平行线及其判定题练习习题

合集下载

(完整版)平行线及其判定与性质练习题

(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。

(______,________)(3)如果∠2+∠1=180°,那么_____。

(________,______)(4)如果∠5=∠3,那么_______。

(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。

(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。

(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。

平行线的判定练习题

平行线的判定练习题

平行线的判定练习题一、选择题1. 以下哪项不是平行线的基本判定条件?A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两直线相交2. 如果两条直线相交,它们的角度关系是:A. 同位角相等B. 内错角相等C. 同旁内角互补D. 两直线不平行3. 根据平行线判定定理,以下哪项说法是错误的?A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 同旁内角互补,两直线平行D. 两直线不相交,则它们平行4. 已知直线AB与CD平行,若直线EF与AB相交,则EF与CD的关系是:A. 一定相交B. 可能相交C. 可能平行D. 一定平行5. 如果两条直线的斜率相等,那么它们:A. 一定相交B. 一定平行C. 可能相交D. 可能平行二、填空题1. 根据平行线判定定理,如果两条直线的______相等,则它们平行。

2. 两条平行线之间的距离处处______。

3. 在同一平面内,如果两条直线不相交,则它们______。

4. 如果两条直线的同旁内角不互补,则它们______。

5. 两条直线的斜率不相等,则它们______。

三、判断题1. 如果两条直线的同位角不相等,则它们一定相交。

(对/错)2. 两条平行线与第三条直线相交,同位角一定相等。

(对/错)3. 两条直线的内错角不相等,它们一定不平行。

(对/错)4. 两条直线的同旁内角相等,它们一定相交。

(对/错)5. 如果两条直线的斜率相等,它们可能平行。

(对/错)四、解答题1. 已知直线l1: y = 2x + 3与直线l2: y = 2x + b平行,请求解b 的值。

2. 如果直线AB与CD平行,且AB与EF相交,求证EF与CD也平行。

3. 已知直线m: y = -3x + 5与n: y = -3x + c,判断m与n是否平行,并说明理由。

4. 证明:如果两条直线的斜率相等,则它们一定平行。

5. 已知两条平行线AB与CD,若直线EF与AB相交,求证EF与CD的交点与AB与CD的交点在一条直线上。

平行线的判定练习题(有答案)

平行线的判定练习题(有答案)

平行线的判定练习题(有答案)平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定--- 第 1 页共 1 页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第 2 页共 2 页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第 3 页共 3 页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第 4 页共 4 页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第 5 页共 5 页平行线测姓名:一、选择题1.下列命题中,不正确的是____ [ ]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______ [ ](2题)(5题)(3题)(7题) (8题)A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件: (1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180° (4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.(1)(3) B.(2)(4)C.(1)(3)(4) D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直 B.互相平行 C.相交 D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30° B.60° C.90° D.120°二、填空题 9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。

平行线的判定和性质练习题

平行线的判定和性质练习题

平行线的判定定理和性质定理一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ; 若∠ +∠ = 180°,则 ∥ .2.若a ⊥c ,b ⊥c ,则a b .3.如图2,写出一个能判定直线l 1∥l 2的条件: .4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ).5.如图3,若∠1 +∠2 = 180°,则 ∥ 。

6.如图4,∠1、∠2、∠3、∠4、∠5中, 同位角有 ; 内错角有 ;同旁内角有 .7.如图5,填空并在括号中填理由:(1)由∠ABD =∠CDB 得 ∥ ( );(2)由∠CAD =∠ACB 得 ∥ ( );(3)由∠CBA +∠BAD = 180°得 ∥ ( )8.如图6,尽可能多地写出直线l 1∥l 2的条件: .9.如图7,尽可能地写出能判定AB ∥CD 的条件来: .10.如图8,推理填空:(1)∵∠A =∠ (已知), ∴AC ∥ED ( );(2)∵∠2 =∠ (已知), ∴AC ∥ED ( ); (3)∵∠A +∠ = 180°(已知), ∴AB ∥FD ( ); (4)∵∠2 +∠ = 180°(已知),∴AC ∥ED ( ); 二、解答下列各题11.如图9,∠D =∠A ,∠B =∠FCB ,求证:ED ∥CF .A CB 4 1 2 3 5 图4 a b c d 1 2 3 图3 A BC ED 1 2 3 图1 图2 4 3 2 1 5 a b 1 2 3 AF CD B E图8 E B AF D C 图9 A D C B O 图5 图6 5 1 2 4 3 l 1 l 2 图7 5 4 3 2 1 A D C B12.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°,∠BDE =120°,写出图中平行的直线,并说明理由.13.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME 。

平行线的判定与性质练习题

平行线的判定与性质练习题

平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。

从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。

在几何学中,我们需要学会判定平行线,并掌握它们的性质。

下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。

练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。

A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。

A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。

A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。

2. 若两条平行线被一条横线所截,那么对应的外角相等。

3. 若两条直线分别与一条平行线相交,那么对应的内角相等。

4. 若两条直线分别与一条平行线相交,那么同旁内角互补。

练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。

2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。

3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。

4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。

通过以上练习题,我们可以加深对平行线的判定与性质的理解。

判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。

而平行线的性质则是通过观察线段之间的关系得出的。

掌握这些性质可以帮助我们解决更复杂的几何问题。

在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5.2平行线及其判定》同步练习题(附答案)一.选择题1.在下列4个判断中:①在同一平面内,不相交也不重合的两条线段一定平行;②在同一平面内,不相交也不重合的两条直线一定平行;③在同一平面内,不平行也不重合的两条线段一定相交;④在同一平面内,不平行也不重合的两条直线一定相交.正确判断的个数是()A.4B.3C.2D.12.如图,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=62°,那么添加下列哪个条件后,可判定l1∥l2()A.∠2=118°B.∠4=128°C.∠3=28°D.∠5=28°3.若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE4.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个5.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线6.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行7.如图,①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥EF 的条件有()A.1个B.2个C.3个D.4个8.下列画出的直线a与b不一定平行的是()A.B.C.D.二.填空题9.在同一平面内,直线a、b、c中,若a⊥b,b∥c,则a、c的位置关系是.10.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.11.如图,共有组平行线段.12.一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=时,CD∥AB.13.下列四种说法:①过一点有且只有一条直线与已知直线平行;②在同一平面内,两条不相交的线段是平行线段;③相等的角是对顶角;④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.其中,错误的是(填序号).14.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:.三.解答题15.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?16.如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?17.证明:两直线平行,同位角的角平分线互相平行.18.如图1,已知AC∥BD,点P是直线AC,BD间的一点,连接AB,AP,BP,过点P作直线MN∥AC.(1)MN与BD的位置关系是什么,请说明理由;(2)试说明∠APB=∠PBD+∠P AC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.19.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?20.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.21.如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.22.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)若∠DCE=35°,求∠ACB的度数;(2)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)请你动手操作,现将三角尺ACD固定,三角尺BCE的CE边与CA边重合,绕点C 顺时针方向旋转,当0°<∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.参考答案一.选择题1.解:在同一平面内,不相交也不重合的两条直线一定平行,故①错误,②正确;在同一平面内,不平行也不重合的两条直线一定相交故,③错误,④正确.故正确判断的个数是2.故选:C.2.解:∠1=62°,要使l1∥l2,则需∠3=62°(同位角相等,两直线平行),由图可知,∠2与∠3是邻补角,则只需∠2=180°﹣62°=118°,故选:A.3.解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=30°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.4.解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.5.解:如图所示:不相邻的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行或共线.故选:D.6.解:由题意得,这样做的理由是:两点之间线段最短,故选:C.7.解:①当∠B+∠BFE=180°时,由同旁内角互补,两直线平行得AB∥EF,故①符合题意;②当∠1=∠2时,由内错角相等,两直线平行得DE∥BC,故②不符合题意;③当∠3=∠4时,由内错角相等,两直线平行得AB∥EF,故③符合题意;④当∠B=∠5时.由同位角相等,两直线平行得AB∥EF,故④符合题意;综上所述,能判定AB∥EF的有3个.故选:C.8.解:A.直线a与b不一定平行,故本选项符合题意;B.根据同旁内角互补,两直线平行可得a∥b,故本选项不符合题意;C.根据平行线的定义可得a∥b,故本选项不符合题意;D.根据同位角相等,两直线平行可得a∥b,故本选项不符合题意;故选:A.二.填空题9.解:∵c∥b,a⊥b,∴c⊥a.故答案为c⊥a10.解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.11.解:图中的平行线段有AD∥EF;BD∥EF;DE∥FB;DE∥FC;DF∥AE;DF∥EC;DE∥BC;DF∥AC;EF∥AB.共有9对.故答案为:9.12.解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.13.解:∵过直线外一点有且只有一条直线与已知直线平行,∴①错误;∵在同一平面内,两条不相交的线段可能在一条直线上,说两线段是平行线段不对,∴②错误;∵相等的角不一定是对顶角,∴③错误;∵在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交,正确,∴④正确;故答案为:①②③.14.解:∵PC∥AB,QC∥AB,∵PC和CQ都过点C,∴P、C、Q在一条直线上(过直线外一点有且只有一条直线与已知直线平行),故答案为:过直线外一点有且只有一条直线与已知直线平行.三.解答题15.解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.16.解:结论:AB∥DG.理由:∵AD⊥BC于D,EF⊥BC于F,∴AD∥EF,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.17.解:已知:如图,AB∥CD,HI与AB,CD分别交于点M、N,EM,FN分别是∠AMH,∠CNH的平分线.求证:EM∥FN.证明:∵AB∥CD,∴∠AMH=∠CNH(两直线平行,同位角相等),∵EM,FN分别是∠AMH,∠CNH的平分线,∴∠1=∠AMH,∠2=∠CNH,∴∠1=∠2,∴EM∥FN(同位角相等,两直线平行).18.解:(1)平行;理由如下:∵AC∥BD,MN∥AC,∴MN∥BD;(2)∵AC∥BD,MN∥BD,∴∠PBD=∠1,∠P AC=∠2,∴∠APB=∠1+∠2=∠PBD+∠P AC.(3)答:不成立.它们的关系是∠APB=∠PBD﹣∠P AC.理由是:如图2,过点P作PQ∥AC,∵AC∥BD,∴PQ∥AC∥BD,∴∠P AC=∠APQ,∠PBD=∠BPQ,∴∠APB=∠BPQ﹣∠APQ=∠PBD﹣∠P AC.19.解:共线.因为过直线AB外一点C有且只有一条直线与AB平行,CD、DE都经过点C且与AB平行,所以点C、D、E三点共线.20.证明:∵∠1+∠2=180°(已知)∵∠1=∠4(对顶角相等)∴∠2+∠4=180°(等量代换)∴AB∥EF(同旁内角互补,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)21.证明:(1)∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.又∵AB∥CD,∴∠B=∠BFD,∴∠C=∠BFD=∠B=50°.22.解:(1)∵∠ECB=90°,∠DCE=35°,∴∠DCB=90°﹣35°=55°,∴∠ACB=∠ACD+∠DCB=90°+55°=145°;(2)∠ACB+∠DCE=180°,理由:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;(3)存在,当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.。

(完整版)平行线的判定习题(含答案)(最新整理)

(完整版)平行线的判定习题(含答案)(最新整理)

2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如右图所示,在下列条件中,不能判断l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4+∠5=180°D.∠2+∠4=180°【答案】B【解析】【分析】直接利用平行线的判定方法分别分析得出答案.【详解】解:A、∠1=∠3根据内错角相等,两直线平行能判定l1∥l2,故此选项不符合题意;B. ∠2=∠3无法判定l1∥l2,故此选项符合题意;C. ∠4+∠5=180°, ∠2=∠5,所以∠4+∠2=180°, 根据同旁内角互补,两直线平行能判定l1∥l2,故此选项不符合题意;D. ∠2+∠4=180°,能判定l1∥l2,故此选项不符合题意;故选:B.【点睛】本题考查平行线的判定,正确掌握判定方法是解题关键.2.如图,直线a,b被直线c所截,下列条件能判断a//b的是( ).A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2+∠4=180°【答案】B【解析】【分析】根据平行线的判定定理,同位角相等,两直线平行即可解题.【详解】解:A. ∠1=∠2是对顶角,无法判断,B. ∠1=∠4,根据同位角相等,两直线平行即可判定a//b,正确,C. ∠3+∠4=180°,邻补角互补无法判断平行,D. ∠2+∠4=180°,内错角不是互补的,错误,故选B.【点睛】本题考查了平行线的判定,属于简单题,熟悉平行线的判定定理是解题关键.3.如图,下列条件:①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥EF的有( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.4.如图,下列条件中,不能判断直线的是()∠1=∠3∠2=∠3∠4=∠5A.B.C.D.∠2+∠4=180°【答案】B【解析】【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行对各选项进行判断.【详解】当∠1=∠3时,a∥b;当∠4=∠5时,a∥b;当∠2+∠4=180°时,a∥b.故选:B.【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5.如图,点E在AD延长线上,下列条件中不能判定BC∥AD的是( )∠1=∠2∠C=∠CDEA.B.∠3=∠4∠C+∠ADC=180∘C.D.【答案】A【解析】【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行进行判断,即可得出答案.【详解】解:A、∵∠1=∠2,∴AB∥CD,本选项符合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠3=∠4,∴BC∥AD,本选项不合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:A.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.6.如图,下列条件中能得到AB∥CD的是( )∠1=∠2∠2=∠3∠1=∠4∠3=∠4 A.B.C.D.【答案】C【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、因为∠1=∠2,不能得出AB∥CD,错误;B、∵∠2=∠3,∴AD∥BC,错误;C、∵∠1=∠4,∴AB∥CD,正确;D、因为∠3=∠4,不能得出AB∥CD,错误;故选C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.7.下列说法错误的是( )A.在同一平面内,不相交的两条线段必然平行B.在同一平面内,不相交的两条直线必然平行C.在同一平面内,不平行的两条线段延长后必然相交D.在同一平面内,两条直线没有公共点,那么两条直线平行【答案】A【解析】【分析】根据两条直线的位置关系直接可以找出错误的选项.【详解】在同一平面内,不相交的两条直线必然平行; 在同一平面内,不平行的两条线段延长后必然相交; 在同一平面内,两条直线没有公共点,那么两条直线平行;只有A选项中,在同一平面内,不相交的两条线段不一定平行,故A错误.故选A.【点睛】此题重点考察学生对两直线的位置关系的理解,掌握两直线的位置关系是解题的关键. 8.同一平面内的两条线段,下列说法正确的是( )A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交【答案】C【解析】【分析】根据线段有固定长度这一特点来解题即可.【详解】同一平面内的两条线段,可以出现相交,平行,也可以出现既不平行也不相交的状态.故选C【点睛】此题重点考察学生对两条线段位置关系的理解,抓住线段有固定长度是解题的关键. 9.在同一平面内,两条不重合直线的位置关系可能是( )A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【答案】C【解析】【分析】根据前提条件结合直线的位置关系直接可以得到答案.【详解】在同一平面内,两条不重合的直线的位置关系只有两种:平行或相交.故选C【点睛】此题重点考察学生对两直线位置关系的理解,掌握两直线的位置关系是解题的关键. 10.如图,已知点E在BC的延长线上,则下列条件中不能判断AB∥CD的是( )A.∠B=∠DCE B.∠BAD+∠D=180°C.∠1=∠4D.∠2=∠3【答案】D【解析】【分析】根据平行线的判定定理即可直接作出判断.【详解】A、根据同位角相等,两直线平行即可证得,故选项错误;B、根据同旁内角互补,两直线平行,即可证得,故选项错误;C、根据内错角相等,两直线平行即可证得,故选项错误;D、∠2和∠3是AD和BC被AC所截形成的角,因而不能证明AB∥CD,故选项正确.故选:D.【点睛】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.如图,下列判定两直线平行错误的是()A.若∠D=∠3,则BE∥DF B.若∠B=∠2,则AB∥CDC.若∠1+∠D=,则BE∥DF D.若∠1+∠B=,则AB∥CD18001800【答案】A【解析】【分析】根据平行线的判定逐一判断即可.【详解】A. ∠D和∠3是一组同旁内角,根据“同旁内角互补,两直线平行”,可得本选项错误;B. ∠B和∠2是一组同位角角,根据“同位角相等,两直线平行”,可得本选项正确;C. 因为∠1 = ∠3,若∠1+∠D=,则∠3+∠D=,根据“同旁内角互补,两直线18001800平行”,可得本选项正确;D. ∠1和∠B,是一组同旁内角,根据“同旁内角互补,两直线平行”,可得本选项正确.故选:A.【点睛】本题考查平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解题关键.12.如图,已知CD、BF相交于点O,∠D=,下面判定两直线平行正确的是650()A.当∠C=时,AB∥CD B.当∠A=时,AC∥DE6501150C.当∠E=时,CD∥EF D.当∠BOC=时,BF∥DE12501150【答案】D【解析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】本题考查平行线的判定,解题关键是在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.13.如图,下列条件中,能判断FB∥CE的是()A.∠F+∠C=B.∠ABF=∠C C.∠F=∠C D.∠A=∠D1800【答案】B【解析】【分析】分析四个选项,看哪个选项的条件满足平行线的判定定理,由此即可得出结论.【详解】解:A、∠F+∠C=180°,不能得出FB∥CE,A不可以;B、∠ABF=∠C,同位角相等,两直线平行,B可以;C、∠F=∠C,不能得出FB∥CE,C不可以;D、∠A=∠D,内错角相等,两直线平行,但得出的是DF∥AC,D不可以.【点睛】本题考查平行线的判定定理,解题的关键是牢记平行线的判定定理.本题属于基础题,难度不大,解决该题型题目时,寻找相等或互补的角去证明直线平行.14.如图,一根直尺EF压在三角板的角∠BAC上,欲使CB∥EF,则应使∠ENB的度300数为()A.B.C.D.1000110012001300【答案】C【解析】【分析】根据平行线的判定方法即可解答.【详解】解:因为三角板含有30°的角,所以∠B=60°,当∠ENB+∠B=180°时,根据“同旁内角互补,两直线平行”,可使CB∥EF,此时∠ENB=180°-∠B=180°-60°=.1200故选:C.【点睛】本题考查平行线的判定方法,解题关键是熟练掌握判定方法,根据题目要求选择简单方法.15.如图,直线a与直线b被直线c所截,b⊥c,垂足为A,∠1=69°,若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转( )A.69°B.49°C.31°D.21°【答案】D【解析】先根据b⊥c得出∠2的度数,再由平行线的判定定理即可得出结论.【详解】∵b⊥c,∴∠2=90°.∵∠1=69°,a∥b,∴直线b绕着点A顺时针旋转的度数=90°﹣69°=21°,故选D.【点睛】本题考查了垂直的定义,平行线的判定,熟练掌握和正确运用相关知识是解题的关键. 16.如图是小敏作“过已知直线外一点画这条直线的平行线”,从图中可知,小敏画平行线的依据是( )①两直线平行,同位角相等②两直线平行,内错角相等③同位角相等,两直线平行④内错角相等,两直线平行A.①②B.②③C.③④D.①④【答案】C【解析】【分析】①②为平行线的性质,③④为平行线的判定定理.【详解】解:根据平行线的判定与性质可知,①②为平行线的性质,③④为平行线的判定定理,∴小敏是依据③④画平行线的.故选:C.【点睛】本题主要考查平行线的判定与性质,解此题的关键在于熟记平行线的判定定理与性质的区别.17.如图,下列结论:若,则∥;若,则∥;若①∠1=∠3AB CD②∠2=∠4AB CD③∠ADC=∠5,则AD//BC;若∠DAB+∠ABC=180°,则AD//BC,其中正确的个数是④()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据内错角相等,两直线平行可以对①②③进行判断,根据同旁内角互补,两直线平行可以对④进行判断,由此即可得答案.【详解】①若∠1=∠3,则AB∥CD,正确;②若∠2=∠4,则AD∥BC,故②错误;③若∠ADC=∠5,则AD//BC,正确;④若∠DAB+∠ABC=180°,则AD//BC,正确,故选C.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.18.如图,下列推理正确的是( )A.∵∠1=∠2,∴AD∥BC B.∵∠3=∠4,∴AB∥CDC.∵∠3=∠5,∴AB∥DC D.∵∠3=∠5,∴AD∥BC【答案】C【解析】【分析】利用平行线的判定方法判断即可得到结果.【详解】∵∠3=∠5,∴AB∥DC(同位角相等,两直线平行).故选C.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.二、解答题∠AED=∠C∠1=∠B EF//AB19.如图,,,说明:.【答案】见解析.【解析】【分析】先由同位角相等,得出两直线平行,再根据两直线平行,得出内错角相等,最后根据同位角相等,得出两直线平行即可.【详解】∠AED=∠C∵(已知)DE//BC∴(同位角相等,两直线平行)∠1=∠EFC又∵(两直线平行,内错角相等)∠B=∠EFC∴(等量代换)EF//AB∴(同位角相等,两直线平行)【点睛】本题主要考查了平行线的判定与性质,解题时注意:两直线平行,内错角相等;同位角相等,两直线平行.20.如图,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.【答案】(1)证明见解析;(2)36°.【解析】【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠DBC,根据垂直推出BD∥EF,根据平行线的性质即可求出∠EFC.【详解】(1)证明:∵∠ABC=180°-∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)∵AD∥BC,∠ADB=36°,∴∠DBC=∠ADB=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠EFC=36°【点睛】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.21.平面上有6条直线,共有12个不同的交点,画出它们可能的位置关系(画三种图形).【答案】详见解析.【解析】【分析】从平行线的角度考虑,先考虑只有二条直线平行,再考虑三条平行,作出草图即可看出.【详解】如下图.【点睛】本题考查平行线与相交线的综合运用.没有明确平面上六条不重合直线的位置关系,需要运用分类讨论思想.22.如图,根据要求填空.(1)过A作AE∥BC,交______于点E;(2)过B作BF∥AD,交______于点F;(3)过C作CG∥AD,交__________于点G;(4)过D作DH∥BC,交BA的__________于点H.【答案】(1)DC;(2)DC;(3)AB;(4)延长线.【解析】【分析】根据要求,直接进行作图就可以解决.【详解】(1)过A作AE∥BC,交DC于点E;(2)过B作BF∥AD,交DC于点F;(3)过C作CG∥AD,交AB的延长线于点G;(4)过D作DH∥BC,交BA的延长线于点H.【点睛】本题主要考查平行线的作法以及几何语言的准确性.23.探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是__________,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是________.(直接填结论,不需要证明)(3)现在有2 011条直线a1,a2,a3,…,a2 011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2 011的位置关系.【答案】(1)a1⊥a3,理由详见解析;(2)a1∥a4;(3)a1⊥a2 011.【解析】【分析】(1)根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答;(2)根据(1)中结论即可判定垂直;(3)根据规律发现,与脚码是偶数的直线互相平行,与脚码是奇数的直线互相垂直,根据此规律即可判断.【详解】(1)a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;(2)同(1)的解法,如图2,直线a1与a4的位置关系是:a1∥a4;(3)直线a1与a3的位置关系是:a1⊥a2⊥a3,直线a1与a4的位置关系是:a1∥a4∥a5,以四次为一个循环,⊥,⊥,∥,∥以此类推,a1∥a2009,a1⊥a2010,所以直线a1与a2011的位置关系是:a1⊥a2011.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导.三、填空题24.已知,如图,要使得AB∥CD,你认为应该添加的一个条件是________【答案】∠ECD=∠A(答案不唯一).【解析】【分析】根据平行线的判定定理,即可直接写出条件.【详解】添加的条件是:∠ECD=∠A(答案不唯一).故答案为:∠ECD=∠A.【点睛】本题考查了平行线的判定定理,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.25.在同一平面内,三条不同的直线a、b、c,若a⊥c,b⊥c,则______.【答案】a∥b【解析】【分析】根据平行线的判定解答即可.【详解】在同一平面内,三条不同的直线a、b、c,若a⊥c,b⊥c,则a∥b.故答案为:a∥b.【点睛】本题考查了平行线的判定与性质,在同一平面内,垂直于同一直线的两直线平行的性质,是基础题,熟记平行线的判定是解题的关键.126.设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关系是________;(2)若a⊥b,b⊥c,则a与c的位置关系是________.【答案】a∥c;a∥c.【解析】【分析】(1)根据两条直线的位置关系直接写出答案.(2)根据垂线的性质去解答即可.【详解】设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关是a∥c,(2)若a⊥b,b⊥c,则a与c的位置关系是a∥c.故答案为(1). a∥c (2). a∥c【点睛】此题重点考察学生对两直线的位置关系和垂线性质的理解,掌握两直线的位置和垂线的性质是解题的关键.27.如图,某工件要求AB∥ED,质检员小李量得∠ABC=146°,∠BCD=60°,∠EDC=154°,则此工件________.(填“合格”或“不合格”)【答案】合格【解析】【分析】作CF∥AB,由平行线的性质得出∠ABC+∠1=180°,求出∠1,得出∠2,由∠2+∠EDC=180°,得出CF∥ED,证出AB∥ED,即可得出结论.【详解】作CF∥AB,如图所示:则∠ABC+∠1=180°,∴∠1=180°-146°=34°,∴∠2=∠BCD-∠1=60°-34°=26°,∵∠2+∠EDC=26°+154°=180°,∴CF∥ED,∴AB∥ED;故答案为:合格.【点睛】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键28.如图,EN⊥CD,点M在AB上,∠MEN=156°,当∠BME=________°时,AB∥C D.【答案】66.【解析】【分析】过点E作EF∥AB,由平行线的性质可得∠BME=MEF,利用平行线的判定定理和性质定理可得∠NEF=90°,易得∠BME.【详解】过点E作EF∥AB,∴∠BME=MEF,∵AB∥CD,∴EF∥CD,∵EN⊥CD,∴EN⊥EF,∴∠NEF=90°,∵∠MEN=156°,∴∠MEF+90°=156°,∴∠MEF=∠BME=156°-90°=66°.故答案为:66.【点睛】本题主要考查了平行线的判定定理及性质定理,综合运用定理是解答此题的关键.29.如图,已知CD⊥DA,DA⊥AB,∠1=∠2. 试说明DF∥AE. 请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°( ).∴∠CDA=∠DAB(等量代换).又∠1=∠2,从而∠CDA-∠1=∠DAB-________(等式的性质).即∠3=_______.∴DF∥AE( ).【答案】垂直的定义;∠2;∠4;内错角相等,两直线平行【解析】【分析】(1)根据垂直的定义填空;(2)根据等式的性质进行填空;(3)根据图象中角的位置关系进行解答;(4)根据平行线的判定定理进行解答即可.【详解】解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°(垂直的定义),∴∠CDA=∠DAB(等量代换),又∠1=∠2,从而∠CDA-∠1=∠DAB-∠2 (等式的性质).即∠3=∠4,∴DF∥AE(内错角相等,两直线平行).故答案为:垂直的定义;∠2;∠4;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理等知识点,解此题的关键在于熟记书本中基本的知识点.30.如图,当∠1=∠__时,AB∥DC.【答案】4【解析】【分析】当∠1=∠4 时,根据内错角相等,两直线平行可以判定AB∥DC.【详解】∵∠1=∠4,∴AB∥DC(内错角相等,两直线平行).【点睛】此题主要考查了平行线的判定,内错角相等,两直线平行.。

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5.2平行线及其判定》同步练习题(附答案)一.选择题1.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条2.如图,点E在AB的延长线上,下列条件中,能判定AB∥DC的是()A.∠A+∠ABC=180°B.∠ABD=∠CDBC.∠A=∠CBE D.∠ADB=∠CBD3.如图,已知∠A=∠BEF,那么()A.AD∥BC B.AB∥CD C.EF∥BC D.AD∥EF4.如图,∠1=∠2,则下列结论正确的是()A.∠3=∠4B.AD∥BC C.AB=CD D.AB∥CD5.如图,现给出下列条件:①∠1=∠B,②∠2=∠5,③∠3=∠4,④∠BCD+∠D=180°.其中能够得到AB∥CD的条件有()A.①②B.①③C.①④D.②④6.如图,在同一平面内,经过直线l外一点O有四条直线①②③④,借助直尺和三角板判断,与直线l平行的是()A.①B.②C.③D.④7.如图,工人师傅移动角尺在工件上画出直线CD∥EF,其中的道理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.以上结论都不正确8.如图所示,已知∠1=65°,∠2=80°,∠3=35°,下列条件中,能得到AB∥CD的是()A.∠4=80°B.∠5=65°C.∠4=35°D.∠5=35°9.如图,直线a、b被直线c所截.若∠1=55°,则∠2的度数是()时能判定a∥b.A.35°B.45°C.125°D.145°10.如图,下列推理中,正确的是()A.因为∠1=∠3,所以AB∥CD B.因为∠1=∠3,所以AE∥CFC.因为∠2=∠4,所以AB∥CD D.因为∠2=∠4,所以AE∥CF二.填空题11.如图,由∠A+∠B=180°,可得:AD∥BC.理由是.12.如图,能判定DE∥BC的条件是(用图中的符号表示,填一个即可).13.将一副三角板如图摆放,则互相平行的两条线段是.14.如图,一个弯形管道ABCD,若它的两个拐角∠ABC=120°,∠BCD=60°,则管道AB∥CD.这里用到的推理依据是.15.经过直线外一点,有且只有直线与这条直线平行.16.如图,直线c与a、b相交,∠1=35°,∠2=80°,要使直线a与b平行,直线a绕点O逆时针旋转的度数至少是.17.如图,点E在AB的延长线上,下列条件:①∠1=∠3;②∠2=∠4;③∠DAB=∠CBE;④∠D+∠BCD=180°;⑤∠DCB=∠CBE.其中能判断AD∥CB的是(填写正确的序号即可).18.在同一平面内,不重合的两条直线的位置关系是.19.如图,已知直线EF⊥MN垂足为F,且∠1=138°,则当∠2等于时,AB∥CD.20.如图,把三角尺的直角顶点放在直线b上.若∠1=40°,则当∠2=°时,a ∥b.三.解答题21.如图,已知AB⊥BC,∠1+∠2=90°,∠2=∠3.求证:BE∥DF.证明:∵AB⊥BC,∴∠ABC=°,即∠3+∠4=°.∵∠1+∠2=90°,且∠2=∠3,∴∠1+∠3=90°.∴∠1=∠,∴BE∥DF.理由是:.22.如图,E在四边形ABCD的边CD的延长线上,连接BE交AD于F,已知∠A=∠C,∠1+∠2=180°,求证:AB∥CD.23.如图,∠EAD=130°,∠B=50°,试说明EF∥BC.24.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.25.已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.参考答案一.选择题1.解:由题意知,在长方体中,对任意一条棱,与它平行的棱共有3条,故选:C.2.解:A、当∠A+∠ABC=180°时,可得:AD∥BC,不合题意;B、当∠ABD=∠CDB时,可得:AB∥DC,符合题意;C、当∠A=∠CBE时,可得:AD∥BC,不符合题意;D、当∠ADB=∠CBD时,可得:AD∥BC,不合题意;故选:B.3.解:∵∠A=∠BEF,∴AD∥EF.故选:D.4.解:∵∠1=∠2,∴AB∥CD.故选:D.5.解:①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠D+∠BCD=180°,∴AD∥CB,故本小题错误.所以正确的有①②.故选:A.6.解:借助直尺和三角板,经过刻度尺平移测量,③符合题意,故选:C.7.解:∵∠CDB=∠FEB,∵CD∥EF(同位角相等,两直线平行),故选:A.8.解:∵∠3=35°,∠5=35°,∴∠3=∠5,∴AB∥CD(内错角相等,两直线平行),故选:D.9.解:如图,∵∠2=125°,∠2+∠3=180°,∴∠3=55°,∵∠1=55°,∴∠1=∠3,∴a∥b,故选:C.10.解:A.由∠1=∠3,不能得到AB∥CD,故本选项错误;B.由∠1=∠3,不能得到AE∥CF,故本选项错误;C.由∠2=∠4,不能得到AB∥CD,故本选项错误;D.由∠2=∠4,可以得到AE∥CF,故本选项正确;故选:D.二.填空题11.解:由∠A+∠B=180°,可得:AD∥BC,理由是同旁内角互补,两直线平行;故答案为:同旁内角互补,两直线平行.12.解:添加一个条件:∠1=∠C(答案不唯一),理由如下:∵∠1=∠C,∴DE∥BC(同位角相等,两直线平行),故答案为:∠1=∠C(答案不唯一).13.解:∵∠ACB=90°,∠DEF=90°,∴∠ACB=∠DEF,∴BC∥ED(内错角相等,两直线平行),故答案为:BC和ED.14.解:∵∠ABC=120°,∠BCD=60°∴∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故答案为:同旁内角互补,两直线平行.15.解:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:一条.16.解:如图,∵∠3=∠1=35°时,a∥b,∴要使直线a与b平行,直线a绕点O逆时针旋转的度数至少是80°﹣35°=45°.故答案为:45°.17.解:①当∠1=∠3时,AB∥DC,不符合题意;②当∠2=∠4时,AD∥CB,符合题意;③当∠DAB=∠CBE时,AD∥BC,符合题意;④当∠D+∠BCD=180°时,AD∥BC,符合题意;⑤当∠DCB=∠CBE时,AB∥CD,不符合题意;故选:②③④.18.解:在同一平面内,不重合的两条直线的位置关系是平行和相交,故答案为:平行和相交.19.解:∵AB∥CD,∴∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF⊥MN,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.20.解:∵∠1=40°,∴∠3=90°﹣40°=50°,∵a∥b,∴∠2=∠3=50°,故答案为50.三.解答题21.证明:∵AB⊥BC,∴∠ABC=90°,即∠3+∠4=90°,∵∠1+∠2=90°,且∠2=∠3,∴∠1+∠3=90°,∴∠1=∠4,∴BE∥DF,理由是:同位角相等,两直线平行.故答案为:90;90;4;同位角相等,两直线平行.22.证明:∵∠1+∠2=180°,∴AD∥BC,∴∠3=∠C,∵∠A=∠C,∴∠A=∠3,∴AB∥CD.23.证明:∵∠EAD=∠F AB,∠EAD=130°,∴∠F AB=130°,∵∠B=50°,∴∠B+∠F AB=180°,∴EF∥BC(同旁内角互补,两直线平行).24.证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=180﹣(∠1+∠2)=90°=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.25.证明:∵EF⊥AC,DB⊥AC,∴EF∥DM,∴∠2=∠CDM,∵∠1=∠2,∴∠1=∠CDM,∴MN∥CD,∴∠C=∠AMN,∵∠3=∠C,∴∠3=∠AMN,∴AB∥MN.。

平行线的性质与判定练习题

平行线的性质与判定练习题
1 2
m
n
5.如图,直线AB、CD相交于 点O,OE⊥AB,O为垂足,如 果∠EOD = 38°,则∠AOC = 52° ,∠COB = 128° 。
A O C E D B
6.如图,AC平分∠DAB, ∠1 =∠2。填空:因为AC平分 ∠DAB,所以∠1 =∠BAC。所 以∠2 = ∠BAC。所以 AB∥ CD 。 D C 2
C
7.已知:如图,已知AB、CD被EF所截,EG平分 ∠BEF,FG平分∠EFD,且∠1+∠2=900, 求证:AB//CD 证明: E A ∵EG平分∠BEF, 1 FG平分∠EFD( ) 已知 2 ∴ ∠BEF=2∠1 C ∠DFE=2∠2( 角平分线的定义 F ) ∵∠1+∠2=900( 已知 ) ∴∠BEF+∠DFE=1800( 等式的性质 ) ∴AB//CD( 同旁内角互补,两直线平行
平行线的判定与性质的 综合运用
1.如图,已知AD//BC,∠B=300,DB平分∠ADE,则 ∠DEC为(B ) A.300 B.600 C.900 D.1200
A D
B
E
C
2.如图,AD//BC,AB//CD,点E在CB的延长 0 50 0 线上,∠C=50 ,则∠DAB= 。 A D
E
B
C
3.如图,∠A+∠C=1800,∠D=∠E,则AB与EF平行吗? 为什么?
F
C
9.如图,AB//CD,P为AB和CD之间的一点,已知 ∠1=420,∠2=350,求∠BPC的度数。
A P 2 D C
1
B
一、选择题(每小题4分,共24 分) 1.下面四个图形中,∠1与∠2 是对顶角的图形的个数是 ( B )
1 2

完整版)平行线的判定和性质经典题

完整版)平行线的判定和性质经典题

完整版)平行线的判定和性质经典题平行线的判定和性质经典题一、选择题(共18小题)1.同位角共有()。

A。

6对B。

8对C。

1对D。

12对2.将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()。

A。

平行B。

垂直C。

平行或垂直D。

无法确定3.下列说法中正确的个数为()。

①不相交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线互相平行④在同一平面内,两条直线不是平行就是相交A。

1个B。

2个C。

3个D。

4个4.在同一平面内,有8条互不重合的直线,l1,l2,l3 (8)若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()。

A。

平行B。

垂直C。

平行或垂直D。

无法确定5.若两个角的两边分别平行,且这两个角的差为40°,则这两角的度数分别是()。

A。

150°和110°B。

140°和100°C。

110°和70°D。

7°和30°6.XXX所示,AC⊥BC,DE⊥BC,CD⊥AB,∠ACD=40°,则∠XXX等于()。

A。

4°B。

5°C。

6°D。

不能确定7.如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()。

A。

1°B。

2°C。

3°D。

15°8.下列所示的四个图形中,∠1和∠2是同位角的是()。

①②③④A。

②③B。

①②C。

①④D。

②④9.已知∠AOB=40°,∠XXX的边CD⊥OA于点C,边DE∥OB,那么∠CDE等于()。

A。

5°B。

130°C。

5°或130°D。

100°10.如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()。

平行线的判定专项练习60题(有答案)

平行线的判定专项练习60题(有答案)

1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC 于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE 分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD .25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?。

平行线判定与性质习题经典

平行线判定与性质习题经典

∠D=
D
图2
180(已知)
C
∴___A_B__∥__C__D__( 同旁内角互补,两直线平行)
∴∠B+∠C=___1_8_0(0 两直线平行,同旁内角互)补
1.如图已知a∥b找出其中相等的角和互补的 角。
∠1=∠3(两直线平行,内
5
错角相等);
12
∠5=∠4(两直线平行,同
位角相等);
4
3
∠2+∠4=180°(两直线
则∠ DGO=———
B
O
A
C
G
D
B’ C’
如图:AD∥BC, ∠A=∠C.试 说明AB∥DC
证明:∵AD∥BC(已知)
AD
E
∴∠C=∠CDE(两直线平行,内错角相等) 又∵ ∠A=∠C(已知)
∴ ∠A=∠CDE(等量代换) F
B
C
∴AB∥DC(同位角相等,两直线平行)
4.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
即 ∠1+∠2=90°.
变式思考一: 已知AB∥CD,GM,HM平分
∠FGB, ∠EHD,试判断GM与HM是否垂
直?
E
A
G
B
CH
M D
F
变式思考:若已知GM,HM平分 ∠FGB,∠EHD,GM⊥HM,试判断AB与CD 是否平行?
E
A
G
B
CH
M D
F
拓展1:已知AB∥CD,GP,HQ平分 ∠EGB, ∠EHD,判断GP与HQ是否平行?
平行线判定定理
定理1 同位角相等 定理2 内错角相等
两直线平行 两直线平行

平行线的判定专项练习60题(有答案)

平行线的判定专项练习60题(有答案)

1.已知:如图,BE平分/ ABC , /仁/ 2 .求证:BC // DE . 4 .如图,AB 丄BC ,Z 1 + / 2=90 ° / 2= / 3,求证: BE //DF.5 .如图,OP平分/ MON , A、B分别在OP、OM上, /BOA= / BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.3.如图所示,AB丄BC, BC丄CD , BF和CE是射线, 并且/1 = / 2,试说明BF // CE .6.已知:如图,/ 1 = / 2,Z A= / C.求证:AE // BC .7.已知,如图B、D、A在一直线上,且/ D= / E,/ ABE= / D+ / E, BC 是/ ABE 的平分线,10.如图,直线AB、CD与直线EF相交于E、F,已知: / 仁105 ° / 2=75 ° 求证:AB // CD .&如图,已知/ AEC= / A+ / C,试说明:AB // CD . 11.如图,/ D= / A,/ B= / FCB,求证:ED // CF.9.如图,已知AC // ED, EB 平分/ AED,/ 1 = / 2, 求证:AE // BD .12 .如图,已知AB丄BC , CD丄BC ,Z 1= / 2,求证:114.如图,已知/ C=Z D , DB // EC . AC 与DF 平行吗? 试说明你的理由.17 .已知/ BAD= / DCB ,/ 1 = / 3,求证:AD // BC .B C15.如图,AC 丄 AE , BD 丄 BF ,/ 仁35° / 2=35° 求 证:AE // BF .18 .如图,AD 是三角形 ABC 的角平分线,DE // CA , 并且交AB 与点E ,/仁/ 2, DF 与AB 是否平行?为什么?13 •如图所示所示,已知 BE 是/ B 的平分线,交 AC 于E ,其中/ 1 = / 2,那么DE // BC 吗?为什么?16.如图,已知 AB // CD ,/ 1 = / 2,求证: BE // CF.19.如图,已知:/ C= / DAE ,/ B=/ D ,那么 AB 平 行于DF 吗?请说明理由.20 .如图,已知点B 在AC 上,BD 丄BE ,/ 1 + / C=90 ° 问射线CF 与BD 平行吗?说明理由.23.如图,四边形 ABCD 中,/ A= / C=90 ° BF 、DE 分别平分/ ABC 、/ ADC .判断DE 、BF 是否平行,并 说明理由.21.已知/ 1的度数是它补角的 3倍,/ 2等于45°那 么AB // CD吗?为什么?AB // CD .匸BDE 是一条直线,/ ABD= / CDE , DG平分/ CDE ,求证:BF // DG .24.如图,若/ CAB= / CED+ / CDE ,求证:22.已知:如图, BF 平分/ ABD ,25. 如图,CD 丄AB ,GF丄AB,/ 1 = / 2 .试说明DE //BC .28.如图,/ D= / 1, Z E=Z 2, DC丄EC.求证:AD // BE.26. 女口图所示,Z CAD= Z ACB , Z D=90 ° EF± CD .试说明:Z AEF= Z B .29.如图,在四边形ABCD中,Z A= Z C, BE平分Z ABC,DF 平分Z ADC,试说明BE // DF.27. 已知:如图所示,C, P, D三点在同一条直线上,Z BAP+ Z APD=180 ° Z E= Z F,求证:Z 1 = Z 2.30.已知:如图,Z 1 = Z 2,Z A= Z F,则Z C与Z D相等吗?试说明理由.31.如图,在四边形 ABCD 中,/ A= / C=90 ° / 1= / 2 / 3= / 4,求证:BE // DF .3C BCC BD334 .如图,已知/ 1 = / 2,/ C= / CDO ,求证:CD // OP .32.如图,已知/ 仁/2 求证:a // b35.如图,已知 DE 平分/ BDF , AF 平分/ BAC ,且 / 仁 / 2.求证(1) DF // AC ; (2) DE // AF .33.如图,DE 丄AO 于E , BO 丄AO 于O , FC 丄AB 于 C ,Z 仁/ 2,找出图中互相平行的线,并加以说明.36.如图,AD 平分/ BAC , EF 平分/ DEC ,且/ 1 = / 2 试说明DE 与AB 的位置关系.OO B37. 如图,在△ ABC中,点D在AB上,/ ACD= / A , /BDC的平分线交BC于点E.40.如图,直线AB、CD被直线EF所截,/ 1+ / 4=180° 求证:AB // CD .38. 如图,AB与CD相交于点0,并且/ A= / 1,试问 / 2与/B满足什么关系时,AC // BD ?说明理由.41 •如图所示,已知:/ 1 = / 2,/ E= / F.试说明AB // CD .39. 如图,已知/ 1 = / A,/ 2= / B,那么MN 与EF平行吗?如果平行,请说明理由.42 .如图,已知EF 丄CD 于F,/ GEF=25 ° / 1=65° 则AB与CD平行吗?请说明理由.求证:DE // AC .43.如图,已知/ 1= / 2=90° / 3=30° / 4=60 ° 图中有几对平行线?说说你的理由.46. 如图,已知B、C、D三点在同一条直线上, / B= / 1 , /2= / E,试说明AD // CE.44 .直线AB , CD被直线EF所截,/ 1 = 7 2,直线AB 和CD平行吗?为什么?F47. 直线AB、CD与GH交于E、F, EM平分/ BEF , FN 平分/ DFH , 7 BEF= 7 DFH , 求证:EM // FN .45.已知:如图,AD丄BC , EF丄BC ,7 1 = 7 2 .求证: AB// GF.48. 女口图所示,7 ABC= 7 BCD , BE、CF 分另U平分7 ABC和7 BCD,请你说出BE与CF的位置关系,并说出你的理由.C49. 如图,若/ 1= / 2,请判断DB与EC的位置关系, 并说明理由.52. 已知:如图,/ C= / 1,/ 2和/D互余,BE丄FD 于点G .求证:AB // CD.50. 如图,在△ ABC中,CD丄AB,垂足为D,点E在BC上,EF丄AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果/ 1 = / 2, DG // BC吗?为什么?53. 女口图,直线AB , CD 被EF 所截,/ 3= / 4, / 1 = 7 2,EG 丄FG.求证:AB // CD .51. 如图,已知:HG平分/ AHM , MN平分/ DMH , 且/AHM= 7 DMH .问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)54. 已知:如图,CD是直线,E在直线CD上,7仁130°7 A=50 ° 求证:AB // CD .55. 如图,已知/ 仁/2, / DAB= / DCA ,且 DE 丄AC , 58. 如图,AD 丄BC 于点D ,/仁2,/ CDG= / B ,请 你判断EF与BC 的位置关系,并加以证明,要求写出 每步证明的理由.C56. 如图,四边形 ABCD , / 仁30 ° / B=60 ° AB 丄AC , 则AD 与BC 一定平行吗? 理由,反之则不用说明理由. 59. 已知:如图, CE 平分/ ACD , / 1 = / B ,求证:AB // CE .AB 与CD 呢?若平行请说明ADBF 丄AC ,问:(1) AD // BC 吗? (2) AB // CD 吗?为什么?D57.已知:如图,/ 求证:BD // CE .A= / F, / C= / D . 60.如图,已知/ 1 = / 2,/ 3= / 4,可以判定哪两条直。

人教版七年级下学期数学-5.2平行线及其判定(练习题)

人教版七年级下学期数学-5.2平行线及其判定(练习题)

人教版七年级下学期数学-5.2平行线及其判定一、单选题1.如图,下列条件能判定的是()A.∠1=∠2B.∠2=∠4C.∠1=∠4D.∠1+∠3=180°2.如图,,要使//,则的大小是()A.B.C.D.3.如图,平分,平分,下列选项能判断∥的是()A.B.C.D.4.如图,O是直线AB上一点,OE平分∠BOD,OF⊥OE,∠D=110°,添加一个条件,仍不能判定AB∥CD,添加的条件可能是()A.∠BOE=55°B.∠DOF=35°C.∠BOE+∠AOF=90°D.∠AOF=35°5.如图1,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4=∠5D.∠2+∠4=180°6.下列说法错误的个数是()①经过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③直线外一点到这条直线的垂线段,叫做这个点到直线的距离;④同一平面内不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个7.下列尺规作图不能得到平行线的是()A.B.C.D.8.一副直角三角尺叠放如图1所示,现将含角的三角尺ADE固定不动,将含角的三角尺ABC绕顶点顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当时,,则)其他所有可能符合条件的度数为()A.和B.和C.和D.以上都有可能二、填空题9.如图,木工师傅经常用一把直角尺画出两条平行的直线与.这样做运用的数学知识是.10.如图,要使AD//BF,则需要添加的条件是(写一个即可).11.如图,直线a与直线b、c分别相交于点A、B,当∠1=时,c∥b.12.如图,写出能判定AB∥CD的一对角的数量关系:.13.如图,添加一个你认为合适的条件使.三、综合题14.如图,射线平外,且.求证:.15.如图,B,F,E,C在同一条直线上,∠A=∠D.(1)若∠A=78°,∠C=47°,求∠BFD的度数.(2)若∠AEB+∠BFD=180°,求证:AB∥CD.16.如图1,直线与交于点,锐角,.(1)求证:;(2)若为直线上一点(不与点重合),的平分线与的平分线所在的直线交于点.①如图2,,为射线上一点,请补全图形并求的度数;②的度数为▲(用含的式子表示).17.已知BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图(1),求证:OB∥AC.(2)如图(2),若点E,F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,试求∠EOC 的度数.(3)在图(2)的条件下,若平行移动AC,如图(3),那么∠OCB∶∠OFB的值是否会发生变化?若变化,试说明理由;若不变,求出这个比值.18.三角板是学习数学的重要工具,将一副三角板的直角顶点C按如图所示的方式叠放在一起,当时,且点E在直线AC的上方时,解决下列问题∶(友情提示∶∠A=60°,∠D=30°,∠B=∠E=45°)(1)①若∠DCE=45°,求∠ACB;②若∠ACB=140°,求∠DCE;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)这两块三角板是否存在一组边互相平行?若存在,请直接写出∠ACE的所有可能的值(不必说明理由);若不存在,请说明理由.答案解析部分1.【答案】A【解析】【解答】解:由∠1=∠2可得a∥b,故A符合题意;由∠2=∠4可得c∥d,故B不符合题意;∠1与∠4不是三线八角,故C不符合题意;由∠1+∠3=180°可得c∥d,故D不符合题意;故答案为:A.【分析】根据平行线的判定定理逐一判断即可.2.【答案】C【解析】【解答】当,则,故答案为:C.【分析】根据平行线的判定定理:同位角相等两直线平行,即可得出答案.3.【答案】D【解析】【解答】解:平分,.平分,,,当时,,同旁内角互补,两直线平行.故答案为:D.【分析】先根据角平分线的定义得出,,再根据平行线的判定定理得出当时,,从而得出结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。

(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______) 4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:证明:∵CD⊥DA,DA⊥AB,( )∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,( )从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.证明∵∠ABC =∠ADC ,∴.2121ADC ABC ∠=∠( )又∵BF 、DE 分别平分∠ABC 与∠ADC ,∴.212,211ADC ABC ∠=∠∠=∠( )∵∠______=∠______.( ) ∵∠1=∠3,( ) ∴∠2=______.( ) ∴______∥______.( )8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a______c .(2)证明思路分析:欲证a______c ,只要证______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______,(_________,_________)① ∵∠3+∠4=180°∴c ∥______,(_________,_________)② 由①、②,因为a ∥______,c ∥______, ∴a______c.(_________,_________)9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是( )(A)1 (B)2 (C)3 (D)410、下列说法中,正确的是( ).(A)不相交的两条直线是平行线.(B)过一点有且只有一条直线与已知直线平行.(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.11、如图5,将一张长方形纸片的一角斜折过去,顶点A 落在A ′处,BC 为折痕,再将BE 翻折过去与BA ′重合,BD 为折痕,那么两条折痕的夹角∠CBD = 度.图612、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___ 对平行线。

13、下列说法正确的是 ( ) (A )有且只有一条直线与已知直线垂直 (B )经过一点有且只有一条直线与已经直线垂直 (C )连结两点的线段叫做这两点间的距离(D )过点A 作直线l 的垂线段,则这条垂线段叫做点A 到直线l 的距离14、同一平面内的四条直线满足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是( ) A .a ∥b B .b ⊥d C .a ⊥d D .b ∥c 平行线的性质 1.基础知识(1)平行线具有如下性质①性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______. ②性质2:两条平行线______,______相等.这个性质可简述为____________,______.③性质3:____________,同旁内角______.这个性质可简述为____________,______.(2)同时______两条平行线,并且夹在这两条平行线间的____________叫做这两条平行线的距离.2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB ∥EF,那么∠2=______,理由是_____________________________________.(2)如果AB∥DC,那么∠3=______,理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______,理由是_______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______,理由是________________________.3.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(___________________)(2)∵DE∥AB,( )∴∠3=______.(___________________)(3)∵DE∥AB( ),∴∠1+______=180°.(____________________)4.已知:如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______//______.解:∵∠1=∠2,( )∴______//______.(__________________)∴∠4=_____=_____°.(__________________)5.已知:如图,∠1+∠2=180°,求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______//______.证明:∵∠1+∠2=180°,( )∴______//______.(_________________)∴∠3=∠4.(_________,_________)6.已知:如图,∠A=∠C,求证:∠B=∠D.证明思路分析:欲证∠B=∠D,只要证______//______.证明:∵∠A=∠C,( )∴______//______.(_________,_________) ∴∠B=∠D.(_________,_________)7.已知:如图,AB∥CD,∠1=∠B,求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______//______.证明:∵AB∥CD,( )∴∠2=______.(_________,_________)但∠1=∠B,( )∴______=______.(等量代换)即CD是____ ________.8.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=______°(_________,_________)而∠1=75°,∴∠ACD=∠1+∠2=______。

∵CD∥AB,( )∴∠A+______=180°.(_________,_________)∴∠A=______=______.9.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解:∵AB∥CD,∠B=50°,( )∴∠DCE=∠______=______°(_________,_________)又∵AD∥BC,( )∴∠D=∠______=______°(_________,_________)想一想:如果以∠A作为中间量,如何求解?.解法2:∵AD ∥BC ,∠B =50°,( ) ∴∠A +∠B =______.(_________,_________) 即∠A =______-______=______°-______°=______. ∵DC ∥AB ,( )∴∠D +∠A =______.(_________,_________) 即∠D =______-______=______°-______°=______.10.已知:如图,已知AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数. 解:过P 点作PM ∥AB 交AC 于点M . ∵AB ∥CD ,( )∴∠BAC +∠______=180°( ) ∵PM ∥AB ,∴∠1=∠______,( )且PM ∥______。

相关文档
最新文档