材料冲压成形性能的衡量指标(精)

合集下载

常用冲压材料介绍

常用冲压材料介绍

上一页
上一章
下一页
下一章
返回首页
3.7、SPCE——表示深冲用冷轧碳素钢薄板及钢带,相当于中国08AL(5213)深冲钢。 需保证非时效性时,在牌号末尾加N为SPCEN。
冷轧碳素钢薄板及钢带调质代号:退火状态为A,标准调质为S,1/8硬为8,1/4硬为4, 1/2硬为2,硬为1。
表面加工代号:无光泽精轧为D,光亮精轧为B。如SPCC-SD表示标准调质、无光泽精 轧的一般用冷轧碳素薄板。再如SPCCT-SB表示标准调质、光亮加工,要求保证机械性能的 冷轧碳素薄板。
A1100-H14 A1050-H14

A1050P-H14 A5005-H34
50 23.7 27.9 45.3
42 58 12.8 11.9 12.3 16
33
66
5.8
24
10.4
37
49.6

25
60
49
84
11.7
91
11
92
11.5
93
14.6
91
上一页
上一章
下一页
下一章
延伸率
(%)
27 以上 30 以上 31 以上
3.3﹑SPHD——表示冲压用热轧钢板及钢带。
3.4、SPHE——表示深冲用热轧钢板及钢带。
3.5、SPCC——表示一般用冷轧碳素钢薄板及钢带,相当于中国Q195-215A牌号。其中 第三个字母C为冷Cold的缩写。需保证抗拉试验时,在牌号末尾加T为SPCCT。
3.6、SPCD——表示冲压用冷轧碳素钢薄板及钢带,相当于中国08AL(13237)优质碳 素结构钢。
④﹑塑性应变比(r)
它是表示板材各向异性性能的参数。由于板材在制造过程中要经历轧制与退火等工艺,结果使 板材形成结晶方位趋于一致的织构组织,在宏观上表现为各向异性,即在不同的方向上板材的性能 有一定的差异。在生产中用r值来表示板材的各向异性,其值等于对数应变表示的宽度应变b与厚度 方向应变t之比,即: r=b/t=ln(b/b0)/ln(t/t0)

板料冲压性能(五金件)

板料冲压性能(五金件)

板料冲压性能及测试--成形性能分类板料的成形性能分为广义和狭义两个内容,它们的关系是:狭义成形性能反映冲压加工中材料不发生破裂(或缩颈)所能达到的最大变形程度,故也叫抗破裂性。

冲压成形性能试验如下:板料冲压性能及测试--力学性能参数在材料的力学性能参数中,屈服强度ζs 、屈服比ζs/ζb、伸长率δ等强度指标与塑性指标,可用来表示材料的基本成形性能。

金属材料的力学性能包括强度、硬度、塑性、韧性、耐磨性和缺口敏感性等。

他们主要取决于材料的化学成分、组织结构、冶金质量、参与应力及表面和内部缺陷等内在因素,但在外在因素如载荷类型、应力状态、温度、环境介质等对材料的力学性能影响也很大。

在生产中普遍应用的、最基本的常规力学性能试验有拉伸、硬度、压缩、弯曲、剪切、冲击、扭转及高温持久强度、蠕变、松弛试验等。

板料冲压性能及测试--加工硬化指数硬化指数n(n值)是评定板料伸长类成形性能的一个重要参数。

n 值大,则拉伸失稳时的极限应变大。

这对于胀形、扩孔、内凹曲线翻边等伸长类成形来说,可以在一次成形中获得较大的极限变形程度。

n值对复杂形状零件的成形也有影响,在以胀形为主的成形工艺中,n值大的板料,成形性能好。

n值可以根据拉伸试验结果所得的硬化曲线,利用关系式ζ=cεn 来求得。

也可以利用阶梯形试件(图1),拉伸至缩颈或断裂后,由下面的公式计算得到:图1 阶梯形试样b0=12.70 bⅠ0=12.83 bⅡ0=13.97式中εⅠ、εⅡ—测量初始宽度为bⅠ0和bⅡ0工作部分的伸长应变。

板料冲压性能及测试--厚向异性系数厚向异性系数r(也叫塑性应变比r,简称r值)是评定板料压缩类成形性能的一个重要参数。

r值是板料试件单向拉伸试验中宽度应变εb与厚度应变εt之比,即r=εb /εt板料r值的大小,反映板平面方向与厚度方向应变能力的差异。

r=1时,为各向同性;r≠1时,为各向异性。

当r>1,说明板平面方向较厚度方向更容易变形,或者说板料不易变薄。

板料的冲压成形性能与成形极限

板料的冲压成形性能与成形极限

§6.1 概述
成形极限图(FLD)就是由不同应变路径下的局部极限 应变构成的曲线或条带形区域,它全面反映了板料在单向和 双向拉应作用下抵抗颈缩或破裂的能力,经常被用来分析解 决成形时的破裂问题。
§6.1 概述
全面地讲,板料的冲压成形性能包括抗破裂性、贴模性 (fitability)和定形性(shape fixability),故影响因素很多, 如材料性能、零件和冲模的几何形状与尺寸、变形条件(变 形速度、压边力、摩擦和温度等)以及冲压设备性能和操作 水平等。
§6.2 现代冲压成形的分类理论
一、各种冲压成形方法的力学特点与分类
正确的板料冲压成形工艺的分类方法,应该能够明确地 反映出每一种类型成形工艺的共性,并在此基础上提供可能 用共同的观点和方法分析、研究和解决每一类成形之艺中的 各种实际问题的条件。在各种冲压成形工艺中毛坯变形区的 应力状态和变形特点是制订工艺过程、设计模具和确定极限 变形参数的主要依据,所以只有能够充分地反映出变形毛坯 的受力与变形特点的分类方法,才可能真正具有实用的意义。
§6.2 现代冲压成形的分类理论
1、变形毛坯的分区
冲压成形时,在应力状态满足屈服准则的区域将产生塑 性变形,称为塑性变形区(A区)。不同工序,随着外力作 用方式和毛坯及模具的形状、尺寸的不同,变形区所处的部 位也不相同。应力状态不满足屈服准则的区域,不会产生塑 性变形,称为非变形区。根据变形情况,非变形区又可进一 步分为已变形区(B)、待变形区(C)和不变形区(D)。有时已变 形区和不变形区还起传力的作用,可称其为传力区(B 、C)。 图所示为拉深、翻边、缩口变形过程中毛坯各区的分布。
贴模性(fittability):板料在冲压过程中取得模具形状 的能力。
定形形(shape fixability):零件脱模后保持其在模内 既得形状的能力。

冲压材料性能要求

冲压材料性能要求
▪ ②表面光洁,无斑、无疤、无擦伤、无表面裂纹 等。一切表面缺陷都将存留在成品工件表面,裂 纹性缺陷在弯曲、拉深、成形等过程可能向深广 扩展,造成废品。
(二)冲压常用材料
冲压最常用的材料是金属板料,有时也用非 金属板料,金属板料分黑色金属和有色金属两种。 黑色金属板料按性质可分为: ▪ 1)普通碳素钢钢板 如Q195、Q235等。 ▪ 2)优质碳素结构钢钢板 这类钢板的化学成分和 力学性能都有保证。其中碳钢以低碳钢使用较多 ,常用牌号有:08、08F、10、20等,冲压性能 和焊接性能均较好,用以制造受力不大的冲压件。
▪ 机理:修整的机理与冲裁完全不同,而与切削加 工相似。 大间隙冲裁件——板厚10% 小间隙冲裁件——板厚8%以下
▪ 分类:修整冲裁件的外形称外缘修整,修 整冲裁件的内孔称内孔修整。
2、成型工序——使坯料发生塑性变形而成一定形状和尺
寸的工件。
名称 弯曲 拉深 翻边 胀形 缩口 挤压
卷圆 扩口 校形
强度σb。
(2)延伸率
▪ 如果板材的延伸率大,对所有的伸长类冲 压成形都是有利的。
▪ 当延伸率大时,胀形、翻边的成形极限也 大。
▪ 大多数的优质冲压钢都具有较高的均匀延 伸率。
(3)加工硬化n
▪ 定义:在拉伸加工过程中会使材料产生硬化现象, 这种现象,一般称为加工硬化。
▪ 原因:材料承受一定塑性变形后,在于同方向施 加负荷力将使其降伏点上升,从而增加必要的变 形抵抗以对抗塑性变形之再产生。
(3)冷挤压模材料的要求 ▪ 要求模具工作零件具有高的强度和硬度、
高的耐磨性,为避免冲击折断,还要求具 有一定的韧性。由于挤压时会产生较大的 升温,所以还应具有一定的耐热疲劳性和 热硬性。
▪ 冲压生产要求冲裁件有较大的光亮带,尽量减少 断裂区域的宽度。

模具知识点2

模具知识点2

模具知识点一、选择填空知识点整合1、冲压工序的分类:分离工序和成形工序2、影响冲压成形的性能指标:屈服强度,屈强比,伸长率,硬化指数,弹性模量,厚向异性系数,板平面各向异性系数。

A 总伸长率:拉伸试验中试样破坏时时的伸长率;B 屈强比(Ds/Db )屈强比小即Ds 与Db 之间的差值大,材料易塑形变形而不易断裂。

C 弹性模量E :弹性模量越大,在成形过程中抗压失稳能力越强,卸载后弹性恢复小,有利于提高零件的精度。

D 硬化指数n :n 值越大的材料,硬化效应越大,对伸长变形是有利的。

E 板厚方向性系数r :指宽向应变与厚向应变之比,r 越大,则板平面方向越容易变形,厚度方向较难变形,对拉伸有利。

F 板平面方向性:对冲压变形和制件的质量都是不利的,应尽量设法降低。

3、冲裁变形过程:弹性变形阶段,塑形变形阶段,断裂分离阶段。

4、落料冲裁时断面四个特征:毛刺,断裂带,光亮带,圆角带。

5、冲裁间隙对冲裁件断面质量,冲裁精度,冲裁工艺以及模具的寿命都有很大的影响,因此,在实际生产中,通常要选择一个合适的间隙范围,确定合理间隙值得方法有两种:理论确定法和经验确定法。

6、计算和确定凸、凹摸刃口尺寸及其公差时,根据冲孔和落料的特点,落料时以凹模为基准,间隙取在凸模上。

考虑凸模与凹模的磨损规律,对落料模凹模基本尺寸应取最小极限尺寸;对冲孔模凸模的基本尺寸应取最大极限尺寸。

7、根据凸、凹模的加工工艺方法的不同,刃口尺寸的计算方法可分为两种类型:凸模与凹模分别单独加工和凸模与凹模配合加工。

8、根据凸模的磨损而引起的工件尺寸变化分以下三种:凸模磨损后尺寸减小、凸模磨损后尺寸增大、凸模磨损后尺寸没有变化情况。

9、斜刃口模具冲裁时,为了不影响工件。

落料时,将凸模做成平刃口,凹模做成斜刃口。

冲孔时,将凸模做成斜刃口,凹模做成平刃口10、在设计冲裁磨具时,除了冲裁力外,还需计算的其他工艺力主要有卸料力、推件力和顶件力。

采用弹性卸料装置和上出料方式时、采用刚性卸料装置和下出料方式时的总冲裁力。

冲压材料及其冲压成型性能冲压模具变形理论基础

冲压材料及其冲压成型性能冲压模具变形理论基础

冲压材料及其冲压成型性能冲压模具变形理论基础来源:未知模具站责任编辑:模具站发表时间:2010-06-26 00:06-冲压模具变形冲压材料冲压成型性能塑胶模具五金模具锻压模具模具综合核心提示:冲压成形加工方法与其它加工方法一样,都是以自身性能作为加工依据,材料实施冲压成形加工必须有好的冲压成形性能。

1.材料的冲压成形性能材料对各种冲压加工方法的适应能力称为材料的冲压成形性能。

材料的冲压性能好,就是指其便于冲压加工,一次冲压工序的极限变形…冲压成形加工方法与其它加工方法一样,都是以自身性能作为加工依据,材料实施冲压成形加工必须有好的冲压成形性能。

1.材料的冲压成形性能材料对各种冲压加工方法的适应能力称为材料的冲压成形性能。

材料的冲压性能好,就是指其便于冲压加工,一次冲压工序的极限变形程度和总的极限变形程度大,生产率高,容易得到高质量的冲压件,模具寿命长等。

由此可见,冲压成形性能是一个综合性的概念,它涉及的因素很多,但就其主要内容来看,有两方面:一是成形极限,二是成形质量。

(1)成形极限在冲压成形过程中,材料能达到的最大变形程度称为成形极限。

对于不同的成形工艺,•成形极限是采用不同的极限变形系数来表示的。

•由于大多数冲压成形都是在板厚方向上的应力数值近似为零的平面应力状态下进行的,因此,不难分析:在变形坯料的内部,凡是受到过大拉应力作用的区域,就会使坯料局部严重变薄,甚至拉裂而使冲件报废;凡是受到过大压应力作用的区域,若超过了临界应力就会使坯料丧失稳定而起皱。

因此,从材料方面来看,为了提高成形极限,就必须提高材料的塑性指标和增强抗拉、抗压能力。

•冲压时,当作用于坯料变形区内的拉应力的绝对值最大时,在这个方向上的变形一定是伸长变形,故称这种冲压变形为伸长类变形(如胀形、扩口、内孔翻边等)。

•当作用于坯料变形区内的压应力的绝对值最大时,在这个方向上的变形一定是压缩变形,故称这种冲压变形为压缩类变形(如拉深、缩口等)。

《板材冲压成形技术》评价指标

《板材冲压成形技术》评价指标

《板材冲压成形技术》—评价指标
评价指标
本课程的考核重点放在对学生的职业能力综合评价上,考核方式采用过程考核与期末理论考核相结合的方式,过程考核占70%,期末考核占30%。

过程考核按任务进行,每个任务结束,根据学生完成学习性工作任务情况、工作态度与表现进行考核。

综合考核学生的知识运用能力、综合能力。

过程考核分值的确定原则参考下表,以40分为合格,理论考核20分为合格,如果有一项达不到要求,视为该科成绩不合格,具体考核内容详见下表。

1。

冲压材料性能要求

冲压材料性能要求

▪ 目前,可冲压的材料不仅是低碳钢,而且 还有不锈钢、铝及铝合金。
▪ 一般以含碳量≤0.25%及抗拉强度小于
650N/mm2的材料为主。
精选课件
20
冲压对金属材料的冲压性能要求:
▪ (1)具有良好的机械性能及较大的变形抗力 金属材料的机械性能是指抗拉强度、屈服强
度、延伸率、硬度、塑性、应变比等。 ▪ (2)具有理想的金相组织结构
▪ 3)低合金结构钢板 常用的如Q345 (16Mn)、Q295(09Mn2)。用以制造 有强度要求的重要冲压件。
▪ 4)电工硅钢板 如DT1、DT2。
▪ 5)不锈钢板 如1Cr18Ni9Ti,1Cr13等,用
以制造有防腐蚀防锈要求的零件。
精选课件
31
▪ 常用的有色金属有铜及铜合金(如黄铜) 等,牌号有T1、T2、H62、H68等,其塑 性、导电性与导热性均很好。
金相组织是材料的微观质量特征。它的主要 标志是:渗碳体或碳化物的球化程度。
精选课件
21
(一)冲压材料性能
精选课件
22
(1)屈服强度、抗拉强度和屈强比
▪ 抗拉强度是计算冲压加工力的基本要素。
▪ 屈服强度均匀,无明显方向性。
▪ 当屈服强度和抗拉强度高时,冲压成形力大,成 形的难度加大,而且还会降低模具的寿命。
10
340
30
7
3
35

20
200
40
100 33
25

三、冲压模具
(一)冲压模具工作零件材料的要求 ▪ 冲压模具工作时要承受冲击、振动、摩擦、
高压和拉伸、弯扭等负荷,甚至在较高的 温度下工作(如冷挤压),工作条件复杂, 易发生磨损、疲劳、断裂、变形等现象。

冲压性能及成形极限

冲压性能及成形极限

五、冲压成形性能试验方法与指标
1、胀形成形性能试验(杯突试验)(Eriohsen试验)
指标:用破裂时凸包高度IE值评价。IE值越大,胀形成形性能越好。
2、扩孔成形性能试验(KWI扩孔试验)
指标:用破裂时极限扩孔率值评价。

d f d0 d0
100%
d f d f max d f min / 2
最小相对弯曲半径=
rmin / t
5、“拉—胀”复合成形性能试验 (福井杯锥试验)
指标:用杯底破裂时杯口平均直径 评价,称为CCV值。
CCV
1 ( Dmax Dmin ) 2
六、塑性拉伸失稳理论
1、拉深失稳的概念和类型
1)分散性颈缩(Diffuse necking): 载荷开始随变形增大而减小,由 于应变硬化,这种颈缩在一定尺寸范 围内可以转移,使材料在这个范围内 产生亚稳定的塑性流动,故载荷下降 比较缓慢。肉眼观察不到。 2)集中性颈缩(Localized necking): 应变硬化不足以使颈缩转移,应 力增长率远小于承载面积的减小速度, 故载荷随变形程度的增大而急剧下降。 肉眼可以观察到。


3、拉深成形性ቤተ መጻሕፍቲ ባይዱ试验
(1)圆柱形平底凸模冲杯试验(Swift平底冲杯试验)
指标:用拉破时极限拉深比LDR评价。 LDR Dmax / d p (2)TZP试验 Ff Fmax 指标:用拉深潜力T值评价。 T 100% Ff
4、弯曲成形性能试验
指标:用外表面破裂时的最小相对弯曲半径值评价。
二、冲压成形区域划分
四种典型工艺: 拉深 刚性凸模胀形 伸长类翻边 弯曲 复杂零件的成形经 常可视为两个或两 个以上的复合
变形趋向性:拉深、平底凸模胀形、圆孔翻边及扩孔所用模具相同,但毛 坯直径不同,或预制孔直径不同,则拉深和胀形可相互转变, 胀形和扩孔翻边可相互转变,或两种变形复合。

冲压工艺--板料的冲压成形性能与成形极限

冲压工艺--板料的冲压成形性能与成形极限
六、板料的冲压成形性能与成形极限
板料基本性能与冲压成形性能的关系 衡量薄板性能的优劣,过去一般以薄板的基本 性能指标来评价,但是随着汽车、家电工业的发展, 对薄板成形性能的要求日益苛刻,从而使成形性指 标的测定越来越受到人们的重视和广泛研究。薄板 成形性(sheet metal formability),根据 BG/T15825.1-1995的定义,就是指金属薄板对 于冲压成形的适应能力。
对数式,运用最小二乘法计算应变硬化指数n。(见下式)
20%)
产品标准规定或 协商
屈服后~最大力 前(常用15%)
12.5 (20)
50 (20,25)
75
≤11.5
12.5 (20)
50 (80)
75 (120)
3~30
≤0.5P
≤0.5P
屈服后~最大 力前(常用 10%~20%)
品标准规定或 协商
3~30
≤0.5P
屈服后~最大 力前(常用 5%~15%) 屈服后~最大 力前(常用
15%)
12.5 (20)
50 (80)
75 120
≤30
(12.5,20) 25
(50,80) 50
(60,120) 60
10~30
≤0.5P
≤0.8P
屈服后~最大 力前(常用 10%~20%)
屈服后~最大 力前(常用
σs /σb
σs /σb称为屈强比,它对板材冲压性能的影 响是多方面的。σs/σb的比例越低,屈服点和抗 拉强度的差距越大,钢板在同等强度对比加工 时,对压缩类成形工艺,材料起皱趋势也小; 对伸长类成形工艺,材料定形性和贴模性好, 回弹变形也小。
冲压成形性能试验方法与指标
1)机械性能的检验 拉伸试验是一种非常普遍的机械性能试验方

冲压材料性能要求

冲压材料性能要求

冲压材料性能要求冲压材料是指通过冲压工艺将金属板材压制成所需形状的材料。

冲压材料性能的要求主要涉及到机械性能、化学成分、硬度和表面质量等方面。

下面将详细介绍冲压材料性能要求的主要内容。

1.机械性能冲压材料的机械性能主要包括强度、塑性和韧性等指标。

材料的强度要足够高,能够承受冲压过程中的各种应力,以及在使用过程中的负荷。

材料的塑性和韧性要足够好,能够在冲压过程中发生塑性变形,并且能够抵抗断裂。

2.化学成分冲压材料的化学成分要符合相关标准和要求。

材料的化学成分包括主要元素和杂质元素。

主要元素的含量要稳定,保证材料的均匀性和一致性。

杂质元素的含量要控制在合理的范围内,以防止对材料性能的不利影响。

3.硬度冲压材料的硬度是指材料在外力作用下抵抗形变和磨损能力的大小。

硬度直接影响到冲压材料的耐磨性和耐疲劳性。

对于不同的冲压工艺和应用要求,冲压材料的硬度要做出相应的调整,以确保材料能够在冲压过程中,保持形状稳定和表面质量。

4.表面质量冲压材料的表面质量是指材料表面的光洁度、平整度和无缺陷程度等指标。

冲压材料在冲压过程中,容易受到划伤、凹陷和氧化等表面缺陷的影响。

因此,冲压材料的表面质量要求要高,要求表面光滑、平整且无明显缺陷。

5.热处理性能冲压材料的热处理性能是指材料经过热处理后的组织结构和性能变化情况。

热处理可以改变材料的硬度、强度、韧性等性能,使其适应不同冲压工艺和需要。

因此,冲压材料的热处理性能也是一个重要的性能要求。

综上所述,冲压材料的性能要求主要包括机械性能、化学成分、硬度和表面质量等方面。

这些性能要求是为了确保冲压材料能够满足冲压工艺和使用要求,保证冲压零件的质量和性能。

只有选择合适的冲压材料,并对其性能进行全面的控制和调整,才能保证冲压工艺的成功进行以及冲压零件的良好使用。

第六章板料冲压成形性能

第六章板料冲压成形性能

• 定形性指零件脱模后保持其在模内既得形 状的能力。影响定形性的诸因素中,回弹 是最主要的因素,零件脱模后,常因回弹 过大而产生较大的形状误差。 • 板料的贴模和定形性好坏与否,是决定零 件形状尺寸精确度的重要因素。 • 1980年,日本学者吉田清太提出,用方板 对角拉伸(图6-53)时的起皱特性可以估 测和研究板料的贴模性和定形性,但在目 前的冲压生产和板料生产中,仍主要用抗 破裂性作为评定板料冲压成形性能的指标。
第六章 板料的冲压成形性能与成形 极限
• 板料对冲压成形工艺的适应能力叫做板料 的冲压成形性能。板料在成形过程中可能 出现两种失稳现象:一种叫拉伸失稳;表 现为板料在拉应力作用下局部出现缩颈或 破裂;另外一种叫压缩失稳,表现为板料 在压应力作用下出现皱纹。板料发生失稳 前可以达到的最大变形程度叫做成形极限。
• 2.扩孔成形性能试验 • 3.拉深成形性能试验 测定或评价板料拉深成 形性能时,常采用圆柱形平 底凸模冲杯试验(Swift平底 冲杯试验)或TZP试验(拉 深潜力试验。冲杯试验是一 种传统试验方法,但试验比 较繁杂。TZP试验方法比较 简便,但需要专用试验装置 或设备。冲杯试验和TZP试 验均可反映拉深成形性能, 但二者试验原理不同,不能 等价替代。(本课程安排冲 杯实验) 4.弯曲成形性能试验
• 一般来讲,冲压成形性能是介于材料科学 和冲压成形技术之间的一个边缘问题。冲 压成形性能除与板料的材质、组织结构和 性能有关外,冲压技术的改善也常常会使 成形性能得到提高。
二、冲压成形区域与成形性能的划分
• 生产中常将圆柱形凸模胀形、伸长类翻边(包括扩孔)、 拉伸以及弯曲视为四种最典型、最常用的冲压成形方式 (图6-1),而一些比较复杂的冲压成形方式经常可视为 它们之中的两个或两个以上的复合。例如,汽车覆盖件等 一些形状比较复杂的的零件成形,常常表现为“拉压-胀 形”复合方式(图6-2)。

冲压材料性能

冲压材料性能

冲压材料性能冲压材料是指在冲压加工过程中所使用的金属材料,其性能直接影响着冲压件的质量和成型效果。

冲压材料的性能主要包括材料的力学性能、塑性成形性能和表面质量。

下面将分别介绍这几个方面。

首先是冲压材料的力学性能。

力学性能是指材料在外力作用下所表现出的性能,包括抗拉强度、屈服强度、延伸率等指标。

这些指标直接影响着冲压件在冲压过程中的抗拉性能和变形能力,对于冲压件的成型和使用性能起着至关重要的作用。

因此,在选择冲压材料时,需要充分考虑材料的力学性能指标,以保证冲压件在使用过程中具有足够的强度和变形能力。

其次是冲压材料的塑性成形性能。

塑性成形性能是指材料在冲压加工过程中的变形能力,包括材料的冲压性能、回弹性能等指标。

优秀的塑性成形性能可以保证冲压件在成型过程中具有良好的可塑性和成形性,能够满足复杂形状的成型要求,并且在成型后能够保持稳定的形状和尺寸。

因此,冲压材料的塑性成形性能是评价材料适用性的重要指标之一。

最后是冲压材料的表面质量。

表面质量是指冲压件在成型后表面的光洁度、平整度和无损伤程度。

优秀的表面质量可以提高冲压件的外观质量和使用寿命,对于提高产品的市场竞争力和降低生产成本具有重要意义。

因此,在选择冲压材料时,需要充分考虑材料的表面质量指标,以保证冲压件在成型后具有良好的外观质量和使用性能。

综上所述,冲压材料的性能对于冲压件的质量和成型效果具有至关重要的影响。

在选择冲压材料时,需要全面考虑材料的力学性能、塑性成形性能和表面质量,以保证冲压件具有良好的力学性能、成形性能和表面质量。

只有如此,才能生产出具有优秀性能和质量的冲压件,满足市场和客户的需求。

板料冲压成形性能试验方法和指标三冷冲压材料

板料冲压成形性能试验方法和指标三冷冲压材料

拉伸曲线
三 冷冲压材料
(四)板料冲压成形性能试验方法和指标
三 冷冲压材料
(四)板料冲压成形性能试验方法和指标
拉深件的凸耳
四 冷冲压设备
(一)剪板机(剪床)
平刃剪床 1—上刀片;2—板材;3—下刀片;4—工作台;5—滑块
四 冷冲压设备
(一)剪板机(剪床)
普通及数控液压摆式剪板机
四 冷冲压设备
而不破坏其完整性能力。材料塑性影响其冲压工艺性能。 塑性指标:
衡量金属塑性高低的参数。常用塑性指标为延伸率δ和断面收缩率ψ。
二 金属塑性变形基础知识
(二) 塑性变形的影响因素
1 变形温度对塑性变形的影响 2 变形速度对金属塑性的影响 3 通常情况下宜选用低速成形 4 应力状态对塑性变形的影响
二 金属塑性变形基础知识
(二)曲柄压力机
开式曲柄压力机
曲柄压力机
闭式双点压力机
四 冷冲压设备
(二)曲柄压力机
深喉颈压力机
半闭式高速精密压力机
四 冷冲压设备
(二)曲柄压力机
数控转塔冲床
四 冷冲压设备
(二)曲柄压力机
偏心压力机传动系统 1-滑块;2-连杆;3-制动装置; 4-偏心轴;5-离合器; 6-皮带轮;7-电机;8-操纵机构
模块一 冷冲压基础
本模块主要内容
1.理解并掌握冷冲压工序的概念、冷冲压工序的应用和冷 冲压工序的分类;
2.理解金属材料的塑性、屈服准则、塑性变形时应力应变 关系、体积不变条件、硬化规律、卸载弹性恢复规律和反载软 化现象、最小阻力定律等冷冲压成形基本规律;
3.了解板料冷冲压成形性能与机械性能关系,认识常见冷 冲压材料;
冲孔落料件
一 冷冲压基本工序

板料冲压成形性能及冲压材料

板料冲压成形性能及冲压材料

板料冲压成形性能及冲压材料板料冲压成形性能及冲压材料板料的冲压成形性能板料对各种冲压成形加工的适应能力称为板料的冲压成形性能。

具体地说,就是指能否用简便地工艺方法,高效率地用坯料生产出优质冲压件。

冲压成形性能是个综合性的概念,它涉及到的因素很多,其中有两个主要方面:一方面是成形极限,希望尽可能减少成形工序;另一方面是要保证冲压件质量符合设计要求。

下面分别讨论。

(一)成形极限在冲压成形中,材料的最大变形极限称为成形极限。

对不同的成形工序,成形极限应采用不同的极限变形系数来表示。

例如弯曲工序的最小相对弯曲半径、拉深工序的极限拉深系数等等。

这些极限变形系数可以在各种冲压手册中查到,也可通过实验求得。

依据什么来确定极限变形系数呢?这要看影响成形过程正常进行的因素是哪些。

冲压成形时外力可以直接作用在毛坯的变形区(例如胀形),也可以通过非变形区,包括已变形区(例如拉深)和待变形区(例如缩口、扩口等),将变形力传给变形区。

因此,影响成形过程正常进行的因素,可能发生在变形区,也可能发生在非变形区。

归纳起来,大致有下述几种情况:1.属于变形区的问题伸长类变形一般是因为拉应力过大,材料过度变薄,局部失稳而产生断裂,如胀形、翻孔、扩口和弯曲外区等的拉裂。

压缩类变形一般是因为压应力过大,超过了板材的临界应力,使板材丧失稳定性而产生起皱,如缩口、无压边圈拉深等的起皱。

2.属于非变形区的问题传力区承载能力不够:非变形区作为传力区时,往往由于变形力超过了该传力区的承载能力而使变形过程无法继续进行。

也分为两种情况:1)拉裂或过度变薄;例如拉深是利用已变形区作为拉力的传力区,若变形力超过已变形区的抗拉能力,就会在该区内发生拉裂或局部严重变薄而使工件报废。

2)失稳或塑性镦粗:例如扩口和缩口工序是利用待变形区作为压力的传力区,若变形力超过了管坯的承载能力,待变形区就会因失稳而压屈,或者发生塑性镦粗变形。

非传力区在内应力作用下破坏:非变形区不是传力区时,由于变形过程中金属流动的不均匀性,也可能产生过大的内应力而使之破坏。

冲压成形性能

冲压成形性能
S S
一般应力状态:ζ 1-ζ 3=β ζ
第三章 冲压成形原理与成形极限
三、塑性力学基础(续)
3.金属塑性变形时的应力应变关系 弹性变形阶段:应力与应变之间的关系是线性的、可逆的, 与加载历史无关; 塑性变形阶段:应力与应变之间的关系则是非线性的、 不可逆的,与加载历史有关。
1 2 2 3 3 1 1 2 2 3 3 1
第三章 冲压成形原理与成形极限
四、金属塑性变形的一些基本规律
1.硬化规律 加工硬化: 塑性降低,变形抗力提高。能提高变形均匀性。 硬化曲线: 实际应力曲线或真实应力曲线。表示硬化规律。 这种变化规律可近似用指数曲线表示。 ζ =Aε
n
第三章 冲压成形原理与成形极限
四、金属塑性变形的一些基本规律(续)
4.最小阻力定律 在塑性变形中,破坏了金属的整体平衡而强制金属流动,当金 属质点有向几个方向移动的可能时,它向阻力最小的方向移动。 在冲压加工中,板料在变形过程中总是沿着阻力最小的方向发 展。这就是塑性变形中的最小阻力定律。 弱区先变形,变形区为弱区
第三章 冲压成形原理与成形极限
四、金属塑性变形的一些基本规律(续)
4.最小阻力定律(续) 控制变形的趋向性: 开流 和 限流
措施: (1)材料本身的特性
(2)板料的应力状态 冲压工序的性质 工艺参数 模具结构参数(如凸模、凹模工作 部分的圆角半径,摩擦和间隙等。
第三章 冲压成形原理与成形极限
五、冲压材料及其冲压成形性能
1.冲压成形性能 材料的冲压成形性能:材料对各种冲压加工方法的适应能力。 冲压加工的依据。
第一章 冲压模具设计与制造基础
三、塑性力学基础
1.点的应力与应变状态 为了全面、完整地描述变形区内各点的受力和变形情况 。 应力——正应力、剪应力 应力状态: 通常是围绕该点取出一个微小(正)六面体(即所谓 单元体),用该单元体上三个相互垂直面上的九个应力分量来 表示。已知该九个应力分量,则过此点任意切面上的应力都可 求得。 主应力状态 塑性变形可能出现九种主应力状态。

板料的冲压成形性能与成形极限[优质材料]

板料的冲压成形性能与成形极限[优质材料]

参考课件
18
§6.2 现代冲压成形的分类理论
(3)冲压毛坯变形区受异号应力的作用,且拉应力的绝 对值大于压应力的绝对值
r 0 ,且t 0及 r 0 r,且t 0及 r
这两种情况在应力分区图中处于GOF和AOB范围, 在应变分区图中处于MON和COD范围,相对应的工序 有扩口等。
在平面应力状态屈服轨迹上的应力分区图中处于
AOH和HOG范围内,在应变分区图中处于AOC和AON范
围内,与此相对应的工序是内孔翻边和胀形等。
参考课件
17
§6.2 现代冲压成形的分类理论
(2)冲压毛坯变形区受两向压应力的作用 在轴对称变形时,可以分为以下两种情祝: r 0,且t 0 r 0,且t 0 在应力分区图中处于DOE和COD范围内,在应变分区图 中处于GOE和GOL范围内,与此相对应的工序有缩口等。
形性能的指标。
方板对角拉伸试验 参考a课)单件 向对角拉伸 b)双向对角拉伸7
参考课件
8
§6.1 概述
冲压成形性是介于材料科学和冲压成形技术之间的一个 边缘问题。
冲压成形性的影响因素: • 板料的材质; • 组织结构; • 性能; • 冲压技术的改善。
冲压用新材料及其性能 • 高强度钢板; • 耐腐蚀钢板; • 双相钢板; • 涂层板; • 复合板材。
局部成形极限反映板料失稳前局部尺寸可达到的最大变 化程度,如成形时的局部极限应变即属局部成形极限。
参考课件
3
§6.1 概述
成形极限图(FLD)就是由不同应变路径下的局部极限 应变构成的曲线或条带形区域,它全面反映了板料在单向和 双向拉应作用下抵抗颈缩或破裂的能力,经常被用来分析解 决成形时的破裂问题。

材料冲压成形性能的衡量指标

材料冲压成形性能的衡量指标

材料冲压成形性能的衡量指标1.抗拉强度:抗拉强度是材料抵抗拉伸的能力。

在冲压过程中,材料受到拉伸力,因此抗拉强度是一个重要的性能指标。

高抗拉强度的材料可以承受更大的应力和变形。

2.屈服强度:屈服强度是指材料在受到一定应力时开始发生塑性变形的能力。

屈服强度的大小与材料的可塑性密切相关。

较高的屈服强度意味着材料更难发生塑性变形,可能不适合冲压成形。

3.延伸率:延伸率是材料在拉伸断裂前所发生的塑性变形程度的度量。

高延伸率的材料可以容易地发生塑性变形,有利于冲压成形。

4.断裂韧性:断裂韧性是材料抵抗断裂的能力。

在冲压过程中,材料常受到冲击和剪切力的作用,因此良好的断裂韧性对于冲压成形的可行性非常重要。

5.硬度:硬度是材料抵抗外界力量的能力。

硬度可以提供材料在冲压过程中的耐磨性、耐刮擦性和切削性等信息。

高硬度的材料一般具有较低的可塑性,可能不适合一些冲压工艺。

6.切口延伸率:切口延伸率是指材料在应力作用下切口或裂纹延伸的能力。

对于一些带有切口或凹槽的冲压件来说,良好的切口延伸率可以避免裂纹的形成,提高零件的可靠性和强度。

7.成形限制比:成形限制比是冲压工程师用来评估材料在冲压过程中的可塑性的指标。

成形限制比是通过计算材料在冲压成形过程中最多能够变形的程度来得到的。

8.硬化指数:硬化指数是用来描述材料在冲压过程中变硬的程度。

硬化指数越高,材料的可塑性越低,成形能力也就越差。

因此,硬化指数是一个重要的冲压成形性能指标。

以上是材料冲压成形性能的一些衡量指标。

冲压工程师在进行材料选择和冲压工艺设计时,应综合考虑这些指标,以保证最终零件的质量和可靠性。

冲压材料性能要求

冲压材料性能要求
金相组织是材料的微观质量特征。它 的主要标志是:渗碳体或碳化物的球化程度。
实用文档
(一)冲压材料性能
实用文档
(1)屈服强度、抗拉强度和屈强比
▪ 抗拉强度是计算冲压加工力的基本要素。
▪ 屈服强度均匀,无明显方向性。
▪ 当屈服强度和抗拉强度高时,冲压成形力大,成 形的难度加大,而且还会降低模具的寿命。
▪ 3)低合金结构钢板 常用的如Q345(16Mn )、Q295(09Mn2)。用以制造有强度要求 的重要冲压件。
▪ 4)电工硅钢板 如DT1、DT2。 ▪ 5)不锈钢板 如1Cr18Ni9Ti,1Cr13等,用
以制造有防腐蚀防锈要求的零件。
实用文档
▪ 常用的有色金属有铜及铜合金(如黄铜) 等,牌号有T1、T2、H62、H68等,其塑性 、导电性与导热性均很好。
▪ 还有铝及铝合金,常用的牌号有L2、L3、 LF21、LY12等,有较好塑性,变形抗力小 且轻。
实用文档
材料名称
牌号
材料状态
电工用纯铁 DT1、DT2、
C<0.025
DT3
Q195
普通碳素钢 Q235
Q275
已退火 未退火
08
优质碳素结
10
已退火
构钢
20
45
65Mn
已退火
不锈钢
1Cr13
已退火
1Cr18Ni9Ti 热处理退软
▪ 分类:修整冲裁件的外形称外缘修整,修 整冲裁件的内孔称内孔修整。
实用文档
2、成型工序——使坯料发生塑性变形而成一定形状和尺
寸的工件。
名称 弯曲 拉深 翻边 胀形 缩口 挤压
卷圆 扩口 校形
工序特征 用模具将板料弯曲成一定角度的零件,或将已弯件再弯。 用模具将板料压成任意形状的空心件,或将空心件作进一步变形 用模具将板料上的孔或外缘翻成直壁 用模具对空心件施加向外的径向力,使局部直径扩张。 用模具对空心件口部施加由外向内的径向压力,使局部直径缩小。 把毛坯放在模腔内,加压使其从模具空隙中挤出,以成形空心或实心 零件。 把板料端部卷成接近封闭的圆头,用以加工类似铰链的零件。 在空心毛坯或管状毛坯的某个部位上使其径向尺寸扩大的变形方法。 将工件不平的表面压平;将已实用弯文曲档 或拉深的工件压成正确的形状
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
素都会直接影响到工件 的表面质量。 成形后工件表面质量
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
三、对冷冲压材料的基本要求
应具有良好的塑性 、较小的屈强比、较大 的板厚方向性系数、较 小的版平面方向性系数 ,材料的屈服点和弹性 模量的比值小。 应符合国家规定标 准。因为一定的模具间 隙适应于一定厚度的材 料,材料厚度公差太大 ,不仅直接影响制件质 量,还可能导致模具和 冲床的损坏。 材料的表面应 光洁平整,无分层 和机械性质的损伤 ,无锈斑、氧化皮 及其他附着物。
对冲压成形性能 的要求
对材料厚度公差 的要求
对表面质量的 要求
其他金属材料成料对各种冲压加工方法
的适应能力成为材料的冲
压成形性能。
概念 意义
材料的冲压成形性能好, 就是指其便于冲压加工, 一次冲压工序的极限变形 程度大,生产率高,容易 得到高质量的冲压件。
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
二、材料冲压成形性能的衡量指标
职业教育材料成型与控制技术专业教学资源库
其他金属材料成型技术课程
材料冲压成形性能的衡量指标
主讲教师:王嘉
包头职业技术学院
职业教育材料成型与控制技术专业教学资源库

11 2

材料的冲压成形性能 材料冲压成形性能的衡量指标
13
对冲压材料的基本要求
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
衡量指标 成形 质量 成形 极限
弹性 回复 厚度 变化
残余 应力
表面 质量
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
1.成 形 极 限
伸长类变形 变形区内的拉应力绝 对值最大,主要质量 问题是拉裂,其极限 变形系数主要决定于 材料的塑形。 压缩类变形 变形区内的压应力绝对值最大, 主要质量问题是起皱,其极限 变形常受坯料传力区的承载能 力的限制,有时则受变形区或 传力区的失稳起皱的限制。
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
原材料的表面状态 材料经过塑性变形后 ,除产生加工硬化外,还 由于变形不均匀,造成残 余应力,从而引起工件尺 寸及形状的变化,严重时 还会引起工件的自行开裂 。 加工硬化与残余应力
、晶粒大小、冲压时材
料粘模的情况以及模具
对冲件表面的擦伤等因
其他金属材料成型技术课程
职业教育材料成型与控制技术专业教学资源库
2.成 形 质 量
冲压件的质量指标主要是尺寸精度、厚度变化、表面 质量以及成形后材料的物理力学性能等。其主要因素如下:
厚度变薄直接影响冲 影响尺寸精度的主要 压件的强度和使用; 因素; 当对零件强度有要求 当载荷卸除后,弹性 时,往往要限制其最 变形消失就会造成制 大变薄量。 件形状和尺寸的偏差。 成形后板料厚度变化 弹性回复
相关文档
最新文档