安徽省芜湖市七年级上学期数学期末考试试卷(五四学制)

合集下载

芜湖市七年级上学期期末数学试题

芜湖市七年级上学期期末数学试题

芜湖市七年级上学期期末数学试题一、选择题1.购买单价为a元的物品10个,付出b元(b>10a),应找回()A.(b﹣a)元B.(b﹣10)元C.(10a﹣b)元D.(b﹣10a)元2.﹣3的相反数是()A.13-B.13C.3-D.33.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是()A.B.C.D.4.将图中的叶子平移后,可以得到的图案是()A.B.C.D.5.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.76.96.已知a<0,-1<b<0,则a,ab,ab2之间的大小关系是()A.a>ab>ab2 B.ab>ab2>a C.ab>a>ab2 D.ab<a<ab27.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A.向西走3米B.向北走3米C.向东走3米D.向南走3米8.用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2 9.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离10.下列计算正确的是( ) A .-1+2=1 B .-1-1=0C .(-1)2=-1D .-12=111.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=212.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .2125二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 14.单项式﹣22πa b的系数是_____,次数是_____.15.已知23,9n mn a a -==,则m a =___________.16.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 17.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.18.若单项式 3a 3 b n 与 -5a m+1 b 4所得的和仍是单项式,则 m - n 的值为_____. 19.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 20.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.21.﹣225ab π是_____次单项式,系数是_____.22.方程x+5=12(x+3)的解是________.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.24.观察“田”字中各数之间的关系:则c的值为____________________.三、解答题25.已知直线AB与CD相交于点O,且∠AOD=90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG平分∠BOF,试求∠GOH的度数.26.(1)3x+5(x+2)=2(2)33-x﹣1=242+x27.解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)111 234x yx y-+⎧+=⎪⎨⎪+=⎩28.已知,,,A B C D四点如图所示,请按要求画图.(1)画直线AB;(2)若所画直线AB表示一条河流,点,C D分别表示河流两旁的两块稻田,要在河岸边某一位置开渠引水灌溉稻田,请在河流AB上确定点P,使得在点P处开渠到两块稻田,C D的距离之和最短,并说明理由.29.O为数轴的原点,点A、B在数轴上表示的数分别为a、b,且满足(a﹣20)2+|b+10|=0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C从原点出发以3个单位/秒的速度向点A运动,同时点D从原点出发以2个单位/秒的速度向点B运动,当到达A点或B点后立即以原来的速度向相反的方向运动,直到C点到达B点或D点到达A点时运动停止,求几秒后C、D两点相距5个单位长度?30.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣30|+(b+6)2=0.点O是数轴原点.(1)点A表示的数为,点B表示的数为,线段AB的长为.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?四、压轴题31.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数32.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2; ②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.33.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元. 【详解】购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元. 故选D . 【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.D解析:D【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.A解析:A【解析】【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.【详解】解:根据平移不改变图形的形状、大小和方向,将所示的图案通过平移后可以得到的图案是A,其它三项皆改变了方向,故错误.故选:A.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.5.D解析:D【解析】【分析】将x与y的值代入原式即可求出答案.【详解】当x=﹣13,y=4,∴原式=﹣1+4+4=7故选D.本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.6.B解析:B【解析】先根据同号得正的原则判断出ab 的符号,再根据不等式的基本性质判断出ab 2及a 的符号及大小即可. 解:∵a <0,b <0, ∴ab >0,又∵-1<b <0,ab >0, ∴ab 2<0. ∵-1<b <0, ∴0<b 2<1, ∴ab 2>a , ∴a <ab 2<ab . 故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.7.A解析:A 【解析】∵+5米表示一个物体向东运动5米, ∴-3米表示向西走3米, 故选A.8.B解析:B 【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b .故选B.9.A解析:A 【解析】 【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案. 【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”. 故答案为:A. 【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.10.A解析:A 【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2; C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .11.C解析:C 【解析】试题解析:A.不是同类项,不能合并.故错误. B. 不是同类项,不能合并.故错误. C.正确.D.222 532.y y y -=故错误. 故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.12.B解析:B 【解析】 【分析】寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9. 【详解】解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,A 选项51685,357a a ==,可以作为中间数;B 选项51795,359a a ==,不能作为中间数;C 选项52265,453a a ==,可以作为中间数;D 选项52125,425a a ==,可以作为中间数. 故选:B 【点睛】本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.二、填空题 13.2 【解析】 【分析】把x=3代入方程计算即可求出a 的值. 【详解】解:把x=3代入方程得:6+a=3a+2, 解得:a=2. 故答案为:2 【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2 【解析】 【分析】把x=3代入方程计算即可求出a 的值. 【详解】解:把x=3代入方程得:6+a=3a+2, 解得:a=2. 故答案为:2 【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.﹣; 3. 【解析】 【分析】根据单项式的次数、系数的定义解答. 【详解】解:单项式﹣的系数是﹣,次数是2+1=3, 故答案是:﹣;3. 【点睛】本题考查了单项式系数、次数的定义解析:﹣2π; 3. 【解析】 【分析】根据单项式的次数、系数的定义解答. 【详解】 解:单项式﹣22πa b的系数是﹣2π,次数是2+1=3, 故答案是:﹣2π;3. 【点睛】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.27【解析】【分析】首先根据an=9,求出a2n=81,然后用它除以a2n−m,即可求出am的值.【详解】解:∵an=9,∴a2n=92=81,∴am=a2n÷a2n−m=81÷3=2解析:27【解析】【分析】首先根据a n=9,求出a2n=81,然后用它除以a2n−m,即可求出a m的值.【详解】解:∵a n=9,∴a2n=92=81,∴a m=a2n÷a2n−m=81÷3=27.故答案为:27.【点睛】此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键.解析:1 a b【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】 解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.17.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2+2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C 表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-解析:-2【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】根据题意得m+1=3,n=4,解得m=2,n=4.则m-n=2-4=-2.故答案为-2.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.19.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.20.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.21.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 22.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.23.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.24.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。

2024届安徽省芜湖市名校七年级数学第一学期期末检测模拟试题含解析

2024届安徽省芜湖市名校七年级数学第一学期期末检测模拟试题含解析

2024届安徽省芜湖市名校七年级数学第一学期期末检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.如图,某同学在制作正方体模型的时候,在方格纸上画出几个小正方形(图中阴影部分),但是由于疏忽少画了一个,请你给他补上一个,使之可以组合成正方体,你一共有( )种画法.A .2B .3C .4D .52.四个有理数﹣3、﹣1、0、2,其中比﹣2小的有理数是( )A .﹣3B .﹣1C .0D .23.正方体的截面不可能是( )A .四边形B .五边形C .六边形D .七边形4.解一元一次方程9355y y -=+,移项正确的是( )A .3559--=-y yB .3559--=+y yC .3559y y -=-D .3559y y -=+5.如图所示的运算程序中,若开始输入的x 值为18,我们发现第一次输出的结果为9,第二次输出的结果是12,…,若开始输入的x 值为a 后,第二次输出的结果是8,则a 的值有( )A .1个B .2个C .3个D .4个6.若x =﹣1关于x 的方程2x +3=a 的解,则a 的值为( )A .﹣5B .3C .1D .﹣17.高台县城市国家湿地公园,为我县居民提供了一个休闲、娱乐的好去处,公园总占地面积约820000平方米820000这个数用科学记数法表示为( )A .8.2×104B .8.2×105C .0.82×106D .8.2×1068.已知2436α'∠=︒,β∠为α∠的余角,则β∠=( )A .50.2︒B .65.4︒C .90︒D .155.4︒9.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了A .70元B .120元C .150元D .300元10.下列方程中是一元一次方程的是( )A .3x +2y =5B .y 2﹣6y +5=0C .13x ﹣3=1xD .4x ﹣3=0二、填空题(本大题共有6小题,每小题3分,共18分)11.一组自行车运动员在一条笔直的道路上作赛前训练他们以每小时35千米的速度向前行驶,突然运动员甲离开小组以每小时45千米的速度向前行驶10千米然后以同样速度掉转头回来重新和小组汇合,则运动员甲从离开小组到重新和小组汇合所用时间为_____小时.12.如图,ABC 中,点D 为AB 上一点,E 为BC 上一点,且,80AC CD BD BE ACD ===∠=,则CDE ∠的__________.13.如图,O 为直线AB 上一点,OC 平分,90AOE DOE ︒∠∠=,则以下结论正确的有______.(只填序号)①AOD ∠与∠BOE 互为余角;②若58BOE ︒∠=,则61COE ︒∠=;③2BOE COD ∠=∠;④OD 平分COA ∠.14.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____.15.如图,直线AB 、CD 相交于O ,COE ∠是直角,148∠=︒,则2∠=______.16.如图,在一个长方形草坪ABCD 上,放着一根长方体的木块,已知9AD =米,10AB =米,该木块的较长边与AD 平行,横截面是边长为1米的正方形,一只蚂蚁从点A 爬过木块到达C 处需要走的最短路程是______米.三、解下列各题(本大题共8小题,共72分)17.(8分)填写理由:如图所示,EF AB ⊥, CD AB ⊥, AC BC ⊥,12∠=∠ ,求证:DG BC ⊥.证明:∵EF AB ⊥, CD AB ⊥ ① .∴90EFA CDA ∠=∠=︒(垂直定义)∴//EF CD ②∴1∠=∠ ③∴12∠=∠ (已知)∴2ACD ∠=∠(等量代换)∴//DG AC ④ .∴DGB ACB ∠=∠ ⑤ .∵AC BC ⊥(已知)∴90ACB ∠=︒(垂直定义)∴90DGB ∠=︒,即 DG BC ⊥.18.(8分)(1)计算:212|4|823⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭(2)先化简,再求值:3(2x y -)-2(22x y -)+(2x -1),其中x =-3,y =119.(8分)如图,B ,C 两点把线段AD 分成2∶4∶3的三部分,M 是线段AD 的中点,CD =6 cm ,求线段MC 的长.20.(8分)如图所示是一个长方体纸盒 平面展开图,已知纸盒中相对两个面上的数互为相反数(1)填空:a =__________,b =___________,c =___________.(2)先化简,再求值:2225[23(2)]4a b a b abc a b abc ---+.21.(8分)在阿斯塔纳进行的2019国际象棋世界团体锦标赛当地时间14日落幕,中国女队以全胜战绩(八连胜)完美夺冠,中国队与俄罗斯队的对决尤为激烈,双方苦战15轮,最终中国队净胜俄罗斯队3分,比赛的积分规则是胜得1分,负得0分,和棋各得0.5分,问中国队与俄国斯队的积分各是多少?22.(10分)解方程:(1)6x ﹣2(1﹣x )=7x ﹣3(x+2)(2)2﹣= 23.(10分)计算:(-2)2÷(-134)×0.75×|-213|+1. 24.(12分)如图,已知∠AOB 是直角,OE 平分∠AOC ,OF 平分∠BOC .(1)若∠BOC=60°,求∠EOF 的度数;(2)若∠AOC=x°(x >90),此时能否求出∠EOF 的大小,若能,请求出它的数值参考答案一、选择题(每小题3分,共30分)1、B【分析】根据正方形的展开图的11种形式解答即可.【题目详解】解:如图所示;故答案为B.【题目点拨】本题考查作图-应用与设计作图和几何体的展开图,熟记正方体展开图的常见的11种形式是解题的关键. 2、A【分析】将有理数进行大小排列,即可解题.【题目详解】解:∵-3<-1<0<2,∴比-2小的有理数是-3,故选A.【题目点拨】本题考查了有理数大小的比较,属于简单题,熟悉有理数的性质是解题关键.3、D【分析】用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,据此判断即可.【题目详解】用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为七边形.故选D .【题目点拨】本题考查正方体的截面.正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形. 4、A【分析】移项要变号,不移的项不得变号,移项时,左右两边先写原来不移的项,再写移来的项,据此判断即可.【题目详解】解:解一元一次方程9355y y -=+,移项得:3559--=-y y故选:A .【题目点拨】此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.5、C【分析】根据运算程序中的运算法则判断即可.【题目详解】解:根据题意得:当x=10时,第一次输出12×10=5,第二次输出5+3=8, 则若开始输入的x 值为10后,第二次输出的结果是8, 当x=13时,第一次输出13+3=16,第二次输出12×16=8, 当x=32时,第一次输出12×32=16,第二次输出12×16=8, 则a 的值有3个,故选:C .【题目点拨】本题考查了与有理数有关的规律探究,掌握程序中的运算规律是解题关键.6、C【分析】将1x =-代入方程得到一个关于a 的等式,求解即可.【题目详解】由题意,将1x =-代入方程得:23a -+=解得:1a =故选:C.【题目点拨】本题考查了一元一次方程的解定义,理解题意,掌握解定义是解题关键.7、B【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数.【题目详解】解:58200008.210=⨯.故答案是:B .【题目点拨】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.8、B【分析】用90°减去α∠进一步求取α∠的余角即可.【题目详解】∵90°−α∠=6542'︒=65.4︒,∴α∠的余角β∠=65.4︒,故选:B.【题目点拨】本题主要考查了余角的性质,熟练掌握相关概念是解题关键.9、B【解题分析】试题分析:设标价为x 元,则(1-80%)x=30, 20%x =30,所以x=150 150-30=120故选B.考点:列方程.10、D【解题分析】根据一元一次方程的定义(一元一次方程是指只含有一个未知数,并且含未知数的项的最高次数是1次的整式方程)判断即可.【题目详解】解:∵一元一次方程是指只含有一个未知数,并且含未知数的项的最高次数是1次的整式方程, ∴A 、是二元一次方程,故本选项错误;B 、是一元二次方程,故本选项错误;C 、是分式方程不是整式方程,故本选项错误;D 、是一元一次方程,故本选项正确;故选:D .【题目点拨】本题考查了一元一次方程的定义的应用. 一元一次方程是指只含有一个未知数,并且含未知数的项的最高次数是1次的整式方程.二、填空题(本大题共有6小题,每小题3分,共18分)11、0.25【分析】理解运动员甲从离开小组到和小组汇合所走的路程+小组走的路程=10×2,列出方程,即可解答.【题目详解】解:设运动员甲从离开小组到重新和小组汇合所用时间为x 小时.则有:35x +45x =20解得:x =0.25答:运动员甲从离开小组到重新和小组汇合所用时间为0.25小时.【题目点拨】本题是一元一次方程的应用,解本题的关键是理解运动运甲所走的路程和小组所走的路程之间的关系,才可解答.12、1.5【分析】根据等腰三角形的性质推出∠A =∠CDA =50︒,∠B =∠DCB ,∠BDE =∠BED ,根据三角形的外角性质求出∠B =25︒,由三角形的内角和定理求出∠BDE ,根据平角的定义即可求出选项.【题目详解】∵AC =CD =BD =BE ,80ACD ∠=,∴∠A =∠CDA =50︒,∠B =∠DCB ,∠BDE =∠BED ,∵∠B+∠DCB=∠CDA=50︒,∴∠B=25︒,∵∠B+∠EDB+∠DEB=180︒,∴∠BDE=∠BED=12(180︒−25︒)=77.5︒,∴∠CDE=180︒−∠CDA−∠EDB=180︒−50︒−77.5︒=1.5︒,故答案为:1.5︒.【题目点拨】本题主要考查对等腰三角形的性质,三角形的内角和定理,三角形的外角性质,邻补角的定义等知识点的理解和掌握,熟练地运用这些性质进行计算是解此题的关键.13、①②③【分析】由平角的定义与∠DOE=90°,即可求得∠AOD与∠BOE互为余角;又由角平分线的定义,可得∠AOE=2∠COE=2∠AOC,根据余角和补角的定义可得∠BOE=2∠COD,根据角平分线的定义和补角的定义可得若∠BOE=58°,则∠COE=61°.【题目详解】∵∠DOE=90°,∴∠COD+∠COE=90°,∠EOB+∠DOA=90°,即∠AOD与∠BOE互为余角,故①正确;∵OC平分∠AOE,∴∠AOE=2∠COE=2∠AOC;∵∠BOE=180°﹣2∠COE,∴∠COD=90°﹣∠COE,∴∠BOE=2∠COD,故③正确;若∠BOE=58°.∵∠AOE+∠BOE=180°,∴∠COE12=(180°﹣∠BOE)=61°,故②正确;没有条件能证明OD平分∠COA,故④错误.综上所述:正确的有①②③.故答案为:①②③.【题目点拨】本题考查了平角的定义与角平分线的定义.题目很简单,解题时要仔细识图.14、y =﹣20183. 【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案. 【题目详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【题目点拨】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.15、42︒【分析】根据∠2=180°﹣∠COE ﹣∠1,可得出答案.【题目详解】由题意得:∠2=180°﹣∠COE ﹣∠1=180°﹣90°﹣48°=42°.故答案为:42°.【题目点拨】本题考查了余角和补角的知识,属于基础题,注意仔细观察图形.16、15【分析】解答此题要将木块展开,然后根据两点之间线段最短解答.【题目详解】由题意可知,将木块展开,如图所示:长相当于增加了2米,∴长为10+2=12米,宽为9米,2291215+=.故答案为:15.【题目点拨】本题主要考查了平面展开-最短路径问题,两点之间线段最短,勾股定理的应用,要注意培养空间想象能力.三、解下列各题(本大题共8小题,共72分)17、已知 ACD 同位角相等, 两直线平行 内错角相等,两直线平行 两直线平行,同位角相等.【分析】根据题意,利用平行线的判定和性质,以及垂直的定义,进行证明,即可得到答案.【题目详解】∵EF AB ⊥, CD AB ⊥ 已知 .∴90EFA CDA ∠=∠=︒(垂直定义)∴1∠=∠ACD .∴//EF CD (同位角相等,两直线平行)∴12∠=∠(已知)∴2ACD ∠=∠(等量代换)∴//DG AC (内错角相等,两直线平行)∴DGB ACB ∠=∠(两直线平行,同位角相等).∵AC BC ⊥(已知)∴90ACB ∠=︒(垂直定义)∴90DGB ∠=︒,即DG BC ⊥.【题目点拨】本题考查了平行线的判定和性质,解题的关键是熟练掌握所学的性质进行解题.18、(1)11-;(2)22-1x y +,1.【分析】(1)根据实数的混合运算顺序和法则计算即可;(2)原式先去括号,再合并同类项化为最简式,然后将x 、y 的值代入计算即可.【题目详解】解:(1)原式413842=⨯-⨯ 112=-11=-;(2)23x y -())-2(22x y -)+(2x -1) =22233241x y x x y ++---=22-1x y +;当x =-3,y =1时,代入得:()2231-1⨯-+=1.【题目点拨】本题考查了实数的混合运算和整式的化简求值,掌握实数和整式运算顺序、法则是解答本题的关键.19、3cm【分析】设AB=2x ,BC=4x ,CD=3x ,再根据CD=6cm 求出x 的值,故可得出线段AD 的长度,再根据M 是AD 的中点可求出MD 的长,由MC=MD-CD 即可得出结论.【题目详解】解:∵B ,C 两点把线段AD 分成2:4:3三部分,∴设AB=2x ,BC=4x ,CD=3x ,∵CD=6cm ,即3x=6cm ,解得x=2cm ,∴AD=2x+4x+3x=9x=9×2=18cm , ∵M 是AD 的中点,∴MD=12AD=12×18=9cm , ∴MC=MD-CD=9-6=3cm .【题目点拨】本题考查的是两点间的距离,在解答此类问题时要注意各线段之间的和、差及倍数关系.20、(1)1,-2,-3;(2)10abc ,1.【分析】(1)先根据长方体的平面展开图确定a +2、b -2、c +1所对的面的数字,再根据相对的两个面上的数互为相反数,确定a 、b 、c 的值;(2)先根据整式的加减法法则化简代数式,再代入计算求值.【题目详解】解: 由长方体纸盒的平面展开图知, a +2,b -2,c +1所对的面的数字分别是-3,4,2,因为相对的两个面上的数互为相反数, 所以a +2-3=0;b -2+4=0;c +1+2=0,解得:1,2,3a b c ==-=-;(2)解:原式2225(263)4a b a b abc a b abc =--++, 22252634a b a b abc a b abc =-+-+,10abc =,当1,2,3a b c ==-=-时,原式10abc =,()()10123=⨯⨯-⨯-,60=.【题目点拨】本题主要考查了长方体的平面展开图和相反数及代数式的化简求值,解决本题的关键是根据平面展开图确定a 、b 、c 的值.21、中国队与俄国斯队的积分分别是9分和6分.【解题分析】设中国队与俄罗斯队的积分各是x 分、y 分,根据题意列出方程组,解方程组即可.【题目详解】解:设中国队与俄罗斯队的积分各是x 分、y 分,根据题意得:∴153x y x y +=⎧⎨=+⎩, 解得:96x y =⎧⎨=⎩, 答:中国队与俄罗斯队的积分各是9分、6分.【题目点拨】本题考查了二元一次方程组的应用;根据题意列出方程组是解题的关键.22、(1)x=﹣1;(2)x=.【解题分析】方程去括号,移项合并,将x 系数化为1,即可求出解;方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.【题目详解】解:(1)去括号,得:6x ﹣2+2x=7x ﹣3x ﹣6,移项,得:6x+2x ﹣7x+3x=﹣6+2,合并同类项,得:4x=﹣4,系数化为1,得:x=﹣1;(2)去分母,得:12﹣2(2x ﹣4)=x ﹣7,去括号,得:12﹣4x+8=x ﹣7,移项,得:﹣4x ﹣x=﹣7﹣12﹣8,合并同类项,得:﹣5x=﹣27,系数化为1,得:x= .【题目点拨】本题考查的知识点是解一元一次方程,解题关键是注意合并同类项.23、4【分析】将除法转化为乘法,先乘方,再乘除,最后加减.【题目详解】原式=4÷(-74)×34×73+8 =4×(-47)×34×73+8 =-4+8=4【题目点拨】此题考查有理数的混合运算,解题关键在于掌握运算法则.24、 (1)∠EOF=45°;(2)∠EOF 总等于45°. 【分析】(1)观察发现EOF EOC FOC ∠=∠-∠,则找到EOC ∠和FOC ∠的度数即可,而EOC ∠是AOC ∠的一半,FOC ∠是BOC ∠的一半, AOC ∠和BOC ∠已知或可求,则EOF ∠的度数可求.(2)按照(1)的方法,用字母替换掉具体的度数即可.【题目详解】1)因为∠BOC=60°,∠AOB=90° 所以∠AOC=150°因为OE 平分∠AOC 所以1752EOC AOC ∠=∠=︒ 因为OF 平分∠BOC 所以1302FOC BOC ∠=∠=︒ 所以∠EOF=∠COE-∠COF=75°-30°=45°(2)能具体求出∠EOF 的大小因为∠AOC=x°,∠AOB=90° 所以∠BOC=x°-90° 因为OE 平分∠A0C 所以122x EOC AOC ∠=∠= 因为OF 平分∠BOC所以19022x FOC BOC-︒∠=∠=所以∠EOF=∠COE-∠COF90 22x x-︒=-即当x>90时,∠EOF总等于45°【题目点拨】本题主要考查了角平分线的性质以及角的和与差,读懂图形,分清角的和差关系是解题的关键.。

芜湖市七年级上学期期末数学试题题及答案

芜湖市七年级上学期期末数学试题题及答案

芜湖市七年级上学期期末数学试题题及答案一、选择题1.以下选项中比-2小的是( )A .0B .1C .-1.5D .-2.5 2.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+3.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73 D .5或734.若多项式229x mx ++是完全平方式,则常数m 的值为()A .3B .-3C .±3D .+65.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为( )A .4B .3C .0D .﹣26.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120207.观察下列算式,用你所发现的规律得出22015的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .8 8.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1) 9.方程3x ﹣1=0的解是( )A .x =﹣3B .x =3C .x =﹣13D .x =13 10.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( ) A .14,4 B .11,1 C .9,-1 D .6,-411.下列等式的变形中,正确的有( )①由5 x =3,得x = 53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得m n=1. A .1个 B .2个 C .3个 D .4个12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD ∠的度数为( )A .100B .120C .135D .150二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________.14.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.15.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.16.如图,若12l l //,1x ∠=︒,则2∠=______.17.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.18.如果向东走60m 记为60m +,那么向西走80m 应记为______m.19.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.20.若a 、b 是互为倒数,则2ab ﹣5=_____.21.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.22.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.23.钟表显示10点30分时,时针与分针的夹角为________.24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC = ,BE = ;(2)当线段CE 运动到点A 在C 、E 之间时,①设AF 长为x ,用含x 的代数式表示BE = (结果需化简.....); ②求BE 与CF 的数量关系;(3)当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t ≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.27.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.28.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.29.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC,BC;=;(2)当t为何值时,AP PQ(3)当t为何值时,P与Q第一次相遇;PQ=.(4)当t为何值时,1cm30.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.31.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.32.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.【详解】根据题意可得:2.52 1.501-<-<-<<,故答案为:D.【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.2.D解析:D【解析】【分析】方程两边同乘以6即可求解.【详解】12132x x +-=, 方程两边同乘以6可得,2x-6=3(1+2x ).故选D.【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.3.A解析:A【解析】【分析】先求出方程的解,把x 的值代入方程得出关于m 的方程,求出方程的解即可.【详解】解:(x+3)2=4,x ﹣3=±2,解得:x =5或1,把x =5代入方程mx+3=2(m ﹣x )得:5m+3=2(m ﹣5),解得:m =13, 把x =﹣1代入方程mx+3=2(m ﹣x )得:﹣m+3=2(1+m ),解得:m =﹣1,故选:A .【点睛】本题考查了解一元一次方程的解的应用,能得出关于m 的方程是解此题的关键.4.C解析:C【解析】【分析】利用完全平方式的结构特征即可求出m 的值.【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式,∴2m =±6,解得:m =±3,故选:C .【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.5.D解析:D【解析】【分析】根据三个相邻格子的整数的和相等列式求出a 、c 的值,再根据第9个数是3可得b=3,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【详解】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c ,解得c=4,a+b+c=b+c+(-2),解得a=-2,所以,数据从左到右依次为4、-2、b 、4、-2、b ,第9个数与第三个数相同,即b=3,所以,每3个数“4、-2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为-2.故选D.【点睛】此题考查数字的变化规律,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.6.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.7.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.8.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.9.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.B解析:B【解析】【分析】把5xy=⎧⎨=⎩x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.11.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.15.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE +∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.16.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.17.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键18.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.19.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.20.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b 是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a 、b 是互为倒数,∴ab =1,∴2ab ﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.21.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.22.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.23.【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+×30°.解:10点30分时,钟面上时针指向数字解析:【解析】由于钟面被分成12大格,每格为30°,而10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,则它们所夹的角为4×30°+12×30°.解:10点30分时,钟面上时针指向数字10与11的中间,分针指向数字6,所以时针与分针所成的角等于4×30°+12×30°=135°. 故答案为:135°. 24.>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小解析:>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健27.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOB+∠BOD ,∠MON=∠BOM+∠BON ,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC ,∠BON=12∠BOD ,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC ,∠MON=∠MOC+∠BON-∠BOC 结合三式求解.【详解】解:(1)∵OM 平分∠AOB ,ON 平分∠BOD ,∴∠BOM=12∠AOB ,∠BON=12∠BOD , ∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD). ∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°; (2)∵OM 平分∠AOC ,ON 平分∠BOD ,∴∠MOC=12∠AOC ,∠BON=12∠BOD ,∵∠MON=∠MOC+∠BON-∠BOC ,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC. ∵∠AOD=∠AOB+∠BOD ,∠AOC=∠AOB+∠BOC, ∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC , ∵∠AOD=α,∠MON=60°,∠BOC=20°, ∴60°=12(α+20°)-20°, ∴α=140°.【点睛】 本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.28.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--,a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.29.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.30.(1)-2;1;7;(2)4;(3)3+3t ;9+5t ;6+2t ;(4)3.【解析】【分析】(1)利用|a +2|+(c ﹣7)2=0,得a +2=0,c ﹣7=0,解得a ,c 的值,由b 是最小的正整数,可得b =1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.【详解】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.∵b是最小的正整数,∴b=1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为3t+3,5t+9,2t+6.(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.31.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.32.(1)x=1;(2) x=-3或x=5;(3) 30.【解析】【分析】(1)根据题意可得4-x=x-(-2),解出x的值;(2)此题分为两种情况,当点P在B的右边时,当点P在B的左边时,分别列出方程求解即可;(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x进而求出即可.【详解】(1)4-x=x-(-2),解得:x=1,(2)①当点P在B的右边时得:x-(-2)+x-4=8,解得:x=5,②当点P在B的左边时得:-2-x+4-x=8,解得:x=-3,则x=-3或x=5.(3)设经过x分钟点A与点B重合,根据题意得:2x=6+x,解得:x=6,则5x=30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置.。

安徽省芜湖市七年级(上)期末数学试卷

安徽省芜湖市七年级(上)期末数学试卷

七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10 小题,共 30.0 分)1. 现实生活中,假如收入1000 元记作 +1000 元,那么 -800 表示()A. 支出800元B. 收入800元C. 支出200元D. 收入200元2.最近几年来,中国高铁发展快速,高铁技术不停走出国门,成为展现我国实力的新名片.此刻中国高速铁路运营里程将达到22000 公里,将 22000 用科学记数法表示应为()A. ×104B. 22×103C. ×103D. ×1053. 在( -2)3, -23,-( -2), -|-2|,( -2)2中,负数有()A. 1个B. 2个C.3个D.4个4.a, b 在数轴上的地点如下图,则以下式子正确的是()A. a+b>0B. ab<0C. |a|>|b|D. a+b>a-b5. 以下计算正确的选项是()A. 3a+a=3a2B. 4x2y-2yx2=2x2yC. 4y-3y=1D. 3a+2b=5ab6. 如图是一个正方体的睁开图,则“数”字的对面的字是()A.核B.D. 心 C. 素养7. 某商品标价 x 元,进价为400 元,在商场睁开的促销活动中,该商品按8 折销售获利()A. (8x-400) 元B. (400×8-x)元C. (0.8x-400)元D. (400×0.8-x)元8. 假如代数式4y2-2y+5 的值为 1,那么代数式 2y2-y+1 的值为()A.-1B. 2C. 3D. 49. 以下解方程去分母正确的选项是()A.B.由 x3-1=1-x2 ,得 2x-1=3-3x由 x-22-x4=-1,得2x-2-x=-4C.D.由 y3-1=y5 ,得 2 y-15=3y由 y+12=y3+1 ,得 3( y+1)=2 y+610.假如∠α和∠β互补,且∠α>∠β,则以下表示∠β的余角的式子中:① 90 °-∠β;②∠α-90 °;α+βα- β)③ 12(∠ ∠);④ 12 (∠ ∠ ).正确的有(A. 4个B. 3个C.2个D.1个二、填空题(本大题共 6 小题,共 18.0 分)11. 若 x、y 互为相反数, a、 b 互为倒数, c 的绝对值等于 2,则( x+y2 )2018 -( -ab)2018+c2=______.12. 已知 -5a2 m b 和 3a4b3-n是同类项,则12 m-n 的值是 ______.13. 某校组织学生和教师为边远山区学校捐献图书,原计划共捐献5000 册,实质捐献时学生比原计划多赠了 15% ,教师比原计划多赠了20%,实质共捐献 5825 册,则原计划学生捐献图书______册.14.如图,我们能够把曲折的河流改直,这样做的数学依照是______.改直后. A、B 丙地间的河流长度会 ______.(填“变短”,“变长”或“不变”),其原由是 ______.15.如图,点 C 是线段 AB 上一点,点 M、N、P 分别是线段 AC,BC,AB 的中点.AC=3cm,CP=1cm,线段 PN =______cm.16.大于 1 的正整数 m 的三次幂可“分裂”成若干个连续奇数的和.如 23=3+5 ,33=7+9+11 ,3 3 347 m 的值是______4 =13+15+17+19 ,,若 m “分裂”后,此中有一个奇数是,则.三、计算题(本大题共 4 小题,共24.0 分)17.计算:-42÷(-2)3- 49×(-32) 218.解方程:2x+13 -x-16 =1.19.请察看以下定义新运算的各式:1⊙ 3=1 ×4+3=7;3⊙( -1) =3×4-1=11;5⊙ 4=5 ×4+4=24;4⊙( -3) =4×4-3=13.(1)请你概括: a⊙ b=______ ;(2)若 a≠b,那么 a⊙ b______b⊙ a(填“=”或“≠”);(3)先化简,再求值:( a-b)⊙( 2a+b),此中 a 是最大的负整数, b 是绝对值最小的整数.20.先化简,再求值:5x2-2( 3y2+6xy) +( 2y2-5x2),此中x=13 , y=- 12 .四、解答题(本大题共 3 小题,共28.0 分)21.阅读资料:如图①,若点 B 把线段分红两条长度相等的线段AB 和 BC,则点 B 叫做线段 AC 的中点.回答以下问题:(1)如图②,在数轴上,点 A 所表示的数是 -2,点 B 所表示的数是 0,点 C 所表示的数是 3.①若 A 是线段 DB 的中点,则点 D 表示的数是 ______;②若 E 是线段 AC 的中点,求点 E 表示的数.( 2)在数轴上,若点M 表示的数是m 点 N 所表示的数是n,点 P 是线段 MN 的中点.①若点 P 表示的数是1,则 m、 n 可能的值是 ______(填写切合要求的序号);(i) m=0, n=2;( ii )m=-5 ,n=7 ;( iii ),;( iv )m=-1 , n=2②直接用含m、 n 的代数式表示点P 表示的数.22.为迎接南陵县足球联赛,某足球学校组织八年级 5 个班进行足球竞赛,规定每两个班级之间均要竞赛两场 .( 1)该校八年级每一个班要赛几场?如有n 个班竞赛,则每一个班要赛几场?( 2)规则为每班胜一场得 3 分,平一场得 1 分,负一场得0 分,到当前为止,若八( 1)班球队已经踢完全部竞赛,此中平的场数是负的场数的 2 倍,已得17 分,该球队胜了几场球?23.已知∠AOB=130 °,∠COD =80 °, OM , ON 分别是∠AOB 和∠COD 的均分线.(1)假如 OA,OC 重合,且 OD 在∠AOB 的内部,如图 1,求∠MON 的度数;(2)假如将图 1 中的∠COD 绕点 O 点顺时针旋转 n°( 0< n< 155),如图 2,①∠MON 与旋转度数n°有如何的数目关系?说明原由;②当 n 为多少时,∠MON 为直角?(3)假如∠AOB 的地点和大小不变,∠COD 的边 OD 的地点不变,改变∠COD 的大小;将图 1 中的 OC 绕着 O 点顺时针旋转 m°( 0< m< 100),如图 3,∠MON 与旋转度数 m°有如何的数目关系?说明原由.答案和分析1.【答案】 A【分析】解:依据题意得,假如收入 1000 元记作+1000 元,那么-800 表示支出 800 元.应选:A .第一审清题意,明确“正 ”和“负”所表示的意 义;再依据题意作答.本题主要考察了正负数的意义,解题重点是理解 “正”和“负”的相对性,明确什么是一 对拥有相反意 义的量.在一对拥有相反意 义的量中,先规定此中一个为正,则另一个就用 负表示.2.【答案】 A【分析】解:×104.应选:A .科学记数法的表示形式 为 a ×10n的形式,此中 1≤|a|<10,n 为整数.确立 n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点移 动的位数同样.当原数 绝对值>1 时,n 是正数;当原数的绝对值< 1 时,n 是负数.本题考察科学记数法的表示方法.科学 记数法的表示形式 为 a ×10n的形式,其中 1≤|a|< 10,n 为整数,表示时重点要正确确立 a 的值以及 n 的值.3.【答案】 C【分析】3, 3 ,(),2 , 解:(-2),()=-8 -2 =-8 - -2 =2 -|-2|=-2 -2 =4则负数有 3 个.应选:C .直接利用相反数以及绝对值和有理数的乘方运算法则计算得出答案.本题主要考察了相反数以及 绝对值和有理数的乘方运算,正确掌握有关运算法例是解题重点.4.【答案】 B【分析】解:由数轴可知:b<0<a,∴ab< 0,应选:B.依据数轴上的两数地点即可求出答案.本题考察数轴,解题的重点是依据数轴找出两数的大小关系,本题属于基础题型.5.【答案】B【分析】解:A 、3a+a=4a,此选项计算错误;22 2B、4x y-2yx =2x y,此选项计算正确;D、3a 与 2b 不是同类项,不可以归并,此选项计算错误;应选:B.依据归并同类项法例逐个计算即可得.本题主要考察归并同类项,解题的重点是掌握“归并”是指同类项的系数的相加,并把获得的结果作为新的系数,要保持同类项的字母和字母的指数不变.6.【答案】D【分析】解:这是一个正方体的平面睁开图,共有六个面,此中“数”字的对面的字是养.应选:D.利用正方体及其表面睁开图的特色求解即可.本题考察了正方体相对两个面上文字的知识,解答本题的重点是从实物出发,联合详细的问题,辨析几何体的睁开图,经过联合立体图形与平面图形的转化,成立空间观点.7.【答案】C【分析】解:由题意可得,该商品按 8 折销售赢利为:()元,应选:C .依据题意,能够用代数式表示出 该商品按 8 折销售所获收益,本题得以解决.本题考察列代数式,解答本题的重点是明确题意,列出相应的代数式.8.【答案】 A【分析】解:依据题意知 4y 2-2y+5=1,则 4y 2-2y=-4,∴2y 2-y=-2,∴2y 2-y+1=-2+1=-1,应选:A .由代数式 4y 2-2y+5 的值为 1,可获得 4y 2-2y=-4,两边除以 2 获得 2y 2-y=-2 ,而后把 2y 2-y=-2 代入 2y 2-y+1 即可获得答案.本题考察了代数式求 值:先把代数式变形,而后利用整体代入的方法求代数式的值.【答案】 D9.【分析】解:A 、由 选项错误; ,得2x-6=3-3x ,此B 、由 选项错误 ;,得 2x-4-x=-4,此C 、由 ,得 5y-15=3y ,此选项错误 ;D 、由 ,得 3(y+1)=2y+6,此选项正确;应选:D .依据等式的性 质 2,A 方程的两 边都乘以 6,B 方程的两 边都乘以 4,C 方程的两边都乘以 15,D 方程的两 边都乘以 6,去分母后判断即可.本题主要考察认识一元一次方程,注意在去分母 时,方程两头同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(假如是一个多项式)作为一个整体加上括号.10.【答案】B【分析】解:∵∠α和∠β互补,∴∠α+∠β =180.°由于 90 °-∠β+∠β =90,°因此① 正确;又∠α-90 °+∠β=∠α+∠β-90 °=180°-90 °=90°,② 也正确;(∠α+∠β)+∠β= ×180°+∠β=90°+∠β≠ 90,°因此③ 错误;(∠α-∠β)+∠β=(∠α+∠β)=×180°=90°,因此④ 正确.综上可知,①②④均正确.应选:B.依据角的性质,互补两角之和为 180°,互余两角之和为 90°,可将,①②③④中的式子化为含有∠α+∠β的式子,再将∠α+∠β =180°代入即可解出本题.本题考察了角之间互补与互余的关系,互补两角之和为 180°,互余两角之和为 90°.11.【答案】3【分析】解:由题意知 x+y=0,ab=1,c=2 或 c=-2,则 c 2=4,=020182018因此原式-(-1)+4=0-1+4=3,故答案为:3.先依据相反数的性质、倒数的定义及绝对值的性质得出 x+y=0,ab=1,c 2=4,再代入计算可得.本题主要考察有理数的混淆运算,解 题的重点是娴熟掌握相反数的性 质、倒数的定义及绝对值的性质,有理数的混淆运算 次序与运算法 则.12.【答案】 -1【分析】解:∵-5a 2m b 和 3a 4b 3-n是同类项,∴,解得:m=2、n=2,∴ m-n= ×2-2=1-2=-1, 故答案为:-1.依据同类项的定义:所含字母同样,而且同样字母的指数也同样,列出对于 m , n 的方程,求出 m ,n 的值,既而可求解.本题考察了同类项的知识,解答本题的重点是掌握同 类项定义中的两个 “同样 ”:同样字母的指数同样. 13.【答案】 3500【分析】解:原计划学生捐 赠图书 x 册,则教师捐书(5000-x )册,依题意得:15%x+(5000-x )×20%=5825-5000,解得 x=3500.故答案是:3500.设原计划学生捐 赠图书 x 册,则教师捐书(5000-x )册,依据“实质捐献时学生比原计划多赠了 15%,教师比原计划多赠了 20%,实质共捐献 5825”列出方程并解答即可.本题主要考察了一元一次方程的 应用,为了少出差 错,减少运算量,最好根据增添的 书数来列等量关系.14.【答案】 两点确立一条直线变短 两点之间线段最短【分析】解:我们能够把曲折的河流改直, 这样做的数学依照是两点确立一条直 线,改直后.A 、B 丙地间的河流长度会变短.其原由是两点之 间线段最短.故答案为:两点确立一条直线,变短,两点之间线段最短.依据两点确立一条直线和两点之间线段最短解答.本题考察了线段的性质,属于基础题,注意两点之间线段最短这一知识点的灵巧运用.15.【答案】32【分析】解:∵AP=AC+CP ,CP=1cm,∴AP=3+1=4cm,∵P 为 AB 的中点,∴AB=2AP=8cm ,∵CB=AB-AC ,AC=3cm,∴CB=5cm,∵N 为 CB 的中点,∴CN= BC=cm,∴PN=CN-CP= cm.故答案为:.依据线段中点的性质计算即可 CB 的长,联合图形、依据线段中点的性质可得CN 的长,从而得出 PN 的长.本题考察的是两点间的距离的计算,掌握线段的中点的性质、灵巧运用数形联合思想是解题的重点.16.【答案】19【分析】解:∵底数是 2 的分裂成 2 个奇数,底数为 3 的分裂成 3 个奇数,底数为 4 的分裂成 4 个奇数,∴m 3分裂成 m 个奇数,因此,到 m 3的奇数的个数为:2+3+4+ +m=,∵2n+1=347,n=173,∴奇数 347 是从 3 开始的第 173 个奇数,∵=170,=189,∴第 173 个奇数是底数为 19 的数的立方分裂的奇数的此中一个,即 m=19.故答案为:19.察看可知,分裂成的奇数的个数与底数同样,而后求出到m 3的全部奇数的个数的表达式,再求出奇数 347 的是从 3 开始的第 173 个数,而后确立出 173 所在的范围即可得解.考察了有理数的乘方,察看出分裂的奇数的个数与底数同样是解题的重点,还要娴熟掌握乞降公式.17.【答案】解:原式=-16÷(-8)-49×94=2-1=1 .【分析】先计算乘方,再计算乘除,最后计算加减可得.本题主要考察有理数的混淆运算,解题的重点是掌握有理数混淆运算次序和运算法例.18.【答案】解:去分母,得:2( 2x+1) -( x-1) =6,去括号,得:4x+2- x+1=6 ,移项,得: 4x-x=6-2-1 ,归并同类项,得:3x=3,系数化为1,得: x=1.【分析】依据等式的基天性质挨次去分母、去括号、移项、归并同类项、系数化为 1 可得.本题主要考察解一元一次方程的能力,解题的重点是娴熟掌握等式的基天性质和解一元一次方程的基本步骤.19.【答案】4a+b≠【分析】解:(1)由题意可得,a⊙b=4a+b,故答案为:4a+b;(2)∵a⊙b=4a+b,b⊙a=4b+a,a≠b,∴a⊙b≠b⊙a,故答案为:≠;(3)(a-b)⊙ (2a+b)=4(a-b)+(2a+b)=4a-4b+2a+b=6a-3b,∵a 是最大的负整数,b 是绝对值最小的整数,∴a=-1,b=0,∴原式 =6×(-1)-3 ×0=-6.(1)依据题目中的例子,能够获得 a⊙b 的结果;(2)依据(1)中的结果和题意,能够解答本题;(3)依据(1)中的结果能够化简题目中的式子,而后依据 a 是最大的负整数,b 是绝对值最小的整数,能够获得 a、b 的值,从而能够解答本题本题考察有理数的混淆运算,解答本题的重点是明确有理数混淆运算的计算方法.20.【答案】解:原式=5x2-6y2-12xy+2y2-5x22=-4 y -12xy,当 x=13, y=- 12 时,原式 =-4 ×( -12 )2-12 ×13 ×( -12 )=-4 ×14 +2=-1+2=1 .【分析】先去括号,再归并同类项,最后辈入计算即可得.本题考察了整式的加减 -化简求值,娴熟掌握运算法则是解本题的重点.21.【答案】-4(i)(ii)(iii)【分析】解:(1)① 点 A 所表示的数是 -2,点B 所表示的数是0,A 是线段 DB 的中点,∴点 D 表示的数是 -4,故答案为:-4;②点 A 所表示的数是 -2,点C 所表示的数是3,E 是线段 AC 的中点,∴点 E表示的数为=.(2)① 点 M 表示的数是 m,点N 所表示的数是 n,点P 是线段 MN 的中点,点 P 表示的数是 1,∴1=,即m+n=2,∴m、n 可能的值是:(i)m=0,n=2;(ii)m=-5,n=7;(iii),.故答案为:(i)(ii)(iii);②点P表示的数为.(1)① 依照点A 所表示的数是-2,点B 所表示的数是0,A 是线段DB 的中点,即可获得点 D 表示的数;② 依照点 A 所表示的数是 -2,点C 所表示的数是3, E 是线段 AC 的中点,即可获得点 E 表示的数;(2)① 依照点 M 表示的数是 m,点N 所表示的数是 n,点P是线段 MN 的中点,点 P 表示的数是 1,即可获得 m、n 可能的值;② 依照中点公式即可获得结果.本题考察的是数轴,依据题意画出图形,利用数形联合求解是解答此题的关键.22.【答案】解:(1)∵每两个班级之间均要竞赛两场,∴如有2 个班竞赛,则每一个班要赛 2 场;∵如有 3 个班竞赛,则每一个班要赛 4 场;如有 4 个班竞赛,则每一个班要赛 6 场;∴如有5 个班竞赛,则每一个班要赛8 场;同理,如有 n 个班竞赛,则每一个班要赛2( n-1 )场;( 2)设该球队负了 x 场,则平了2x 场,则胜了(8-3x)场,依据题意得, 3( 8-3x) +2x=17 ,解得 x=1 ,则 8-3x=5.答:该球队胜了5场球.【分析】本题考察了一元一次方程的应用,理解足球竞赛的赛制得出每一个班要赛的场数是解题的重点.(1)依据每两个班级之间均要竞赛两场,分别求出有 2、3、4 个班竞赛时,每一个班要赛的场数,从而求解即可;(2)设该球队负了 x 场,则平了 2x 场,则胜了(8-3x)场,依据已得 17 排列出方程,求解即可 .23.【答案】解:(1)如图1,∵OM均分∠AOB,∠AOB=130°,∴∠AOM=12∠AOB=12 ×130 °=65 °,∵ON 均分∠COD ,∠COD =80 °,∴∠AON=12 ∠COD=12 ×80°=40 °,∴∠MON=∠AOM -∠AON=65°-40 °=25°;(2)①如图 2 中,∠MON =∠COM -∠NOC=65°+n°-40 °=n°+25°.②当∠MON =90 °时,n°+25 °=90 °,∴n=65 °.(3)如图 3 中,∠MON =∠COM -∠CON=65°+m°-12 (80°+m°)=12m°+25°.【分析】(1)依据角均分线的定义得:∠AOM=∠AOB=65° ,∠AON=40° ,相减可得∠MON 的度数;(2)① 依据角的和差定义计算即可;②建立方程求出 n 即可;(3)依据角的和差定义计算即可;本题考察角的计算、角均分线的定义、旋转变换等知识,解题的重点是娴熟掌握角的和差定义,属于中考常考题型.。

安徽省芜湖市南陵县2023-2024学年七年级上学期期末数学试题(含答案)

安徽省芜湖市南陵县2023-2024学年七年级上学期期末数学试题(含答案)

南陵县2023—2024学年度第一学期义务教育学校期末考试七年级数学(试题卷)注意事项:1.试卷满分为100分,考试时间为100分钟。

2.本试卷包括“试题卷”和“答题卷”两部分。

3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4.考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10个小题,每小题3分,满分30分.)1.2023-的相反数是( ) A .2023 B .12023-C .12023D .2023-2.下列说法正确的是( ) A .23vt-的系数是-2 B .233ab 的次数是6次C .21x x +-的常数项为1D .5x y+是多项式 3.下列运用等式的性质对等式进行的变形中,错误的是( ) A .若ac bc =,则a b = B .若a b =,则()()2211a x b x +=+C .若a bc c=,则a b = D .若a b =,则11a b -=-4.如图,将图中的纸片折起来可以做成一个正方体,这个正方体“文”字所在面的对面字是( )第4题图 A .创B .明C .市D .城5.若21103x y ⎛⎫++-= ⎪⎝⎭,则32x y +的值是( )A .19B .89C .89-D .19- 6.下列说法错误的是( )A .一枚硬币在光滑的桌面上快速旋转,像形成一个球,用“面动成体”来解释B .流星划过天空时留下一道明亮的光线,用“线动成面”来解释C .把弯曲的公路改直,就能缩短路程,用“两点之间线段最短”来解释D .将一根细木条固定在墙上,至少需要两个钉子,用“两点确定一条直线”来解释7.一件夹克衫先按成本提高50%标价,再以8折出售,获利28元.这件夹克衫的成本是( ) A .210元B .28元C .168元D .140元8.幻方的历史悠久,传说最早出现在夏禹时代的“洛书”(如图1),把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图2),其每行、每列及每条对角线上的三个格子中的数字之和都等于15.图3也是一个三阶幻方,其每行、每列及每条对角线上的三个格子中的数字之和都等于s ,则此三阶幻方中s 的值为( )第8题图A .34B .36C .42D .439.如图,将一张长方形纸片ABCD 沿对角线BD 折叠后,点C 落在点E 处,BE 交AD 于点F ,再将DEF △沿DF 折叠后,点E 落在点G 处,若DG 刚好平分ADB ∠,则BDC ∠的度数为( )第9题图A .54°B .55°C .56°D .57°10.已知关于x 的方程5kx x =-的解是负整数,那么整数k 的所有取值之和为( ) A .4B .0C .-4D .-8二、填空题(本大题共6个小题,每小题3分,满分18分.)11.如果水位升高7米记作7+米,那么水位下降8米就可以记作______米.12.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为2.5亿亩.将250000000用科学记数法表示为2.510n ⨯,则n =______.13.若多项式32641x x x -+-与多项式323253x mx x +-+的和不含二次项,则m =______.14.在钟面上,3时30分的时候,分针和时针所夹的锐角是______度.15.如图,在数轴上,A 、B 两点同时从原点O 出发,分别以每秒2个单位和4个单位的速度向右运动,运动的时间为t ,若线段AB 上(含线段端点)恰好有4个整数点,则时间t 的最小值是______.第15题图16.将一列有理数-1,2,-3,4,-5,6…如图所示有序排列,4所在位置为峰1,-9所在位置为峰2….第16题图(1)处在峰5位置的有理数是______;(2)2024应排在A ,B ,C ,D ,E 中______的位置上.三、解答题(本大题共2个小题,第17题5分,第18题8分,满分13分.)17.计算:()21121234⎛⎫-+-⨯- ⎪⎝⎭. 18.解下列方程:(1)()34254x x x -+=+;(2)12136x x -+-=. 四、(本大题共7分.)19.已知222A a ab b =-+,222B a ab b =++. (1)化简A B +;(2)20A B C -+=,那么C 的表达式是什么?五、(本大题共7分.)20.如图,在直线上顺次取A ,B ,C 三点,点D 是线段AC 中点,2AB =cm ,7BC AB =.求线段BD 的长度.六、(本大题共7分.)21.为爱护书一般都将书本用封皮包好,现有一本如图①的数学课本,其长为26cm 、宽为18.5cm 、厚为1cm ,小红用一张长方形纸包好了这本数学书,她将封面和封底各折进去a cm ,封皮展开后如图②所示.(1)求小红所用包书纸的周长是多少?(用含a 的代数式表示,并化简) (2)若a 满足1322a -=时,请计算一下小红需要的包书纸的面积. 七、(本大题共8分)22.课本再现(1)某景点的门票价格如下表. 购票人数/人 1~50 51~100 100以上 每人门票价/元12108某校七年级(1)(2)两个班共102人去游览该景点.其中(1)班人数较少,不到50人,(2)班人数较多,有50多人,若两班都以班级为单位分别购票,则一共应付1118元,问两个班各有多少名学生? 拓展应用(2)在售票中心了解到,该景点为迎接劳动节推出了“买四赠一”的优惠活动(即每买4张12元的票可获得一张同等价值的赠票),请通过计算说明七年级(1)(2)两班作为一个团体,应选择团体购票还是参加迎接劳动节赠票方式购票更划算.八、(本大题共10分.)23.小学里我们都学过乘法分配律的逆运算:()a b a c a b c ⨯±⨯=⨯±,它在我们初中有理数运算及今后所学的数与式的运算中也适用,甚至可以推广到几何里面.如果我们把a 用12来表示,则上述式子可改成()111222b c b c ±=±,用文字可以简单地写为:两数各一半的和(差)等于这两数和(差)的一半.(1)如图①,已知线段AB 上有两点C 、D ,2AD =cm ,8AC BD ==cm ,M 、N 分别为AC 、AD 的中点,则线段MN =______cm ;K 为线段BD 的中点,则线段NK =______cm ,线段MK =______cm . (2)如图②,AOB a ∠=,OM 平分AOC ∠,ON 平分BOC ∠,求MON ∠的度数,写出解答过程.南陵县2023—2024学年度第一学期义务教育学校期末考试七年级数学参考答案一、选择题(本大题共10个小题,每小题3分,满分30分.)题号 1 2 3 4 5 6 7 8 9 10 答案ADACCBDCAD二、填空题(本大题共6个小题,每小题3分,满分18分.)11.-8 12.8 13.3 14.75 15.3216.(1)24(2分)(2)C (1分) 三、解答题(本大题共2个小题,第17题5分,第18题8分,满分13分.)17.解:原式1141234⎛⎫=+-⨯⎪⎝⎭…2分 1141212534=+⨯-⨯=.…5分18.解:(1)38204x x x --=+,…1分38420x x x --=+,…2分624x -=,…3分 4x =-…4分(2)()()2126x x --+=,…5分2226x x ---=,…6分2622x x -=++,…7分 10x =.…8分四、(本大题共7分.)19.解:(1)2222222222A B a ab b a ab b a b +=-++++=+;…3分 (2)∵20A B C -+=,∴()()2222222222222224226C B A a ab b a ab b a ab b a ab b a ab b =-=++--+=++-+-=++, 故226C a ab b =++.…7分五、(本大题共7分.)20.解:∵2AB =cm ,7BC AB =.第20题图∴2714BC =⨯=cm ,∴21416AC AB BC =+=+=cm ,…4分 ∵点D 是线段AC 中点,∴8AD =cm ,∴6BD AD AB =-=cm .六、(本大题共7分)21.解:(1)小红所用包书纸的周长:()()()()()218.52122262238222628128a a a a a ⨯++++=+++=+cm ,答:小红所用包书纸的周长为()8128a +cm ;…3分(2)解:∴1322a -=,∴1322a -=±…4分 ∴2a =或1a =-(舍去)…5分∴包书纸长为:18.5212242⨯++⨯=cm ,,包书纸宽为:262230+⨯=cm , ∴面积为:42301260⨯=cm 2,答:需要的包书纸的面积为11260cm 2.…7分七、(本大题共8分.)22.解:(1)设(1)班有x 人,则(2)班有()102x -人,由题意可得:()12101021118x x +-=,…2分解得:49x =,…3分 ∴1024953-=,(1)班有49人,(2)班有53人;…4分(2)若选择团体购票:则共需要:1028816⨯=元;…6分 若选择赠票方式购票:102520÷=…2, 则共需要:12420212984⨯⨯+⨯=元,∴七年级(1)(2)两班作为一个团体,应选择团体购票更划算…8分 八、(本大题共10分.) 23.解:(1)3;5,2;…6分(2)∵OM 平分AOC ∠,ON 平分BOC ∠, ∴12MOC AOC ∠=∠,12NOC BOC ∠=∠…7分 MON MOC NOC ∠=∠-∠…8分()1111122222AOC BOC AOC BOC AOB a =∠-∠=∠-∠=∠=.…10分。

芜湖市数学七年级上学期期末数学试题题

芜湖市数学七年级上学期期末数学试题题

芜湖市数学七年级上学期期末数学试题题一、选择题1.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( )A .1B .2C .3D .42.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a π D .94a π 3.下列方程是一元一次方程的是( )A .213+x =5xB .x 2+1=3xC .32y =y+2D .2x ﹣3y =14.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查5.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 6.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+57.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( )A .a >ab >ab 2B .ab >ab 2>aC .ab >a >ab 2D .ab <a <ab 28.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个 9.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( ) A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 10.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1 11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2或2.5B .2或10C .2.5D .212.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题13.|-3|=_________;14.若3750'A ∠=︒,则A ∠的补角的度数为__________.15.﹣213的倒数为_____,﹣213的相反数是_____. 16.15030'的补角是______.17.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)18.若2a +1与212a +互为相反数,则a =_____. 19.4是_____的算术平方根. 20.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.21.计算:3+2×(﹣4)=_____.22.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.23.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、解答题25.解方程:(1)312x +=-(2)62123x x --=- 26.解下列一元一次方程()1()23x x +=-()2()113124x x --+= 27.计算:(1)17+(﹣1.5)﹣(﹣67) (2)32÷(﹣34)+(﹣27)2×21 28.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为-200,B 点对应的数为-20,C 点对应的数为40.甲从C 点出发,以6单位/秒的速度向左运动.(1)当甲在B 点、C 点之间运动时,设运时间为x 秒,请用x 的代数式表示:甲到A 点的距离: ;甲到B 点的距离: ;甲到C 点的距离: .(2)当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向右运动,设两人在数轴上的D 点相遇,求D 点对应的数;(3)若当甲运动到B 点时,乙恰好从A 点出发,以4单位/秒的速度向左运动,设两人在数轴上的E 点相遇,求E 点对应的数.29.化简:4(m +n )﹣5(m +n )+2(m +n ).30.计算:2×(﹣4)+18÷(﹣3)3﹣(﹣5).四、压轴题31.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为 (2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.32.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+;(2)当1-≤2x <时,原式()()123x x =+--=;(3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ;(2)化简式子324x x -++.33.(阅读理解)若A ,B ,C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离的2倍,我们就称点C 是(A ,B )的优点.例如,如图①,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是(A ,B )的优点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是(A ,B )的优点,但点D 是(B ,A )的优点. (知识运用)如图②,M 、N 为数轴上两点,点M 所表示的数为﹣2,点N 所表示的数为4.(1)数 所表示的点是(M ,N )的优点;(2)如图③,A 、B 为数轴上两点,点A 所表示的数为﹣20,点B 所表示的数为40.现有一只电子蚂蚁P 从点B 出发,以4个单位每秒的速度向左运动,到达点A 停止.当t 为何值时,P 、A 和B 中恰有一个点为其余两点的优点?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据线段中点的性质,可得AC的长.【详解】解:由线段中点的性质,得AC=12AB=2.故选B.【点睛】本题考查了两点间的距离,利用了线段中点的性质.2.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94aπ,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.3.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213+x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.4.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.5.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.6.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.7.B解析:B【解析】先根据同号得正的原则判断出ab的符号,再根据不等式的基本性质判断出ab2及a的符号及大小即可.解:∵a<0,b<0,∴ab>0,又∵-1<b<0,ab>0,∴ab2<0.∵-1<b<0,∴0<b2<1,∴ab2>a,∴a<ab2<ab.故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.8.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD ∥BC ,∴∠ADC=∠DCF ,∠ADB=∠DBC ,∠CAD=∠ACB∴∠ACD=∠ADC ,∠CAD=∠ACB=∠ABC=2∠ABD ,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD ,故③正确;④∵∠BAC+∠ABC=∠ACF , ∴12∠BAC+12∠ABC=12∠ACF , ∵∠BDC+∠DBC=12∠ACF , ∴12∠BAC+12∠ABC=∠BDC+∠DBC , ∵∠DBC=12∠ABC , ∴12∠BAC=∠BDC ,即∠BDC=12∠BAC. 故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.9.C解析:C【解析】【分析】根据题意可以用代数式表示m 的2倍与n 平方的差.【详解】用代数式表示“m 的2倍与n 平方的差”是:2m-n 2,故选:C .【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.10.D解析:D【解析】【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.11.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t 值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t 的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.12.D解析:D【解析】【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.二、填空题13.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.14.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.15.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.16.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:18015030'2930'-=.故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.17.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.18.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.19.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.20.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.21.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm或4cm【解析】【分析】分两种情况讨论:①当C点在AB之间,②当C在AB延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.23.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.x+解析:416【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()1771416x x x x x +++++++=+故答案为416x +.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、解答题25.(1)1x =-;(2)6x =.【解析】【分析】(1)根据题意进行移项、系数化为1解出x 值即可;(2)根据题意进行去分母,移项、合并同类型、系数化为1解出x 值即可.【详解】解:(1) 312x +=-移项得:33x =-解得:1x =- (2) 62123x x --=- 去分母得:6424x x --=-移项得:318x -=-解得:6x =.【点睛】本题考查的是解一元一次方程的问题,解题关键在于对解方程步骤的理解:去分母、移项、合并同类项、系数化为1解出x 值即可.26.(1)2x =-;(2)32x =-【解析】【分析】(1)根据去括号、移项、合并同类项、x 系数化为1求解即可;(2)根据去分母、去括号、移项、合并同类项、x 系数化为1求解即可.【详解】解:(1)去括号得,26x x +=-,移项得,26x x +=-,合并同类项得,36x =-,系数化为1得,2x =-;(2)去分母得,2(1)12(1)1x x --+=,去括号得,2212121x x ---=,移项、合并同类项得,-1015x =,系数化为1得,32x =-. 【点睛】本题考查了一元一次方程的解法,关键是掌握正确的步骤.27.(1)﹣0.5;(2)﹣27【解析】【分析】(1)原式利用减法法则变形,结合后计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)原式=16+77﹣1.5=1﹣1.5=﹣0.5; (2)原式=﹣32×43+449 ×21=﹣2+127=﹣27 . 【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键.28.(1)240-6x ,60-6x ,6x ;(2)-128;(3)-560.【解析】【分析】(1)根据题意结合甲的速度得出甲到A 点的距离以及甲到B 点的距离和甲到C 点的距离;(2)利用甲、乙的速度结合运动方向得出等式求出答案;(3)利用甲、乙的速度结合运动方向得出等式求出答案.【详解】(1)当甲在B 点、C 点之间运动时,设运时间为x 秒,请用x 的代数式表示:甲到A 点的距离:240-6x ;甲到B 点的距离:60-6x ;甲到C 点的距离:6x .故答案为240-6x ,60-6x ,6x ;(2)设t 秒时,两人在数轴上的D 点相遇,根据题意可得:6t+4t=180,解得:t=18,则D 点对应的数为:-(18×6+20)=-128;(3)设y 秒时,两人在数轴上的E 点相遇,根据题意可得:6y-4y=180,解得:y=90,则E 点对应的数为:-(90×6+20)=-560.【点睛】此题主要考查了一元一次方程的应用,根据题意结合甲、乙运动的方向和距离得出等式是解题关键.29.m +n .【解析】【分析】把(m +n )看着一个整体,根据合并同类项法则化简即可.【详解】解:4()5()2()m n m n m n +-+++(425)()m n =+-+m n =+.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.30.﹣323. 【解析】【分析】 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:原式=﹣8﹣23+5=﹣323. 【点睛】此题考查的是有理数的混合运算..熟记有理数混合运算法则是关键. 四、压轴题31.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10. 【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a 的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52, 所以数列−4,−3,2的最佳值为52; 对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52, 所以数列−4,2,−3的最佳值为1; 对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52, 所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52, 所以数列2,−3,−4的最佳值为12 ∴数列的最佳值的最小值为223-=12, 数列可以为:−3,2,−4或2,−3,−4. 故答案为:12,−3,2,−4或2,−3,−4. (3)当22a+=1,则a =0或−4,不合题意; 当92a-+=1,则a =11或7;当a =7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意; 当972a-++=1,则a =4或10.∴a =11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.32.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.33.(1)2或10;(2)当t 为5秒、10秒或7.5秒时,P 、A 和B 中恰有一个点为其余两点的优点.【解析】【分析】(1)设所求数为x ,根据优点的定义分优点在M 、N 之间和优点在点N 右边,列出方程解方程即可;(2)根据优点的定义可知分三种情况:①P 为(A ,B )的优点;②P 为(B ,A )的优点;③B 为(A ,P )的优点.设点P 表示的数为x ,根据优点的定义列出方程,进而得出t 的值.【详解】解:(1)设所求数为x ,当优点在M 、N 之间时,由题意得x ﹣(﹣2)=2(4﹣x ),解得x=2;当优点在点N 右边时,由题意得x ﹣(﹣2)=2(x ﹣4),解得:x=10;故答案为:2或10;(2)设点P 表示的数为x ,则PA=x+20,PB=40﹣x ,AB=40﹣(﹣20)=60,分三种情况:①P 为(A ,B )的优点.由题意,得PA=2PB ,即x ﹣(﹣20)=2(40﹣x ),解得x=20,∴t=(40﹣20)÷4=5(秒);②P 为(B ,A )的优点.由题意,得PB=2PA ,即40﹣x=2(x+20),∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.【点睛】本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。

芜湖市初一上学期数学期末试卷带答案

芜湖市初一上学期数学期末试卷带答案

芜湖市初一上学期数学期末试卷带答案一、选择题1.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°2.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b3.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是( ) A .两点之间线段最短 B .两点确定一条直线C .垂线段最短D .两点之间直线最短4.下列每对数中,相等的一对是( )A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)3 5.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x -+ 6.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使得每天的工作效率是原来的两倍,结果共用了6天完成了任务,若设该厂原来每天加工x个零件,则由题意可列出方程()A .10050062x x += B .1005006x 2x += C .10040062x x += D .1004006x 2x+= 7.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 8.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( )A .8cmB .2cmC .8cm 或2cmD .以上答案不对 9.已知a =b ,则下列等式不成立的是( )A .a+1=b+1B .1﹣a =1﹣bC .3a =3bD .2﹣3a =3b ﹣2 10.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A .向西走3米B .向北走3米C .向东走3米D .向南走3米 12.已知∠A =60°,则∠A 的补角是( )A .30°B .60°C .120°D .180° 二、填空题13.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.14.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.15.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.16.|-3|=_________;17.当a=_____时,分式13a a --的值为0. 18.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.19.如果向东走60m 记为60m +,那么向西走80m 应记为______m.20.若a a -=,则a 应满足的条件为______.21.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.22.当x= 时,多项式3(2-x )和2(3+x )的值相等.23.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.24.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______三、压轴题25.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ;(2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.26.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.27.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.28.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.29.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.30.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.31.如图所示,已知数轴上A ,B 两点对应的数分别为-2,4,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A ,B 的距离相等,求点P 对应的数x 的值.(2)数轴上是否存在点P ,使点P 到点A ,B 的距离之和为8?若存在,请求出x 的值;若不存在,说明理由.(3)点A ,B 分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P 以5个单位长度/分的速度从O 点向左运动.当遇到A 时,点P 立即以同样的速度向右运动,并不停地往返于点A 与点B 之间.当点A 与点B 重合时,点P 经过的总路程是多少?32.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______;(2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.2.D解析:D【解析】【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a <0<b ,∴ab <0,即-ab >0又∵|a |>|b |,∴a <﹣b .故选:D .【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.3.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B.4.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.5.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.【详解】 解:原式=22x y x y x y y x++-=--,故选:A.【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.6.D解析:D【解析】【分析】根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400套用的时间=6即可列出方程.【详解】设该厂原来每天加工x个零件,根据题意得:1004006 x2x+=故选:D.【点睛】此题考查了由实际问题抽象出分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.C解析:C【解析】【分析】根据题意可以用代数式表示m的2倍与n平方的差.【详解】用代数式表示“m的2倍与n平方的差”是:2m-n2,故选:C.【点睛】本题考查了列代数式,解题的关键是明确题意,列出相应的代数式.8.C解析:C【解析】【分析】根据题意分两种情况讨论:①当点C在线段AB上时,②当点C在线段AB的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.9.D解析:D【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A、∵a=b,∴a+1=b+1,故本选项正确;B、∵a=b,∴﹣a=﹣b,∴1﹣a=1﹣b,故本选项正确;C、∵a=b,∴3a=3b,故本选项正确;D、∵a=b,∴﹣a=﹣b,∴﹣3a=﹣3b,∴2﹣3a=2﹣3b,故本选项错误.故选:D.【点睛】本题考查了等式的性质,掌握等式的基本性质是解答此题的关键.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 11.A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.12.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.二、填空题13.2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx2+5y2﹣2x2+3=(m﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.14.5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.16.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.17.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式解析:1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.18.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.19.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.【解析】【分析】根据绝对值的定义和性质求解可得.【详解】解:,,故答案为.【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.≥解析:a0【解析】【分析】根据绝对值的定义和性质求解可得.【详解】-=,解:a a∴≥,a0≥.故答案为a0【点睛】本题考查绝对值,解题的关键是熟练掌握绝对值的定义和性质.21.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.22.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.23.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.24.①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概解析:①③④【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】①这10000名考生的数学中考成绩的全体是总体,正确;②每个考生的数学中考成绩是个体,故原说法错误;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.三、压轴题25.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x =40或12﹣x =﹣40,解得:x =﹣28或x =52.(3)根据题意可得:A 1A 20=19A 3A 4=76.设线段MN 的运动速度为v 单位/秒,依题意,得:9v =76+5,解得:v =9.答:线段MN 的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A 3A 4的长度及a 2的值;(2)由(1)的结论,找出关于x 的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.26.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6, t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-. 解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.28.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.29.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.30.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,31.(1)x=1;(2) x =-3或x =5;(3) 30.【解析】【分析】(1)根据题意可得4-x =x -(-2),解出x 的值;(2)此题分为两种情况,当点P 在B 的右边时,当点P 在B 的左边时,分别列出方程求解即可;(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x 进而求出即可.【详解】(1)4-x =x -(-2),解得:x =1,(2)①当点P 在B 的右边时得:x -(-2)+x -4=8,解得:x =5,②当点P 在B 的左边时得:-2-x +4-x =8,解得:x =-3,则x =-3或x =5.(3)设经过x 分钟点A 与点B 重合,根据题意得:2x =6+x ,解得:x =6,则5x =30,故答案为30个单位长度.【点睛】本题主要考查了一元二次方程的应用,解此题的要点在于根据数轴得出点的位置. 32.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P 在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。

芜湖市七年级上学期期末数学试题题及答案

芜湖市七年级上学期期末数学试题题及答案

芜湖市七年级上学期期末数学试题题及答案一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( ) A .0.65×108B .6.5×107C .6.5×108D .65×1062.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=4.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上5.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .16.﹣3的相反数是( ) A .13-B .13C .3-D .37.下列各数中,有理数是( )A.2B.πC.3.14 D.378.已知∠A=60°,则∠A的补角是()A.30°B.60°C.120°D.180°9.下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=110.如图的几何体,从上向下看,看到的是()A.B.C.D.11.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚12.下列计算正确的是()A.3a+2b=5ab B.4m2n-2mn2=2mnC.-12x+7x=-5x D.5y2-3y2=2二、填空题13.如果实数a,b满足(a-3)2+|b+1|=0,那么a b=__________.14.若x=2是关于x的方程5x+a=3(x+3)的解,则a的值是_____.15.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单日期交易明细-10.16乘坐公交¥ 4.00+10.17转帐收入¥200.00-10.18体育用品¥64.00-10.19零食¥82.00-10.20餐费¥100.0016.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 17.分解因式: 22xy xy +=_ ___________18.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为_________.19.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.20.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.21.﹣225ab π是_____次单项式,系数是_____.22.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.23.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.24.3.6=_____________________′三、解答题25.先化简后求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy ,其中x =﹣2,y =1. 26.(1)求出下列各数:①2的算术平方根;②﹣27的立方根;③16的平方根. (2)将(1)中求出的每个数准确地表示在数轴上,将这些数按从小到大的顺序排列,并用“<”连接.27.计算: -22×(-9)+16÷(-2)3-│-4×5│ 28.解方程:(1)3723x x --=+ (2)123126x x+--=- 29.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A 落在A '处,BC 为折痕.若54ABC ∠=︒,求'A BD ∠的度数;(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD 边与BA 重合,折痕为BE ,如图2所示,求CBE ∠的度数.30.如图,数轴上的点A ,B ,C ,D ,E 对应的数分别为a ,b ,c ,d ,e ,(1)化简:|a ﹣c |﹣2|b ﹣a |﹣|b ﹣c |;(2)若这五个点满足每相邻两个点之间的距离都相等,且|a |=|e |,|b |=3,直接写出b ﹣e 的值.四、压轴题31.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.详解:65 000 000=6.5×107.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.4.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.5.B解析:B 【解析】 【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.6.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.7.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. 是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.8.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.9.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.10.A解析:A【解析】【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A符合题意,故选:A.【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.11.A解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元. 考点:一元一次方程的应用12.C解析:C 【解析】试题解析:A.不是同类项,不能合并.故错误. B. 不是同类项,不能合并.故错误. C.正确.D.222 532.y y y -=故错误. 故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.二、填空题 13.-1; 【解析】解:由题意得:a-3=0,b+1=0,解得:a=3,b=-1,∴=-1. 故答案为-1. 点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.解析:-1; 【解析】解:由题意得:a -3=0,b +1=0,解得:a =3,b =-1,∴3(1)a b =-=-1. 故答案为-1.点睛:本题考查了非负数的性质:几个非负数的和为0,则每个非负数都为0.14.5 【解析】 【分析】把x =2代入方程求出a 的值即可. 【详解】解:∵关于x 的方程5x+a =3(x+3)的解是x =2, ∴10+a =15, ∴a =5, 故答案为5. 【点睛】本题考查了方程的解解析:5 【解析】 【分析】把x =2代入方程求出a 的值即可. 【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.15.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 16.三【解析】【分析】由题意设原价为x,分别对三个方案进行列式即可比较得出提价最多的方案. 【详解】解:设原价为x,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x,分别对三个方案进行列式即可比较得出提价最多的方案.解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.17.【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本解析:xy(2y 1)+【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键. 18.6×【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 0解析:6×910【解析】试题解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.20.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.21.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 22.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x +3x=7,则原式=2(2x +3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键23.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.24.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.三、解答题25.﹣x2y,﹣4.【解析】【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【详解】解:2(x2y+xy)﹣3(x2y﹣xy)﹣5xy=2x2y+2xy﹣3x2y+3xy﹣5xy=﹣x2y,当x=﹣2,y=1时,原式=﹣(-2)2×1=﹣4.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.26.(1)①2;②-3;③±2;(2)图见解析,﹣3<﹣2<2<2.【解析】【分析】(1)利用算术平方根、平方根、立方根定义计算即可求出;(2)将各数表示在数轴上,按照从小到大顺序排列即可.【详解】解(1)①2的算术平方根是2;②﹣27的立方根是﹣3;③16=4,4的平方根是±2.(2)将(1)中求出的每个数表示在数轴上如下:用“<”连接为:﹣3<﹣22<2.【点睛】此题考查了实数大小比较,以及实数与数轴,熟练掌握运算法则是解本题的关键.27.【解析】【分析】有理数的混合运算,按照先算乘方,再算乘除,后算乘方的顺序计算.【详解】原式= -4×(-9) +16÷(-8) -│-20│=36-2-20 = 14【点睛】本题考查了有理数的混合运算,按照先算乘方,再算乘除,后算乘方的顺序计算,计算时注意-22=-4,(-2)3=-8.28.(1)2x =-;(2)76- 【解析】【分析】(1)按照移项,合并同类项,系数化为1的步骤解答即可;(2)先去分母,然后去括号,移项,合并同类项,系数化为1即可.【详解】解:(1)-3x -2x =3+7-5x =10x =-2;(2)3(x +1)-(2-3x )=-63x +3-2+3x =-63x +3x =-6-3+26x =-7x =76-. 【点睛】本题考查了一元一次方程的解法,熟记解法的一般步骤是解决此题的关键.29.(1)72°;(2)90°【解析】【分析】(1)由折叠的性质可得∠A ′BC =∠ABC =54°,由平角的定义可得∠A ′BD =180°-∠ABC -∠A ′BC ,可得结果;(2)由(1)的结论可得∠DBD ′=72°,由折叠的性质可得∠2=12∠DBD ′=12×72°=36°,由角平分线的性质可得∠1=54°,再相加即可求解.【详解】 解:(1)54ABC =︒∠,54A BC ABC '∴∠=∠=︒,180A BD ABC A BC ''∠=︒-∠-∠ 1805454︒=︒--︒72=︒;(2)由(1)的结论可得72DBD '∠=︒,112723622DBD '∴∠=∠==︒⨯︒,108ABD '∠=︒,1111085422ABD '∠=∠=⨯︒=︒, 1290CBE ∠=∠+∠=︒.【点睛】本题主要考查了角平分线的定义,根据角平分线的定义得出角的关系是解答此题的关键.30.(1)a ﹣b +c ﹣d ;(2)-9【解析】【分析】(1)由数轴可得a <b <c <d <e ,然后可得a ﹣c <0,b ﹣a >0,b ﹣d <0并去掉绝对值最后合并同类项即可;(2)先确定b 、e 的值,然后再代入求值即可.【详解】解:(1)从数轴可知:a <b <c <d <e ,∴a ﹣c <0,b ﹣a >0,b ﹣d <0,原式=|a ﹣c |﹣2|b ﹣a |﹣|b ﹣d |=﹣a +c ﹣2(b ﹣a )﹣(d ﹣b )=﹣a +c ﹣2b +2a ﹣d +b=a ﹣b +c ﹣d ;(2)∵|a |=|e |,∴a 、e 互为相反数,∵|b |=3,这五个点满足每相邻两个点之间的距离都相等,∴b =﹣3,e =6,∴b ﹣e =﹣3﹣6=﹣9.【点睛】本题考查了数轴、绝对值、相反数、有理数的大小比较等知识点,通过数轴确定a <b <c <d <e 是解此题的关键.四、压轴题31.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC 即可,把∠AOC 、∠BOC 、∠AOB 相加即可求出射线OA ,OB ,OC 组成的所有小于平角的和;(2)依题意设∠2=x ,列等式,解方程求出即可;(3)依据题意求出∠BOM ,∠COM ,再根据角平分线的性质得出∠MOE ,∠MOF ,即可求出∠EOF .【详解】解:(1)∵∠BOC =30°,∠AOB =45°,∴∠AOC =75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D 、E 分别是AC 和BC 的中点,∴DE=CD+CE=12(AC+BC )=12AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;(3)①当OC 在∠AOB 内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。

芜湖市初一上学期数学期末试卷带答案

芜湖市初一上学期数学期末试卷带答案

芜湖市初一上学期数学期末试卷带答案一、选择题1.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .2.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟B .35分钟C .42011分钟 D .36011分钟 3.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠5.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒6.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是()A.171 B.190 C.210 D.3807.已知2a﹣b=3,则代数式3b﹣6a+5的值为( )A.﹣4 B.﹣5 C.﹣6 D.﹣78.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.在下边图形中,不是如图立体图形的视图是()A.B.C.D.10.已知单项式2x3y1+2m与3x n+1y3的和是单项式,则m﹣n的值是()A.3 B.﹣3 C.1 D.﹣111.如图,∠AOD=84°,∠AOB=18°,OB平分∠AOC,则∠COD的度数是()A .48°B .42°C .36°D .33° 12.已知一个多项式是三次二项式,则这个多项式可以是( )A .221x x -+B .321x +C .22x x -D .3221x x -+13.当x=3,y=2时,代数式23x y-的值是( ) A .43B .2C .0D .314.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2 B .(3a ﹣b )2 C .3a ﹣b 2 D .(a ﹣3b )2 15.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( )A .2B .4C .﹣2D .﹣4二、填空题16.已知方程22x a ax +=+的解为3x =,则a 的值为__________.17.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 18.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.19.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 20.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 21.36.35︒=__________.(用度、分、秒表示)22.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 23.如果一个数的平方根等于这个数本身,那么这个数是_____.24.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.25.﹣225ab π是_____次单项式,系数是_____.26.若2a +1与212a +互为相反数,则a =_____. 27.方程x +5=12(x +3)的解是________. 28.若523m xy +与2n x y 的和仍为单项式,则n m =__________.29.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm . 30.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题31.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.34.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?35.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.36.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.①求t值;②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.37.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.38.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 2.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3.A解析:A【解析】因为科学记数法的表达形式为:,所以9.2亿用科学记数法表示为:,故选A.点睛:本题主要考查科学记数法的表达形式,解决本题的关键是要熟练掌握科学记数法的表达形式.4.C解析:C 【解析】 【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果. 【详解】解:由图知:∠1+∠2=180°, ∴12(∠1+∠2)=90°, ∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1). 故选:C . 【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.5.D解析:D 【解析】 【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项. 【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D. 【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.6.B解析:B 【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解. 详解:∵第一个图2条直线相交,最多有1个交点, 第二个图3条直线相交最多有3个交点, 第三个图4条直线相交,最多有6个, 而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190. 故选B .点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.7.A解析:A 【解析】 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.8.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB , ∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9.C解析:C 【解析】 【分析】直接利用简单组合体的三视图进而判断得出答案. 【详解】解:A 选项为该立体图形的俯视图,不合题意;B 选项为该立体图形的主视图,不合题意;C 选项不是如图立体图形的视图,符合题意;D 选项为该立体图形的左视图,不合题意. 故选:C . 【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.10.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.11.A解析:A【解析】【分析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果.【详解】解:OB 平分AOC ∠,18AOB ∠=︒,236AOC AOB ∴∠=∠=︒,又84AOD ∠=︒, 843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.12.B解析:B【解析】A. 2x 2x 1-+是二次三项式,故此选项错误;B. 32x 1+是三次二项式,故此选项正确;C. 2x 2x -是二次二项式,故此选项错误;D. 32x 2x 1-+是三次三项式,故此选项错误;故选B.13.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果.【详解】23x y -=2323⨯-=43, 故选A【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.14.B解析:B【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b .故选B.15.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:3x ﹣9﹣3=0,解得:x =4,故选:B .【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.二、填空题16.2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.18.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a +b =0,c =﹣13,m =2或﹣2, 当m =2时,原式=2(a +b )﹣3c +2m =1+4=5; 当m =﹣2时,原式=2(a +b )﹣3c +2m =1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.19.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.20.4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则解析:4【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n,m的值,再代入代数式计算即可.【详解】解:根据题意得:2n=2,m=3,解得:n=1,m=3,则m+n=4.故答案是:4.【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程(或方程组)求解即可.21.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.22.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键23.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.24.11cm .【解析】【分析】根据点为线段的中点,可得,再根据线段的和差即可求得的长.【详解】解:∵,且,,∴,∵点为线段的中点,∴,∵,∴.故答案为:.【点睛】本题考查了两点解析:11cm .【解析】【分析】根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.【详解】解:∵DC DB BC =-,且8DB =,5CB =,∴853DC =-=,∵点D 为线段AC 的中点,∴3AD =,∵AB AD DB =+,∴3811()AB cm =+=.故答案为:11cm .【点睛】本题考查了两点间的距离,解决本题的关键是掌握线段的中点.25.三 ﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 26.﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得:去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】根据题意得: a 2a 11022+++= 去分母得:a+2+2a+1=0,移项合并得:3a =﹣3,解得:a =﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移27.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.28.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.29.4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm ,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=50×40×h ,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm ),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).故答案为:4000.此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键. 30.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、压轴题31.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.34.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.35.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)103或4(4)线段MN的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,。

芜湖市数学七年级上学期期末数学试题题

芜湖市数学七年级上学期期末数学试题题

芜湖市数学七年级上学期期末数学试题题一、选择题1.在数3,﹣3,13,13-中,最小的数为()A.﹣3 B.13C.13-D.32.如图,C为射线AB上一点,AB=30,AC比BC的14多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论:①BC=2AC;②AB=4NQ;③当PB=12BQ时,t=12,其中正确结论的个数是()A.0 B.1 C.2 D.33.-2的倒数是()A.-2 B.12-C.12D.24.若多项式229x mx++是完全平方式,则常数m的值为()A.3 B.-3 C.±3 D.+65.已知线段 AB=10cm,直线 AB 上有一点 C,且 BC=4cm,M 是线段 AC 的中点,则 AM 的长()A.7cm B.3cm C.3cm 或 7cm D.7cm 或 9cm6.﹣2020的倒数是()A.﹣2020 B.﹣12020C.2020 D.120207.方程3x﹣1=0的解是()A.x=﹣3 B.x=3 C.x=﹣13D.x=138.下列式子中,是一元一次方程的是()A.3x+1=4x B.x+2>1 C.x2-9=0 D.2x-3y=09.用代数式表示“a的3倍与b的差的平方”,正确的是()A.3(a﹣b)2B.(3a﹣b)2C.3a﹣b2D.(a﹣3b)2 10.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A.不赔不赚B.赚了9元C.赚了18元D.赔了18元11.下列计算正确的是()A.3a+2b=5ab B.4m2n-2mn2=2mnC.-12x+7x=-5x D.5y2-3y2=212.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( ) A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题13.单项式22ab -的系数是________.14.若523m x y +与2n x y 的和仍为单项式,则n m =__________. 15.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.16.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________ 17.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.18.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 19.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.20.将520000用科学记数法表示为_____.21.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.22.用度、分、秒表示24.29°=_____.23.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)24.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.三、解答题25.当x取何值时,式子13x的值比x+12的值大﹣1?26.滴滴快车是一种便捷的出行工具,其计价规则如图:(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费元;(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?27.(1)已知∠AOB=25°42′,则∠AOB的余角为,∠AOB的补角为;(2)已知∠AOB=α,∠BOC=β,OM平分∠AOB,ON平分∠BOC,用含α,β的代数式表示∠MON的大小;(3)如图,若线段OA与OB分别为同一钟表上某一时刻的时针与分针,且∠AOB=25°,则经过多少时间后,△AOB的面积第一次达到最大值.28.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为-200,B点对应的数为-20,C点对应的数为40.甲从C点出发,以6单位/秒的速度向左运动.(1)当甲在B点、C点之间运动时,设运时间为x秒,请用x的代数式表示:甲到A点的距离:;甲到B点的距离:;甲到C点的距离:.(2)当甲运动到B点时,乙恰好从A点出发,以4单位/秒的速度向右运动,设两人在数轴上的D点相遇,求D点对应的数;(3)若当甲运动到B点时,乙恰好从A点出发,以4单位/秒的速度向左运动,设两人在数轴上的E点相遇,求E点对应的数.29.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.30.如图,在平面直角坐标系中,已知△ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.(1)直接写出点C的坐标.(2)在y轴上是否存在点P,使得S△POB=23S△ABC若存在,求出点P的坐标;若不存在,请说明理由.(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究∠HBM,∠BMA,∠MAC之间的数量关系,并证明你的结论.四、压轴题31.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F与点G重合,求∠MEN的度数;(2)如图2,若点G在点F的右侧,且∠FEG=30°,求∠MEN的度数;(3)若∠MEN=α,请直接用含α的式子表示∠FEG的大小.32.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.33.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13>﹣3,∴在数3,﹣3,13,13中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t ﹣30=12t , t =20,不符合t >30, 综上所述,当PB =12BQ 时,t =12或20,故③错误; 故选:C .【点睛】本题考查两点间的距离,解题的关键是求出P 到达B 点时的时间,以及点P 与Q 重合时的时间,涉及分类讨论的思想.3.B解析:B 【解析】 【分析】根据倒数的定义求解. 【详解】 -2的倒数是-12故选B 【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握4.C解析:C 【解析】 【分析】利用完全平方式的结构特征即可求出m 的值. 【详解】解:∵多项式2222923x mx x mx ++=++是完全平方式, ∴2m =±6, 解得:m =±3, 故选:C . 【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.5.C解析:C 【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm.综上所述,线段AM的长为3cm或7cm.故选C.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.6.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是1 2020 ,故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.7.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x ﹣1=0,移项得:3x =1,解得:x =13, 故选:D .【点睛】 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.A解析:A【解析】A. 3x+1=4x 是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x 2−9=0是一元二次方程,故本选项错误;D. 2x −3y=0是二元一次方程,故本选项错误。

2023届安徽省芜湖市数学七上期末复习检测试题含解析

2023届安徽省芜湖市数学七上期末复习检测试题含解析

2022-2023学年七上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用x 张铝片制作瓶身,则可列方程( )A .1645(100)x x =-B .1645(50)x x =-C .21645(100)x x ⨯=-D .16245(100)x x =⨯-2.若ma mb =,那么下列等式不一定成立的是( )A .22ma mb +=+B .a b =C .ma mb -=-D .66ma mb -=-3.某台电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( ) A .26-℃ B .22-℃ C .18-℃ D .16-℃4.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m ﹣1;②1014043n n ++=;③1014043n n --=;④40m+10=43m+1,其中正确的是( ) A .①② B .②④ C .②③ D .③④5.十年来,我国知识产权战略实施取得显著成就,全国著作权登记计量已达到2748000件.将数据2748000用科学记数法表示为( )A .3274810⨯B .4274.810⨯C .62.74810⨯D .70.274810⨯6.下列代数式中符合书写要求的是( )A .4abB .143xC .x y ÷D .52a - 7.把如图折成正方体后,如果相对面所对应的值相等,那么xy 的值为( )A .15B .3C .5D .-38.下列结论正确的是( )A .﹣3ab 2和b 2a 是同类项B .2π不是单项式C .a 比﹣a 大D .2是方程2x+1=4的解9.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为( ) A .62510⨯ B .62.510⨯ C .72.510⨯ D .70.2510⨯10.一个正方体的体积扩大为原来的27倍,则它的棱长变为原来的( )倍.A .2B .3C .4D .5二、填空题(本大题共有6小题,每小题3分,共18分)11.下列式子2125,,5,,8,32,3237a b s ab m y n +=++=<中,代数式有__________个. 12.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元,则前年的产值是________万元13.一艘轮船从甲码头到乙码头顺流行驶用 3 小时,从乙码头到甲码头逆流行驶用 4 小时,已知 轮船在静水中的速度为 30 千米/时,求水流的速度,若设水流的速度为x 千米/时,则可列一元一 次方程为_______. 14.将()22a a b --化为只含有正整数指数幂的形式为__________.15.一条直线上顺次有A 、C 、B 三点,线段AB 的中点为P ,线段BC 的中点为Q ,若AB =10cm ,BC =6cm ,则线段PQ 的长为_____cm . 16.若22|2|03a b ⎛⎫-+-= ⎪⎝⎭,则a b -=______. 三、解下列各题(本大题共8小题,共72分)17.(8分)足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问:(1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?18.(8分)某人为了解他所在地区的旅游情况,收集了该地区2014年到2017年每年旅游收入的有关数据,整理并绘制成折线统计图,根据图中信息,回答下列问题:(1)该地区2014年到2017年四年的年旅游平均收入是多少亿元;(2)从折线统计图中你能获得哪些信息?19.(8分)作图题:如图,已知点A,点B,直线l及l上一点M.;(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN MA(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并说出画图的依据.20.(8分)如图,数轴上有A,B两点,AB=18,原点O是线段AB上的一点,OA=2OB.(1)求出A,B两点所表示的数;(2)若点C是线段AO上一点,且满足AC=CO+CB,求C点所表示的数;(3)若点E以3个单位长度/秒的速度从点A沿数轴向点B方向匀速运动,同时点F以1个单位长度/秒的速度从点B沿数轴向右匀速运动,并设运动时间为t秒,问t为多少时,E、F两点重合.并求出此时数轴上所表示的数.21.(8分)用白铁皮做罐头盒,每张铁片可制盒身16 个或制盒底43 个,一个盒身与两个盒底配成一套罐头盒,现有150 张白铁皮,用多少张制盒身,多少张制盒底,可以正好制成整套罐头盒?22.(10分)将网格中相邻的两个数分别加上同一个数,称为一步变换.比如,我们可以用三步变换将网格1变成网格2,变换过程如图:(1)用两步变换将网格3变成网格4,请在网格中填写第一步变换后的结果;(2)若网格5经过三步变换可以变成网格6,求x 的值(不用填写网格);(3)若网格7经过若干步变换可以变成网格8,请直接写出a 、b 之间满足的关系.23.(10分)已知ACB △和ECD 都是等腰直角三角形,90ACB ECD ∠=∠=︒.(1)若D 为ACB △内部一点,如图,AE BD =吗?说明理由.(2)若D 为AB 边上一点,5AD =,12BD = ,求DE 的长.24.(12分)如图,数轴上的三点A 、B 、C 分别表示有理数a 、b 、c ,且|a|>|c|>|b|.(1)化简|a+c|﹣2|c ﹣b|;(2)若b 的倒数是它本身,且AB :BO :OC =6:2:3,求(1)中代数式的值.参考答案一、选择题(每小题3分,共30分)1、C【分析】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,可作瓶身16x 个,瓶底()45100x -个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,依题意可列方程()21645100x x ⨯=-故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.2、B【解析】试题解析:0m =时,a b =不一定成立.故错误.故选B.3、C【分析】就用电冰箱冷藏室的温度4℃减去比冷藏室低的温度22℃的结果就是冷冻室的温度.【详解】解:由题意,得4-22=-18℃.故答案为:C.【点睛】本题是一道有理数的减法计算题,考查了有理数减法的意义和有理数减法的法则.4、D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.考点:由实际问题抽象出一元一次方程.5、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2748000=2.748×106,故选:C.【点睛】本题考查科学计数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数;正确确定a和n 的值是解题关键.6、D【分析】根据代数式的书写规范逐项排查即可.【详解】解:A、不符合书写要求,应为4ab,故此选项不符合题意;B、不符合书写要求,应为133x,故此选项不符合题意;C、不符合书写要求,应为xy,故此选项不符合题意;D、52a符合书写要求,故此选项符合题意.故选:D.【点睛】本题考查了代数式的书写规范,书写代数式要关注以下几点:①在代数式中出现的乘号,通常简写成“·”或者省略不写;②数字与字母相乘时,数字要写在字母的前面;③在代数式中出现的除法运算,一般按照分数的写法来写、带分数也要写成假分数.7、B【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体的表面展开图的“相间、Z 端是对面”可得,“y”与“3”相对,“x”与“1”相对,∴xy=3,故选:B .【点睛】本题考查正方体的展开与折叠,掌握正方体表面展开图的特征是正确判断的前提.8、A【解析】选项A. 23ab -和2b a 是同类项,正确.选项 B. π2是单项式.错误. 选项C.因为a =0, a =a -.错误.选项 D. 2代入方程22154⨯+=≠.错误.故选A.9、B【分析】由题意根据把一个大于10的数写成科学记数法a ×10n 的形式时,将小数点放到左边第一个不为0的数位后作为a ,把整数位数减1作为n ,从而确定它的科学记数法形式.【详解】解:2 500 000=62.510⨯平方千米.故选:B .【点睛】本题考查科学记数法,注意掌握将一个绝对值较大的数写成科学记数法a ×10n 的形式时,其中1≤|a|<10,n 为比整数位数少1的数.10、B【分析】根据正方体的体积公式解答.【详解】解:设原来正方体的棱长为a ,则原来正方体的体积为3a ,由题意可得现在正方体的体积为327a ,3a =,∴现在正方体的棱长为3a ,故选:B .【点睛】本题考查立方根的应用,熟练掌握立方根的意义及正方体的体积计算方法是解题关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、4【分析】根据代数式的定义:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式,单独的一个数或字母也是属于代数式,进行判断即可得解. 【详解】2,5,,83a b m y ++属于代数式, 故答案为:4.【点睛】本题主要考查了代数式的概念,熟练掌握代数式的区分方法是解决本题的关键.12、1【分析】设前年的产值是x 万元,根据题意可得去年的产值是1.5x 万元,今年的产值是1.523x x ⨯=万元,再根据这三年的总产值为550万元,列出方程求解即可.【详解】解:设前年的产值是x 万元,由题意得1.5 1.52550x x x ++⨯=,解得:100x =.故答案为:1.【点睛】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出等量关系列出方程解决问题.13、3(30)4(30)x x +=-【分析】设水流的速度为x 千米/时,则顺流行驶的速度为(x+30)千米/时,逆流行驶的速度为(30-x )千米/时,根据路程=速度×时间结合甲码头到乙码头的路程不变,即可得出关于x 的一元一次方程,此题得解.【详解】设水流的速度为x 千米/时,则顺流行驶的速度为(x+30)千米/时,逆流行驶的速度为(30-x )千米/时, 依题意,得:3(30+x )=4(30-x ).故答案为:3(30+x )=4(30-x ).【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.14、()22a a b -【分析】根据负整数指数幂的意义转化为分式的乘法解答即可.【详解】()22a a b --=()221a a b ⨯-=()22a a b -.故答案为:()22a a b -.【点睛】 本题考查了负整数指数幂的运算,任何不等于0的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.15、1.【分析】由线段的中点的定义得出PB =12AB=5cm ,BQ=12BC=3cm ,PQ=PB-BQ ,即可求出结果. 【详解】解:如图所示:∵线段AB 的中点为P ,线段BC 的中点为Q ,AB =10cm ,BC =6cm ,∴PB =12AB =5cm ,BQ =12BC =3cm , ∴PQ =PB ﹣BQ =1cm ;故答案为:1.【点睛】本题考查了两点间的距离,线段中点的知识,熟练掌握线段中点的定义是解决本题的关键.线段上的一点把线段分成相等的两部分,这个点叫做线段的中点.16、-49【分析】根据绝对值和平方的非负数性质可求出a 、b 的值,即可得答案.【详解】∵22|2|03a b ⎛⎫-+-= ⎪⎝⎭, ∴a-2=0,23-b=0, 解得:a=2,b=23, ∴a b -=-(23)2=49-,故答案为:4 9【点睛】本题考查了绝对值和平方的非负数性质,两个非负数的和为0,则这两个非负数分别为0.熟练掌握非负数的性质是解题关键.三、解下列各题(本大题共8小题,共72分)17、(1)前8场比赛中胜了1场;(2)这支球队打满14场后最高得31分;(3)在后6场比赛中这个球队至少胜3场.【分析】(1)设这个球队胜x场,则平(8﹣1﹣x)场,根据题意可得等量关系:胜场得分+平场得分=17分,根据等量关系列出方程,再解即可;(2)由题意得:前8场得17分,后6场全部胜,求和即可;(3)根据题意可列出不等式进行分组讨论可解答.由已知比赛8场得分17分,可知后6场比赛得分不低于12分就可以,所以胜场≥4一定可以达标,而如果胜场是3场,平场是3场,得分3×3+3×1=12刚好也行,因此在以后的比赛中至少要胜3场.【详解】(1)设这个球队胜x场,则平(8﹣1﹣x)场,依题意可得3x+(8﹣1﹣x)=17,解得x=1.答:这支球队共胜了1场;(2)打满14场最高得分17+(14﹣8)×3=31(分).答:最高能得31分;(3)由题意可知,在以后的6场比赛中,只要得分不低于12分即可,所以胜场不少于4场,一定可达到预定目标.而胜3场,平3场,正好也达到预定目标.因此在以后的比赛中至少要胜3场.答:至少胜3场.【点睛】本题考查了一元一次方程的应用、逻辑分析.根据题意准确的列出方程和不等关系,通过分析即可求解,要把所有的情况都考虑进去是解题的关键.18、(1)年旅游平均收入55亿元;(2)见解析.【分析】(1)从折线统计图中得到四年的年旅游平均收入,然后计算它们的算术平方数即可;(2)可从每年的增长量求解.【详解】(1)年旅游平均收入:20+40+60+100=554亿元(2)从折线统计图可得到:①该地区从2014年到2017年,每年的年旅游收入逐年增加;②2014年到2015年与2015年到2016年的年旅游收入增长量相等;③2016年到2017年的年旅游收入增长速度最快【点睛】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.特点:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.19、(1)见详解;(2)见详解,依据:两点之间,线段最短..【分析】(1)以点M为圆心,MA为半径画弧交直线l于一点,即为点N;(2)依据两点之间线段最短,连接AB,交直线l于一点,即为点O,此时点O到点A与点O到点B的距离之和最短. 【详解】解:(1)如图,点N即为所求.(2)如图,点O即为所求.依据:两点之间,线段最短.【点睛】本题考查了直线、线段、射线,熟练掌握线段的相关性质是准确作图的关键.20、(1)A,B两点所表示的数分别是﹣12,6;(2)C点所表示的数是﹣2;(3)t=9时,E、F两点重合,数轴上所表示的数为1.【解析】(1)由OA=2OB,OA+OB=18即可求出OA、OB;(2)设OC=x,则AC=12﹣x,BC=6+x,根据AC=CO+CB列出方程即可解决;(3)由点E运动路程=18+点F运动路程,可列方程,可求t的值.【详解】解:(1)∵OA+OB=AB=18,且OA=2OB∴OB=6,OA=12,∴A,B两点所表示的数分别是﹣12,6;(2)设OC=x,则AC=12﹣x,BC=6+x,∵AC=CO+CB,∴12﹣x=x+6+x,∴x=2,∴OC=2,∴C点所表示的数是﹣2;(3)根据题意得:3t=18+t,∴t=9∴当t=9时,E、F两点重合,此时数轴上所表示的数为OB+9=6+9=1.【点睛】考查一元一次方程的应用,实数与数轴以及数轴上两点之间距离公式的运用,找等量关系列出方程是解决问题的关键,属于中考常考题型.21、用86张制盒身,64张制盒底【分析】设用x张制盒身,则(150-x)张制盒底,根据题意可知题目中的等量关系:制盒身铁皮的张数×每张铁皮可制盒身的个数×2=制盒底铁皮的张数×每张铁皮可制盒底的个数,据此解答.【详解】解:设用x张制盒身,则(150-x)张制盒底,根据题意得:16x×2=43(150-x),解得x=86,所以150-x=150-86=64(张),答:用86张制盒身,则64张制盒底.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.22、(1)第一行:1,-6;第二行:1,-5;(2)23x ;(3)2a+3b=1.【分析】(1)根据第一步第一行减2,第二步第二列加6即可得解;(2)根据第一步第二列上的数都减去2x,第二步第一列上的数都加2,第三步第一行上的数都减去(1-2x)可得方程(x+1)-(1-2x)=2,解方程即可得解;(3)根据第一步第二列上的数都减去a,第二步第一列上的数都减去(1-3b),第三步第一行上的数都减去(b-2-a)可得等式,整理后可得解.【详解】解:(1)第一步:第一行减去2,得第二步第二列加6,得(2)第一步第二列上的数都减去2x,得:第二步第一列上的数都加2,得 :第三步第一行上的数都减去(1-2x),得:∴(x+1)-(1-2x)=2,解得,23x ;(3)第一步第二列上的数都减去a,得:第二步第一列上的数都减去(1-3b),第三步第一行上的数都减去(b-2-a)∴a+b-(1-3b)-( b-2-a)=1整理得:2a+3b=1.【点睛】此题主要考查了数字的变化规律,整式的加减以及解一元一次方程,读懂题意,弄清数字之间的关系是解答此题的关键.23、(1)AE BD =,理由详见解;(2)13【分析】(1)通过证明ACE BCD ∆≅∆即可得解;(2)通过勾股定理进行计算即可得解.【详解】(1)AE BD =,证明:∵ACB ∆和ECD ∆都是等腰直角三角形,∴AC BC EC DC ==,,∵90ACB ECD ∠=∠=︒,∴ACB DCA DCE DCA ∠-∠=∠-∠,∴ACE BCD ∠=∠在ACB ∆和ECD ∆中AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ∆≅∆,∴AE BD =;(2)如下图所示,∵ACB ∆和ECD ∆都是等腰直角三角形,ACE BCD ∆≅∆,45EAC B ∴∠=∠=︒,45BAC ∠=︒,BD AE =,90EADEAC BAC ∴∠=∠+∠=︒,∴EAD ∆是直角三角形,∵5AD =,12BD =,∴13DE =.【点睛】本题主要考查了三角形全等的判定,等腰直角三角形的性质,勾股定理等相关内容,熟练掌握三角形全等的判定及勾股定理的计算是解决本题的关键.24、(1)﹣a﹣3c+2b;(2)-2.1【分析】(1)由已知可得|a+c|﹣2|c﹣b|=﹣a﹣c﹣2(c﹣b)化简即可;(2)由倒数的性质可得b=﹣1,再由已知可得a=﹣4,c=1.1,代入(1)的式子即可.【详解】解:(1)∵|a|>|c|>|b|,∴|a+c|﹣2|c﹣b|=﹣a﹣c﹣2(c﹣b)=﹣a﹣c﹣2c+2b=﹣a﹣3c+2b;(2)∵b的倒数是它本身,∴b=﹣1,∵AB:BO:OC=6:2:3,∴(b﹣a):(﹣b):c=6:2:3,∴(﹣1﹣a):1:c=6:2:3,∴a=﹣4,c=1.1,∴﹣a﹣3c+2b=4﹣4.1﹣2=﹣2.1.【点睛】本题考查代数值求值;熟练掌握绝对值的性质,数轴上数的特点解题是关键.。

安徽省芜湖市七年级上学期数学期末考试试卷

安徽省芜湖市七年级上学期数学期末考试试卷

安徽省芜湖市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八下·辽阳月考) 若 ,那么的取值范围是()A .B .C .D .2. (2分) (2015高二上·昌平期末) 如果、、,那么a、b、c三数的大小为()A .B .C .D .3. (2分)小敏在预习“勾股定理”,她在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为()A . 1.25×107B . 0.125×108C . 12.5×109D . 0.0125×10104. (2分) (2019六下·广饶期中) 下列说法正确的是()A . 射线比直线短B . 经过三点只能作一条直线C . 两点确定一条直线D . 两点间的线段叫两点间的距离5. (2分)计算x﹣y﹣(x+y)的结果是()A . 2x﹣2yB . ﹣2yC . ﹣2xD . 06. (2分)下列结论错误的是()A . 若a=b,则B . 若,则a=bC . 若x=3,则x2=3xD . 若ax+2=bx+2,则a=b7. (2分) (2017七下·嵊州期中) 下列计算中正确的是()A . 2x+3y=5xyB .C .D .8. (2分)下列说法中,正确的是()A . 0既是正数,又是负数B . 除0以外的数都有它的相反数C . 有理数的绝对值都是正数D . 任何一个数都有它的相反数9. (2分)一副三角板不能拼出的角的度数是(拼接时既不重叠又不留空隙)()A . 75°B . 105°C . 120°D . 125°10. (2分) (2016七上·黄岛期末) 某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A . 13x=12(x+10)+60B . 12(x+10)=13x+60C .D .二、填空题 (共8题;共8分)11. (1分) (2017七·南通期末) 若单项式的系数是a ,次数是b ,则ab的值是________.12. (1分) 0.003069=________(精确到万分位).13. (1分) (2020七上·醴陵期末) 一个角的度数为,那么这个角的余角度数为________14. (1分) (2016七上·嘉兴期末) 有理数a,b在数轴上的位置如图,化简: =________15. (1分)如果2(x+3)的值与3(1﹣x)的值互为相反数,那么x等于________16. (1分) (2018七上·武威期末) 若﹣3xm+7y2与2x5yn的和仍为单项式,则mn=________;17. (1分) (2017七上·宜兴期末) 如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________度.18. (1分)观察下面的数列:,﹣,﹣,,,,﹣,﹣,﹣,﹣,,,,,,﹣,﹣,﹣,﹣,﹣,﹣,…,这一列数中第100个数是________.三、解答题 (共8题;共70分)19. (15分) (2016七上·仙游期中) 2016年9月2日早上8点,空军航空开放活动在大房身机场举行,某特技飞行队做特技表演时,其中一架飞机起飞0.5千米后的高度变化如表:高度变化记作上升2.5千米+2.5千米下降1.2千米上升1.1千米下降1.8千米(1)完成上表;(2)飞机完成上述四个表演动作后,飞机离地面的高度是多少千米?(3)如果飞机平均上升1千米需消耗5升燃油,平均下降1千米需消耗3升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?20. (10分)(2020·北京模拟) 已知关于的方程有实数根.(1)求的取值范围;(2)若该方程有两个实数根,分别为和,当时,求的值.21. (5分) (2016八上·河西期末) 如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后送往河岸BC上,再回到P处,请画出旅游船的最短路径.22. (5分)先化简,再求值:{(a+b)2﹣(a﹣b)2}•a,其中a=﹣1,b=5.23. (5分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.24. (10分) (2019七上·萧山月考) 已知(1)分别写出a,b,c表示的数,并计算(a+b)+(b+c)+(c+a)的值;(2)设a,b,c在数轴上对应的点分别是点A,点B,点 C.若点M是线段AB上的一点,比较与MC的大小,说明理由.25. (10分)已知a+1>0,2a﹣2<0.(1)求a的取值范围;(2)若a﹣b=3,求a+b的取值范围.26. (10分)(2017·昆山模拟) “世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共70分)19-1、19-2、19-3、20-1、20-2、21-1、22-1、23-1、24-1、24-2、25-1、25-2、26-1、26-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省芜湖市七年级上学期数学期末考试试卷(五四学制)
姓名:________ 班级:________ 成绩:________
一、选择题(本大题共6小题,共12.0分) (共6题;共12分)
1. (2分)(2017·槐荫模拟) 下列计算正确的是()
A . (a5)2=a10
B . x16÷x4=x4
C . 2a2+3a2=6a4
D . b3•b3=2b3
2. (2分)在、、、中,最简分式的个数是()
A . 1个
B . 2个
C . 3个
D . 4个
3. (2分)下列等式从左边到右边的变形属于分解因式的是()
A . (ab+1)(ab﹣1)=a²b2﹣1
B . x2﹣4x+4=x(x﹣4)+4
C . x2﹣5x+6=(x﹣2)(x﹣3)
D . (x﹣y)2+(y﹣x)=(x﹣y)(x﹣y+1)
4. (2分)
把分式中的a、b都扩大2倍,则分式的值是()
A . 扩大4倍
B . 扩大2倍
C . 缩小2倍
D . 不变
5. (2分)在以下现象中,属于平移的是()
①在挡秋千的小朋友;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上,瓶装饮料的移动.
A . ①②
B . ①③
C . ②③
D . ②④
6. (2分) (2019七上·射洪期中) 若,要使,则n的值()
A . 应是偶数
B . 应是奇数
C . 奇数和偶数都不可能
D . 奇数和偶数都成立
二、填空题(本大题共12小题,共36.0分) (共12题;共36分)
7. (3分) (2019七上·闵行月考) 若分式无意义,则x的值是________.
8. (3分)若a+b=5,ab=3,则(a﹣2)(b﹣2)=________.
9. (3分)用科学记数法表示0.000695并保留两个有效数字为________.
10. (3分) (2020八上·昌平月考) 计算: =________.
11. (3分)(2012·深圳) 因式分解:a3﹣ab2=________.
12. (3分)(2020·武昌模拟) 化简:的结果是________.
13. (3分)分式的最简公分母是________.
14. (3分)(2016·贵阳模拟) 若代数式的值等于0,则x=________.
15. (3分) (2017七下·兴化月考) 已知,则 =________.
16. (3分) (2020八下·佛山期中) 已知关于 x 的方程 2 - 有增根,则k=________.
17. (3分)(2020·阜新) 如图,在中,, .将绕点B逆时针旋转60°,得到,则边的中点D与其对应点的距离是________.
18. (3分)(2019·温州) 图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO =FO=4分米.当∠AOC=90°时,点A离地面的距离AM为________分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为________分米.
三、计算题(本大题共5小题,共28.0分) (共5题;共28分)
19. (5分) (2017八上·云南月考) 计算:
(1)(﹣5a3b2)•(﹣3ab2c)•(﹣7a2b)
(2)(﹣2x3y2﹣3x2y)÷(﹣x2y)
(3)(2a+3b)(2a﹣b)
(4)102×98﹣992 .
20. (5分) (2019九上·西安期中) 计算:
21. (6分)(2019·成都) 先化简,再求值:,其中 .
22. (6分) (2019八上·伊通期末) 解分式方程: =1.
23. (6分)(2013·河南) 先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.
四、解答题(本大题共4小题,共24.0分) (共4题;共23分)
24. (6分)选择适当的方法分解下列多项式
(1)x2+9y2+4z2﹣6xy+4xz﹣12yz
(2)(a2+5a+4)(a2+5a+6)﹣120.
25. (6分)在平面直角坐标系中,△ABC是格点三角形(三角形顶点在小方格顶点上),网格中小正方形的边长为1,请解答下列问题:
(1)将△ABC向下平移3个单位得到△A1B1C1 ,作出平移后的△A1B1C1 .
(2)将△A1B1C1经过适当方式进行图形变换后得到△A2B2C2 ,使得△A2B2C2与△ABC关于原点O成中心对
称,请画出△A2B2C2 ,并说出你是如何将△A1B1C1进行图形变换后得到△A2B2C2的.
26. (5分)随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.求一台A型空气净化器和一台B型空气净化器的进价各为多少元?
27. (6分)(2017·河北) 如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O 逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧于点P,Q,且点P,Q在AB异侧,连接OP.
(1)求证:AP=BQ;
(2)当BQ=4 时,求的长(结果保留π);
(3)若△APO的外心在扇形COD的内部,求OC的取值范围.
参考答案
一、选择题(本大题共6小题,共12.0分) (共6题;共12分)答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
二、填空题(本大题共12小题,共36.0分) (共12题;共36分)答案:7-1、
考点:
解析:
答案:8-1、
考点:
解析:
答案:9-1、
考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
答案:13-1、考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、考点:
解析:
答案:18-1、
考点:
解析:
三、计算题(本大题共5小题,共28.0分) (共5题;共28分)答案:19-1、
答案:19-2、
答案:19-3、
答案:19-4、
考点:
解析:
答案:20-1、考点:
解析:
答案:21-1、考点:
解析:
答案:22-1、考点:
解析:
答案:23-1、
考点:
解析:
四、解答题(本大题共4小题,共24.0分) (共4题;共23分)
答案:24-1、
考点:
解析:
答案:25-1、
答案:25-2、
考点:
解析:
答案:26-1、考点:
解析:
答案:27-1、
答案:27-2、
答案:27-3、考点:
解析:。

相关文档
最新文档