华罗庚奥数练习题
5年级华罗庚奥数题

5年级华罗庚奥数题
5年级华罗庚奥数题
一、填空:(每空4分,共42分)
1、公式整理,将下表中所空缺的公式填写完整。
2、两个自然数分别除以它们的最大公约数,所得的商( )。
3、两个数的最小公倍数与最大公约数的乘积等于这两个数的( )。
4、两个数的公约数一定是这两个数的最大公约数的( )。
二、判断、(每空3分,共6分)
1、在体积固定的所有长方体中,只有各棱长相等的长方体,其各棱长之各为最小,其表面积也最小。
( )
2、把正方体或长方体锯开成多个长方体时,表面积会变小。
( ) 三、应用题:(1、2、
3、7题每题7分,其它每题8分,共52分) 1、下图中,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
2、在正方形ABCD中,三角形ABE的面积是8平方厘米,它是三角形DEC面积的五分之四,求正方形ABCD的面积。
3、将直径AB为3的半圆绕A逆时针旋转60度,此时AB到达AC的位置,求在旋转过程中增加了的面积。
(圆周率取3)
4、在一个棱长为4米的正方体上放一个棱长为2米的正方体,在棱长为2米的正方体上再放上一个棱长为1米的小正方体,求这个立体图形的表面积。
5、有一些棱长为1厘米的小正方体,共504块,要拼成一个大长方体,问长方体的表面积最小是多少平方厘米,
6、把一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尽寸锯成4条,得到一些大大小小的长方体,问,这些长方体表面积的和是多少平方米,
7、96与某数的最大公约数是6,最小公倍数是576,求这个数。
【奥数真题】2021年第22届华罗庚金杯少年邀请赛初赛试题(小学中年级组)

【奥数真题】2021年第22届华罗庚金杯少年邀请赛初赛试题(小学中年级组)学校:___________姓名:___________班级:___________考号:___________一、选择题1.两个小三角形不重叠放置可以拼成一个大三角形, 那么这个大三角形不可能由()拼成。
A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形2.从1至10这10个整数中,至少取()个数,才能保证其中有两个数的和等于10.A.4B.5C.6D.73.小明行李箱锁的密码是由两个数字8与5构成的三位数.某次旅行, 小明忘记了密码, 他最少要试()次, 才能确保打开箱子.A.9B.8C.7D.64.猎豹跑一步长为2米, 狐狸跑一步长为1米.猎豹跑2 步的时间狐狸跑3步,猎豹距离狐狸30米, 则猎豹跑动()米可追上狐狸.A.90B.105C.120D.1355.图1 中的八边形是将大长方形纸片剪去一个小长方形得到。
则至少需要知道()条线段的长度, 才可以计算出这个八边形的周长。
A.4B.3C.5D.106.一个数串219…, 从第4个数字开始, 每个数字都是前面3个数字和的个位数。
下面有4个四位数:1113, 2226, 2125,2215 , 其中共有()个不出现在该数串中。
A.1B.2C.3D.4二、填空题7.计算:1000-257-84-43-16=_________。
8.已知动车的时速是普快的两倍,动车的时速提高25%即达到高铁的时速,高铁与普快的平均时速比特快快15千米/小时,动车与普快的平均时速比特快慢10千米/小时,则高铁和普快列车的时速分别是_______千米/小时和_____________千米/小时。
9.《火星救援》中, 马克不幸没有跟上其他5名航天员飞回地球, 独自留在了火星, 马克必须想办法生存, 等待救援. 马克的居住舱内留有每名航天员5天的食品和50千克的非饮用水, 还有一个足够大的菜园, 马克计划用来种植土豆, 30天后每平方米可以收获2.5千克,但是需要灌溉4千克的水.马克每天需要吃1.875千克土豆, 才可以维持生存, 则食品和土豆可供马克最多可以支撑________天。
奥数竞赛真题—行程篇

奥数竞赛—行程篇1、(第20届华罗庚杯决赛中年级)一条河上有A、B两个码头,A在上游,B 在下游。
甲、乙两人分别从A、B同时出发,划船相向而行,4小时后相遇。
如果甲、乙两人分别从A、B同时出发,划船同向而行,乙16小时后追上甲。
已知甲在静水中划船的速度为每小时6千米,则乙在静水中划船每小时行驶多少千米?2、(第20届华罗庚杯决赛高年级)圆形跑道上等距插着2015面旗子,甲与乙同时同向从某个旗子出发,当甲与乙再次同时回到出发点时,甲跑了23圈,乙跑了13圈。
不算起始点旗子的位置,则甲正好在旗子的位置上追上乙多少次?3、(第20届华罗庚杯决赛高年级)已知C地为A、B两地的中点。
上午7点整,甲车从A出发向B行驶,乙车和丙车分别从B和C出发向A行进。
甲车和丙车相遇时,乙车恰好走完全程的3/8,上午10点丙车到达A地,10点30分当乙车走到A地时,甲车距离B地还有84千米,那么A和B两地距离是多少千米?4、(2015新希望杯)下午1点整,小王和小赵同时从学校出发前往医院看望生病的同学,小王每分钟行400米,小赵每分钟行240米,小王到达医院后,呆了一段时间后沿原路返回学校,途中遇到小赵的时间是下午1点40分,已知学校与医院的距离是10800米,那么小王在医院呆了多长时间?5、(2012世奥赛杯)甲、乙两人从A、B两地出发相向而行,甲先出发2小时,两人在乙出发4小时后相遇,已知甲比乙每小时多行4千米,二相遇地点距离AB的中点20千米,则AB两地相距多少千米?6、(第13届希望杯四年级)乌龟和兔子在全长为1000米的赛道上比赛,兔子的速度是乌龟速度的15倍。
但兔子在比赛过程中休息了一会儿,醒来时发现乌龟刚好到达终点,而此时兔子还差100米才到终点,则在兔子休息期间乌龟爬行了多少米?7、(第13届希望杯四年级)王蕾和姐姐从家不行去体育馆打羽毛球,已知姐姐每分钟比王蕾多走20米,25分钟后姐姐到体育馆,这时姐姐发现没有带球拍,于是立即按原路返回取球拍,在离体育馆300米的地方遇到了王蕾。
小学华罗庚数学竞赛试卷

一、选择题(每题5分,共25分)1. 下列哪个数是质数?A. 10B. 15C. 23D. 282. 小明有苹果和橘子共36个,苹果比橘子多4个,那么小明有多少个苹果?A. 18B. 20C. 22D. 243. 小红有红球和蓝球共27个,红球比蓝球多3个,那么小红有多少个红球?A. 13B. 14C. 15D. 164. 小刚有5个笔记本,小丽有3个笔记本,他们一共有多少个笔记本?A. 8B. 9C. 10D. 115. 一个长方形的长是8厘米,宽是4厘米,那么这个长方形的面积是多少平方厘米?A. 12C. 24D. 32二、填空题(每题5分,共25分)6. 3乘以7等于______。
7. 5的5次方等于______。
8. 100除以25等于______。
9. 一个正方形的边长是6厘米,那么它的周长是______厘米。
10. 小明有18个糖果,他每天吃掉2个,那么他需要______天才能吃完所有的糖果。
三、解答题(每题10分,共30分)11. 小华有12个苹果,他要把这些苹果分给他的3个朋友,每人要分得相同的苹果数。
请计算每个朋友能分得多少个苹果。
12. 小明去书店买书,他买了3本书,第一本书的价格是12元,第二本书的价格是15元,第三本书的价格是9元。
请问小明一共花了多少钱?13. 小丽有一堆硬币,其中5分硬币有30个,1角硬币有20个,2角硬币有15个。
请计算小丽一共有多少角钱。
四、应用题(每题15分,共30分)14. 小明和小红一起做数学题,小明做对了60%,小红做对了70%。
如果小明做对了18道题,那么小红做对了多少道题?15. 小明和小红一起散步,他们从A地出发,先向北走了3公里,然后向东走了5公里,最后向南走了4公里。
请问他们最终距离A地有多远?答案:一、选择题:1. C3. A4. C5. B二、填空题:6. 217. 31258. 49. 2410. 9三、解答题:11. 每个朋友能分得4个苹果。
华罗庚竞赛数学题

1. 有一个人有100块要买100头牛公牛3块一头,母牛2块一头,小牛一块钱2头。
可以买公牛母牛小牛各几头?2.甲、乙两个建筑队共同修筑3000米的一段公路。
当甲队完成所分任务的4/5,乙队完成所分任务的2/3时,还剩920米的任务没有完成。
甲、乙两队的修路任务各是多少米?3.搬运一个仓库的货物,单独运,甲需10小时,乙需12小时,丙需15小时.有同样货物的仓库A 和B,甲在A仓,乙在B仓同时开始搬运货物,丙开始帮助甲搬运,中途又去帮助乙搬运,恰巧两个仓库同时被搬完,丙帮助甲搬运了几小时?4.某学校入学考试。
有1000人报考,录取了150人。
录取者的平均成绩是55分。
录取分数线比录取者的平均成绩少6.3分。
问录取分数线是多少分?5.六次数学测验的平均分是A,后4次的平均分比A提高了3分。
第一次、第二和第六这三次平均分比A降低了2.6分,那么前5次平均分比A(提高、降低)多少分?6.一个圆柱体,如果底面半径增加3厘米,侧面积就增加75.36平方厘米,如果高增加3厘米,侧面积就增加94.2平方厘米.圆柱体原来体积是多少?7.ABC三人原来共有存款3460元,由于A取出380元,B存入720元,C存入他原来存款数的1/3,现在三人存款数的比是5:3:2。
A,B,C,三人现在存款各是多少元?8.甲班人数是乙班的1.4倍,如果从甲班调9人到乙班,人数就相等了。
甲乙原来各有多少人。
9.甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?10.某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?11. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.12. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?13. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?14. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?15. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车.16. 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?____________________________________________________1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为。
小学奥数题库2

第八届华罗庚金杯少年数学邀请赛复赛试题一、填空(每题10分):1、2、长方形草地ABCD被分为面积相等的甲、乙、丙和丁四份(如右图),其中图形甲的长和宽的比是a:b=2:1,其中图形乙的长和宽的比是():()。
3、乘火车从甲城到乙城,1998年初需要19.5小时,1998年火车第一次提速30%,1999年第二次提速25%,2000年第三次提速20%。
经过这三次提速后,从甲城到乙城乘火车只需()小时。
4、埃及著名的胡夫金字塔高146.7米,正方形底座边长为230.4米。
假定建筑金字塔所用材料全部是石灰石,每立方米重2700千克,那么胡夫金字塔的总量是()千克。
(结果保留一位小数)5、甲乙两人从A地到B地,甲前三分之一路程的行走速度是5千米/小时,中间三分之一路程的行走速度是4.5千米/小时,最后三分之一的路程的行走速度是4千米/小时;乙前二分之一路程的行走速度是5千米/小时,后二分之一路程的行走速度是4千米/小时。
已知甲比乙早到30秒,A地到B地的路程是()千米。
6、有很多方法能将2001写成25个自然数(可以相同,也可以不相同)的和,对于每一种分法,这25个自然数均有相应的最大公约数,那么这些最大公约数中的最大值是()。
二、解答下列各题,要求写出简要过程(每题10分):7、能否找到自然数a和b,使8、AB两地相距120千米,已知人的步行速度是每小时5千米,摩托车的行驶速度是每小时50千米,摩托车后座可带一人。
问有三人并配备一辆摩托车从A地到B地最少需要多少小时?(保留一位小数)9、6个人围成一圈,每人心里想一个数,并把这个数告诉左右相邻的两个人。
然后每个人把左右两个相邻人告诉自己的数的平均数亮出来,如右图所示。
问亮出数11的人原来心中想的数是多少?10、2001个球平均分给若干人,恰好分完。
若有一人不参加分球,则每人可以多分2个,而且球还有剩余;若每人多分3个,则球的个数不足。
问原来每人平均分到多少个球?三、解答(要求写出解答过程)(每题10分)11、某市居民自来水收费标准如下:每户每月用水4吨以下,每吨1.80元;当超过4吨时,超过部分每吨3.00元。
华罗庚奥数练习题

华罗庚奥数练习题一年级第一讲习题一1.计算:13+14+15+16+17+252.计算:2+3+4+5+15+16+17+18+203.计算:21+22+23+24+25+26+27+28+294.计算:5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+205.计算:22-20+18-16+14-12+10-8+6-4+2-06.计算:10-20+30-40+50-60+70-80+90一年级第五讲习题五1.一队男生8人。
老师要求在2名男生中间插进1名女生,问可插进多少女生?2.小冬用12张纸订成一个本子。
从头数起,每隔3纸夹进一片树叶,问这个本子内共放进多少片树叶?3.在一条20米长的小路两旁种小松树,如果每隔5米种一棵,而且两头都种树,问这段小路上共种多少棵?4.一根钢管长6米,每分钟锯下1米,几分钟锯完?5.一根木头锯成4段,要付锯工费1元。
如果要把这根木头锯成13段,要付锯工费多少元?6.小明与爸爸一同上楼。
小明上得快、爸爸上得慢,小明上2层,爸爸上1层。
问小明上到五楼时,爸爸上到几楼?7.沿着跑道插着11面旗,旗与旗离得一样远,第一面旗插在起点。
运动员从起点起跑经过6秒钟到达第6面旗,问运动员到达第11面旗时,需要跑11秒钟吗?8.三点钟时,挂钟打响三下,用了12秒。
到六点钟时,挂钟打响六下,要用几秒钟?二年级上册第一讲1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5二年级下册第三讲习题三计算下列各题:1.4×135×252.38×25×63.124×254.132476×1115.35×53+47×356.53×46+71×54+82×547.①11×11 ②111×111③1111×1111 ④11111×11111⑤111111111×1111111118.①12×14 ②13×17③15×17 ④17×18⑤19×15 ⑥16×129.①11×11 ②12×12③13×13 ④14×14⑤15×15 ⑥16×16⑦17×17 ⑧18×18⑨19×1910.计算下列各题,并牢记答案,以备后用.①15×15 ②25×25③35×35 ④45×45⑤55×55 ⑥65×65⑦75×75 ⑧85×85⑨95×9511.求1+2+3+…+(n-1)+n之和,并牢记结果.12.求下列各题之和.把四道题联系起来看,你能发现具有规律性的东西吗?①1+2+3+…+10②1+2+3+…+100③1+2+3+…+1000④1+2+3+…+10000二年级下册第十四讲习题十四2.桔子和苹果共有360个,其中桔子数是苹果数的2倍,求桔子和苹果各有多少个?3.小红去文具店买了6支铅笔和5个笔记本,共花了1元3角5分钱.已知3支铅笔的价钱与2个笔记本的价钱相等.求1支铅笔和1个笔记本各要多少钱?4.在生物课外活动中,同学们种花生比白薯多105棵,又知花生棵数是白薯的16倍,求花生、白薯各多少棵?5.假若20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用5头牛可换多少只兔子?6.商店运来两桶油.大桶有油120斤,小桶有油90斤.两桶油卖出同样多后,大桶剩的油刚好是小桶剩的油的4倍,问两桶各剩油多少斤?7.兄弟俩各有书若干本.只知兄的书为弟的书的3倍;但若兄给弟10本书,则弟的书将为兄的书的3倍.问兄弟二人原有书各多少?二年级下册第十五讲习题十五2.下式中梨、苹果和香蕉各代表一个数,请你把它们算出来.梨+梨+柿子+香蕉=17梨+柿子+柿子+香蕉=14梨+柿子+香蕉+香蕉=13.3.小军家养了一只大白兔和一只小花猫.有一天,小军抱着大白兔站在体重计上称一称,正好是33斤;后来小军放下大白兔又抱起小花猫,站在体重计上一称,正好是31斤;最后小军把大白兔和小花猫一起放在体重计上称一称是4斤.请你算一算,小军、大白兔和小花猫各是多少斤?4.已知:x+y=18 (1)x-y=14 (2)求:x=?y=?5.一盒精装的笔,连盒共值18元,笔比盒贵14元,盒和笔的价钱各是多少?6.饲养场出售鸡、鸭,以只数计价,爸爸买1只鸡、2只鸭共付25元;如果买2只鸡、1只鸭要付27元2角.问鸡、鸭各多少钱一只?7.三头牛和八只羊一天共吃青草93斤.五头牛和十五只羊一天共吃青草165斤.问一头牛和一只羊一天共吃青草多少斤?8.加工一批零件,师徒二人合作2小时可加工34个.已知师傅加工3小时比徒弟加工4小时多做2个.问师傅每小时加工多少个?9.有白、红、黑三色的球.白的和红的合在一起有10个;红的和黑的合在一起有7个;黑的和白的合在一起有5个.问三种球合在一起共多少个?10.百货商店中两支圆珠笔与三支蘸水笔共值7角8分;三支圆珠笔与两支蘸水笔共值7角2分.问一支圆珠笔值多少钱?三年级上册第一讲习题一一、直接写出计算结果:① 1000-547② 100000-85426③ 11111111110000000000-1111111111④ 78053000000-78053二、用简便方法求和:①536+(541+464)+459② 588+264+148③ 8996+3458+7546④567+558+562+555+563三、用简便方法求差:① 1870-280-520② 4995-(995-480)③ 4250-294+94④ 1272-995四、用简便方法计算下列各题:① 478-128+122-72② 464-545+99+345③ 537-(543-163)-57④ 947+(372-447)-572五、巧算下列各题:① 996+599-402② 7443+2485+567+245③ 2000-1347-253+1593④3675-(11+13+15+17+19)三年级上册第二讲习题二一、用简便方法求积:①17×100②1112×5③23×9④23×99⑤12345×11⑥56789×11⑦36×15二、速算下列各题:①123×25×4②456×2×125×25×5×4×8③25×32×125三、巧算下列各题:①15000÷125÷15②1200÷25÷4③27000÷(125×3)④360×40÷60四、巧算下列各题:①11÷3+4÷3②19÷5-9÷5③234×11+234×88三年级下册习题五1.花果山上桃树多,6只小猴分180棵.现有小猴72只,如数分后还余90棵,请算出桃树有几棵?2.5箱蜜蜂一年可以酿75千克蜂蜜,照这样计算,酿300千克蜂蜜要增加几箱蜜蜂?3.4辆汽车行驶300千米需要汽油240公升.现有5辆汽车同时运货到相距800千米的地方,汽油只有1000公升,问是否够用?4.5台拖拉机24天耕地12000公亩.要18天耕完54000公亩土地,需要增加同样拖拉机多少台?习题六1.某次数学考试,甲乙的成绩和是184分,乙丙的成绩和是187分,丙丁的成绩和是188分,甲比丁多1分,问甲、乙、丙、丁各多少分?2.求1962、1973、1981、1994、2005的平均数。
2024-2025学年下期“华罗庚”杯四年级数学竞赛

2024-2025学年下期“华罗庚”杯四年级数学竞赛一、填空。
(1-6题每空1分,7-14题每空2分,共30分)1、0.01里面有()个11000,10个0.1是()。
2、甲乙两人的年龄相差24岁,乙的年龄是甲的3倍,乙是()岁。
3、一桶油连桶重94.5千克,用去一半后连桶重51.5千克,原来桶里的油重()千克,空桶重()千克。
4、有一个三位小数,保留两位小数后是20.00,这个三位小数最大是(),最小是()。
5、假如一个三角形两条边的长度分别是2cm和5cm,那么第三条边的长度取整理米最长是()厘米,最短是()厘米。
6、把一根木头锯成5段,每锯一段要用3分钟,锯成5段共需()分钟。
7、()-68+56=200 68+()÷5=1248、王云在计算325-□×5时先算了减法,结果得出1500,那么这道题的正确结果应当是()。
9、小虎在计算一道小数减法题时,错把减数41.5看成了4.15,结果差是95.85,正确的差是()。
10、同学们去礼堂听报告,每排坐的人数相等,坐了28排;假如每排多坐2人,则24排正好坐满.原来每排坐了( )人。
11、一辆汽车,上山用了3小时,平均每小时行40千米,下山用了2小时,平均每小时行60千米。
这辆汽车上、下山的平均速度是()千米/时。
12、一个数的小数点向右移动一位,这个数就增加了72,这个数原来是()。
13、在一个减法算式中,被减数、减数与差的和是600,减数是差的3倍,减数是()。
14、一个直角三角形中,锐角∠A比锐角∠B大20°,∠A=()度,∠B=()度。
二、我会推断:(6分)1、大于0小于1的一位小数有多数个。
()2、计算小数加减法时,要留意末尾对齐。
()3、等边三角形肯定是锐角三角形。
()4、求近似数时,小数末尾的0不能去掉。
()5、平行四边形具有稳定性,三角形简单变形。
()6、每个三角形都有3条高。
()三、简便计算(每题3分,共24分)278×67+278×34-278 222×999+333×334245-(71-55) 1420+(515-420)-315 7000÷125 238×101-238156×201 20242024×2024-20242024×2024三、解决问题(5×8=40分)1、皮皮和明明两家人一块出去旅游,一共有6个大人,3个小孩。
华罗庚二年级奥数题

华罗庚是我国著名的数学家,他在数学领域有着卓越的贡献。
然而,对于二年级的学生来说,华罗庚的数学题可能过于复杂和深奥。
下面我为您提供一道适合二年级学生的奥数题,供您参考。
题目:小明有10个苹果,他给了小红3个,现在小明还有多少个苹果?
这是一道简单的减法问题,适合二年级的学生练习。
根据题目,我们可以建立以下数学模型:
1.小明原来有10个苹果。
2.小明给了小红3个苹果。
所以,我们可以用减法来表示这个问题的数学模型:
10 - 3 = ?
现在我们可以来计算这个问题了。
所以,小明现在还有7个苹果。
奥数:最优化问题

第十四讲最优化问题我国著名大数学家华罗庚爷爷曾积极推广、普及的“统筹方法”和“优选法“华罗庚曾利用数学知识创造许多优化解决问题的方法。
我们所破到的最优化问题,是通过适当规划安排,在许多方案中,寻找一个最合理、最节约、最省事的方案。
典型例题•例1妈妈让小明给客人烧开水切茶,洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用2分钟,洗茶杯要用1分钟,拿茶叶要用2分钟。
小明估算了一下,完成这些工作要花20分钟。
为了使客人早点和上茶,按你认为最合理的安排,多少分钟就能切茶了?先决条件。
这1分钟不能省,而洗茶壶、洗开水杯、拿茶叶等切茶的准备工作都可以放在烧开水的15分钟里完成。
解最省时间的安排是:纤细开水壶(用1分钟),按着烧开水(用15分钟),在等待水烧开的时间里,可以洗茶壶、洗茶杯、拿茶叶,水开了就切茶。
这样一共用了16分钟。
•例2在一条公路上,每隔100其千米有一个仓库,共有5个仓库,一号仓库存有10 吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两仓库是空的。
现在想把所有的货集中存在同一仓库里,如果每吨货物运输1千米需0.5元运费,那么最少要花多少运费才行?分析要做到所花运费最少,必须综合考虑两个因素:(1)运走的货物尽可能少;(2)要运货物运输的路程将可能短。
如果考虑第一因素,就要将货物集中在五仓库;如果考虑第二因素,就要将货物集中在四仓库。
比较这两种情况,选择运费最少的一种。
将货物集中到五号仓库。
解0.5x(10x400+20x300)=5000 (元)• 例3 A、B两批发部分别有电视机70台与60台,甲乙丙三个商店分别需要电视机30 台、40台和50台。
从A、B两批发部每运一台电视到三个销售店的运费如表所示。
如何调运才能使运费最少?分析该题中供应量70+60=130台,需求量为30+40+50=120台。
供求量不等,供大于求。
由表可知,由差价可知,A尽量供应给乙,即A给乙40台。
奥数竞赛 第十二届全国华罗庚金杯少年数学邀请赛决赛试卷及答案

第十二届全国华罗庚金杯少年数学邀请赛决赛试卷及答案一、填空(每题10分,共80分)1.“华”、“杯”、“赛”三个字的四角号码分别是“2440”、“4199”和“3088”,将“华杯赛”的编码取为244041993088,如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于9的补码,例如:0变9,1变8等,那么“华杯赛”新的编码是 。
2.计算;=÷÷-+75.41]25239)21274.3(75.20[ 。
图13.如图书1所示,两个正方形ABCD 和DEFG 的边长都是整数厘米,点E 在线段CD 上,且CE<DE ,线段CF=5厘米,则五边形ABCFG 的面积等于 平方厘米。
4.将52.0523.0523.0....,,4021,250131 ,从小到大排列,第三个数是 。
5.图2a 是一个密封水瓶的切面图,上半部为圆锥状,下半部为圆柱关,底面直径都是10厘米,水瓶高度是26厘米,瓶中液面的高度为12厘米,将水瓶倒置后,如图2b ,瓶中液面的高度是16厘米,则水瓶的容积等于 立方厘米。
(取π=3.14,水瓶壁厚不计)6.一列数是按以下条件确定的:第一个是3,第二个是6,第三个是18,以后每个数是前面所有数的和的2倍,则第六个数等于 ,从这列数的第 个数开始,第个都大于2007。
7.一个自然数,它的最大的约数和次大的约数的和是111,这个自然数是 。
8.用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如图3 ,从正面看这个立体,如图4,则这个立体的表面积最多是 。
二、简答下列各题(每题10分,共40分,要求写出简要过程) 9.如图5,在三角形ABC中,点D在BC上,且∠ABC=∠ACB,∠ADC=∠DAC,∠DAB=21°,求∠ABC的度数;并且回答:图中哪些三角形是锐角三角形。
图510.李云靠窗坐在一列时速60千米的火车里,看到一辆有30节车厢的货车迎面驶来,当货车车头经过窗口时,他开始记时,直到最后一节车厢驶过窗口时,所记的时间是18秒,已知货车车厢长15.8米,车厢间距1.2米,货车车头长10米,问货车行驶的速度是多少?11.图6是一个9×9的方格图,由粗线隔为9个横竖各有3个格子的“小九宫”格,其中,有一些小方格填有1至9的数字,小青在第4列的空格中各填入了一个1至9中的自然数,使每行、每列和每个“小九宫”格内的数字都要不重复,然后小青将第4列的数字从上向下写成一个9位数,请写出这个9位数,并且简单说明理由。
华罗庚数学竞赛题

华罗庚数学竞赛题一、数论部分1. 求满足方程x^2+y^2=z^2,x,y,z∈ N且x + y+ z = 1000的所有正整数解。
- 解析:- 已知x^2+y^2=z^2,x + y+ z = 1000,由x^2+y^2=z^2可联想到勾股数的关系。
- 设x = k(m^2-n^2),y = 2kmn,z = k(m^2+n^2)(m,n,k∈ N,m > n,m,n互质且m - n为奇数)。
- 代入x + y+ z = 1000得k(m^2-n^2+2mn + m^2+n^2)=1000,即2k(m^2+mn)=1000,k(m^2+mn) = 500。
- 通过试值法,当k = 1,m = 20,n = 5时,x=375,y = 200,z = 425等多组解。
2. 证明:对于任意正整数n,n^5-n能被30整除。
- 解析:- n^5-n=n(n^4 - 1)=n(n^2+1)(n^2-1)=n(n - 1)(n + 1)(n^2+1)。
- 因为n(n - 1)(n+1)是三个连续整数的乘积,所以一定能被6整除。
- 当n = 5k时,n^5-n能被5整除;当n=5k±1时,n^2+1=(5k±1)^2+1 = 25k^2±10k + 2能被5整除;当n = 5k±2时,n^2+1=(5k±2)^2+1=25k^2±20k + 5能被5整除。
所以n^5-n能被5整除。
- 因为n^5-n既能被6整除又能被5整除,所以能被30整除。
二、代数部分3. 已知a,b,c是实数,且a + b + c=0,abc = 1,求证:a,b,c中至少有一个大于(3)/(2)。
- 解析:- 不妨设a是a,b,c中的最大者,由a + b + c = 0得b + c=-a,bc=(1)/(a)。
- 则b,c是方程x^2+ax+(1)/(a)=0的两个根。
初中华罗庚竞赛数学试卷

一、选择题(每题5分,共20分)1. 下列各数中,是质数的是()A. 14B. 17C. 20D. 252. 下列各式中,正确的是()A. 2a + 3b = 5a + 5bB. 3x - 2y = 2x + 2yC. 4m + 5n = 2m + 2nD. 5p - 6q = 3p + 3q3. 若一个数的平方根是2,则这个数是()A. 4B. 8C. 16D. 324. 下列各数中,能被3整除的是()A. 123B. 456C. 789D. 12345. 下列各式中,错误的是()A. 2(x + y) = 2x + 2yB. 3(a - b) = 3a - 3bC. 4(m + n) = 4m + 4nD. 5(p - q) = 5p - 5q二、填空题(每题5分,共20分)6. 若a = 2,b = 3,则a + b的值是______。
7. 若x² = 25,则x的值是______。
8. 若一个数的倒数是3,则这个数是______。
9. 若一个数的平方是49,则这个数是______。
10. 若一个数的立方是27,则这个数是______。
三、解答题(每题10分,共30分)11. 已知:a + b = 7,ab = 12,求a² + b²的值。
12. 已知:x² - 5x + 6 = 0,求x的值。
13. 已知:3x - 2y = 8,2x + 3y = 12,求x和y的值。
四、附加题(每题10分,共20分)14. 若a、b、c是等差数列,且a + b + c = 12,b = 4,求a和c的值。
15. 已知:x² - 4x + 4 = 0,求x的值。
答案:一、选择题:1. B2. C3. A4. A5. B二、填空题:6. 97. 58. 1/39. 7 10. 3三、解答题:11. 3712. x₁ = 2,x₂ = 313. x = 4,y = 2四、附加题:14. a = 1,c = 715. x₁ = 2,x₂ = 2。
第十五届华罗庚金杯少年数学邀请赛决赛试题及答案解析

第十五屆華羅庚金杯少年數學邀請賽決賽試題A 參考答案參考答案((小學組小學組))一、 填空題(每小題 10分,共120分)二、解答下列各題 (每題10分,共40分, 要求寫出簡要過程)13.13. 答案答案::不能!理由如下理由如下::假設能拼成4×5的長方形,如圖A 小方格黑白相間染色。
其中黑格、白格各10個。
將五塊紙板編號,如圖B 所示,除紙板④之外,其餘4張硬紙板每一張都蓋住2個黑格,而④蓋住3個黑格或一個黑格。
這樣一來,由4個1×1的小正方格組成的不同形狀的5個硬紙板,只能蓋住9或11個黑格,與10個黑格不符! 14. 答案答案::28,72L解:(1)易知 紅線與藍線重合的條數是 31)12,8(=−;紅線與黑線重合的條數是 1121)18,8(=−=−; 藍線與黑線重合的條數是 51)18,12(=−;紅線、藍線、黑線都重合的條數是 1121)18,12,8(=−=−; 由紅線7條,藍線11條,黑線17條確定的位置的個數是(圖A )①②③④ ⑤(圖B )271)513(17117=+++−++. 因此,依不同位置的線條鋸開一共得到 28127=+(段).(2)最小公倍數 72362]9,3,4[2]18,12,8[=×=×=.因此,將木棍等分成72段時,至少有一段是在上述紅、藍、黑線的某兩條之間,並且再短(段數更多)時就做不到了.所以鋸得的木棍最短的一段的長度是72L . 15. 答案答案::5,7.解:設A ,B ,C ,D ,E 五隊的總分分別是a ,b ,c ,d ,e ,五隊的總分為S ,則e e d c b a S +=++++=20.五隊單迴圈共比賽10場,則30≤S . 如果有一場踢平,則總分S 減少1分. 因為00011+++==a ,001311114+++=+++==b , 01337+++==c , 11338+++==d ,所以比賽至少有3場平局,至多有5場平局. 所以330530−≤≤−S ,即272025≤+≤e . 故75≤≤e .事實上,E 隊勝A ,B ,負於C 隊,與D 踢平時,7=e ; E 隊勝A ,負於C ,但與B 、D 踢平時,5=e .所以E 隊至少得5分,至多得7分. 16. 答案:1163是質數.解:1163是質數,理由如下:(1)顯然16424是大於2的偶數,是合數.(2)如果1163是合數,但不是完全平方數,則至少有2個不同的質因數,因為31113311163=>,所以,如果1163有3個以上不同的質因數,必有一個小於11.但是顯然2,3,5,7都不能整除1163,11也不能整除1163,因此1163僅有2個不同的大於11的質因數.大於11的質數是:13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101. 既然237116337311147<<×=,1163的兩個不同的質因數一定有一個小於37,另一個大於11.計算97131261116311578913×=<<=×; 73171241116311566817×=<<=×; 67191273116311596119×=<<=×; 53231219116310814723×=<<=×; 41291189116310733729×=<<=×.所以1163是質數. 三、解答下列各題 (每小題 15分,共30分,要求寫出詳細過程)17. 答案:670.解:如圖,已知△ABC ,△BCD ,△CDE ,△DEF ,△EF A ,△F AB 的面積都等於335平方釐米,它們面積之和為33562010×=平方釐米=六邊形ABCDEF 的面積。
华罗庚学校数学竞赛试题与详解小学五、六年级第一分册

华罗庚学校数学竞赛试题与详解小学五、六年级第一分册幼苗杯第1套第一届幼苗杯数学邀请赛试题一、填空题:(y.01.01)9308-576= 。
(y.01.02)83×71+83×29= 。
(y.01.03)0.125÷161= 。
(y.01.04)两个数相加,交换加数的位置,它们的和不变,这叫做 。
(y.01.05)2×(1-5%)= 。
(y.01.06)21312131⨯÷⨯= 。
(y.01.07)8740除以90的余数是 。
(y.01.08)一个长方体的3条边各为1,2,3寸,则它的表面积是 平方寸。
(y.01.09)分解质因数:364= 。
(y.01.10)1800000平方尺= 平方千米。
(y.01.11)有一个是900的三角形为 三角形。
(y.01.12)81与253两个数中 比较大。
(y.01.13)自然数1是合数还是质数?答: 。
(y.01.14)梯形的上底为51,下底为61,高为1155,则它的面积是 。
二、选择题:(y.01.15)计算:2+3×32=( )(A )83 (B )45 (C )29 (D )20(y.01.16)“增产二成”中的“二成”,写成百分数是( )(A )100120 (B )1002 (C )20% (D )0.2 (y.01.17)方程32x -21=1的解是( )(A )1 (B )412 (C )94 (D )43 (y.01.18)两个整数的和是( )(A )奇数 (B )偶数 (C )奇数、偶数都不是 (D )可能是奇数也可能是偶数三、计算题(y.01.19)(12×21×45×10.2)÷(15×4×0.7×5.1)(y.01.20)2511212101211211÷⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⎪⎪⎪⎪⎭⎫ ⎝⎛+--。
华罗庚奥数试题及答案

华罗庚奥数试题及答案1. 题目:一个数列的前三项是1,2,3,从第四项开始,每一项都是前三项的和。
求数列的第100项。
答案:数列的第100项是532749229。
2. 题目:一个自然数,如果它加上100后是一个完全平方数,加上168后也是一个完全平方数,那么这个自然数是多少?答案:这个自然数是304。
3. 题目:一个正整数,加上100是一个完全平方数,加上168也是一个完全平方数。
求这个正整数。
答案:这个正整数是304。
4. 题目:一个三位数,它的各位数字之和是7,且这个数能被3整除。
求这个三位数。
答案:符合条件的三位数有105,126,147,168,189,207,228,249,270,291。
5. 题目:一个数列,第一项是1,从第二项开始,每一项都是前一项的平方加1。
求数列的前10项。
答案:数列的前10项是1,2,5,26,677,1824,45825,117649,305175,792791。
6. 题目:一个自然数,如果它加上100后是一个完全平方数,加上168后也是一个完全平方数。
求这个自然数。
答案:这个自然数是304。
7. 题目:一个三位数,它的各位数字之和是7,且这个数能被3整除。
求这个三位数。
答案:符合条件的三位数有105,126,147,168,189,207,228,249,270,291。
8. 题目:一个数列,第一项是1,从第二项开始,每一项都是前一项的平方加1。
求数列的前10项。
答案:数列的前10项是1,2,5,26,677,1824,45825,117649,305175,792791。
9. 题目:一个自然数,如果它加上100后是一个完全平方数,加上168后也是一个完全平方数。
求这个自然数。
答案:这个自然数是304。
10. 题目:一个三位数,它的各位数字之和是7,且这个数能被3整除。
求这个三位数。
答案:符合条件的三位数有105,126,147,168,189,207,228,249,270,291。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一年级第一讲习题一1.计算:13+14+15+16+17+252.计算:2+3+4+5+15+16+17+18+203.计算:21+22+23+24+25+26+27+28+294.计算:5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+205.计算:22-20+18-16+14-12+10-8+6-4+2-06.计算:10-20+30-40+50-60+70-80+90一年级第五讲习题五1.一队男生8人。
老师要求在2名男生中间插进1名女生,问可插进多少女生?2.小冬用12纸订成一个本子。
从头数起,每隔3纸夹进一片树叶,问这个本子共放进多少片树叶?3.在一条20米长的小路两旁种小松树,如果每隔5米种一棵,而且两头都种树,问这段小路上共种多少棵?4.一根钢管长6米,每分钟锯下1米,几分钟锯完?5.一根木头锯成4段,要付锯工费1元。
如果要把这根木头锯成13段,要付锯工费多少元?6.小明与爸爸一同上楼。
小明上得快、爸爸上得慢,小明上2层,爸爸上1层。
问小明上到五楼时,爸爸上到几楼?7.沿着跑道插着11面旗,旗与旗离得一样远,第一面旗插在起点。
运动员从起点起跑经过6秒钟到达第6面旗,问运动员到达第11面旗时,需要跑11秒钟吗?8.三点钟时,挂钟打响三下,用了12秒。
到六点钟时,挂钟打响六下,要用几秒钟?二年级上册第一讲1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5二年级下册第三讲习题三计算下列各题:1.4×135×252.38×25×63.124×254.132476×1115.35×53+47×356.53×46+71×54+82×547.①11×11 ②111×111③1111×1111 ④11111×11111⑤111111111×1111111118.①12×14 ②13×17③15×17 ④17×18⑤19×15 ⑥16×129.①11×11 ②12×12③13×13 ④14×14⑤15×15 ⑥16×16⑦17×17 ⑧18×18⑨19×1910.计算下列各题,并牢记答案,以备后用.①15×15 ②25×25③35×35 ④45×45⑤55×55 ⑥65×65⑦75×75 ⑧85×85⑨95×9511.求1+2+3+…+(n-1)+n之和,并牢记结果.12.求下列各题之和.把四道题联系起来看,你能发现具有规律性的东西吗?①1+2+3+…+10②1+2+3+…+100③1+2+3+…+1000④1+2+3+…+10000二年级下册第十四讲习题十四2.桔子和苹果共有360个,其中桔子数是苹果数的2倍,求桔子和苹果各有多少个?3.小红去文具店买了6支铅笔和5个笔记本,共花了1元3角5分钱.已知3支铅笔的价钱与2个笔记本的价钱相等.求1支铅笔和1个笔记本各要多少钱?4.在生物课外活动中,同学们种花生比白薯多105棵,又知花生棵数是白薯的16倍,求花生、白薯各多少棵?5.假若20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那么用5头牛可换多少只兔子?6.商店运来两桶油.大桶有油120斤,小桶有油90斤.两桶油卖出同样多后,大桶剩的油刚好是小桶剩的油的4倍,问两桶各剩油多少斤?7.兄弟俩各有书若干本.只知兄的书为弟的书的3倍;但若兄给弟10本书,则弟的书将为兄的书的3倍.问兄弟二人原有书各多少?二年级下册第十五讲习题十五2.下式中梨、苹果和香蕉各代表一个数,请你把它们算出来.梨+梨+柿子+香蕉=17梨+柿子+柿子+香蕉=14梨+柿子+香蕉+香蕉=13.3.小军家养了一只大白兔和一只小花猫.有一天,小军抱着大白兔站在体重计上称一称,正好是33斤;后来小军放下大白兔又抱起小花猫,站在体重计上一称,正好是31斤;最后小军把大白兔和小花猫一起放在体重计上称一称是4斤.请你算一算,小军、大白兔和小花猫各是多少斤?4.已知:x+y=18 (1)x-y=14 (2)求:x=?y=?5.一盒精装的笔,连盒共值18元,笔比盒贵14元,盒和笔的价钱各是多少?6.饲养场出售鸡、鸭,以只数计价,爸爸买1只鸡、2只鸭共付25元;如果买2只鸡、1只鸭要付27元2角.问鸡、鸭各多少钱一只?7.三头牛和八只羊一天共吃青草93斤.五头牛和十五只羊一天共吃青草165斤.问一头牛和一只羊一天共吃青草多少斤?8.加工一批零件,师徒二人合作2小时可加工34个.已知师傅加工3小时比徒弟加工4小时多做2个.问师傅每小时加工多少个?9.有白、红、黑三色的球.白的和红的合在一起有10个;红的和黑的合在一起有7个;黑的和白的合在一起有5个.问三种球合在一起共多少个?10.百货商店中两支圆珠笔与三支蘸水笔共值7角8分;三支圆珠笔与两支蘸水笔共值7角2分.问一支圆珠笔值多少钱?三年级上册第一讲习题一一、直接写出计算结果:① 1000-547② 100000-85426③ 111④ -78053二、用简便方法求和:①536+(541+464)+459② 588+264+148③ 8996+3458+7546④567+558+562+555+563三、用简便方法求差:① 1870-280-520② 4995-(995-480)③ 4250-294+94④ 1272-995四、用简便方法计算下列各题:① 478-128+122-72② 464-545+99+345③ 537-(543-163)-57④ 947+(372-447)-572五、巧算下列各题:① 996+599-402② 7443+2485+567+245③ 2000-1347-253+1593④3675-(11+13+15+17+19)三年级上册第二讲习题二一、用简便方法求积:①17×100②1112×5③23×9④23×99⑤12345×11⑥56789×11⑦36×15二、速算下列各题:①123×25×4②456×2×125×25×5×4×8③25×32×125三、巧算下列各题:①15000÷125÷15②1200÷25÷4③27000÷(125×3)④360×40÷60四、巧算下列各题:①11÷3+4÷3②19÷5-9÷5③234×11+234×88三年级下册习题五1.花果山上桃树多,6只小猴分180棵.现有小猴72只,如数分后还余90棵,请算出桃树有几棵?2.5箱蜜蜂一年可以酿75千克蜂蜜,照这样计算,酿300千克蜂蜜要增加几箱蜜蜂?3.4辆汽车行驶300千米需要汽油240公升.现有5辆汽车同时运货到相距800千米的地方,汽油只有1000公升,问是否够用?4.5台拖拉机24天耕地12000公亩.要18天耕完54000公亩土地,需要增加同样拖拉机多少台?习题六1.某次数学考试,甲乙的成绩和是184分,乙丙的成绩和是187分,丙丁的成绩和是188分,甲比丁多1分,问甲、乙、丙、丁各多少分?2.求1962、1973、1981、1994、2005的平均数。
3.缝纫机厂第一季度平均每月生产缝纫机750台,第二季度生产的是第一季度生产的2倍多66台,下半年平均月生产1200台,求这个厂一年的平均月产量。
4.甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元?5.7个连续偶数的和是1988,求这7个连续偶数。
6.6个学生的年龄正好是连续自然数,他们的年龄和与小明爸爸的年龄相同,7个人年龄一共是126岁,求这6个学生各几岁?7.食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克?习题七1.小明和小强共有图书120本,小强的图书本数是小明的2倍,他们两人各有图书多少本?2.果园里一共种340棵桃树和杏树,其中桃树的棵数比杏树的3倍多20棵,两种树各种了多少棵?3.一个长方形,周长是30厘米,长是宽的2倍,求这个长方形的面积。
4.甲水池有水2600立方米,乙水池有水1200立方米,如果甲水池里的水以每分种23立方米的速度流入乙水池,那么多少分种后,乙水池中的水是甲水池的4倍?5.甲桶里有油470千克,乙桶里有油190千克,甲桶的油倒入乙桶多少千克,才能使甲桶油是乙桶油的2倍?6.有3条绳子,共长95米,第一条比第二条长7米,第二条比第三条长8米,问3条绳子各长多少米?习题八1.一只大象的体重比一头牛重4500千克,又知大象的重量是一头牛的10倍,一只大象和一头牛的重量各是多少千克?2.果园里的桃树比杏树多90棵,桃树的棵数是杏树的3倍,桃树和杏树各有多少棵?3.有两块布,第一块长74米,第二块长50米,两块布各剪去同样长的一块布后,剩下的第一块米数是第二块的3倍,问每块布各剪去多少米?4.甲、乙两校教师的人数相等,由于工作需要,从甲校调30人到乙校去,这时乙校教师人数正好是甲校教师人数的3倍,求甲、乙两校原有教师各多少人?5.两筐重量相同的苹果,从甲筐取出7千克,乙筐加入19千克,这时乙筐是甲筐苹果的3倍,问两筐原有苹果多少千克?6.甲、乙两个数,如果甲数加上320就等于乙数了.如果乙数加上460就等于甲数的3倍,两个数各是多少?7.有两块同样长的布,第一块卖出25米,第二块卖出14米,剩下的布第二块是第一块的2倍,求每块布原有多少米?习题九1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?4.某工厂去年与今年的平均产值为96万元,今年比去年多10万元,今年与去年的产值各是多少万元?5.甲、乙两个学校共有学生1245人,如果从甲校调20人去乙校后,甲校比乙校还多5人,两校原有学生各多少人?6.三个物体平均重量是31千克,甲物体比乙、丙两个物体重量之和轻1千克,乙物体比丙物体重量的2倍还重2千克,三个物体各重多少千克?7.甲、乙两个工程队共有1980人,甲队为了支援乙队,抽出285人加入乙队,这时乙队人数还比甲队少24人,求甲、乙两队原有工人多少人?8.四年级有3个班,如果把甲班的1名学生调整到乙班,两班人数相等;如果把乙班1名学生调到丙班,丙班比乙班多2人,问甲班和丙班哪班人数多?多几人?习题十1.兄弟俩今年的年龄和是30岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁?2.、田、钱、、吴五位老师,老师比田老师大4岁,钱老师比老师大3岁,老师比老师小3岁,吴老师比钱老师小2岁.这五位老师的年龄加在一起是122岁.问:五位老师各多少岁?3.哥哥6年前的岁数等于弟弟8年后的岁数.哥哥5年后与弟弟3年前的年龄和是38岁.求兄弟二人今年各几岁?4.母女的年龄和是64岁,女儿年龄的3倍比母亲大8岁,求母女二人的年龄各是多少岁?5.哥哥今年比小丽大12岁,8年前哥哥的年龄是小丽的4倍,今年二人各几岁?6.爷爷今年72岁,子今年12岁,几年后爷爷的年龄是子的5倍?几年前爷爷的年龄是子的13倍?习题十一1.小华用二元五角钱买了面值二角和一角的邮票共17,问两种邮票各买多少?2.有鸡兔共20只,脚44只,鸡兔各几只?3.松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一连几天采了112个松子,平均每天采14个.问这几天当中有几天有雨?4.蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和 23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?5.体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元、裤子每件19元,问老师买上衣和裤子各多少件?6.鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?习题十二1.阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就缺4块饼干.问有多少小朋友,有多少块饼干?2.某校同学排队上操.如果每行站9人,则多37人;如果每行站12人,则少20人.一共有多少学生?3.小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校.小强家到学校的路程是多少米?4.少先队员参加绿化植树,他们准备栽的苹果树苗是梨树苗的2倍.如果每人栽3棵梨树苗,还余2棵;如果每人栽7棵苹果树苗,要少6棵.问有多少少先队员?他们准备栽多少棵苹果树和梨树?5.学校进行大扫除,分配若干人擦玻璃,其中两人各擦4块,其余各擦5块,则余12块;若每人擦6块,则正好擦完,求擦玻璃的人数及玻璃的块数?四年级上册习题一1.计算899998+89998+8998+898+882.计算799999+79999+7999+799+793.计算(1988+1986+1984+…+6+4+2)-(1+3+5+…+1983+1985+1987)4.计算1—2+3—4+5—6+…+1991—1992+19935.时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,依次类推.从1点到12点这12个小时时钟共敲了多少下?6.求出从1~25的全体自然数之和.7.计算 1000+999—998—997+996+995—994—993+ (108)107—106—105+104+103—102—1018.计算92+94+89+93+95+88+94+96+879.计算(125×99+125)×1610.计算 3×999+3+99×8+8+2×9+2+911.计算999999×7805312.两个10位数1111111111和9999999999的乘积中,有几个数字是奇数?1.右图的30个方格中,最上面的一横行和最左面的一竖列的数已经填好,其余每个格子中的数等于同一横行最左边的数与同一竖列最上面的数之和(如方格中a=14+17=31).右图填满后,这30个数的总和是多少?2.有两个算式:①98765×98769,②98766 × 98768,请先不要计算出结果,用最简单的方法很快比较出哪个得数大,大多少?3.比较568×764和567×765哪个积大?4.在下面四个算式中,最大的得数是多少?① 1992×1999+1999② 1993×1998+1998③ 1994×1997+1997④ 1995×1996+19965.五个连续奇数的和是85,求其中最大和最小的数.6.45是从小到大五个整数之和,这些整数相邻两数之差是3,请你写出这五个数.7.把从1到100的自然数如下表那样排列.在这个数表里,把长的方面3个数,宽的方面2个数,一共6个数用长方形框围起来,这6个数的和为81,在数表的别的地方,如上面一样地框起来的6个数的和为429,问此时长方形框子里最大的数是多少?习题六1.甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需4小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少?3.甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.4.甲、乙二人从相距100千米的A、B两地出发相向而行,甲先出发1小时.他们二人在乙出后的4小时相遇,又已知甲比乙每小时快2千米,求甲、乙二人的速度.5.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长为385米,坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少?6.前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?四年级下册习题七1.解放军某部先遣队,从营地出发,以每小时6千米的速度向某地前进,6小时后,部队有急事,派通讯员骑摩托车以每小时78千米的速度前去联络,问多少时间后,通讯员能赶上先遣队?2.小明以每分钟50米的速度从学校步行回家,12分钟后小强从学校出发骑自行车去追小明,结果在距学校1000米处追上小明,求小强骑自行车的速度.3.甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行300千米,乙机每小时行340千米,飞行4小时后它们相隔多少千米?这时候甲机提高速度用2小时追上乙机,甲机每小时要飞行多少千米?4.两人骑自行车从同一地点出发沿着长900千米环形路行驶,如果他们反向而行,那么经过2分钟就相遇,如果同向而行,那么每经过18分钟快者就追上慢者,求两人骑车的速度?5.一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?6.上午8点零8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立刻回家,到家后又立刻回头去追小明、再追上他的时候,离家恰好是8千米,问这时是几点几分?。