毕业设计(论文)外文翻译(译文)

合集下载

毕业论文(设计)外文文献翻译及原文

毕业论文(设计)外文文献翻译及原文

金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。

一、引言各个国家的企业在显著不同的金融体制下运行。

金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。

然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。

这项研究结果解释表明企业投资受限于外部资金的可得性。

很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。

因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。

毕业设计外文翻译译文

毕业设计外文翻译译文

1 工程概论1.1 工程专业1.2 工业和技术1.3 现代制造业工程专业1 工程行业是历史上最古老的行业之一。

如果没有在广阔工程领域中应用的那些技术,我们现在的文明绝不会前进。

第一位把岩石凿削成箭和矛的工具匠是现代机械工程师的鼻祖。

那些发现地球上的金属并找到冶炼和使用金属的方法的工匠们是采矿和冶金工程师的先祖。

那些发明了灌溉系统并建造了远古世纪非凡的建筑物的技师是他们那个时代的土木工程师。

2 工程一般被定义为理论科学的实际应用,例如物理和数学。

许多早期的工程设计分支不是基于科学而是经验信息,这些经验信息取决于观察和经历,而不是理论知识。

这是一个倾斜面实际应用的例子,虽然这个概念没有被确切的理解,但是它可以被量化或者数字化的表达出来。

3 从16、17世纪当代初期,量化就已经成为科学知识大爆炸的首要原因之一。

另外一个重要因素是实验法验证理论的发展。

量化包含了把来源于实验的数据和信息转变成确切的数学术语。

这更加强调了数学是现代工程学的语言。

4 从19世纪开始,它的结果的实际而科学的应用已经逐步上升。

机械工程师现在有精确的能力去计算来源于许多不同机构之间错综复杂的相互作用的机械优势。

他拥有能一起工作的既新型又强硬的材料和巨大的新能源。

工业革命开始于使用水和蒸汽一起工作。

从此使用电、汽油和其他能源作动力的机器变得如此广泛以至于它们承担了世界上很大比例的工作。

5 科学知识迅速膨胀的结果之一就是科学和工程专业的数量的增加。

到19世纪末不仅机械、土木、矿业、冶金工程被建立而且更新的化学和电气工程专业出现了。

这种膨胀现象一直持续到现在。

我们现在拥有了核能、石油、航天航空空间以及电气工程等。

每种工程领域之内都有细分。

6 例如,土木工程自身领域之内有如下细分:涉及永久性结构的建筑工程、涉及水或其他液体流动与控制系统的水利工程、涉及供水、净化、排水系统的研究的环境工程。

机械工程主要的细分是工业工程,它涉及的是错综复杂的机械系统,这些系统是工业上的,而非单独的机器。

本科毕业设计外文翻译(中文)

本科毕业设计外文翻译(中文)

本科生毕业设计(论文)外文翻译外文原文题目:Real-time interactive optical micromanipulation of a mixture of high- and low-index particles中文翻译题目:高低折射率微粒混合物的实时交互式光学微操作毕业设计(论文)题目:阵列光镊软件控制系统设计姓名:任有健学院:生命学院班级:06210501指导教师:李勤高低折射率微粒混合物的实时交互式光学微操作Peter John Rodrigo Vincent Ricardo Daria Jesper Glückstad丹麦罗斯基勒DK-4000号,Risø国家实验室光学和等离子研究系jesper.gluckstad@risoe.dkhttp://www.risoe.dk/ofd/competence/ppo.htm摘要:本文论证一种对于胶体的实时交互式光学微操作的方法,胶体中包含两种折射率的微粒,与悬浮介质(0n )相比,分别低于(0L n n <)、高于(0H n n >)悬浮介质的折射率。

球形的高低折射率微粒在横平板上被一批捕获激光束生成的约束光势能捕获,捕获激光束的横剖面可以分为“礼帽形”和“圆环形”两种光强剖面。

这种应用方法在光学捕获的空间分布和个体几何学方面提供了广泛的可重构性。

我们以实验为基础证实了同时捕获又独立操作悬浮于水(0 1.33n =)中不同尺寸的球形碳酸钠微壳( 1.2L n ≈)和聚苯乙烯微珠( 1.57H n =)的独特性质。

©2004 美国光学学会光学分类与标引体系编码:(140.7010)捕获、(170.4520)光学限制与操作和(230.6120)空间光调制器。

1 引言光带有动量和角动量。

伴随于光与物质相互作用的动量转移为我们提供了在介观量级捕获和操作微粒的方法。

过去数十年中的巨大发展已经导致了在生物和物理领域常规光学捕获的各种应用以及下一代光学微操作体系的出现[1-5]。

隧道盾构-毕设论文外文翻译(翻译-原文)

隧道盾构-毕设论文外文翻译(翻译-原文)

毕业设计(论文)外文文献翻译院系:土木工程与建筑系年级专业:土木工程姓名:学号:附件:盾构SHIELDS指导老师评语:指导教师签名:年月日S HIEL D S【Abstr act】A tunnel shield is a structural system, used during the face excavation process. The paper mainly discusses the form and the structure of the shield. Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield and the shield is widespread used in the underground environment where can not be in long time stable. The main enemy of the shield is ground pressure. Non-uniform ground pressure caused by the steering may act on the skin tends to force the shield off line and grade. And working decks inside the shield enable the miners to excavate the face, drill and load holes.【Keywor ds】shield hydraulic jacks ground pressure steering working decksA tunnel shield is a structural system, normally constructed of steel, used during the face excavation process. The shield has an outside configuration which matches the tunnel. The shield provides protection for the men and equipment and also furnished initial ground support until structural supports can be installed within the tail section of the shield. The shield also provides a reaction base for the breast-board system used to control face movement. The shield may have either an open or closed bottom. In a closed-bottom shield, the shield structure and skin provide 360-degree ground contact and the weight of the shield rests upon the invert section of the shield skin. The open shield has no bottom section and requires some additional provision is a pair of side drifts driven in advance of shield excavation. Rails or skid tracks are installed within these side drifts to provide bearing support for the shield.Shield length generally varies from1/2 to 3/4 of the tunnel diameter. The front of the shield is generally hooded to so that the top of the shield protrudes forward further than the invert portion which provides additional protection for the men working at the face and also ease pressure on the breast-boards. The steel skin of the shield may varyfrom 1.3 to 10 cm in thickness, depending on the expected ground pressures. The type of steel used in the shield is the subject of many arguments within the tunneling fraternity. Some prefer mild steel in the A36 category because of its ductility and case of welding in the underground environment where precision work is difficult. Others prefer a high-strength steel such as T-1 because of its higher strength/w eight ratio. Shield weight may range from 5 to 500 tons. Most of the heaviest shields are found in the former Sovier Union because of their preference for cast-iron in both structural and skin elements.Propulsion for the shield is provided by a series of hydraulic jacks installed in the tail of the shield that thrust against the last steel set that has been installed. The total required thrust will vary with skin area and ground pressure. Several shields have been constructed with total thrust capabilities in excess of 10000 tons. Hydraulic systems are usually self-contained, air-motor powered, and mounted on the shield. Working pressures in the hydraulic system may range from 20-70 Mpa. To resist the thrust of the shield jacks, a horizontal structure member (collar brace) must be installed opposite each jack location and between the flanges of the steel set. In addition, some structural provision must be made for transferring this thrust load into the tunnel walls. Without this provision the thrust will extend through the collar braces to the tunnel portal.An Englishman, Marc Brunel, is credited with inventing the shield. Brunel supposedly got his idea by studying the action of the Teredo navalis, a highly destructive woodworm, when he was working at the Chatham dock yard. In 1818 Brunel obtained an English patent for his rectangular shield which was subsequently uses to construct the first tunnel under the River Thames in London. In 1869 the first circular shield was devised by Barlow and Great Head in London and is referred to as the Great Head-type shield. Later that same year, Beach in New York City produced similar shield. The first use of the circular shield came during 1869 when Barlow and Great Head employed their device in the construction of the 2.1 in diameter Tower Subway under the River Thames. Despite the name of the tunnel, it was used only for pedestrian traffic. Beach also put his circular shield to work in 1869 to construct a demonstration project for a proposed NewYork City subway system. The project consisted of a 2.4 m diameter tunnel, 90 m long, used to experiment with a subway car propelled by air pressure.Here are some tunnels which were built by shield principle.Soft-ground tunneling Some tunnels are driven wholly or mostly through soft material. In very soft ground, little or no blasting is necessary because the material is easily excavated.At first, forepoling was the only method for building tunnels through very soft ground. Forepoles are heavy planks about 1.5 m long and sharpened to a point. They were inserted over the top horizontal bar of the bracing at the face of the tunnel. The forepoles were driven into the ground of the face with an outward inclination. After all the roof poles were driven for about half of their length, a timber was laid across their exposed ends to counter any strain on the outer ends. The forepoles thus provided an extension of the tunnel support, and the face was extended under them. When the ends of the forepoles were reached, new timbering support was added, and the forepoles were driven into the ground for the next advance of the tunneling.The use of compressed air simplified working in soft ground. An airlock was built, though which men and equipment passed, and sufficient air pressure was maintained at the tunnel face to hold the ground firm during excavation until timbering or other support was erected.Another development was the use of hydraulically powered shields behind which cast-iron or steel plates were placed on the circumference of the tunnels. These plates provided sufficient support for the tunnel while the work proceeded, as well as full working space for men in the tunnel.Under water tunneling The most difficult tunneling is that undertaken at considerable depths below a river or other body of water. In such cases, water seeps through porous material or crevices, subjecting the work in progress to the pressure of the water above the tunneling path. When the tunnel is driven through stiff clay, the flow of water may be small enough to be removed by pumping. In more porous ground,compressed air must be used to exclude water. The amount of air pressure that is needed increases as the depth of the tunnel increases below the surface.A circular shield has proved to be most efficient in resisting the pressure of soft ground, so most shield-driven tunnels are circular. The shield once consisted of steel plates and angle supports, with a heavily braced diaphragm across its face. The diaphragm had a number of openings with doors so that workers could excavate material in front of the shield. In a further development, the shield was shoved forward into the silty material of a riverbed, thereby squeezing displaced material through the doors and into the tunnel, from which the muck was removed. The cylindrical shell of the shield may extend several feet in front of the diaphragm to provide a cutting edge. A rear section, called the tail, extends for several feet behind the body of the shield to protect workers. In large shields, an erector arm is used in the rear side of the shield to place the metal support segments along the circumference of the tunnel.The pressure against the forward motion of a shield may exceed 48.8 Mpa. Hydraulic jacks are used to overcome this pressure and advance the shield, producing a pressure of about 245 Mpa on the outside surface of the shield.Shields can be steered by varying the thrust of the jacks from left side to right side or from top to bottom, thus varying the tunnel direction left or right or up or down. The jacks shove against the tunnel lining for each forward shove. The cycle of operation is forward shove, line, muck, and then another forward shove. The shield used about 1955 on the third tube of the Lincoln Tunnel in New York City was 5.5 m long and 9.6 m in diameter. It was moved about 81.2 cm per shove, permitting the fabrication of a 81.2 cm support ring behind it.Cast-iron segments commonly are used in working behind such a shield. They are erected and bolted together in a short time to provide strength and water tightness. In the third tube of the Lincoln Tunnel each segment is 2 m long, 81.2 cm wide, and 35.5 cm thick, and weighs about 1.5 tons. These sections form a ring of 14 segments that are linked together by bolts. The bolts were tightened by hand and then by machine.Immediately after they were in place, the sections were sealed at the joints to ensure permanent water tightness.Shields are most commonly used in ground condition where adequate stand-up time does not exist. The advantage of the shield in this type of ground, in addition to the protection afforded men and equipment , is the time available to install steel ribs, liner plates, or precast concrete segments under the tail segment of the shield before ground pressure and movement become adverse factors.One of the principle problems associated with shield use is steering. Non-uniform ground pressure acting on the skin tends to force the shield off line and grade. This problem is particularly acute with closed bottom shield that do not ride on rails or skid tracks. Steering is accomplished by varying the hydraulic pressure in individual thrust jacks. If the shied is trying to dive, additional pressure on the invert jacks will resist this tendency. It is not unusual to find shield wandering several feet from the required. Although lasers are frequently used to provide continuous line and grade data to operator, once the shield wanders off its course, its sheer bulk resists efforts to bring it back. Heterogeneous ground conditions, such as clay with random boulders, also presents steering problems.One theoretical disadvantage of the shield is the annular space left between the support system and the ground surface. When the support system is installed within the tail section of the shield, the individual support members are separated from the ground surface by the thickness of the tail skin. When steel ribs are used, the annular space is filled with timber blocking as the forward motion of the shield exposes the individual ribs.A continuous support system presents a different problem. In this case, a filler material, such as pea gravel or grout, is pumped behind the support system to fill the void between it and the ground surface.The main enemy of the shield is ground pressure. As ground pressure begins to build, two things happen, more thrust is required for shield propulsion and stress increases in the structural members of the shield. Shields are designed and function undera preselected ground pressure. Designers will select this pressure as a percentage of the maximum ground pressure contemplated by the permanent tunnel design. In some cases, unfortunately, the shield just gets built without specific consideration of the ground pressures it might encounter. When ground pressure exceeds the design limit, the shield gets “stuck”.The friction component of the ground pressure on the skin becomes greater than the thrust capability of the jacks. Several methods, including pumping bentonite slurry into the skin, ground interface, pushing heavy equipment, and bumping with dynamite, have been applied to stuck shields with occasional success.Because ground pressure tends to increase with time, the cardinal rule of operation is “keeping moving”.This accounts for the fracture activity when a shield has suffered a temporary mechanical failure. As ground pressure continues to build on the nonmoving shield , the load finally exceeds its structural limit and bucking begins. An example of shield destruction occurred in California in 1968 when two shields being used to drive the Carly V.Porter Tunnel were caught by excessive ground pressure and deformed beyond repair. One of the Porter Tunnel shields was brought to a halt in reasonably good ground by water bearing ground fault that required full breast-boards. While the contractor was trying to bring the face under control, skin pressure began to increase. While the face condition finally stabilized, the contractor prepared to resume operations and discovered the shield was stuck. No combination of methods was able to move it, and the increasing ground pressure destroyed the shield.To offset the ground pressure effect, a standard provision in design is a cutting edge radius several inches greater than the main body radius. This allows a certain degree o f ground movement before pressure can come to bear on the shield skin. Another approach, considered in theory but not yet put into practice, is the “w atermelon seed”design. The theory calls for a continuous taper in the shield configuration; maximum radius at the cutting edge and the minimum radius at the trailing edge of the tail. With this configuration, any amount of forward movement would create a drop in skin pressure.Working decks, spaced 2.4 to 3.0 m vertically, are provided inside the shield. These working decks enable the miners to excavate the face, drill and load holes, if necessary, and adjust the breast-board system. The hydraulic jacks for the breast-board are mounted on the underside of the work decks. Blast doors are sometimes installed as an integral part of the work decks if a substantial amount of blasting is expected.Some form of mechanical equipment is provided on the rear end of the working decks to assist the miners in handing and placing the element of the support system. In large tunnels, these individual support elements can weigh several tons and mechanical assistance becomes essential. Sufficient vertical clearance must be provided between the invert and the first working deck to permit access to the face by the loading equipment.盾构【摘要】隧道盾构是一结构系统,通常用于洞室开挖。

毕业设计中英文翻译

毕业设计中英文翻译

本科生毕业设计(论文)外文翻译毕业设计(论文)题目:电力系统检测与计算外文题目:The development of the single chipmicrocomputer译文题目:单片机技术的发展与应用学生姓名: XXX专业: XXX指导教师姓名: XXX评阅日期:单片机技术的发展与应用从无线电世界到单片机世界现代计算机技术的产业革命,将世界经济从资本经济带入到知识经济时代。

在电子世界领域,从 20 世纪中的无线电时代也进入到 21 世纪以计算机技术为中心的智能化现代电子系统时代。

现代电子系统的基本核心是嵌入式计算机系统(简称嵌入式系统),而单片机是最典型、最广泛、最普及的嵌入式系统。

一、无线电世界造就了几代英才。

在 20 世纪五六十年代,最具代表的先进的电子技术就是无线电技术,包括无线电广播,收音,无线通信(电报),业余无线电台,无线电定位,导航等遥测、遥控、遥信技术。

早期就是这些电子技术带领着许多青少年步入了奇妙的电子世界,无线电技术展示了当时科技生活美妙的前景。

电子科学开始形成了一门新兴学科。

无线电电子学,无线通信开始了电子世界的历程。

无线电技术不仅成为了当时先进科学技术的代表,而且从普及到专业的科学领域,吸引了广大青少年,并使他们从中找到了无穷的乐趣。

从床头的矿石收音机到超外差收音机;从无线电发报到业余无线电台;从电话,电铃到无线电操纵模型。

无线电技术成为当时青少年科普、科技教育最普及,最广泛的内容。

至今,许多老一辈的工程师、专家、教授当年都是无线电爱好者。

无线电技术的无穷乐趣,无线电技术的全面训练,从电子学基本原理,电子元器件基础到无线电遥控、遥测、遥信电子系统制作,培养出了几代科技英才。

二、从无线电时代到电子技术普及时代。

早期的无线电技术推动了电子技术的发展,其中最主要的是真空管电子技术向半导体电子技术的发展。

半导体电子技术使有源器件实现了微小型化和低成本,使无线电技术有了更大普及和创新,并大大地开阔了许多非无线电的控制领域。

论文中英文翻译(译文)

论文中英文翻译(译文)

编号:桂林电子科技大学信息科技学院毕业设计(论文)外文翻译(译文)系别:电子工程系专业:电子信息工程学生姓名:韦骏学号:0852100329指导教师单位:桂林电子科技大学信息科技学院姓名:梁勇职称:讲师2012 年6 月5 日设计与实现基于Modbus 协议的嵌入式Linux 系统摘要:随着嵌入式计算机技术的飞速发展,新一代工业自动化数据采集和监测系统,采用核心的高性能嵌入式微处理器的,该系统很好地适应应用程序。

它符合消费等的严格要求的功能,如可靠性,成本,尺寸和功耗等。

在工业自动化应用系统,Modbus 通信协议的工业标准,广泛应用于大规模的工业设备系统,包括DCS,可编程控制器,RTU 及智能仪表等。

为了达到嵌入式数据监测的工业自动化应用软件的需求,本文设计了嵌入式数据采集监测平台下基于Modbus 协议的Linux 环境采集系统。

串行端口的Modbus 协议是实现主/从式,其中包括两种通信模式:ASCII 和RTU。

因此,各种药膏协议的设备能够满足串行的Modbus通信。

在Modbus 协议的嵌入式平台实现稳定和可靠。

它在嵌入式数据监测自动化应用系统的新收购的前景良好。

关键词:嵌入式系统,嵌入式Linux,Modbus 协议,数据采集,监测和控制。

1、绪论Modbus 是一种通讯协议,是一种由莫迪康公司推广。

它广泛应用于工业自动化,已成为实际的工业标准。

该控制装置或不同厂家的测量仪器可以链接到一个行业监控网络使用Modbus 协议。

Modbus 通信协议可以作为大量的工业设备的通讯标准,包括PLC,DCS 系统,RTU 的,聪明的智能仪表。

随着嵌入式计算机技术的飞速发展,嵌入式数据采集监测系统,使用了高性能的嵌入式微处理器为核心,是一个重要的发展方向。

在环境鉴于嵌入式Linux 的嵌入式工业自动化应用的数据,一个Modbus 主协议下的采集监测系统的设计和实现了这个文件。

因此,通信设备,各种药膏协议能够满足串行的Modbus。

毕业设计(论文)外文资料翻译(学生用)

毕业设计(论文)外文资料翻译(学生用)

毕业设计外文资料翻译学院:信息科学与工程学院专业:软件工程姓名: XXXXX学号: XXXXXXXXX外文出处: Think In Java (用外文写)附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文网络编程历史上的网络编程都倾向于困难、复杂,而且极易出错。

程序员必须掌握与网络有关的大量细节,有时甚至要对硬件有深刻的认识。

一般地,我们需要理解连网协议中不同的“层”(Layer)。

而且对于每个连网库,一般都包含了数量众多的函数,分别涉及信息块的连接、打包和拆包;这些块的来回运输;以及握手等等。

这是一项令人痛苦的工作。

但是,连网本身的概念并不是很难。

我们想获得位于其他地方某台机器上的信息,并把它们移到这儿;或者相反。

这与读写文件非常相似,只是文件存在于远程机器上,而且远程机器有权决定如何处理我们请求或者发送的数据。

Java最出色的一个地方就是它的“无痛苦连网”概念。

有关连网的基层细节已被尽可能地提取出去,并隐藏在JVM以及Java的本机安装系统里进行控制。

我们使用的编程模型是一个文件的模型;事实上,网络连接(一个“套接字”)已被封装到系统对象里,所以可象对其他数据流那样采用同样的方法调用。

除此以外,在我们处理另一个连网问题——同时控制多个网络连接——的时候,Java内建的多线程机制也是十分方便的。

本章将用一系列易懂的例子解释Java的连网支持。

15.1 机器的标识当然,为了分辨来自别处的一台机器,以及为了保证自己连接的是希望的那台机器,必须有一种机制能独一无二地标识出网络内的每台机器。

早期网络只解决了如何在本地网络环境中为机器提供唯一的名字。

但Java面向的是整个因特网,这要求用一种机制对来自世界各地的机器进行标识。

为达到这个目的,我们采用了IP(互联网地址)的概念。

IP以两种形式存在着:(1) 大家最熟悉的DNS(域名服务)形式。

我自己的域名是。

所以假定我在自己的域内有一台名为Opus的计算机,它的域名就可以是。

本科毕业设计(论文)外文翻译

本科毕业设计(论文)外文翻译
1.引言
重金属污染存在于很多工业的废水中,如电镀,采矿,和制革。
2.实验
2.1化学药剂
本实验所使用的药剂均为分析纯,如无特别说明均购买自日本片山化工。铅离子储备液通过溶解Pb(NO3)2配制,使用时稀释到需要的浓度。HEPES缓冲液购买自Sigma–Aldrich。5 mol/L的HCl和NaOH用来调整pH。
附5
华南理工大学
本科毕业设计(论文)翻译
班级2011环境工程一班
姓名陈光耀
学号201130720022
指导教师韦朝海
填表日期
中文译名
(1)巯基改性纤维素对葡萄糖溶液中铅的吸附(2)黄原酸化橘子皮应用于吸附水中的铅离子
外文原文名
(1)Adsorption of Pb(II) from glucose solution on thiol-functionalized cellulosic biomass
2.5分析方法
铅离子的浓度用分光光度计在616 nm波长处用铅与偶氮氯膦-III络合物进行分析。葡萄糖含量采用苯酚—硫酸分光光度法测定。所有的实验均进行三次,已经考虑好误差。
3.结果和讨论
3.1FTIR分析和改性脱脂棉对铅(II)的吸附机制
图1是脱脂棉、改性脱脂棉在400-4000 cm-1(A)和2540-2560 cm-1(B)范围内的红外光谱图。可以看出,改性后改性脱脂棉的红外光谱图中在1735.71 cm-1处出现了一个新的吸收峰是酯基C=O的拉伸振动峰,可见改性脱脂棉中已经成功引入巯基官能团。同时,在2550.52 cm-1出现的一个新吸收峰代表的是S-H官能团的弱吸收峰,更深一层的证明了巯基已经嫁接到脱脂棉上。图1(b)是2540-2560 cm-1光谱范围的一个放大图像,可以清楚的观察到S-H官能团的弱吸收峰。进一步证明了酯化改性脱脂棉引入巯基是成功的。而从吸附后的曲线可以看到,2550.52cm-1处S-H的吸收峰消失,证明了硫原子和Pb(II)络合物的形成,同时1735.71cm-1处C=O的吸收峰强度看起来有轻微的减弱可能也是和Pb(II)的络合吸附有关。

毕业设计(论文)外文资料翻译【范本模板】

毕业设计(论文)外文资料翻译【范本模板】

南京理工大学紫金学院毕业设计(论文)外文资料翻译系:机械系专业:车辆工程专业姓名:宋磊春学号:070102234外文出处:EDU_E_CAT_VBA_FF_V5R9(用外文写)附件:1。

外文资料翻译译文;2.外文原文.附件1:外文资料翻译译文CATIA V5 的自动化CATIA V5的自动化和脚本:在NT 和Unix上:脚本允许你用宏指令以非常简单的方式计划CATIA。

CATIA 使用在MS –VBScript中(V5.x中在NT和UNIX3。

0 )的共用部分来使得在两个平台上运行相同的宏。

在NT 平台上:自动化允许CATIA像Word/Excel或者Visual Basic程序那样与其他外用分享目标。

ATIA 能使用Word/Excel对象就像Word/Excel能使用CATIA 对象。

在Unix 平台上:CATIA将来的版本将允许从Java分享它的对象。

这将提供在Unix 和NT 之间的一个完美兼容。

CATIA V5 自动化:介绍(仅限NT)自动化允许在几个进程之间的联系:CATIA V5 在NT 上:接口COM:Visual Basic 脚本(对宏来说),Visual Basic 为应用(适合前:Word/Excel ),Visual Basic。

COM(零部件目标模型)是“微软“标准于几个应用程序之间的共享对象。

Automation 是一种“微软“技术,它使用一种解释环境中的COM对象。

ActiveX 组成部分是“微软“标准于几个应用程序之间的共享对象,即使在解释环境里。

OLE(对象的链接与嵌入)意思是资料可以在一个其他应用OLE的资料里连结并且可以被编辑的方法(在适当的位置编辑).在VBScript,VBA和Visual Basic之间的差别:Visual Basic(VB)是全部的版本。

它能产生独立的计划,它也能建立ActiveX 和服务器。

它可以被编辑。

VB中提供了一个补充文件名为“在线丛书“(VB的5。

毕业设计外文翻译

毕业设计外文翻译

南京理工大学毕业设计(论文)外文资料翻译学院(系):电子工程与光电技术学院专业:电子科学与技术姓名:高航学号: 0704240113外文出处: ZTE COMMUNICATIONS 2009, 7 (4)(用外文写)附件: 1.外文资料译文;2.外文原文。

附件1:外文资料翻译译文一种用于移动终端视频图像色彩增强的实时方法作者:金辉摘要:智能手机在可视通话的过程中,由于摄像头和液晶显示器等硬件性能上的一些局限性,使其在某些条件或环境下采集的视频图像光线昏暗,或者视频图像表现的颜色不够鲜艳、靓丽甚至发生偏色。

文章提出一种在硬件具体的特性和性能参数下,对视频图像的明亮可视度以及颜色进行增强的实时方法。

在智能手机上的应用和验证显示,该方法不需要额外的芯片就能够改善移动可视电话中视频图像的主观视觉效果,提高亮度、清晰度,并使颜色的表现更丰富、艳丽。

关键字:移动可视终端;色彩增强;明亮可视度增强目前,对于移动智能手机来讲,传统的话音业务已经无法满足广大消费者个性化、差异化需求,所以各项增值业务被视为新的黄金增长点。

移动可视电话作为3G的标志性核心业务,逐渐受到各方的广泛关注。

视频通话过程中视频图像的质量直接影响到业务的普及与扩展,将来也会在市场上掀起一场完美的视频应用风暴。

在对TD-SCDMA的3G终端性能测试中,视频通话是测试的关键环节之一。

大部分3G手机终端视频通话质量都有不尽如人意的地方,如延迟、拖影、马赛克等现象。

这些主要是由于网络原因造成的视频质量问题。

除此之外还有视频图像本身的质量问题,如在暗的环境下,采集的图像昏暗不清,打可视电话时色彩不够丰富亮丽等。

这些问题已受到各通信设备供应商和技术研究者的关注。

在视频处理领域中,主观视觉质量的改善是视频增强的一个主要内容。

在消费电子领域中,视频增强技术令产品对于消费者更具有吸引力和魅力。

如今许多厂商都需要拥有自主的色彩增强技术,“颜色再现增强技术”已成为一个重要的话题。

毕业设计(论文)外文翻译

毕业设计(论文)外文翻译

华南理工大学广州学院本科生毕业设计(论文)翻译外文原文名Agency Cost under the Restriction of Free Cash Flow中文译名自由现金流量的限制下的代理成本学院管理学院专业班级会计学3班学生姓名陈洁玉学生学号200930191100指导教师余勍讲师填写日期2015年5月11日外文原文版出处:译文成绩:指导教师(导师组长)签名:译文:自由现金流量的限制下的代理成本摘要代理成本理论是资本结构理论的一个重要分支。

自由现金流代理成本有显着的影响。

在这两个领域相结合的研究,将有助于建立和扩大理论体系。

代理成本理论基础上,本研究首先分类自由现金流以及统计方法的特点。

此外,投资自由现金流代理成本的存在证明了模型。

自由现金流代理成本理论引入限制,分析表明,它会改变代理成本,进而将影响代理成本和资本结构之间的关系,最后,都会影响到最优资本结构点,以保持平衡。

具体地说,自由现金流增加,相应地,债务比例会降低。

关键词:资本结构,现金流,代理成本,非金钱利益1、介绍代理成本理论,金融契约理论,信号模型和新的啄食顺序理论,新的资本结构理论的主要分支。

财务con-道的理论侧重于限制股东的合同行为,解决股东和债权人之间的冲突。

信令模式和新的啄食顺序理论中心解决投资者和管理者之间的冲突。

这两种类型的冲突是在商业组织中的主要冲突。

代理成本理论认为,如何达到平衡这两种类型的冲突,资本结构是如何形成的,这是比前两次在一定程度上更多的理论更全面。

……Agency Cost under the Restriction of Free Cash FlowAbstractAgency cost theory is an important branch of capital structural theory. Free cash flow has significant impact on agency cost. The combination of research on these two fields would help to build and extend the theoretical system. Based on agency cost theory, the present study firstly categorized the characteristics of free cash flow as well as the statistical methodologies. Furthermore, the existence of investing free cash flow in agency cost was proved by a model. Then free cash flow was introduced into agency cost theory as restriction, the analysis shows that it will change agency cost, in turn, will have an impact on the relationship between agency cost and capital structure, finally, will influence the optimal capital structure point to maintain the equilibrium. Concretely, with the increasing free cash flow, correspondingly, debt proportion will decrease.Keywords:Capital Structure,Free Cash Flow,Agency Cost,Non-Pecuniary Benefit1. IntroductionAgency cost theory, financial contract theory, signaling model and new pecking order theory are the main branches of new capital structure theory. Financial con-tract theory focuses on restricting stockholders’ behavior by contract and solving the conflict between stockholders and creditors. Signaling model and new pecking order theory center on solving the conflict between investors and managers. These two types of conflict are the main conflict in business organizations. Agency cost theory considers how equilibrium is reached in both types of conflict and how capital structure is formed, which is more theory is more comprehensive than the previous two to some degree.……。

毕业设计(论文)外文资料翻译(学生用)

毕业设计(论文)外文资料翻译(学生用)

南京理工大学紫金学院毕业设计(论文)外文资料翻译系:计算机专业:计算机科学与技术姓名:沈俊男学号: 060601239外文出处: E. Jimenez-Ruiz,R. Berlanga. The Management(用外文写)and Integration of Biomedical[M/OL].Castellon:Spanish Ministry of Education andScience project,2004[2005-09098]./ftp/cs/papers/0609/0609144.pdf附件: 1.外文资料翻译译文;2.外文原文。

注:请将该封面与附件装订成册。

附件1:外文资料翻译译文管理和集成的生物医学知识:应用于Health-e-Child项目摘要:这个Health-e-Child项目的目的是为欧洲儿科学发展集成保健平台。

为了实现一个关于儿童健康的综合观点,一个复杂的生物医学数据、信息和知识的整合是必需的。

本体论将用于正式定义这个领域的专业知识,将塑造医学知识管理系统的基础。

文中介绍了一种对生物医学知识的垂直整合的新颖的方法。

该方法将会主要使临床医生中心化,并使定义本体碎片成为可能,连接这些碎片(语义桥接器),丰富了本体碎片(观点)。

这个策略为规格和捕获的碎片,桥接器和观点概述了初步的例子证明从医院数据库、生物医学本体、生物医学公共数据库的生物医学信息的征收。

关键词:垂直的知识集成、近似查询、本体观点、语义桥接器1.1 医学数据集成问题数据来源的集成已经在数据库社区成为传统的研究课题。

一个综合数据库系统主要的目标是允许用户均匀的访问一个分布和一个异构数据库。

数据集成的关键因素是定义一个全局性的模式,但是值得指出的是,我们必须区分三种全局模式:数据库模式、概念模式和域本体模式。

首先介绍了数据类型的信息存储、本地查询;其二,概括了这些图式采用更富有表达力的数据模型,如统一建模语言(UML)(TAMBIS和SEMEDA都遵循这个模式)。

土木工程-毕业设计-论文-外文翻译-中英文对照

土木工程-毕业设计-论文-外文翻译-中英文对照

英文原文:Concrete structure reinforcement designSheyanb oⅠWangchenji aⅡⅠFoundation Engineering Co., Ltd. Heilongjiang DongyuⅡHeilongjiang Province, East Building Foundation Engineering Co., Ltd. CoalAbstract:structure in the long-term natural environment and under the use environment's function, its function is weaken inevitably gradually, our structural engineering's duty not just must finish the building earlier period the project work, but must be able the science appraisal structure damage objective law and the degree, and adopts the effective method guarantee structure the security use, that the structure reinforcement will become an important work. What may foresee will be the 21st century, the human building also by the concrete structure, the steel structure, the bricking-up structure and so on primarily, the present stage I will think us in the structure reinforcement this aspect research should also take this as the main breakthrough direction.Key word:Concrete structure reinforcement bricking-up structure reinforcement steel structure reinforcement1 Concrete structure reinforcementConcrete structure's reinforcement divides into the direct reinforcement and reinforces two kinds indirectly, when the design may act according to the actual condition and the operation requirements choice being suitable method and the necessary technology.1.1the direct reinforcement's general method1)Enlarges the section reinforcement lawAdds the concretes cast-in-place level in the reinforced concrete member in bending compression zone, may increase the section effective height, the expansion cross sectional area, thus enhances the component right section anti-curved, the oblique section anti-cuts ability and the section rigidity, plays the reinforcement reinforcement the role.In the suitable muscle scope, the concretes change curved the component right section supporting capacity increase along with the area of reinforcement and the intensity enhance. In the original component right section ratio of reinforcement not too high situation, increases the main reinforcement area to be possible to propose the plateau component right section anti-curved supporting capacity effectively. Is pulled in the section the area to add the cast-in-place concrete jacket to increase the component section, through new Canada partial and original component joint work, but enhances the component supporting capacity effectively, improvement normal operational performance.Enlarges the section reinforcement law construction craft simply, compatible, and has the mature design and the construction experience; Is suitable in Liang, the board, the column, the wall and the general structure concretes reinforcement; But scene construction's wet operating time is long, to produces has certain influence with the life, and after reinforcing the building clearance has certain reduction.2) Replacement concretes reinforcement lawThis law's merit with enlarges the method of sections to be close, and after reinforcing, does not affect building's clearance, but similar existence construction wet operating time long shortcoming; Is suitable somewhat low or has concretes carrier's and so on serious defect Liang, column in the compression zone concretes intensity reinforcement.3) the caking outsourcing section reinforcement lawOutside the Baotou Steel Factory reinforcement is wraps in the section or the steel plate is reinforced component's outside, outside the Baotou Steel Factory reinforces reinforced concrete Liang to use the wet outsourcing law generally, namely uses the epoxy resinification to be in the milk and so on methods with to reinforce the section the construction commission to cake a whole, after the reinforcement component, because is pulled with the compressed steel cross sectional area large scale enhancement, therefore right section supporting capacity and section rigidity large scale enhancement.This law also said that the wet outside Baotou Steel Factory reinforcement law, the stress is reliable, the construction is simple, the scene work load is small, but is big with the steel quantity, and uses in above not suitably 600C in the non-protection's situation the high temperature place; Is suitable does not allow in the use obviously to increase the original component section size, but requests to sharpen its bearing capacity large scale the concrete structure reinforcement.4) Sticks the steel reinforcement lawOutside the reinforced concrete member in bending sticks the steel reinforcement is (right section is pulled in the component supporting capacity insufficient sector area, right section compression zone or oblique section) the superficial glue steel plate, like this may enhance is reinforced component's supporting capacity, and constructs conveniently.This law construction is fast, the scene not wet work or only has the plastering and so on few wet works, to produces is small with the life influence, and after reinforcing, is not remarkable to the original structure outward appearance and the original clearance affects, but the reinforcement effect is decided to a great extent by the gummy craft and the operational level; Is suitable in the withstanding static function, and is in the normal humidity environment to bend or the tension member reinforcement.5) Glue fibre reinforcement plastic reinforcement lawOutside pastes the textile fiber reinforcement is pastes with the cementing material the fibre reinforcement compound materials in is reinforced the component to pull the region, causes it with to reinforce the section joint work, achieves sharpens the component bearing capacity the goal. Besides has glues the steel plate similar merit, but also has anticorrosive muddy, bears moistly, does not increase the self-weight of structure nearly, durably, the maintenance cost low status merit, but needs special fire protection processing, is suitable in each kind of stress nature concrete structure component and the general construction.This law's good and bad points with enlarge the method of sections to be close; Is suitable reinforcement which is insufficient in the concrete structure component oblique section supporting capacity, or must exert the crosswise binding force to the compressional member the situation.6) Reeling lawThis law's good and bad points with enlarge the method of sections to be close; Is suitable reinforcement which is insufficient in the concrete structure component oblique section supporting capacity, or must exert the crosswise binding force to the compressional member the situation.7) Fang bolt anchor lawThis law is suitable in the concretes intensity rank is the C20~C60 concretes load-bearing member transformation, the reinforcement; It is not suitable for already the above structure which and the light quality structure makes decent seriously. 1.2The indirect reinforcement's general method1)Pre-stressed reinforcement law(1)Thepre-stressed horizontal tension bar reinforces concretes member in bending,because the pre-stressed and increases the exterior load the combined action, in the tension bar has the axial tension, this strength eccentric transmits on the component through the pole end anchor (, when tension bar and Liang board bottom surface close fitting, tension bar can look for tune together with component, this fashion has partial pressures to transmit directly for component bottom surface), has the eccentric compression function in the component, this function has overcome the bending moment which outside the part the load produces, reduced outside the load effect, thus sharpened component's anti-curved ability. At the same time, because the tension bar passes to component's pressure function, the component crack development can alleviate, the control, the oblique section anti-to cut the supporting capacity also along with it enhancement.As a result of the horizontal lifting stem's function, the original component's section stress characteristic by received bends turned the eccentric compression, therefore, after the reinforcement, component's supporting capacity was mainly decided in bends under the condition the original component's supporting capacity 。

(最新版)_毕业设计外文翻译_27413

(最新版)_毕业设计外文翻译_27413

南京邮电大学毕业设计(论文)外文资料翻译学院专业学生姓名班级学号外文出处附件:1.外文资料翻译译文;2.外文原文指导教师评价:1.翻译内容与课题的结合度:□优□良□中□差2.翻译内容的准确、流畅:□优□良□中□差3.专业词汇翻译的准确性:□优□良□中□差4.翻译字符数是否符合规定要求:□符合□不符合指导教师签名:年月日附件1:外文资料翻译译文非常1.1Web 部署项目当ASP 第一次发布时,Web 编程还比较困难,因为需要 IIS 来处理 ASP 页。

后来, 2.0 和Visual Studio® 2005 通过引入网站开发模型使一切工作都变得容易了。

借助该网站模型,您不必在 Visual Studio 中创建新项目,而是可以指向一个目录并开始编写网页和代码。

此外,您还可以使用内置的 Development Server 快速测试站点, Development Server 将 寄宿在一个本地进程中,并消除了必须安装 IIS 才能进行开发这一先决条件。

该网站模型的魅力在于您在开发 Web 应用程序时无需考虑打包和部署。

需要其他类时怎么办?向 App_Code 目录添加一个 .cs 文件即可开始编写。

希望将可本地化的字符串存储在资源文件中时怎么办?向App_GlobalResources 目录添加一个 .resx 文件并键入字符串。

一切都顺顺当当;您根本就不必考虑编译和部署方面的事情。

在准备进行部署时,您有多种可选方案。

最简单的方案是将文件复制到主运行服务器并按要求编译每一个文件(和在测试环境中一样)。

第二种方案是使用aspnet_compiler.exe 实用工具将应用程序预编译为二进制版本,之后将只剩下要放到服务器上的一组程序集、静态内容和配置文件。

第三种方案也使用 aspnet_compiler.exe,但要创建一个可更新的二进制部署,其中 .as*x 文件保持不变(并且可修改),而所有代码文件都编译为二进制程序集。

本科毕业设计(论文)外文翻译译文

本科毕业设计(论文)外文翻译译文

本科毕业设计(论文)外文翻译译文学生姓名:院(系):油气资源学院专业班级:物探0502指导教师:完成日期:年月日地震驱动评价与发展:以玻利维亚冲积盆地的研究为例起止页码:1099——1108出版日期:NOVEMBER 2005THE LEADING EDGE出版单位:PanYAmericanYEnergyvBuenosYAiresvYArgentinaJPYBLANGYvYBPYExplorationvYHoustonvYUSAJ.C.YCORDOVAandYE.YMARTINEZvYChacoYS.A.vYSantaYCruzvYBolivia 通过整合多种地球物理地质技术,在玻利维亚冲积盆地,我们可以减少许多与白垩纪储集层勘探有关的地质技术风险。

通过对这些远景区进行成功钻探我们可以验证我们的解释。

这些方法包括盆地模拟,联井及地震叠前同时反演,岩石性质及地震属性解释,A VO/A V A,水平地震同相轴,光谱分解。

联合解释能够得到构造和沉积模式的微笑校正。

迄今为止,在新区有七口井已经进行了成功钻探。

基质和区域地质。

Tarija/Chaco盆地的subandean 褶皱和冲断带山麓的中部和南部,部分扩展到玻利维亚的Boomerange地区经历了集中的成功的开采。

许多深大的泥盆纪气田已经被发现,目前正在生产。

另外在山麓发现的规模较小较浅的天然气和凝析气田和大的油田进行价格竞争,如果他们能产出较快的油流而且成本低。

最近发现气田就是这种情况。

接下来,我们赋予Aguja的虚假名字就是为了讲述这些油田的成功例子。

图1 Aguja油田位于玻利维亚中部Chaco盆地的西北角。

基底构造图显示了Isarzama背斜的相对位置。

地层柱状图显示了主要的储集层和源岩。

该油田在Trija和冲积盆地附近的益背斜基底上,该背斜将油田和Ben i盆地分开(图1),圈闭类型是上盘背斜,它存在于连续冲断层上,Aguja有两个主要结构:Aguja中部和Aguja Norte,通过重要的转换压缩断层将较早开发的“Sur”油田分开Yantata Centro结构是一个三路闭合对低角度逆冲断层并伴随有小的摆幅。

毕业设计英文 翻译(原文)

毕业设计英文 翻译(原文)

编号:毕业设计(论文)外文翻译(原文)院(系):桂林电子科技大学专业:电子信息工程学生姓名: xx学号: xxxxxxxxxxxxx 指导教师单位:桂林电子科技大学姓名: xxxx职称: xx2014年x月xx日Timing on and off power supplyusesThe switching power supply products are widely used in industrial automation and control, military equipment, scientific equipment, LED lighting, industrial equipment,communications equipment,electrical equipment,instrumentation, medical equipment, semiconductor cooling and heating, air purifiers, electronic refrigerator, LCD monitor, LED lighting, communications equipment, audio-visual products, security, computer chassis, digital products and equipment and other fields.IntroductionWith the rapid development of power electronics technology, power electronics equipment and people's work, the relationship of life become increasingly close, and electronic equipment without reliable power, into the 1980s, computer power and the full realization of the switching power supply, the first to complete the computer Power new generation to enter the switching power supply in the 1990s have entered into a variety of electronic, electrical devices, program-controlled switchboards, communications, electronic testing equipment power control equipment, power supply, etc. have been widely used in switching power supply, but also to promote the rapid development of the switching power supply technology .Switching power supply is the use of modern power electronics technology to control the ratio of the switching transistor to turn on and off to maintain a stable output voltage power supply, switching power supply is generally controlled by pulse width modulation (PWM) ICs and switching devices (MOSFET, BJT) composition. Switching power supply and linear power compared to both the cost and growth with the increase of output power, but the two different growth rates. A power point, linear power supply costs, but higher than the switching power supply. With the development of power electronics technology and innovation, making the switching power supply technology to continue to innovate, the turning points of this cost is increasingly move to the low output power side, the switching power supply provides a broad space for development.The direction of its development is the high-frequency switching power supply, high frequency switching power supply miniaturization, and switching power supply into a wider range of application areas, especially in high-tech fields, and promote the miniaturization of high-tech products, light of. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.classificationModern switching power supply, there are two: one is the DC switching power supply; the other is the AC switching power supply. Introduces only DC switching power supply and its function is poor power quality of the original eco-power (coarse) - such as mains power or battery power, converted to meet the equipment requirements of high-quality DC voltage (Varitronix) . The core of the DC switching power supply DC / DC converter. DC switching power supply classification is dependent on the classification of DC / DC converter. In other words, the classification of the classification of the DC switching power supply and DC/DC converter is the classification of essentially the same, the DC / DC converter is basically a classification of the DC switching power supply.DC /DC converter between the input and output electrical isolation can be divided into two categories: one is isolated called isolated DC/DC converter; the other is not isolated as non-isolated DC / DC converter.Isolated DC / DC converter can also be classified by the number of active power devices. The single tube of DC / DC converter Forward (Forward), Feedback (Feedback) two. The double-barreled double-barreled DC/ DC converter Forward (Double Transistor Forward Converter), twin-tube feedback (Double Transistor Feedback Converter), Push-Pull (Push the Pull Converter) and half-bridge (Half-Bridge Converter) four. Four DC / DC converter is the full-bridge DC / DC converter (Full-Bridge Converter).Non-isolated DC / DC converter, according to the number of active power devices can be divided into single-tube, double pipe, and four three categories. Single tube to a total of six of the DC / DC converter, step-down (Buck) DC / DC converter, step-up (Boost) DC / DC converters, DC / DC converter, boost buck (Buck Boost) device of Cuk the DC / DC converter, the Zeta DC / DC converter and SEPIC, the DC / DC converter. DC / DC converters, the Buck and Boost type DC / DC converter is the basic buck-boost of Cuk, Zeta, SEPIC, type DC / DC converter is derived from a single tube in this six. The twin-tube cascaded double-barreled boost (buck-boost) DC / DC converter DC / DC converter. Four DC / DC converter is used, the full-bridge DC / DC converter (Full-Bridge Converter).Isolated DC / DC converter input and output electrical isolation is usually transformer to achieve the function of the transformer has a transformer, so conducive to the expansion of the converter output range of applications, but also easy to achieve different voltage output , or a variety of the same voltage output.Power switch voltage and current rating, the converter's output power is usually proportional to the number of switch. The more the number of switch, the greater the output power of the DC / DC converter, four type than the two output power is twice as large,single-tube output power of only four 1/4.A combination of non-isolated converters and isolated converters can be a single converter does not have their own characteristics. Energy transmission points, one-way transmission and two-way transmission of two DC / DC converter. DC / DC converter with bi-directional transmission function, either side of the transmission power from the power of lateral load power from the load-lateral side of the transmission power.DC / DC converter can be divided into self-excited and separately controlled. With the positive feedback signal converter to switch to self-sustaining periodic switching converter, called self-excited converter, such as the the Luo Yeer (Royer,) converter is a typical push-pull self-oscillating converter. Controlled DC / DC converter switching device control signal is generated by specialized external control circuit.the switching power supply.People in the field of switching power supply technology side of the development of power electronic devices, while the development of the switching inverter technology, the two promote each other to promote the switching power supply annual growth rate of more than two digits toward the light, small, thin, low-noise, high reliability, the direction of development of anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, AC / AC DC / AC, such as inverters, DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardization, and has been recognized by the user, but AC / DC modular, its own characteristics make the modular process, encounter more complex technology and manufacturing process. Hereinafter to illustrate the structure and characteristics of the two types of switching power supply.Self-excited: no external signal source can be self-oscillation, completely self-excited to see it as feedback oscillation circuit of a transformer.Separate excitation: entirely dependent on external sustain oscillations, excited used widely in practical applications. According to the excitation signal structure classification; can be divided into pulse-width-modulated and pulse amplitude modulated two pulse width modulated control the width of the signal is frequency, pulse amplitude modulation control signal amplitude between the same effect are the oscillation frequency to maintain within a certain range to achieve the effect of voltage stability. The winding of the transformer can generally be divided into three types, one group is involved in the oscillation of the primary winding, a group of sustained oscillations in the feedback winding, there is a group of load winding. Such as Shanghai is used in household appliances art technological production of switching power supply, 220V AC bridge rectifier, changing to about 300V DC filter added tothe collector of the switch into the transformer for high frequency oscillation, the feedback winding feedback to the base to maintain the circuit oscillating load winding induction signal, the DC voltage by the rectifier, filter, regulator to provide power to the load. Load winding to provide power at the same time, take up the ability to voltage stability, the principle is the voltage output circuit connected to a voltage sampling device to monitor the output voltage changes, and timely feedback to the oscillator circuit to adjust the oscillation frequency, so as to achieve stable voltage purposes, in order to avoid the interference of the circuit, the feedback voltage back to the oscillator circuit with optocoupler isolation.technology developmentsThe high-frequency switching power supply is the direction of its development, high-frequency switching power supply miniaturization, and switching power supply into the broader field of application, especially in high-tech fields, and promote the development and advancement of the switching power supply, an annual more than two-digit growth rate toward the light, small, thin, low noise, high reliability, the direction of the anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, the DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardized, and has been recognized by the user, but modular AC / DC, because of its own characteristics makes the modular process, encounter more complex technology and manufacturing process. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.The switching power supply applications in power electronic devices as diodes, IGBT and MOSFET.SCR switching power supply input rectifier circuit and soft start circuit, a small amount of applications, the GTR drive difficult, low switching frequency, gradually replace the IGBT and MOSFET.Direction of development of the switching power supply is a high-frequency, high reliability, low power, low noise, jamming and modular. Small, thin, and the key technology is the high frequency switching power supply light, so foreign major switching power supply manufacturers have committed to synchronize the development of new intelligent components, in particular, is to improve the secondary rectifier loss, and the power of iron Oxygen materials to increase scientific and technological innovation in order to improve the magnetic properties of high frequency and large magnetic flux density (Bs), and capacitor miniaturization is a key technology. SMT technology allows the switching power supply has made considerable progress, the arrangement of the components in the circuit board on bothsides, to ensure that the light of the switching power supply, a small, thin. High-frequency switching power supply is bound to the traditional PWM switching technology innovation, realization of ZVS, ZCS soft-switching technology has become the mainstream technology of the switching power supply, and a substantial increase in the efficiency of the switching power supply. Indicators for high reliability, switching power supply manufacturers in the United States by reducing the operating current, reducing the junction temperature and other measures to reduce the stress of the device, greatly improve the reliability of products.Modularity is the overall trend of switching power supply, distributed power systems can be composed of modular power supply, can be designed to N +1 redundant power system, and the parallel capacity expansion. For this shortcoming of the switching power supply running noise, separate the pursuit of high frequency noise will also increase, while the use of part of the resonant converter circuit technology to achieve high frequency, in theory, but also reduce noise, but some The practical application of the resonant converter technology, there are still technical problems, it is still a lot of work in this field, so that the technology to be practical.Power electronics technology innovation, switching power supply industry has broad prospects for development. To accelerate the pace of development of the switching power supply industry in China, it must take the road of technological innovation, out of joint production and research development path with Chinese characteristics and contribute to the rapid development of China's national economy.Developments and trends of the switching power supply1955 U.S. Royer (Roger) invented the self-oscillating push-pull transistor single-transformer DC-DC converter is the beginning of the high-frequency conversion control circuit 1957 check race Jen, Sen, invented a self-oscillating push-pull dual transformers, 1964, U.S. scientists canceled frequency transformer in series the idea of switching power supply, the power supply to the size and weight of the decline in a fundamental way. 1969 increased due to the pressure of the high-power silicon transistor, diode reverse recovery time shortened and other components to improve, and finally made a 25-kHz switching power supply.At present, the switching power supply to the small, lightweight and high efficiency characteristics are widely used in a variety of computer-oriented terminal equipment, communications equipment, etc. Almost all electronic equipment is indispensable for a rapid development of today's electronic information industry power mode. Bipolar transistor made of 100kHz, 500kHz power MOS-FET made, though already the practical switching power supply is currently available on the market, but its frequency to be further improved. Toimprove the switching frequency, it is necessary to reduce the switching losses, and to reduce the switching losses, the need for high-speed switch components. However, the switching speed will be affected by the distribution of the charge stored in the inductance and capacitance, or diode circuit to produce a surge or noise. This will not only affect the surrounding electronic equipment, but also greatly reduce the reliability of the power supply itself. Which, in order to prevent the switching Kai - closed the voltage surge, RC or LC buffers can be used, and the current surge can be caused by the diode stored charge of amorphous and other core made of magnetic buffer . However, the high frequency more than 1MHz, the resonant circuit to make the switch on the voltage or current through the switch was a sine wave, which can reduce switching losses, but also to control the occurrence of surges. This switch is called the resonant switch. Of this switching power supply is active, you can, in theory, because in this way do not need to greatly improve the switching speed of the switching losses reduced to zero, and the noise is expected to become one of the high-frequency switching power supply The main ways. At present, many countries in the world are committed to several trillion Hz converter utility.the principle of IntroductionThe switching power supply of the process is quite easy to understand, linear power supplies, power transistors operating in the linear mode and linear power, the PWM switching power supply to the power transistor turns on and off state, in both states, on the power transistor V - security product is very small (conduction, low voltage, large current; shutdown, voltage, current) V oltammetric product / power device is power semiconductor devices on the loss.Compared with the linear power supply, the PWM switching power supply more efficient process is achieved by "chopping", that is cut into the amplitude of the input DC voltage equal to the input voltage amplitude of the pulse voltage. The pulse duty cycle is adjusted by the switching power supply controller. Once the input voltage is cut into the AC square wave, its amplitude through the transformer to raise or lower. Number of groups of output voltage can be increased by increasing the number of primary and secondary windings of the transformer. After the last AC waveform after the rectifier filter the DC output voltage.The main purpose of the controller is to maintain the stability of the output voltage, the course of their work is very similar to the linear form of the controller. That is the function blocks of the controller, the voltage reference and error amplifier can be designed the same as the linear regulator. Their difference lies in the error amplifier output (error voltage) in the drive before the power tube to go through a voltage / pulse-width conversion unit.Switching power supply There are two main ways of working: Forward transformand boost transformation. Although they are all part of the layout difference is small, but the course of their work vary greatly, have advantages in specific applications.the circuit schematicThe so-called switching power supply, as the name implies, is a door, a door power through a closed power to stop by, then what is the door, the switching power supply using SCR, some switch, these two component performance is similar, are relying on the base switch control pole (SCR), coupled with the pulse signal to complete the on and off, the pulse signal is half attentive to control the pole voltage increases, the switch or transistor conduction, the filter output voltage of 300V, 220V rectifier conduction, transmitted through the switching transformer secondary through the transformer to the voltage increase or decrease for each circuit work. Oscillation pulse of negative semi-attentive to the power regulator, base, or SCR control voltage lower than the original set voltage power regulator cut-off, 300V power is off, switch the transformer secondary no voltage, then each circuit The required operating voltage, depends on this secondary road rectifier filter capacitor discharge to maintain. Repeat the process until the next pulse cycle is a half weeks when the signal arrival. This switch transformer is called the high-frequency transformer, because the operating frequency is higher than the 50HZ low frequency. Then promote the pulse of the switch or SCR, which requires the oscillator circuit, we know, the transistor has a characteristic, is the base-emitter voltage is 0.65-0.7V is the zoom state, 0.7V These are the saturated hydraulic conductivity state-0.1V-0.3V in the oscillatory state, then the operating point after a good tune, to rely on the deep negative feedback to generate a negative pressure, so that the oscillating tube onset, the frequency of the oscillating tube capacitor charging and discharging of the length of time from the base to determine the oscillation frequency of the output pulse amplitude, and vice versa on the small, which determines the size of the output voltage of the power regulator. Transformer secondary output voltage regulator, usually switching transformer, single around a set of coils, the voltage at its upper end, as the reference voltage after the rectifier filter, then through the optocoupler, this benchmark voltage return to the base of the oscillating tube pole to adjust the level of the oscillation frequency, if the transformer secondary voltage is increased, the sampling coil output voltage increases, the positive feedback voltage obtained through the optocoupler is also increased, this voltage is applied oscillating tube base, so that oscillation frequency is reduced, played a stable secondary output voltage stability, too small do not have to go into detail, nor it is necessary to understand the fine, such a high-power voltage transformer by switching transmission, separated and after the class returned by sampling the voltage from the opto-coupler pass separated after class, so before the mains voltage, and after the classseparation, which is called cold plate, it is safe, transformers before power is independent, which is called switching power supply.the DC / DC conversionDC / DC converter is a fixed DC voltage transformation into a variable DC voltage, also known as the DC chopper. There are two ways of working chopper, one Ts constant pulse width modulation mode, change the ton (General), the second is the frequency modulation, the same ton to change the Ts, (easy to produce interference). Circuit by the following categories:Buck circuit - the step-down chopper, the average output voltage U0 is less than the input voltage Ui, the same polarity.Boost Circuit - step-up chopper, the average output voltage switching power supply schematic U0 is greater than the input voltage Ui, the same polarity.Buck-Boost circuit - buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, the inductance transmission.Cuk circuit - a buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, capacitance transmission.The above-mentioned non-isolated circuit, the isolation circuit forward circuits, feedback circuit, the half-bridge circuit, the full bridge circuit, push-pull circuit. Today's soft-switching technology makes a qualitative leap in the DC / DC the U.S. VICOR company design and manufacture a variety of ECI soft-switching DC / DC converter, the maximum output power 300W, 600W, 800W, etc., the corresponding power density (6.2 , 10,17) W/cm3 efficiency (80-90)%. A the Japanese Nemic Lambda latest using soft-switching technology, high frequency switching power supply module RM Series, its switching frequency (200 to 300) kHz, power density has reached 27W/cm3 with synchronous rectifier (MOSFETs instead of Schottky diodes ), so that the whole circuit efficiency by up to 90%.AC / DC conversionAC / DC conversion will transform AC to DC, the power flow can be bi-directional power flow by the power flow to load known as the "rectification", referred to as "active inverter power flow returned by the load power. AC / DC converter input 50/60Hz AC due must be rectified, filtered, so the volume is relatively large filter capacitor is essential, while experiencing safety standards (such as UL, CCEE, etc.) and EMC Directive restrictions (such as IEC, FCC, CSA) in the AC input side must be added to the EMC filter and use meets the safety standards of the components, thus limiting the miniaturization of the volume of AC / DC power, In addition, due to internal frequency, high voltage, current switching, making the problem difficult to solve EMC also high demands on the internal high-density mountingcircuit design, for the same reason, the high voltage, high current switch makes power supply loss increases, limiting the AC / DC converter modular process, and therefore must be used to power system optimal design method to make it work efficiency to reach a certain level of satisfaction.AC / DC conversion circuit wiring can be divided into half-wave circuit, full-wave circuit. Press the power phase can be divided into single-phase three-phase, multiphase. Can be divided into a quadrant, two quadrant, three quadrants, four-quadrant circuit work quadrant.he selection of the switching power supplySwitching power supply input on the anti-jamming performance, compared to its circuit structure characteristics (multi-level series), the input disturbances, such as surge voltage is difficult to pass on the stability of the output voltage of the technical indicators and linear power have greater advantages, the output voltage stability up to (0.5)%. Switching power supply module as an integrated power electronic devices should be selected。

毕业设计英文翻译

毕业设计英文翻译

沈阳工业大学化工装备学院毕业设计(论文)外文翻译毕业设计(论文)题目:含硫氨污水冷却器外文题目:Head processing technology译文题目:封头加工工艺院(系):化工装备学院专业班级:过控0802班学生姓名:孙鹏博指导教师:闫小波2012年3月11日Head processing technology1.welding process1.1welding operationOur factory common welding methods are: manual welding, argon arc welding, submerged arc welding.(1) manual welding is mainly used for carbon steel 3-6mm plate welding.(2) submerged arc welding to more than 8mm carbon steel stainless steel sheet welding mainly.(3)3-6mm stainless steel argon arc welding with welding mainly. Commonly used stainless steel wire ER304and ER316L steel wire, commonly used to J422and J507and J426and J427low-temperature welding consumables. Flux of carbon steel used is the HJ431, stainless steel commonly used is HJ260,.As a result of welding wire flux can be easily affected with damp, stored in the infrared drying machine, flux HJ431and HJ260drying temperature is 250-300℃. Welding wire J422and J350drying temperature were 150℃ and 300 ℃Welding process is completely in accordance with the" welding" execution, sheet thickness determines the welding to welding or double sided arc welding in welding, after the weld seam inspection ( RT X ray ) judgment without pores, cracks and other defects, such as found in the above deficiencies, to the repair, until the filming.1.2 welding operation standard(1) welding procedure card after receiving process, affirm the process card and physical material, quantity, unit number, specifications, size instruction number is consistent, whether there is debris around the wafer, wafer splashes whether clean removal, such as treatment is not clean, will use the grinding clean.(2) there is no welding test plate, groove cutting quality can meet the requirement, material surface without obvious defects, such as abnormal response.(3) according to the" Regulations" welding procedure card check of welding groove type and dimensions correspond to.(4) on each side of groove surface grinding, butt edge offset is not greater than the10% thickness, and not more than1.5mm.(5) point fixed the first weld layer terminal welding length not less than 50mm, arc board specifications should be 150*150mm and a mask having R arc, team rounds should be given within 8 hours of welding, or to use flame to the moisture inside the baking groove.(6) the welder holds" welding" and" welding records" for welding consumables, welding two class library for registration, using flux field volume should not exceed 4 hours, or to continue to back into the oven drying.(7) a, preheating plate thickness not less than 30mm carbon steel, low alloy steel, the preheating temperature of welding process by" card"," standard" provisions of the welding technology.B, preheating range width not less than 4mm and no less than 100mm. C, in the process of welding groove at any time temperature shall not be less than the prescribed temperature.D, when welding temperature is below 0 ℃( arbitrary thickness) must be heated to 15 ℃or above in order to welding.(8) a before welding, welding to welding equipment inspection, examination was normal before welding facilities.According to B,"" the requirements of welding process welding, welding and fill in the recordsC, welding, welding layers shall be in accordance with" welding" requirements, welding shall not be a large current, less layers. (9) removal of the root a, stainless steel cleaning before the root groove sides, within the range of 300mm, splashing paint coating.B, using carbon arc air gouging, should be selected according to the request carbon rod diameter.C, root cleaning, grinding cleaning groove and two side the existence of carburized layer, oxide, slag and other sundries. Grinding width: manual welding, rust, oxide above 20mm, oil30mm above, automatic welding, rust, grease, oxides 25mm50mm groove inner grinding requirements, carbon steel, low alloy steelδn ≤10mm weld, its two ends within the range of 300mm carburized layer must be completely removed, the rest part allows the removal of more than 50%. Other non-ferrous metals must be completely clear. [3]D, root cleaning, composite steel Cr-Mo, manual welding and the thicknessofδn ≥30mm welds shall be examined by PT.(10) during the process of welding defect repair by welding repair welding repair monitor instruction experienced welders as. Repair welding process should eliminate soldering phenomenon, or polished after welding, the following defects must be removed before welding to welding crack,①partial②③pits the stomaA shall not be lower than the parent material, weld.B, there shall be no undercutting.C, without removing the residual high seam. The surface shall not have cracks, pores, crater, undercut and slag inclusions, and may not retain the slag and spatter.D, removal of residual high weld inspection shall not have any defect display PT.E, such as the defects of carbon steel, low-alloy steel repair procedures: a grinding wheel or a carbon arc gouging polishing cleaning→ PT check grinder grinding out the welding groove, welding, PT, stainless steel repair procedures: a grinding wheel or a carbon arc gouging polishing cleaning→PT (δ n≥ 2mm need )→grinder polished to a welding groove welding→ PT examination. [4](12) welded internal rework, repair procedures: location of defect, defect removal→ PT→→removal check welding weld→ PT examination. [5] (13) according to RT film, RT staff and the welders in welding seam together determine the location of defects, including the following requirements when using UT to determine the defect position, the first repairδ n≥ 30mm use UT to determine the location of defects, two or three repairδ n≥ 20mm using UT to determine the defect position, UT positioning by RT after class. The position and depth of defect ( calibration side shall be the depth of defect≤1/2 side).(14) after the welding inspector or monitor by confirmed, in the process card signed your name and object together with transfer to the next process, by the next process responsibility recognition can.2.stamping process2.1stamping operationStamping operation is small head forming an important operation. The same stamping is also head of the cracking, thinning appeared most processsection.2.2punching machine.(1) the master cylinder is mainly used to connect the die head, is the head forming the necessary parts.(2) side cylinder used for pressing die ring, fixing the upper and lower mold ring of head disk. The head in the pressing process is to prevent the crease, as an important part of the drum kit.(3) the overflow valve used for controlling the compressor overall pressure, prevent the wafer during the pressing process of tears. (4) stamping valve in pressure, stamping valve on pressure relief, achieve average pressure effect.In addition, circuit boards, motors, circuit boards, storage tank, operation platform, pedestal are stamping machine components.2.3.3 stamping operation steps(1) first of all to undertake a blanking process card, find a good wafer.(2) the control process card on the technological requirements, put ona set of corresponding die, and with the use of gauges to determine the selected die size and to suppress the wafer size.(3) the wafer is clamped on the upper and lower mold inside the circle, and determine the die head of the center point and the center point of the wafer in a straight line.(4) the operation ring mold and die relative motion, pressure test, according to the control rod rebound to judge the size of the pressure, thereby regulating pressure size.(5) pressure test end, pressed wafer, stamping.2.3the stamping operation standard(1) the control task orders, confirm physical and process card is consistent, according to the process card confirming workpiece number, material, specification, batch number and other factors, at the same time check wafer end there is no crack, burr, polished wafer whether it meets the requirements, whether chamfer, is facing the good, there are special requirements when the problem is found, in time to contact.(2) according to the process card correct selection of die mold surface, inspection, found bruises and serious injury must be polished, but must be clean mold surface corrosion and dirt.(3) according to the technology card size, shape, texture, straight edge higher to suppress.(4) the warm-stamping ( according to requirement sheet property is heated to a certain temperature, and then stamping process ), to prepare a baking gun, gas, oxygen, percussion with head shall prepare the corresponding template, double-sided film to the wafer edge of both sides in a range of about 200-300mm template removal, and clear the film surface. [6] (5) mounted on the lower die, as the case to join the die pad, the wafer inside and outside surface coated with oil, applied range of top to200-300mm, smear should be uniform, the upper and lower mold are evenly coated.(6) the first gold stamping head, hanging out with a model head, check section shape, at the same time, check whether the drum kit, and there is no thinning, and check the surface has no scratch, hoop printing, such as none of the above abnormalities can continue to stamping, head forming, sealing surfaces such as scratches are timely grinding, and confirm the minimum board thickness, confirm whether a scratch, strain, curved peel, orange peel, drum kits, wrinkle, hoop printing etc..(7) such as a head drum kit fold phenomenon should be together with the card with the move to rework process technology.(8) each head should be able to see the instruction, piece number, material, or to transplantation, each product specifications after testing, the process card ( to sign the name ) together to the next process, by the next process validation.3.pressure drum process3.1pressure drum operationPressure drum process and stamping processes are the same steps in the process, stamping process range of φ 159- φ1900mm and pressure drum process is in the range of φ 1600- φ4800mm. And stamping is different pressure drum mostly the head generally forming, eventually forming is completed by spinning, stamping without the special requirements of customers, eventually forming step is not required. φ 1600- φ1900mm heads the two processes is needed.3.2pressure drum machine.(1) the main cylinder is provided with an upper die head is pressed drumexecution as long as part of.(2) supporting seat fixed lower die and upper die head center in a straight line.(3) supporting frame1is provided with a rolling wheel, a position adjusting before and after.(4) supporting frame is provided with a rolling wheel rotating disk II. In addition, there are hydraulic system, the motor, oil pump, oil tank, and a control console.3.3pressure drum machine operation steps(1) first of all to undertake a blanking process card, find a good wafer.(2) the control process card on the technological requirements, put ona set of corresponding die, and with the use of gauges to determine the selected die size and to suppress the wafer size.(3) and stamping machine is different from the original film is not pressure drum center began to suppress, but from the wafer edge, as long as the die and wafer alignment on the line.(4) the pressing process is continuously by controlling the rotation wheel is driven by the rotation of a wafer rotating, according to a certain order to suppress.(5) in after the pressing process, prepared template matching. If a deviation to make further adjustments.3.4pressure drum operation standard(1) die on the quality of the products and the smooth pressure drum forming crucial. Therefore, require that the operator must according to the processing situation of choice for mold and timely adjust shim plate.(2) the operator receives the process card, see process card, according to the process card check objects, to confirm the real instruction, one-piece, material. Number, batch number etc.. According to the choice of mold process card.(3) for EHA, EHB head shapes have adopted the 0.82*D standard selection, for DHB, PSH, MD and other special products according to technology card selection of mold, but in principle according to P*0.82/1.15or P*0.82/1.2 standard selection. [1](4) pressing carefully before inspection wafer quality, no seam wafer end is smooth, there is no gap, surface has no cutting slag and defects.(5) a weld in addition to carefully check the end of the wafer wafer defects, at the same time should be checked for weld seam is higher than that of base metal, weld ends of are welding spatter, weld end grinding smooth, there is no crack notch.(6) two or two or more superimposed when pressed, each slice of the joint surface should be clean, according to the circumstances must entrust welding class, the wafer is welded together to suppress.(7) detection of wafer thickness ( the thickest, most thin, whether and process card, measurement of wafer size and process card.(8) suppression must be removed before the inside and outside surface of all debris, to prevent pitting appeared.(9) for general stainless steel materials ( more than 5mm plate ) using Teflon plate mold and the lower mold dressing on surface polished smooth ( necessary nowadays mold to Teflon plate. ) to ensure the surface quality of the workpiece, while in the process of the pressing need to avoid debris into molds and semi-finished products. [6](10) the pressing process, when the wafer is a R shape, must use the corresponding R model measurement, the pressing process should be considered to adjust the pressure deformation degree.(11) pressing is finished, the measurement of plate thickness, measuring arc length. Check surface quality, check end and weld end is smooth ( necessary to polish out the ceremony ).(12) to check the semi-finished product with process card is on the move to the next process ( and sign the name ) by the next process to confirm acceptance before.4.spinning process4.1spinning operationThe spinning process is pressed after the drum head molding process, mainly for large head R and straight edge formation.4.2spinning machine.(1) forming wheel is connected to the corresponding mold, forming in the head inside, mold top with half formed head R and straight edge is tangent to tangent.(2) supporting wheel is also connected and molded wheel mold, forming in the head outside, and a forming wheel tangent.(3) base for fixing head, and the bottom according to head size before and after moving, the head should be installed so that the center of the base and the head of the center in a straight line.(4) the center rod is used for fixing head, and the center and the center of the base is in a straight line.In addition to the motor, a circuit board, is connected to the shaft, anda control console.4.3spinning procedure(1) to undertake pressure drum process card, according to the card to determine the corresponding head spinning.(2) according to the head of the diameter, select the corresponding upper and lower mold.(3) the clamping head, ensure that the head of the center point and the center of the base point in a straight line.(4) to adjust the molding wheel and the head of tangent, then according to the forming wheel position adjustment roller.(5) in the spinning process to observe the forming roller and the supporting roller relative position, and continue to use the template on the line alignment. Until the R reaches the requirements.4.4spinning operation standard(1) spinning wheel material for steel bearings or ductile iron, mold on the quality of the products and can spin forming closely related, therefore the operator must be processed according to choose suitable mold, at the same time, because of the shape of the mold and the surface condition of the quality of the workpiece has a great influence, therefore, before processing and machining process must on the mold for full inspection.(2) according to the process card requirements, confirm wafer, pressure drum or preload semi-finished instruction number, specifications, quantity of material, compliance, and check the quality of surface and end with no defect, abnormal timely and on the procedures of contact, and in a timely manner(3) check the semi-finished end is smooth, with or without notch, crack, surface has no cutting or welding slag, and shall inspect the weld seam is higher than that of base metal, weld ends whether spatter, weld end grinding smooth, there is no crack. [7](4) pressure drum or to the press after the finished product, must checkfor folding, cracking, crack is not conducive to the spinning processing defects.(5) for stainless steel workpiece, through to the pickling method of decontamination.(6) according to the process card selection of mold, general small arc r size requirements as a basis for selecting the internal wheel. (7) according to the different material, thickness of plate and sheet rebound, selection is slightly smaller than the internal wheel circular arc R.(8) for the special requirements of the product, according to its shape design inside the wheel, confirm the mold surface, good polishing processing.(9) spinning processing, in order to prevent scratching and improve the processing performance, suitable lubricant ( grease ) to prevent process heating head appears on the surface of hot cracks and scratches, can also prolong the service life of die.(10) the spinning process, should be considered a workpiece shaping and timely for pressure adjustment.(11) after the molding process, deal with the size, shape, thickness, surface quality inspections, confirmation.(12) molded product with the card with the transfer process to the next process ( in the process card signed their name ) by the procedures under the inspector or monitor check before.5.groove processThe 5.1groove Essentials(1) groove process is a head of the data ( including circumference, total height) to achieve JB/T4746 standard key process. [1](2) groove is in order and cylinder head connection time, make welding more thoroughly.(3) the main groove cutting process and cutting process tools, is the use of plasma cutting.(4) cutting, according to the card on the technological requirements, determine groove type ( inner groove, outside the mouth, X groove ) and determine the groove angle.(5) the groove before the head splashing agent applicator.(6) groove when the first test slope, then a protractor measuring angle, identified in the tolerance range, after adjustment, the whole slope. The 5.2groove operation standard(1) according to the process card to find real, order confirmation No., specification, material, batch number, quantity and check whether the workpiece has a drum kit, crack, delamination, wrinkle, and whether the loss of a round, found problems in a timely manner to contact, processing, the plate thickness of more than 8mm, is suggested to lose the round groove, the following 6mm, tooling plate pressure is groove.(2) stainless steel head, should be in the groove wall smearing splash front head agent, prevent groove, slag spout to head on the wall. (3) head onto the beveling machine before, first confirm the head weight, based on the weight of suitable sling, sling safety inspection.(4) head onto the groove machine, beveling rotary table adjustment screw rod, with a center adjusting position, rotating table, is aligned to the center.(5) groove, according to technology card height and height tolerance groove height ruler to draw lines, confirm the high line, the slope slope, should first slope flat groove, and then the slope groove.(6) outside the mouth or the inner groove angle should be controlled within ± 2.5 tolerance.(7) groove after, should check the head circumference, height, straight edge, angle, if not qualified to repair process, repair.(8) qualified head will remove and clean the slag grinding head internal slag, together with card transfer to the next process ( and sign their name ) by the next process inspector confirmation can be.6.polishing process6.1 polishing process steps(1) according to the card process requirements, identify the need for polishing head.(2) the head rotating table, determine the level of, the clamping head.(3) polishing from edge to center, or from the center to the edge; according to the diameter size determine the head beam, lower speed and working stage, after moving speed.(4) check the polishing condition, appropriate for rework.The 6.2polishing operation standard(1) according to the process card and materials to confirm the product instruction number, specifications, material, batch number, quantity, and check whether the workpiece has a drum kit, crack, delamination defects, and whether the loss of a round, found problems in a timely manner to contact, processing, check the appearance, to determine the need for manual processing, the polishing before hook head to mark.(2) according to the requirements of the choice of using a polishing, polishing pads, and the necessary auxiliary tool.(3) confirm the head weight, based on the weight of suitable sling, and check whether the safety hanger.(4) the head hanging onto a work table, adjust the center, at the same time to ensure that the head is in the basic level (0-5 deviations ).(5) people in the scene when polishing polishing, attention, especially the left centre, speed fast, or outward from a center left, a little pressure to increase, from the edge to the center of pressure during polishing, to a little decrease in polishing head, thin wall, as the case may be mounted shockproof wheel, at the same time attention to mechanical work has no abnormal.(6) after the completion of inspection head polishing, with or without defect, and the necessary contact.(7) the Polish well head with coated packaging, in the process card signed their names, together with the head and process the card with the circulation storage, and by the next inspection approval.封头加工工艺1.焊接工序1.1 焊接操作我们厂常用的焊接方法有:手工焊、氩弧焊、埋弧焊。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:桂林电子科技大学信息科技学院毕业设计(论文)外文翻译(译文)系(部):机电工程系专业:机械设计制造及自动化学生姓名:李汉显学号:1153100506指导教师单位:桂林航天工业学院姓名:陈志职称:讲师2015年5 月28日无损检测技术在检测石油管道时的可靠性卡瓦略·库切答(a);雷贝洛(b);米纳拉辛苏扎·苏哲(b);湖奈保尔·苏格瑞勒(c);萨拉•迪基·苏亚雷斯(d)a、华盛顿苏亚雷斯马路大学科学技术中心,1321;巴西福塔雷萨行政长官,埃德森奎罗兹临时选举委员会:60,811 -905b、巴西里约热内卢联邦大学临时选举委员会:21941 - 972c、巴西里约热内卢联邦大学土木工程系d、巴西里约热内卢大学城临时选举委员会:21949 - 900文章内容文章背景:2006年11月9日收到2008年5月21日修改后的表格2008年5月27日认可关键词:无损检测;可靠性;超声检测;X线摄影摘要这项工作的目的是评估无损检测技术(NDT)在检查石油工业中的管道焊缝的可靠性。

X射线,手动和全自动的超声波都利用了脉冲回波和光线干涉原理。

三个层面的缺陷分析为:缺乏渗透(LP),缺乏融合(LF)和削弱(UC)。

这些测试是对含焊缝缺陷已被人为地确定为标本的管道进行测试。

结果表明:全自动超声波检测缺陷与手动超声波、X光测试相比更具有优越性。

此外,人工神经网络已被用于探测缺陷和缺陷的自动分类。

1简介在长距离的流体(包括石油和天然气)传输过程中,管道运输时最安全最经济的方法。

由于这一点和管道的效率,他们已用了几十年。

但是由于种种因素,如腐蚀,疲劳,甚至侵蚀所增加泄漏的危险,甚至破裂,这些都是现在应该考虑的关键问题。

还应该指出,许多管道铺设在接近道路,铁路,水路甚至在城市或在其下方。

因此,必须有方法监测,评价和肯定管道的完整性,减少泄漏的风险,从而避免环境破坏和人群危害。

多年来,无损检测在石油管道的状态检测中显示了其高效性。

无损检测技术正被研究的越来越深,同时已经作为评估工程结构、工程系统使用寿命的方法。

这项研究特别注意了石油工业可能发生的设备故障导致严重后果,比如环境污染和人员伤亡。

然而,一般认为应考虑采取最适当的参数来选择无损技术,剩下的就是它的使用可靠性,其中一个检测与确定缺陷大小的评估检测概率曲线(POD)是最具代表性的。

对于管道检测的两种技术超声波和X线检查比传统方法更具有出色的效率和易于操作性。

无论是手动超声波或常规和自动超声波都经常使用,虽然自动方法有多种优势。

这些优点是检测速度快,检测概率的增加,从而增加检查的可靠性,检测数据记录,结果的图像处理和人工神经网络计算机处理]31[ ,等等。

虽然放射检测仍然普遍用于检查石油工业用管道,但已经正在努力向能够代替它的方法发展,这主要是由于它们有如下不便:电离辐射对操作者的威胁、进一步研究影像的保持问题。

图像处理技术,信号处理和人工神经网络的完美集合为无损检测技术一般的评价可靠性做出了重要的贡献,可作为现场的工作情况的记载辅助工具。

这个工作的目的在于评估探测管线系统的可靠性。

四个不同的技术被应用上:手动超声波、全自动脉波-回波超声波、全自动TOFD超声波以及摄影。

图1 测试图解此外,人工神经网络方法应用于选择和分类缺陷形式。

最初的神经网络自动分类技术进行评估的的结果是缺陷(D)和无缺陷(ND)。

在以后的神经网络自动测试分为三类缺陷:缺乏渗透(LP)、缺乏融合(LF)和削弱(UC)。

信号处理工具是用来改善分类的绩效。

管道在焊缝过程中被人为制造了缺陷,进行了三个层次的缺陷模拟:缺乏渗透(LP)、缺乏融合(LF)和削弱(UC)。

在过去的几年,一些研究者已经开发出了无损检测可靠性评估。

在最近的报导中,甘多斯应用贝叶斯]54[、模型的不确定性,更新了在循环检测测量裂纹深度。

这个应用程序检测缺陷深度采用的是超声脉波-回波(纵向和横波) 技术,聚焦探头、相控线阵和时间衍射的有限元分析。

在另一篇当中,甘多斯]6[提出的一个框架为量化ENIQ(欧洲网络进行检查资格)检验合格的方法论,采用贝叶斯机制,甘多斯]6[表明它将是证明聚集技术的资料和证据。

2评估方法2.1试样为了进行试验,标本是从直径为254毫米,厚19毫米,长6000毫米的APIX70管道制取的。

12个环焊缝缺陷被人为地插入了焊缝(图1),同时两处无缺陷,也焊接了14焊缝。

插入的三类缺陷是:缺乏融合,缺乏渗透,削弱(图2)。

一共有8个缺陷沿每个放入的12焊珠。

所有的焊缝进程都使用两种不同的进程:氩弧焊根通、气体保护焊条焊接或药芯焊丝电弧焊满缝隙。

焊接后的标本按如下顺序检查:X光技术、人工超声波检测和全自动超声波检测。

缺陷融合的模拟使用了与预期大小相同缺陷薄片状与以前侧壁对锥焊接。

图3缺陷和缺乏融合模拟图显示的高度已经降低约2毫米,以确认它的存在,在一个缺陷融合模拟区金相部分。

缺陷渗透模拟也是利用薄板焊接根置于此缺陷的预计高度。

所有的缺陷检测在20至30毫米长度上,在32个缺陷位置每一层次的缺陷造成四个不同的高度(1,2,4和8毫米)。

表1显示了每个缺陷的高度和沿关节的变化。

2.2使用X光测试的试样检查X线检查用的是伽马射线(来源:钴60)和X射线。

两种检查方法被用于:双壁单形像和单壁单图像。

测试焊接接头使用伽玛四拍造影,而使用X光检查每个关节采用的是八拍。

为了帮助在胶片上的缺陷识别和大小判定进行可视化,相同的是数字化和加工使用特定的数字滤波器,消除和平滑的任何最终的X光图像的噪声。

要重点指出的是,为了不失去任何图像过滤器程序应进行仔细的扫描,例如可能产生的缺陷偏小的现象。

图2三个焊缝类型缺陷的素描研究:(a)融合缺乏,(b)缺乏渗透和(c)削弱2.3使用超声波测试的试样检查为了进行可靠性标本检查三个合格的检查者进行操作人工回波检测缺陷长度,。

对这个尺寸长度的缺陷按照6分贝的方法和标准进行验收,使用的是距离幅度曲线(DAC)。

校准曲线的工作是由一个参考块,详细的检查过程中PR-011]87[、,每个检验员追踪自己的工作曲线进行了检测。

图3模拟缺乏融合的方法2.4用自动超声技术检查标本自动检测设备使用的磁轮车辆进行检查,这一设备是由一套固定的传感器负责沿线的扫描,由常规超声波焊接设备、8位超声波传感器换能信号、计算机控制系统和存储数据组成。

这个模拟输出信号的超声波设备被连接到计算机,通过转换并在数字扫面脉冲20ms/s下进行数字化。

这种转换器是负责超声检测信号数字化,将会被储存在电脑的记忆。

计算机是负责下列操作:控制、通过并行端口,任何的8位传感器的信号,它的输入是控制检查车辆运动的通过串口和储存的数字化的信号。

图4金相部分地区的焊缝缺陷。

箭头表示职位的缺陷对于TOFD检测技术的结果分析,是由一个特定开发的程序MATLAB软件来完成的,它的目的是为了读A扫描和装配一个D 扫描图像。

这个程序允许沿焊缝的连续性检测,测量周围的管道周长长度和厚度垂直高度。

校准后,所有发现的缺陷的大小可以确定的。

3结果最初,初步评价中的缺陷是由人为伽马线和几何学的单图像-双墙检测技术。

实验结果表明,未焊透和削弱引起的缺陷能够显示在放射性照片上,但缺乏融合的缺陷,尽管采用高分辨率细纹射线胶片用伽马和x射线,甚至当采用单一图像-单壁技术进行检查,也是无法检测出来的。

根据摩根]9[等关于缺乏融合缺陷由外侧壁插入斜面焊接,因此这是一个清晰明了的结果:这类故障不能利用影像学技术进行检测。

表1 角度和模拟缺陷投影高度图5显示了通过中位数过滤器和经过数字化的含有高度约8mm缺乏渗透的焊缝缺陷的X光影像。

图5 高8毫米(含)焊缝缺陷与不足的投影表2显示的是用人工和自动超声回波检测技术检测到的各个层次缺陷的数据。

此表表明,在检测过程中,缺乏渗透类缺陷概率至少为75%(2号检测结果),而检查结果1和3达到了90.6%的检测概率。

这类缺陷平均大小错误在28.6%和34%之间。

这些测试结果表明,随着缺陷高度的增加,POD的效率也随着提高;但需要指出的是,当使用6分贝超声检测方法时高度的增加和长度的正确大小两者之间没有直接关系。

实验结果对于削弱缺陷显示(表2):由1号和2号检测的概率分别是100%和96.9%。

结果中的87.5%是由3号检测机器人对高度减少1-2mm的削弱缺陷进行无损检测得到的。

尺寸误差的波动范围是21.1%到24.5%,但是随着高度的增加误差的概率而在增加,这与检测方法无关。

从放射检测中,这些尺寸误差决定了缺陷的真实尺寸的价值。

由于不可能使用射线技术来检测缺乏融合这一种缺陷,所以这类缺陷的误差将无法得到。

表2 缺陷等级评估技术的总结对于缺乏融合,缺损的误差概率在90.6%和96.9%之间变化,其效率随着缺陷高度的增加而趋于完善,与使用的焊接方法无关。

使用自动超声脉冲回波探测技术,其高概率将会显现出来。

在所有插入的缺陷(每类32个)中只有6个缺乏融合缺陷和2个削弱缺陷不能被检测到。

在评价自动脉冲回波技术检测中,应用了自己的信号A扫描,如图6所示。

图6 含有8个削弱缺陷的扫描信号在自动脉冲回波测试,各种传感器定位在一个装置,检测整个标本移到沿焊缝所有厚度,如图7所示。

这一试验表明,在检测小缺陷时,传感器之间的覆盖物是必要的。

图7 自动脉波-回波超声检查对缺陷的高度尺寸进行检测使用了自动超声波TOFD检测技术。

这项加载了自动脉冲回波技术的检测方法,具有误差很小的检测概率。

在所有样本中插入人工缺陷,TOFD 检测技术检测的融合缺陷达到93.75%,渗透缺陷达到53.13%和削弱类缺陷为100%。

在TOFD科技的自动检测缺陷中,缺陷的检测是由D扫描图像完成,而缺陷高度尺寸是由A扫描信号完成的。

图8 D扫描图像检测缺陷的TOFD技术表3显示的是缺乏渗透类缺陷在人工脉冲回拨检测中的结果,在这三种检测方法中尺寸的平均误差是30.7%,远低于由射线探测得到的数据。

它也表明,最大的误差发生在最大的缺陷尺寸处。

对于自动脉冲回波测试平均误差为18.9%,也倾向于低估的实际长度。

此外,不同于手动脉冲回波测试,最大误差出现在高度最小的缺陷。

对于在TOFD 检测技术的缺陷通过X光图像,检测到的长度尺寸平均误差只有12%,倾向于特大型长度。

但是可以证明,对于缺乏融合类缺陷的自动化技术的得到的误差大小比传统测试得到的要小。

表3 缺陷尺寸误差对比对于削弱类缺陷由人工超声回波得到的平均尺寸误差大小为22.4%,倾向于大于由射线测试得到的数据。

检测器得到结论是缺陷高度越大则误差也越大。

自动脉冲回波检测到的缺陷误差平均大小是26.2%也与实际尺寸偏大。

然而,通过射线测试TOFD技术得到的平均误差大小是112.2%又比实际尺寸偏大。

相关文档
最新文档