单片机最小系统

合集下载

单片机最小系统定义及其组成部分

单片机最小系统定义及其组成部分

单片机最小系统定义及其组成部分
单片机最小系统是指单片机能够正常工作所必须的最基本的电路系统。

它由单片机芯片、晶振、复位电路、电源电路和外设电路等组成。

1. 单片机芯片
单片机芯片是单片机最小系统的核心部分,它是整个系统的控制中心。

单片机芯片包含了CPU、存储器、输入输出接口、定时器、串行通信接口等功能模块,可以实现各种控制和处理任务。

2. 晶振
晶振是单片机最小系统中的重要组成部分,它提供了单片机的时钟信号。

单片机需要时钟信号来同步各种操作,晶振的频率决定了单片机的工作速度。

常用的晶振有4MHz、8MHz、12MHz等。

3. 复位电路
复位电路是单片机最小系统中的重要组成部分,它用于在单片机上电或者复位时将单片机的各个寄存器和状态清零,使单片机进入初始状态。

复位电路通常由复位电路芯片和复位电路电阻组成。

4. 电源电路
电源电路是单片机最小系统中的重要组成部分,它为单片机提供电源。

电源电路通常由稳压电路、滤波电容、电源开关等组成,可以保证单片机的稳定工作。

5. 外设电路
外设电路是单片机最小系统中的重要组成部分,它用于连接单片机和各种外设,如LED、LCD、键盘、麦克风等。

外设电路通常由电阻、电容、晶体管、继电器等组成,可以实现单片机与外设之间的数据交换和控制。

单片机最小系统是由单片机芯片、晶振、复位电路、电源电路和外设电路等组成的。

它是单片机能够正常工作所必须的最基本的电路系统。

在实际应用中,单片机最小系统可以根据具体需求进行扩展和改进,以满足不同的应用需求。

单片机最小系统的概念

单片机最小系统的概念

1.单片机最小系统的概念:能使单片机正常工作的最小硬件单元电路,就叫单片机最小系统。

2.单片机最小系统的组成:(1)复位电路:t=RC1(t≥10ms);(2)时钟电路:C2=C3=(30±10)pF(一般是20~30pF);(3)存储器访问路经控制:EA/VPP=+5V时,先内后外。

另外,一般还有单片机的ISP下载口也包含在单片机最小系统中。

3.51系列单片机的最小系统电路的原理图:这学期开了一门新的课程,单片机。

一门实用性很强的课程!而我们所学习的就是以Atemel 公司出的8051为基础的结构及编程。

在接触过程中,我们学到了8051的最小系统,通过该最小系统,我们可以用keil软件进行编程从而实现对一些外设的控制!比如一些简单的实验:闪烁灯、模拟开关灯等等!所以制作一个最小系统就显得很重要。

下面就介绍一下我所知道的一些简单的电路图:1.电源电路:我们知道单片机正常工作所需要的电压是+5V的电压,而我们不能直接得到,所以只能进行转换,用7805将+9V的电压转换成+5V的电压,焊接电路的时候注意C1,C2为极性电容,所以注意正负极。

还有那个+9V的电源,本来是很方便的,往电路上焊一个接口,直接插上电源就OK了。

但是考虑到经济问题,我给大家买的不是那种。

用的时候把线前面的接头剪了,里面应该有4条线,2根是+9V的,另两根是+24V的,我们用+9V的线就行了!电源电路图如下:2.单片机焊接电路:这个电路较为简单,而且用得是上电复位电路,所用到的元器件也很少,但是要特别注意单片机的接口,尤其是I/O接口,因为我们要用它们输出或者是进行数据传输,所以最好是能多有几个接口,所以用到双排插针或者是单排插针,用排线连接它们和外设。

3.串口焊接,也就是下载线!我们通过Keil软件编译一些程序,通过单片机实现一些功能,但是我们必须通过下载线将程序下载到单片机内部,也可以用烧写器,但是成本太高,而且利用率太低,所以我们选用下载线!本来是打算焊USB接口的,但是感觉难度很大,所以感觉还是用这个串口电路比较好,成功率较高!这个电路主要用到的就是74373锁存器。

什么是单片机最小系统_单片机的最小系统简述

什么是单片机最小系统_单片机的最小系统简述

什么是单片机最小系统_单片机的最小系统简述单片机简介单片机是一种集成电路芯片。

它采用超大规模技术将具有数据处理能力的微处理器(CPU)、存储器(含程序存储器ROM和数据存储器RAM)、输入、输出接口电路(I/O接口)集成在同一块芯片上,构成一个即小巧又很完善的计算机硬件系统,在单片机程序的控制下能准确、迅速、高效地完成程序设计者事先规定的任务。

所以说,一片单片机芯片就具有了组成计算机的全部功能。

由此来看,单片机有着一般微处理器(CPU)芯片所不具备的功能,它可单独地完成现代工业控制所要求的智能化控制功能,这是单片机最大的特征。

然而单片机又不同于单板机(一种将微处理器芯片、存储器芯片、输入输出接口芯片安装在同一块印制电路板上的微型计算机),单片机芯片在没有开发前,它只是具备功能极强的超大规模集成电路,如果对它进行应用开发,它便是一个小型的微型计算机控制系统,但它与单板机或个人电脑(PC机)有着本质的区别。

单片机的应用属于芯片级应用,需要用户(单片机学习者与使用者)了解单片机芯片的结构和指令系统以及其它集成电路应用技术和系统设计所需要的理论和技术,用这样特定的芯片设计应用程序,从而使该芯片具备特定的功能。

不同的单片机有着不同的硬件特征和软件特征,即它们的技术特征均不尽相同,硬件特征取决于单片机芯片的内部结构,用户要使用某种单片机,必须了解该型产品是否满足需要的功能和应用系统所要求的特性指标。

这里的技术特征包括功能特性、控制特性和电气特性等等,这些信息需要从生产厂商的技术手册中得到。

软件特征是指指令系统特性和开发支持环境,指令特性即我们熟悉的单片机的寻址方式,数据处理和逻辑处理方式,输入输出特性及对电源的要求等等。

开发支持的环境包括指令的兼容及可移植性,支持软件(包含可支持开发应用程序的软件资源)及硬件资源。

要利用某型号单片机开发自己的应用系统,掌握其结构特征和技术特征是必须的。

单片机控制系统能够取代以前利用复杂电子线路或数字电路构成的控制系统,可以以软件控制来实现,并能够实现智能化,现在单片机控制范畴无所不在,例如通信产品、家用电。

单片机最小系统

单片机最小系统
千里之行始于足 下, 百丈高台起于垒 土。
什么是最小系统 什么是最小系统
单片机最小系统,或者称为最小应用系统,是 指用最少的元件组成的单片机可以工作的系 统.
最小系统
单片机
晶振电路
复位电路
电源
晶振电路
• 单片机系统正常工作的保证,如果振荡器 不起振,系统将会不能工作;假如振荡器 运行不规律,系统执行程序的时候就会出 现时间上的误差,这在通信中会体现的很 明显:电路将无法通信。他是由一个晶振 和两个瓷片电容组成的,x1和x2分别接单 片机的x1和x2,晶振和瓷片电容是没有正 负的,注意两个瓷片电容相连的那端一定 要接地。
最小系统的应用
有了最小系统后,就能够自己做东西了, 可以利用P0,P1,P2,P3.等管脚对外围模块 进行控制,例如,液晶,数码管,键盘, 点击等等。
ห้องสมุดไป่ตู้
晶振
• 产生原始的时钟频率,放大或缩小后成为 总线频率。 • 机电器件,加电产生振动,加力产生电流。 • 性能稳定,热膨胀系数较小。
复位电路
• 给单片机一个复位信号(一个一定时间的 低电平)使程序从头开始执行;一般有两 种复位方式:上电复位,在系统一上电时 利用电容两端电压不能突变的原理给系统 一个短时的低电平;手动复位,通过按钮 接通低电平给系统复位,

单片机最小系统

单片机最小系统

单片机最小系统
单片机最小系统包含两部分:一是复位电路;二是晶振电路。

一、复位电路
复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。

为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。

图1所示的RC复位电路可以实现上述基本功能,图3为其输入-输出特性。

但解决不了电源毛刺(A 点)和电源缓慢下降(电池电压不足)等问题而且调整 RC 常数改变延时会令驱动能力变差。

左边的电路为高电平复位有效右边为低电平 Sm为手动复位开关 Ch可避免高频谐波对电路的干扰。

二、晶振电路
单片机需要一定的运行速度,晶振电路就是提供单片机振荡频率从而来控制单片机的运行速度。

其电路图如图所示。

第六章_单片机最小系统

第六章_单片机最小系统

2. 键盘的查询与中断
3. 键盘管理中的键输入与键操作
7.2.3 并行I/O口扩展的LED显示电路 1. LED 显示器及显示原理 (1)LED显示器结构 (2) 显示器原理与显示段码 2. LED显示器显示方式
7.3 并行总线外围扩展技术 7.3.1 并行总线扩展基本问题 1. 并行总线扩展电路设计
80C51单片机最小系统
1、最小系统概念 最小系统概念
单片机最小系统,或者称为最小应用系统 是指用最少的元 单片机最小系统 或者称为最小应用系统,是指用最少的元 或者称为最小应用系统 件组成的单片机可以工作的系统.最小系统结构与单片机的 件组成的单片机可以工作的系统 最小系统结构与单片机的 类型有关。 类型有关。 对51系列单片机来说 最小系统一般应该包括 单片机、晶 系列单片机来说,最小系统一般应该包括 单片机、 系列单片机来说 最小系统一般应该包括:单片机 振电路、复位电路、按键输入、显示输出等。 振电路、复位电路、按键输入、显示输出等。
外部时钟 XTAL1 XTAL2
XTAL2
15~45pf× 15~45pf×2
1~12MHz(MCS-51) 12MHz(MCS-51) 24MHz(Atmel-89C) 0~24MHz(Atmel-89C)
(1)片内时钟振荡器与外部谐振电路 片内振荡器与外部谐振叫路构成了一个并联谐振的时钟 振荡电路。PD端可由内部软件编程来控制振荡电路的 启停。
(4) 电源监测复位 4. 应用系统中多复位要求的处理
第7章
• 单片机的并行扩展技术
7.1 并行外围扩展方式 有I/O方式和总线方式 7.1.1 并行I/O口与并行扩展总线 1. 两种扩展方式
2. 扩展方式选择 主要由所选择的外围器件决定。 3. 并行总线的I/O虚拟 通过I/O口虚拟总线时序及操作控制方式来扩展并 行总线接口。 7.1.2 并行I/O的扩展特性 输出锁存、握手交互、指令控制实现的时序协议 7.1.3 并行总线扩展特性 三态输出、时序交互、总线协议的CPU的时序自 动运行

单片机最小系统

单片机最小系统

1.4单片机最小系统设计单片机加上适当的外围器件和应用程序,构成的应用系统称为最小系统;是组成单片机系统最基本的部分。

最小系统硬件组成:单片机芯片、电源电路、时钟电路、复位电路。

1)单片机芯片AT89S51/52系列单片机是比较流行的51单片机之一,它支持ISP在线编程功能(改写单片机存储器内的程序不需要把芯片从工作环境中脱离)。

AT89S52单片机芯片及IC座如图1-4所示。

实验过程中,单片机芯片最好插在IC座上,注意芯片的方向。

焊接的时候单片机不要插在IC座上,先焊好IC 座,当电路全部完成后再上芯片。

图1-4 单片机芯片及IC座2)电源电路Vcc(40脚), GND(20脚)AT89S* 系列单片机工作电源范围宽达4~5.5V。

单片机的供电有两种方式:①集成稳压电源方式;②USB供电。

①集成稳压电源方式;利用变压器、整流、滤波、稳压自制电源,如图1-5所示。

图1-5 稳压电源电路图1-8 电源适配器稳压电路焊接效果图2)时钟电路产生一个工作时序,其工作需要时钟电路提供一个工作频率。

时钟电路原理图如图1-10所示。

1)振荡频率范围:1.2MHz~12MHz。

2)电容C1和C2选择:10~30pF图1-10时钟电路原理图注意:晶体和电容应尽可能安装在单片机芯片附近,以减少寄生电容,保证振荡器稳定和可靠工作。

电容是为了更好地提高晶振电路的时钟精度。

3)复位电路复位使单片机进入某种确定的初始状态。

退出处于节电工作方式的停顿状态、退出一切程序进程、退出程序的死循环,从头开始。

上电+按钮复位电路如图1-11所示。

注意:电解电容器的极性,长脚为正。

图1-11 复位电路根据上面原理设计的单片机最小系统如图1-12所示。

图1-12单片机最小系统注意:①如果不扩展外部ROM,使用单片机内部的ROM,31脚/EA需接电源(+5V)。

3.1单片机最小系统设计3.1.1 AT89S52简介本设计采用ATMEL公司的8位单片机AT89S52,AT89S52片内含8k字节的可反复擦写的只读Flash程序存储器和256字节的随机存取数据存储器(RAM)。

单片机最小系统制作

单片机最小系统制作

单片机最小系统制作单片机(Microcontroller)最小系统是指单片机与其必要外围电路的集成,能够实现单片机的正常工作。

单片机最小系统一般包括单片机芯片、时钟电路、复位电路和电源电路等。

1.选购单片机芯片:选择适合自己需求的单片机芯片,有多种型号和规格可以选择。

比较常见的单片机芯片有PIC、AVR、STM32等。

2.设计电源电路:为单片机提供正常工作的电源电压,一般为5V。

可以使用直流电源供电,也可以通过电池供电。

电源电路一般包括电源滤波和稳压电路。

3.设计时钟电路:单片机需要时钟信号来进行计时和同步操作。

时钟电路一般由晶体振荡器和相关电容电阻组成。

选择合适的晶体频率,一般常见的为4MHz或8MHz。

4.设计复位电路:复位电路用于在单片机上电时将其状态清零,进入一个初始状态。

一般采用电容与电阻并联的方式制作,保证在上电时产生足够的复位时间。

5.焊接和布线:将选购的单片机芯片和其他电子元件进行焊接和布线,连接相应的引脚。

注意焊接时要确保焊接点牢固,布线时要避免引起短路和接触不良等问题。

6.测试和调试:将制作好的单片机最小系统连接到计算机或开发板上,通过编程工具对单片机进行测试和调试。

可以使用编程工具(如IDE)编写简单的程序,通过编程上传到单片机进行验证。

7.功能扩展:根据需求可以对单片机最小系统进行功能扩展,如添加输入输出接口、外部存储器、显示屏等。

制作单片机最小系统的过程比较简单,但在实际操作中要细心和耐心,避免出现焊接不良、接触不良等问题。

制作好的最小系统可以为后续的单片机应用提供基础,可以用于各种项目的开发和实现。

总结起来,制作单片机最小系统需要选购单片机芯片,设计电源、时钟和复位电路,进行焊接和布线,并进行测试和调试。

掌握这些基本步骤可以帮助初学者更好地了解和掌握单片机的使用和应用。

单片机最小系统板的原理

单片机最小系统板的原理

单片机最小系统板的原理
单片机最小系统板的工作原理如下:
1. 核心部件是单片机芯片,内含CPU、存储器、输入输出接口等系统所需的基本单元。

2. 电源部分通常包含稳压器芯片、过滤电容,为单片机提供稳定的工作电压。

3. 时钟发生器提供时钟信号,使单片机能够按时序运行程序。

常用晶体或谐振腔体。

4. 复位电路在上电时产生一个复位脉冲,将单片机各部件置于初始状态。

5. 输入单元常用按键、轻触开关等,根据需要也可以使用传感器。

6. 输出单元有LED指示灯、蜂鸣器等,根据应用连接LCD、继电器等。

7. 编程接口用于烧录程序代码进单片机存储器中。

通常为ISP或UART接口。

8. 板载编程电路实现编程接口与单片机的连接。

9. 配合一些少量的焊盘、电阻、电容等基本电子元件,就构成了简单的单片机最
小系统。

10. 通过编写程序代码,可以实现单片机的各种控制功能。

单片机最小系统及应用系统

单片机最小系统及应用系统

单片机最小系统及应用系统单片机最小系统是指由单片机、外部时钟电路和复位电路等基本元件构成的最小可工作的电路系统。

它是单片机正常工作所必需的基本电路,同时也是扩展各种应用系统的基础。

单片机最小系统通常由以下几个主要组成部分构成:1. 单片机芯片:单片机芯片是整个最小系统的核心部分。

常见的单片机芯片有51系列、AVR系列、STM32系列等,具有不同的性能和功能特点。

单片机芯片内部具有处理器核心、存储器、IO口、计时器和控制器等基本模块,用于实现各种功能。

2. 外部时钟电路:单片机需要外部时钟信号来提供时序参考,以便进行操作和计时。

外部时钟电路通常由晶振和相关无源元件(电容、电阻等)组成。

晶振的频率决定了单片机的工作时钟频率,常见的频率有4MHz、8MHz、16MHz等。

3. 复位电路:单片机在上电或复位时需要进行初始化操作以恢复到初始状态。

复位电路通常由复位按钮、电阻和电容等组成。

当按下复位按钮时,通过电阻和电容可以实现一定的延迟,保证单片机在复位完成前不会受到不稳定的外部信号影响。

单片机最小系统的作用是保证单片机能够正常工作,提供所需的时钟信号和复位操作。

但是单片机最小系统本身并没有特定的功能,需要根据具体的应用场景进行扩展和功能拓展。

单片机最小系统在各种应用系统中具有广泛的应用。

以下是一些常见的单片机应用系统:1. 嵌入式系统:单片机最小系统是实现嵌入式系统的基础。

通过将外部电路与单片机芯片连接,可以实现各种嵌入式系统的功能,如家电控制、汽车电子系统、工业控制等。

2. 家居自动化系统:通过单片机最小系统可以实现家居自动化系统的各种功能,如智能灯光控制、温湿度监测与控制、安防监控等。

3. 医疗仪器:单片机最小系统也可以应用于医疗仪器中,如血压计、血糖仪等。

通过单片机的数据处理和控制功能,可以实现仪器的各种功能和精确性。

4. 工控系统:单片机最小系统在工业控制系统中也有较为广泛的应用。

通过单片机的IO口和数据处理能力,可以实现各种工控设备的自动控制和监测功能。

单片机最小系统

单片机最小系统

单片机最小系统单片机最小系统是指以单片机为核心,配以必要的外围电路,实现一定功能的电路系统。

它通常包含单片机、电源、时钟电路、复位电路和程序存储器等部分。

下面将详细介绍单片机最小系统的构成和特点。

单片机:单片机是整个系统的核心,它负责数据处理和控制信号输出。

常用的单片机型号有AT89CPIC16F877A等。

电源:为单片机提供电能,一般采用直流电源,如5V、3V等。

时钟电路:为单片机提供时钟信号,常用的时钟芯片有0592MHz和4MHz等。

复位电路:当单片机出现程序跑飞或异常情况时,可以通过复位电路使单片机重新启动。

常用的复位芯片有MAX811等。

程序存储器:用于存储单片机程序,常用的存储器有EPROM、EEPROM 和Flash等。

结构简单:单片机最小系统以单片机为核心,配以外围电路,结构简单,易于实现。

功能灵活:通过编程,单片机可以实现各种不同的功能,如数据采集、控制输出、通信等。

可靠性高:由于单片机最小系统结构简单,所以其可靠性较高,适用于各种工业控制和智能家居等领域。

成本低廉:单片机最小系统的硬件成本较低,适用于各种低成本应用场景。

单片机最小系统是一种简单、灵活、可靠且低成本的电路系统,广泛应用于各种嵌入式系统开发中。

随着物联网、智能家居等领域的快速发展,单片机最小系统的应用前景也将更加广阔。

在嵌入式系统和智能硬件领域,单片机最小系统作为一种基本的控制器单元,具有广泛的应用价值。

本文将介绍单片机最小系统的设计与应用,包括系统设计、系统应用和系统优化等方面的内容。

单片机最小系统通常由微处理器(MCU)、电源电路、时钟电路和复位电路等组成。

在设计单片机最小系统时,需要根据具体的应用需求选择合适的微处理器,并搭建相应的电源电路、时钟电路和复位电路。

单片机最小系统的架构设计应考虑应用需求和系统可靠性。

一般而言,系统架构应包括以下几个部分:(1)微处理器:作为系统的核心,微处理器负责数据计算、处理和传输等任务。

单片机最小系统工作电路

单片机最小系统工作电路

单片机最小系统工作电路
单片机最小系统工作电路是指由单片机、晶体振荡器、电源、复位电路以及必要的外围元件组成的最基本的单片机系统。

在这个系统中,单片机是核心部件,晶体振荡器提供时钟信号,电源为系统提供电能,复位电路保证系统正常启动,外围元件则为单片机提供必要的输入输出接口、时序控制、信号转换等功能。

具体来说,单片机最小系统工作电路一般由以下几部分组成: 1. 单片机:选择适合应用的单片机,根据需求选择不同的外设接口、存储器容量和计算能力等参数。

2. 晶体振荡器:提供系统所需的时钟信号,常用的晶振频率为4MHz或8MHz。

3. 电源:为系统提供稳定的电能,可以采用直流电源或电池供电。

4. 复位电路:当系统上电或者复位时,复位电路可以将单片机的所有寄存器和状态清零,使系统正常启动。

5. 外围元件:根据应用需求选择不同的外围元件,如LED、按键、LCD等,可以通过外围元件为单片机提供输入输出接口、时序控制、信号转换等功能。

单片机最小系统工作电路是单片机应用的基础,不同的应用场景需要不同的单片机最小系统工作电路,具体的设计要根据应用需求进行调整。

- 1 -。

单片机最小系统简介

单片机最小系统简介
Single-Chip microcomputer
单片机最小系统
输入/输出
P0.0~P0.7(引脚号32~39):双向输入/输出端口。
P1.0~P1.7(引脚号1~8):双向输入/输出端口。
P2.0~P2.7(引脚号21~28):双向输入/输出端口。
P3.0~P3.7(引脚号10~17):双向输入/输出端口,当该端口不作为
单片机以晶振的振荡周期为最小的时序单位,单片机内部的所 有操作都以此周期为时序基准。单片机指令的基本执行时间为 一个机器周期,一个机器周期由6个状态周期组成,每个状态 周期又分成2个振荡周期。
Single-Chip microcomputer
单片机最小系统
复位及复位电路的设计
在单片机系统中,复位电路是不可缺少的。单片机在正常工 作(即执行指令)前,必须要进行复位操作,这样做的目的 是将CPU以及系统中其它部件都处于一个明确的初始状态, 便于系统启动。
输入/输出端口使用时,每一个引脚也可以有第二功能,如:
P3.0/RXD:串行输入口;
P3.1/TXD:串行输出口;
P3.2/INT0:外部中断0输入口;
P3.3/INT1:外部中断1输入口;
P3.4/T0:定时器/计数器0外部事件脉冲输入口;
P3.5/T1:定时器/计数器1外部 microcomputer
单片机最小系统
8051单片机的基本结构如图1-3所示,一个单片机芯片内包 括:
·中央处理器CPU; ·内部数据存储器RAM; ·内部程序存储器ROM(有的型号没有); ·4个8位并行I/O接口(P0、P1、P2、P3); ·2~3个可编程定时器/计数器; ·一个可编程串行接口; ·内部中断具有5个中断源,2个优先级的嵌套中断结构,可 实现二级中断嵌套; ·一个片内振荡器及时钟电路,振荡时钟频率可以高达 40MHz。

单片机最小系统的设计

单片机最小系统的设计

真值表如下:
五、单片机系统的基本外设 RS232串行接口
术语解释:RS232接口是1970年由美国电子工业协 会(EIA)联合贝尔系统、调制解调器厂家及计算机 终端生产厂家共同制定的用于串行通讯的标准。它 的全名是“数据终端设备(DTE)和数据通讯设备 (DCE)之间串行二进制数据交换接口技术标准”。
了解了锁存器的功能以后,就知道如何操 作板载LED了,首先将JP1用跳线器短路, 确保为LED提供工作电压。其次将锁存器 的LE端设置为低电平,最后往锁存器数据 输入端口D1-D8输入电平数据就可以了。 由于本电路采用的是共阳结构,只有当锁 存器输出为低电平的时候LED方可点亮, 反之高电平熄灭,设计程序的时候需注意 这点。
我们使用的51单片机需要在+5V的直流电的坏境下,才能够 稳定的工作(并不是所有的单片机都是工作在+5V,有的低 电压单片机的工作电压为3.3V,有的甚至更低)。而在直流 电源中,一般会有正电源和地两根线。单片机的接+5V的引
脚为40引脚VCC,而接地引脚为20引脚GND。
二、单片机系统的基本外设 键盘电路
本系统板采用动态显示的原理设计,电路如下: 其中JP2为数码管电源跳线,使用数码管时,必 须用跳线帽将其短路。Q2-Q9为PNP型扩流三 极管,为每位数码管公共端提供约80mA的电源。 R4-R11为三极管的基极偏流电阻,当B0-B7 端电压低于4.3V时,PNP管导通,为数码管提 供公共电压。74HC573为锁存器,功能在上一 章已经说明,在此不再赘述。74HC138为3-8 译码器,当一个选通端(E3)为高电平,另两个 选通端(E1)和/(E2))为低电平时,可将地址 端(A0、A1、A2)的二进制编码在一个对应的 输出端以低电平译出。

51单片机最小系统介绍

51单片机最小系统介绍

说明复位电路:由电容串联电阻构成,由图并结合"电容电压不能突变"的性质,可以知道,当系统一上电,RST脚将会出现高电平,并且,这个高电平持续的时间由电路的RC值来决定.典型的51单片机当RST脚的高电平持续两个机器周期以上就将复位,所以,适当组合RC的取值就可以保证可靠的复位.一般教科书推荐C 取10u,R取8.2K.当然也有其他取法的,原则就是要让RC组合可以在RST脚上产生不少于2个机周期的高电平.至于如何具体定量计算,可以参考电路分析相关书籍.晶振电路:典型的晶振取11.0592MHz(因为可以准确地得到9600波特率和19200波特率,用于有串口通讯的场合)/12MHz(产生精确的uS级时歇,方便定时操作)单片机:一片AT89S51/52或其他51系列兼容单片机特别注意:对于31脚(EA/Vpp),当接高电平时,单片机在复位后从内部ROM的0000H开始执行;当接低电平时,复位后直接从外部ROM的0000H开始执行.这一点是初学者容易忽略的.复位电路:一、复位电路的用途单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。

单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。

单片机复位电路如下图:二、复位电路的工作原理在书本上有介绍,51单片机要复位只需要在第9引脚接个高电平持续2US就可以实现,那这个过程是如何实现的呢?在单片机系统中,系统上电启动的时候复位一次,当按键按下的时候系统再次复位,如果释放后再按下,系统还会复位。

所以可以通过按键的断开和闭合在运行的系统中控制其复位。

开机的时候为什么为复位在电路图中,电容的的大小是10uF,电阻的大小是10k。

所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。

单片机最小系统

单片机最小系统

单片机最小系统在电子世界中,单片机就像是一个小巧而强大的大脑,控制着各种设备的运行。

而单片机最小系统,则是这个大脑能够正常工作的最基本配置。

单片机最小系统通常包括单片机芯片、电源电路、时钟电路和复位电路这几个关键部分。

首先来说说单片机芯片。

这是整个系统的核心,它负责处理和执行各种指令。

不同型号的单片机具有不同的性能和特点,选择合适的单片机芯片要根据具体的应用需求来决定。

比如,如果需要处理大量的数据和复杂的运算,可能就需要选择性能较强的单片机;而对于一些简单的控制任务,性能稍低的单片机就能满足要求。

电源电路为单片机提供稳定的工作电压。

单片机通常需要一个特定的直流电压,一般常见的是 5V 或者 33V 。

电源电路的设计要保证电压的稳定性和纯净度,避免电压波动和杂波干扰对单片机工作造成影响。

这就好像是给人提供稳定的能量,才能保证身体的正常运转。

时钟电路就像是单片机的“心跳”节拍器。

它为单片机提供精确的时钟信号,决定了单片机执行指令的速度和时序。

时钟信号的频率越高,单片机的处理速度就越快,但同时也可能带来功耗增加和电磁干扰等问题。

因此,在选择时钟频率时,需要综合考虑系统的性能要求和实际应用场景。

复位电路则用于在系统启动时或者出现异常情况时,将单片机恢复到初始状态。

就好比我们在电脑死机的时候按下重启键,让系统重新开始正常工作。

为了让单片机能够与外部设备进行通信和交互,还需要一些扩展接口。

这些接口可以连接传感器、显示屏、按键等外部设备,实现丰富的功能。

在实际搭建单片机最小系统时,硬件电路的设计和布线非常重要。

要注意电路板的布局合理性,尽量减少线路之间的干扰和信号衰减。

同时,电子元件的选择也要保证质量可靠,以确保系统的稳定性和可靠性。

对于初学者来说,搭建单片机最小系统可能会遇到一些挑战。

比如,焊接技术不熟练可能导致虚焊、短路等问题;对电路原理理解不够深入可能会导致电路设计错误。

但只要有耐心,多学习,多实践,逐渐积累经验,就能成功搭建出一个稳定可靠的单片机最小系统。

单片机的最小系统及其外围电路

单片机的最小系统及其外围电路

第2章单片机的最小系统及其外围电路
2.1最小系统
单片机最小系统只要接上晶体振荡器和复位电路就可以构成一个完整的最小应用系统。

该电路可提供P1口、P3口作为用户的输入、输出口(I/O)。

2.1.1时钟电路
在XTAL1和XTAL2引脚两端跨接石英晶体振荡器和两个微调电容构成振荡电路,通常C1和C2一般取30pF,晶振的频率取值在1.2-33MHZ。

对于外接时钟电路,要求XTAL1接地,XTAL2接外部时钟。

2.1.2复位电路
单片机的复位电路如1.6.2节各图。

在RST输入端出现高电平时实现复位和初始化。

下图复位电路选用按键电平复位。

2.2 外围电路
2.2.1电源电路
用一个9V的变压器,在用一个电桥降交流9V整为直流,再加几个滤波电容和一个7805、一个7905出来后的电源就是所要的正负5V,电路还是比较简单的如下图所示:
2.2.2单片机USB接口电路
下为应用USB接口芯片CH375与单片机连接图
CH375具有8位数据总线和读、写、片选控制线以及中断输出,可以方便地挂接到单片机/DSP/MCU等控制器的系统总线上。

第3章单片机的应用软件
3.1编程软件
3.1.1Keil C51 软件
可用汇编语言和C语言编写单片机程序
3.1.2 8051汇编语言软件
3.2安装USB_Driver 驱动程序3.3安装烧录程序。

单片机最小系统的原理

单片机最小系统的原理

单片机最小系统的原理
单片机最小系统是指由单片机、晶振、复位电路和稳压电源组成的基本硬件系统。

其原理是通过晶振提供时钟信号,使单片机按照一定的频率工作,通过复位电路对单片机进行初始化,保证系统的正确启动。

稳压电源则为单片机提供稳定的工作电压,保证系统正常运行。

具体原理如下:
1. 晶振:晶振作为系统的时钟源,通过产生规律的振荡信号来控制单片机的工作节奏。

晶振一般由晶体振荡器和电容、电阻等元件组成。

当电压施加在晶体上时,晶体会因为压电效应而发生振荡,产生稳定的频率信号,供给给单片机使用。

2. 复位电路:复位电路用于保证系统正常启动和单片机在出现异常情况下的复位。

当电源接通时,复位电路会向单片机的复位引脚提供一个低电平信号,使单片机处于复位状态,进行初始化操作。

当复位信号解除后,单片机开始正常工作。

3. 稳压电源:稳压电源为单片机提供稳定的工作电压。

单片机在工作过程中需要一定的电压供应,而供电电压的稳定性对于单片机的正常工作至关重要。

稳压电源通常由变压器、整流电路、滤波电路和稳压电路等组成,通过将输入的交流电转化为稳定的直流电供给单片机使用。

通过以上几个基本硬件组成,单片机最小系统可以实现对于输入输出的控制、数据处理和存储等功能。

它是单片机应用开发
的基础,提供了一个可靠的硬件平台,方便对单片机进行编程和开发各种应用。

单片机最小系统介绍

单片机最小系统介绍

单片机最小系统介绍什么是单片机最小系统单片机(Microcontroller Unit,简称MCU),是一种集成了微处理器核心、存储器、输入/输出接口和时钟等主要部件的微型计算机系统。

在单片机中,最小系统是指最基本的电路配置,能够使单片机正常工作所需的最简单电路。

单片机最小系统的组成单片机最小系统主要由以下几个部分组成:1. 单片机单片机是整个系统的核心,它负责接收输入信号、进行数据处理并控制输出。

2. 晶振与时钟电路晶振和时钟电路为单片机提供稳定的时钟信号,使得单片机能够按照一定的时间间隔执行指令。

3. 复位电路复位电路用于对单片机进行复位操作,使其恢复到初始状态。

复位电路通常由电容、电阻和复位按钮等元件组成。

4. 电源电路电源电路提供单片机所需的电源电压,保证其稳定工作。

一般情况下,单片机最小系统采用直流电源供电。

5. 外部扩展电路外部扩展电路包括与单片机相连的输入/输出接口以及其他外设。

这些外设可以是LED灯、继电器、传感器等,用于与外界进行交互。

单片机最小系统的工作原理单片机最小系统的工作原理如下:1.当系统上电或复位时,复位电路会将单片机复位到初始状态。

2.外部晶振和时钟电路提供稳定的时钟信号,单片机根据时钟信号执行指令。

3.单片机根据输入信号对数据进行处理,并控制输出信号。

4.单片机通过输出接口与外部扩展电路连接,完成与外界的交互。

单片机最小系统的应用单片机最小系统广泛应用于各个领域,包括家电、汽车、工业自动化等。

以下是一些常见的应用场景:•家电控制:单片机最小系统可以用于家电产品的控制,例如智能灯控系统、空调控制系统等。

•汽车电子:单片机最小系统在汽车电子领域应用广泛,例如车载娱乐系统、车载导航系统等。

•工业控制:单片机最小系统在工业自动化中起着重要作用,例如工厂控制系统、自动化生产线等。

•仪器仪表:单片机最小系统可以用于各种仪器仪表的控制与数据处理,例如温度计、压力计等。

总结单片机最小系统是单片机正常工作所需的最简单电路配置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分:原理简述
1.单片机最小系统包括三部分,通过这三部分电路就能使单片机的程序运行起来:
(1)若晶振未插入,程序不能正常运行起来;
(2)若按下复位键,程序从头开始运行;
2.除此之外,单片机的31号脚(EA/VPP)也很重要。

(1)EA: 程序存储器选择
EA=1 cpu执行内部程序存储器的程序,超出内部程序存储器的部分再到外部程序存储器。

EA=0 CPU 执行外部程序存储器的程序.
(2)VPP: 内部程序存储器擦除和写入时提供编程脉冲,具体电压值查看芯片资料。

(3)所以通常单片机:存储器访问路经控制:EA/VPP=+5V,先内后外。

综上准确的说,对于40引脚的单片机最小系统包含这样4个部分:
这样:单片机上电后,内部引导部分引导程序按照时钟(时序)读取程序存储器里面的程序执行。

一旦按下复位键,程序将从开始重新运行。

第二部分:器件识别:
最后我们需要一块PCB板和导线若干、电烙铁、焊锡、松香,用于焊接电路。

第三部分、电路原理图及器件清单:
1.振荡电路:
2.复位电路
3.电源(供电)说明:
(1)方案一:外接电源供电
如上图:
左侧:输入12v电压,有极性要求;
电解电容470uf,瓷片电容0.1uf; 右侧:电解电容470uf,瓷片电容0.1uf;
电阻;(5v-1.7v)/0.3mA=1k;
(5v-1.7v)/10mA=300;
LED电源指示灯:
另外单片机要能下载程序通常需要包含程序下载电路,需要设计专门的电路。

第四部分:下载电路:
单片机下载程序只有通过单片机的串行线进行下载,即一定使用到TXD(11引脚)和RXD(10引脚)。

1.方案一:USB串串口下载:
元件清单:
2.方案二:RS232串口下载:
元件清单:。

相关文档
最新文档