在应用这
种离子源时,有的化合物仅出现很弱
的,有时甚至不出现分子离子分子峰,
这样就使质谱失去一个很重要的作用。
为了得到分子离子峰,可以改用其它
一些离子源,如场致电离源、化学电
17
MS
8.4.2 分子式的确定
各元素具有一定的同位素 天然丰度,因此不同的分子式, 其M+1/M和M+2/M的百分比都将 不同。
整理版课件
18Biblioteka MS若以质谱法测定分子离子峰及
其 分 子 离 子 的 同 位 素 峰 ( M+1 ,
M+2 ) 的 相 对 强 度 , 就 能 根 据
M+1/M 和 M+2/M 的 百 分 比 确 定 分
最接近的是第5式(C9H10O2), 这 个 式 子 的 M+2 也 与 0.9 很 接 近 ,
因此分子式应为整理版C课件9H10O2。
23
MS
8.4.3 根据裂解模型鉴定化合物和确定结构
各种化合物在一定能量的离子源中是按照 一定的规律进行裂解而形成各种碎片离子的, 因而所得到的质谱图也呈现一定的规律。所 以根据裂解后形成各种离子峰就可以鉴定物 质的组成及结构。
取长补短。
整理版课件
35
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
就不是分子离子峰。
整理版课件
7
MS
(3)分子离子峰与邻近峰的质量差是否
合理。如有不合理的碎片峰,就不是分
质谱例题解析
实用文档
2质谱图
图中的竖线称为质谱峰,不同的质谱峰代表有不同质荷比 的离子,峰的高低表示产生该峰的离子数量的多少。质谱
图的质荷比(m/z)为横坐标,以离子峰的相对丰度为纵坐
标。图中最高的峰称为基峰。基峰的相对丰度常定为100%, 其它离子峰的强度按基峰的百分比表示。在文献中,质谱 数据也可以用列表的方法表示
m1+
m2+ +中性碎片
实用文档
生成的碎片离子就会在质荷比为m2的地方被检 测出来。但如上述的裂解是在m1+离开了加速电场,进
入磁场时才发生,则生成的碎片离子的能量要小于正
常的m2+。因它在加速电场中是以m1的质量被加速,而 在磁场中是以m2的质量被偏转,故它将不在m2处被检出, 而是出现在质荷比小于m2的地方,这就是产生亚稳离子 的原因。一般亚稳离子用m*来表示。 m1、m2、和m*之间存在下列关系:
产生亚稳离子。所以,没有亚稳离子峰的出现并不能否
定某种开裂过程的存在
实用文档
3.4 同位素离子
质谱中还常有同位素离子(istopic ion)。 在一般有机化合物分子鉴定时,可以通过同位
素的统计分布来确定其元素组成,分子离子的同位素离 子峰相对强度比总是符合统计规律的。如在CH3CI、 C2H5CI等分子中CIm+2/CIm=32.5%,而在含有一个溴原子 的化合物中(M+2)+峰的相对强度几乎与m+ 峰的相等。 同位素离子峰可用来确定分子离子峰。
m* = m22 / m1
实用文档
(2) 亚稳离子的识别 a 一般的碎片离子峰都很尖锐,但亚稳离子峰钝而小; b 亚稳离子峰一般要跨2~5个质量单位; c 亚稳离子的质荷比一般都不是整数。
2质谱图
图中的竖线称为质谱峰,不同的质谱峰代表有不同质荷比 的离子,峰的高低表示产生该峰的离子数量的多少。质谱
图的质荷比(m/z)为横坐标,以离子峰的相对丰度为纵坐
标。图中最高的峰称为基峰。基峰的相对丰度常定为100%, 其它离子峰的强度按基峰的百分比表示。在文献中,质谱 数据也可以用列表的方法表示
m1+
m2+ +中性碎片
实用文档
生成的碎片离子就会在质荷比为m2的地方被检 测出来。但如上述的裂解是在m1+离开了加速电场,进
入磁场时才发生,则生成的碎片离子的能量要小于正
常的m2+。因它在加速电场中是以m1的质量被加速,而 在磁场中是以m2的质量被偏转,故它将不在m2处被检出, 而是出现在质荷比小于m2的地方,这就是产生亚稳离子 的原因。一般亚稳离子用m*来表示。 m1、m2、和m*之间存在下列关系:
产生亚稳离子。所以,没有亚稳离子峰的出现并不能否
定某种开裂过程的存在
实用文档
3.4 同位素离子
质谱中还常有同位素离子(istopic ion)。 在一般有机化合物分子鉴定时,可以通过同位
素的统计分布来确定其元素组成,分子离子的同位素离 子峰相对强度比总是符合统计规律的。如在CH3CI、 C2H5CI等分子中CIm+2/CIm=32.5%,而在含有一个溴原子 的化合物中(M+2)+峰的相对强度几乎与m+ 峰的相等。 同位素离子峰可用来确定分子离子峰。
m* = m22 / m1
实用文档
(2) 亚稳离子的识别 a 一般的碎片离子峰都很尖锐,但亚稳离子峰钝而小; b 亚稳离子峰一般要跨2~5个质量单位; c 亚稳离子的质荷比一般都不是整数。
质谱原理及应用.pptx
第31页/共89页
羧基
特征: a、脂肪羧酸的M峰一般可察出,最特征的峰为m/z=60峰,由McLafferty重排
裂解产生; b、芳香族羧酸的M峰相当强,M-17,M-45峰也较明显。
第32页/共89页
羧酸酯
特征: a、直链一元羧酸酯的M峰通常可观察到,且随相对分子质量的增高(C6)而增加,
芳香羧酸酯的M峰较明显; b、羧酸酯羰基碳上的裂解有两种类型,其强峰(有时为基准峰)通常来源于此; c、由于McLafferty重排,甲酯可形成m/z=74,乙酯可形成m/z=88的基准峰; d、二元羧酸及其甲酯形成强的M峰,其强度随两个羧基的接近程度增大而减弱。二
• 酚和芳香醇的特征: a、和其他芳香化合物一样,酚和芳香醇的M峰很强,酚的M峰往往是它的基准峰; b、苯酚的M-1峰不强,而甲苯酚和苄醇的M-1峰很强,因为产生了稳定的鎓离子; c、自苯酚可失去CO 、HCO。
第28页/共89页
卤化物
特征: a、脂肪族卤化物M峰不明显,芳香族的明显; b、氯化物和溴化物的同位素峰非常特征; c、卤化物质谱中通常有明显的X、M-X、M-HX、M-H2X峰和M-R峰。
M-58等峰。
第36页/共89页
质谱的解析
• 确定分子离子峰和化合物分子量的测定 确定分子离子峰可能遇到的难题: 1、分子离子峰不稳定,在质谱上不出现。 芳香环(包括芳香杂环)>脂环>硫醚、硫酮>共轭烯、直链烷烃>酰胺>酮>醛>胺>
酯>醚>羧酸>枝链烃>伯醇>叔醇>缩醛(胺、醇化合物质谱中往往见不到分子离 子峰) 2、有时分子离子峰一产生就与其它离子或分子相碰撞而结合,变为质量数更大的络 合离子。
羧基
特征: a、脂肪羧酸的M峰一般可察出,最特征的峰为m/z=60峰,由McLafferty重排
裂解产生; b、芳香族羧酸的M峰相当强,M-17,M-45峰也较明显。
第32页/共89页
羧酸酯
特征: a、直链一元羧酸酯的M峰通常可观察到,且随相对分子质量的增高(C6)而增加,
芳香羧酸酯的M峰较明显; b、羧酸酯羰基碳上的裂解有两种类型,其强峰(有时为基准峰)通常来源于此; c、由于McLafferty重排,甲酯可形成m/z=74,乙酯可形成m/z=88的基准峰; d、二元羧酸及其甲酯形成强的M峰,其强度随两个羧基的接近程度增大而减弱。二
• 酚和芳香醇的特征: a、和其他芳香化合物一样,酚和芳香醇的M峰很强,酚的M峰往往是它的基准峰; b、苯酚的M-1峰不强,而甲苯酚和苄醇的M-1峰很强,因为产生了稳定的鎓离子; c、自苯酚可失去CO 、HCO。
第28页/共89页
卤化物
特征: a、脂肪族卤化物M峰不明显,芳香族的明显; b、氯化物和溴化物的同位素峰非常特征; c、卤化物质谱中通常有明显的X、M-X、M-HX、M-H2X峰和M-R峰。
M-58等峰。
第36页/共89页
质谱的解析
• 确定分子离子峰和化合物分子量的测定 确定分子离子峰可能遇到的难题: 1、分子离子峰不稳定,在质谱上不出现。 芳香环(包括芳香杂环)>脂环>硫醚、硫酮>共轭烯、直链烷烃>酰胺>酮>醛>胺>
酯>醚>羧酸>枝链烃>伯醇>叔醇>缩醛(胺、醇化合物质谱中往往见不到分子离 子峰) 2、有时分子离子峰一产生就与其它离子或分子相碰撞而结合,变为质量数更大的络 合离子。
质谱谱图解析 ppt课件
X、Y、Z可以是C、O、N、S等。
PPT课件
20
5.脱去乙炔分子的开裂
由开裂生成的桌翁离子或开裂生成的苯离子等还能 继续裂解,脱去乙炔分子:
PPT课件
21
CH 2 CH 2 CH 2 CH 3
CH 2 CH 2 CH 3
m /z=134
m /z=39 HC
m /z=65 CH
HC
CH
CH 2 m /z=91
苯,能发生麦氏重排裂解,产生m/z 92(C7H8+·)的 重排离子(奇电子离子峰),进一步裂解,产生m/z 78
,52或 66,40的峰。
PPT课件
18
3.开裂和氢的重排 取代苯也能发生α裂解,产生苯离子,进一步裂解 成环丙烯离子和环丁二烯离子。
PPT课件
19
4.逆狄尔斯—阿尔德开裂及其它重排开裂
H 3C
CH
C CH 2 CH 3
CH 2 CH 3 m / z = 5 5 CH 3
CH 3
CH 3
H 3 C CH
100
C 41
H 3C
CH C CH 2 m /z= 6 9
% OF BASE PEAK
90 80
70
60
69
50
55
84(M )
40
30
27
20 10 0
0 1 0 2 0 3 0 4 0 5 0 P6PT0课件7 0 8 0 9 0 1 0 0 1 1 0
C2H5+( M /e =29)→ C2H3+( M /e =27)+H2 ❖有M /e :28,42,56,70P,PT…课件…CnH2n系列峰(四圆环重排6 )
质谱的图谱分析ppt(共55张PPT)
a:某元素轻同位素的丰度;
b:某元素重同位素的丰度; c:同位素个数。
23
例:某化合物质谱分子离子区域的离子质荷比和强度如下 :
m/z
132(M+·) 133 134
试推导分子式
解:因[M+2]:[M+]为0.7:100,所以分子中不含 Cl、Br、S、Si等A+2类元素。C原子数的最大值 =[M+1]/[M]÷1.1%=9.9/100÷1.1%=9
m/z 14 (4.0) 16 (0.8) 20 (0.8)
m/z 28 (100) 29 (0.76) 32 (23)
m/z 33 (0.02) 34 (0.99)
40 (2.0)
44 (0.10)
括弧中的数字即峰的相对强度,表示100%者是基 峰 O,2, O,2N在就2在空占空气N2气中的中占23含1%/量5。,最N高2占而且4/5也,最N稳2的定峰。高(为321)0是0%
(1)绝对强度 是将所有离子峰的离子流强度相加作
为总离子流,用各离子峰的离子强度除以 总离子流,得出各离子流占总离子流的百 分数 (2)相对强度
以质谱峰中最强峰作为100%,称为基 峰(该离子的丰度最大、最稳定),然后 用各种峰的离子流强度除以基峰的离子流 强度,所得的百分数就是相对强度。
4
表示方法: (以上图为例)
一般情况下,分子的稳定性与分子离子的稳定性 有平行关系,分子离子的稳定性通常随不饱和度 和环的数目的增加而增大。
杂原子外层未成键电子被电离的容易程度,按周期表纵 列自上而下,横行自右而左的方向增大。
13
分子电离所需的能量越低,分子离子也越 高。
n-C4H9OH n-C4H9SH n- C4H9NH CH3-CH3 CH2=CH2 苯
b:某元素重同位素的丰度; c:同位素个数。
23
例:某化合物质谱分子离子区域的离子质荷比和强度如下 :
m/z
132(M+·) 133 134
试推导分子式
解:因[M+2]:[M+]为0.7:100,所以分子中不含 Cl、Br、S、Si等A+2类元素。C原子数的最大值 =[M+1]/[M]÷1.1%=9.9/100÷1.1%=9
m/z 14 (4.0) 16 (0.8) 20 (0.8)
m/z 28 (100) 29 (0.76) 32 (23)
m/z 33 (0.02) 34 (0.99)
40 (2.0)
44 (0.10)
括弧中的数字即峰的相对强度,表示100%者是基 峰 O,2, O,2N在就2在空占空气N2气中的中占23含1%/量5。,最N高2占而且4/5也,最N稳2的定峰。高(为321)0是0%
(1)绝对强度 是将所有离子峰的离子流强度相加作
为总离子流,用各离子峰的离子强度除以 总离子流,得出各离子流占总离子流的百 分数 (2)相对强度
以质谱峰中最强峰作为100%,称为基 峰(该离子的丰度最大、最稳定),然后 用各种峰的离子流强度除以基峰的离子流 强度,所得的百分数就是相对强度。
4
表示方法: (以上图为例)
一般情况下,分子的稳定性与分子离子的稳定性 有平行关系,分子离子的稳定性通常随不饱和度 和环的数目的增加而增大。
杂原子外层未成键电子被电离的容易程度,按周期表纵 列自上而下,横行自右而左的方向增大。
13
分子电离所需的能量越低,分子离子也越 高。
n-C4H9OH n-C4H9SH n- C4H9NH CH3-CH3 CH2=CH2 苯
质谱分析图谱解析_图文
CnH2n m/z 42, 56, 70, 84等 CnH2n-1 m/z 41, 55, 69, 83等
m/z 43 (CH3)2CH+, 57 (CH3)3C+ 基峰或强峰
碎裂符合偶电子规律
n-十六烷的质谱图如下
烷烃-支链烷烃
M+·弱或不见。 M-15 (·CH3), 带侧链CH3 M-R (·R) 优先失去大基团,此处 碎片离子峰的 RI 大。
※ 查表法 Beynon and Lederbey 制作了高分辨质谱法数据表, 可查出对应于某精确质量的分子式。
※ 计算机处理
3.3 有机质谱中的反应及其机理
M+ e
50-70 eV
+. M
+
2e
-. M
+
小于1%
+.
A +. + 中性分子或碎片
M
B + + R
A +.
B+
M+·→ A+·, B+, C +·, D+ ……
1-十二烯的质谱图如下:
环烯: RDA反应
芳烃
烷基苯M+·强或中等强度。 β-键的断裂,产生m/z 91的基峰或强峰; γ-H的重排,产生m/z 92的奇电子离子峰, 进一步裂解,产生m/z 77,65,51,39的峰或 者m/z 78, 66,52,40的峰。
例如,正己基苯的MS如下:
醇、酚、醚
质谱分析图谱解析_图文.ppt
3.1 确定分子量与分子式
质谱中分子离子峰的识别及分子式的确定是至关重要的
3.1.1 分子离子峰的识别
■ 假定分子离子峰:
高质荷比区,RI 较大的峰(注意:同位素峰)
m/z 43 (CH3)2CH+, 57 (CH3)3C+ 基峰或强峰
碎裂符合偶电子规律
n-十六烷的质谱图如下
烷烃-支链烷烃
M+·弱或不见。 M-15 (·CH3), 带侧链CH3 M-R (·R) 优先失去大基团,此处 碎片离子峰的 RI 大。
※ 查表法 Beynon and Lederbey 制作了高分辨质谱法数据表, 可查出对应于某精确质量的分子式。
※ 计算机处理
3.3 有机质谱中的反应及其机理
M+ e
50-70 eV
+. M
+
2e
-. M
+
小于1%
+.
A +. + 中性分子或碎片
M
B + + R
A +.
B+
M+·→ A+·, B+, C +·, D+ ……
1-十二烯的质谱图如下:
环烯: RDA反应
芳烃
烷基苯M+·强或中等强度。 β-键的断裂,产生m/z 91的基峰或强峰; γ-H的重排,产生m/z 92的奇电子离子峰, 进一步裂解,产生m/z 77,65,51,39的峰或 者m/z 78, 66,52,40的峰。
例如,正己基苯的MS如下:
醇、酚、醚
质谱分析图谱解析_图文.ppt
3.1 确定分子量与分子式
质谱中分子离子峰的识别及分子式的确定是至关重要的
3.1.1 分子离子峰的识别
■ 假定分子离子峰:
高质荷比区,RI 较大的峰(注意:同位素峰)
《质谱解析》幻灯片PPT
羰基化合物经简单断裂所产生的含羰基的碎片离子可以发生失 CO的反响:
苯环上有两个邻位取代基容易共同消去小分子,这 称为苯环的“邻位效应〞,其通式为:
杂芳环也有邻位效应:
4〕 四员环重排
含饱和杂原子的化合物,可以发生失去乙烯〔或取代乙 烯〕的重排。
以单键与杂原子相连的烷基长于两个碳时,杂原子在与 碳链断裂的同时,氢原子经四员环转移和杂原子结合 〔烷基有两个以上碳原子才能进展氢的四员环转移,但 烷基越大发生此重排的几率越低〕。
• 该重排产生的离子如仍然满足此重排的两个条件,可 再次发生该重排。
2〕 逆 Diels-Alder 反响〔RDA〕
当分子中存在含一根 键的六员环时,可发生Diels-Alder 反响。 该重排反响为:
该重排反响正好是Diels-Alder 反响的逆反响。 含原双键的局部带正电荷的可能性大些。
的氢原子来自 C-3位置,18%来自C-4位置;溴化物失 溴化氢时,86%的氢原子来自C-2到C-4位置。低分子 量的溴化物、碘化物除失HX之外,还失H2X。
其他化合物如R-CN失HCN,硫醇失去H2S。 可失去的中性分子还有HOAc、CH3OH、CH2=C=O等。
芳环或杂环上有含杂原子的取代基团时,很容易失去小分子。
2、简单断裂的规律
1)含杂原子的化合物存在着三种断裂方式
①邻接杂原子的C-C键发生断裂
由这种断裂方式产生的离子在质谱中是很常见的。 键断裂时,正电荷常在含杂原子的一侧,从而显示含 杂原子的碎片离子;但也有另一侧带电的情况。
无论是饱和的杂原子(它以 σ 键和碳原子相连)还是不 饱和的杂原子(它以 σ 键及л键与碳原子相连),发生这 种断裂均很常见。
—OH一般按①进展;—OR可按①、②两种方式进展。 —SR按①、②两种方式进展且按②进展的几率更大些。 溴化物和碘化物易按③进展。 总之,处于中间情) 邻接碳、碳不饱和键的C-C键易断裂。如:
质谱分析法PPT课件
离子的类型及开裂规律 两节课时间太紧张
离子的类型 1.分子离子峰:
在电子轰击下,有机物分子电离一个电子形成 的离子,叫分子离子 分子离子的质量就是化合物的相对分子量。
分子离子足够稳定,质谱中位于质荷比最高 位置的峰就是分子离子峰。
1
辨认分子离子峰的方法
1. 分子离子峰一定是质谱中质量数最大的峰,应处在质 谱图的最右端。
正相反。苯甲醇中M-1峰很强,是因为生成了稳定的羟基 离子 m/z107;苄醇也有M-2 ,M-3的峰,强度较弱,苯酚的M-1是弱峰。 酚的裂解如下:
H O┐ rH
┐
O H H
m/z 94
m/z 94
H
CHO
┐
或
H
┐
H
m/z 66
m/z 65
41
苯甲醇和酚的特征裂解都有经过H转移丢失CO产生M-28 的峰,还有丢失 CHO基团的M-29的峰。苯甲醇有M(CHO),即m/z79的峰是基峰。酚有M-28(m/z66)和 M-29(m/z65)的弱峰。
同部分碎片峰,可粗略推测化合物的大致结构。 • 以所有可能方式把各部分结构单元连接起来,再利
用质谱数据,将造成的结构中不合理的结构排除掉。
45
质谱图解析 —— 例1 (P266)
46
47
质谱图解析 —— 例2
48
49
GC和MS联用的优点
• GC:善于分离,不善于定性 • MS:善于定性,不善于分离 • GC-MS:分离,定性同时进行
10
离子开裂的几种类型
单纯开裂— 断一个键,脱离一个游离基 重排开裂— 有两个键断裂,一个氢原子发生转移,
脱去一个中性分子 复杂开裂— 几个键开裂,并有氢原子的转移 双重重排— 有两个氢的转移
离子的类型 1.分子离子峰:
在电子轰击下,有机物分子电离一个电子形成 的离子,叫分子离子 分子离子的质量就是化合物的相对分子量。
分子离子足够稳定,质谱中位于质荷比最高 位置的峰就是分子离子峰。
1
辨认分子离子峰的方法
1. 分子离子峰一定是质谱中质量数最大的峰,应处在质 谱图的最右端。
正相反。苯甲醇中M-1峰很强,是因为生成了稳定的羟基 离子 m/z107;苄醇也有M-2 ,M-3的峰,强度较弱,苯酚的M-1是弱峰。 酚的裂解如下:
H O┐ rH
┐
O H H
m/z 94
m/z 94
H
CHO
┐
或
H
┐
H
m/z 66
m/z 65
41
苯甲醇和酚的特征裂解都有经过H转移丢失CO产生M-28 的峰,还有丢失 CHO基团的M-29的峰。苯甲醇有M(CHO),即m/z79的峰是基峰。酚有M-28(m/z66)和 M-29(m/z65)的弱峰。
同部分碎片峰,可粗略推测化合物的大致结构。 • 以所有可能方式把各部分结构单元连接起来,再利
用质谱数据,将造成的结构中不合理的结构排除掉。
45
质谱图解析 —— 例1 (P266)
46
47
质谱图解析 —— 例2
48
49
GC和MS联用的优点
• GC:善于分离,不善于定性 • MS:善于定性,不善于分离 • GC-MS:分离,定性同时进行
10
离子开裂的几种类型
单纯开裂— 断一个键,脱离一个游离基 重排开裂— 有两个键断裂,一个氢原子发生转移,
脱去一个中性分子 复杂开裂— 几个键开裂,并有氢原子的转移 双重重排— 有两个氢的转移