八年级数学期末检测题

合集下载

山东省济南市市中区2023-2024学年八年级上学期期末数学试题(含答案)

山东省济南市市中区2023-2024学年八年级上学期期末数学试题(含答案)

八年级期末学业质量检测数学试题第Ⅰ卷(选择题共40分)一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各数中,是无理数的是( )A .B .C .D .02.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.满足下列条件中的,不是直角三角形的是( )A . ,,B .C .D . 4.下列计算正确的是( )A .B .C .D . 5.已知一次函数的图象过二、三、四象限,则下列结论正确的是( )A .B .C .D . 6.已知二元一次方程组,则的值为( )A .2B .6C .D . 7.若点和关于轴对称,则的值为( )A .B .1C .D . 8.如图,在中,和的平分线交于点,连接,若cm ,cm ,的面积为,则的面积为()3.142πABC △21a =22b =23c =A B C ∠-∠=∠::3:4:5A B C ∠∠∠=::7:24:25a b c===2=32÷=y kx b =+0,0k b >>0,0k b ><0,0k b <>0,0k b <<3531x y x y +=⎧⎨+=⎩x y -2-6-()11,2P a -()23,1P b -x ()2024a b +20243-2024320245ABC △BAC ∠ABC ∠O OC 6AB =10BC =ABO △218cm BOC △A .B .C .D . 9.如图,用大小形状完全相同的长方形纸片在直角坐标系中摆成如图所示的图案,已知,则点的坐标为()A .B .C .D .10.一次函数,,点是与轴围成的三角形内一点(含边界),令,的最大值为,则的值为()A .B .1C .D .2第Ⅱ卷(非选择题共110分)二、填空题(共6小题,每小题4分,满分24分.填空题请直接填写答案.)11.9的算式平方根是______.12.甲、乙两名同学投掷实心球,每人投10次,平均成绩都为米,方差分别为,,则成绩笔记哦啊稳定的是______(填“甲”或“乙”).13.如图,直线与交点的横坐标为1,则关于的二元一次方程组的解为______.218cm 220cm 227cm 230cm ()3,9A -B ()10,6-()10,7-()9,6-()9,5-1:24l y x =-+()2:0l y kx k k =->(),M a b 12,l l x S a b =+S 52k 12329.520.2S =甲20.03S =乙3y x =-+y mx n =+x y 、3y x y mx n=-+⎧⎨=+⎩14.如图,在中,,,线段的垂直平分线分别交于点,连接.若,则的长为______.第14题15.如图,在一个长方形草地上放着一根长方体木块,其中m ,m ,该木块较长的边和场地宽平行,横截面是边长为2m 的正方形,若点处有一只蚂蚁,它从点出发,爬过木块到达点处去吃面包碎,则它需要走的最短路程是______m .第15题16.如图,等腰,,,点为边上一点,,点为边上一点,连接,将绕点逆时针旋转得到,连接,则的最小值为______.三、解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分8分)计算:(1.(2.18.(本小题满分6分)解二元一次方程组19.(本小题满分6分)已知:如图,,.求证:.Rt ABC △90C ∠=︒30A ∠=︒AB ,AC AB ,D E BD 4CD =AD 6AB =5AD =AD A A C Rt ABC △90B ∠=︒6AB =D AB 2BD =E AC DE DE D 90︒DF ,AF BF AF BF ++236x y x y -=⎧⎨+=⎩90A D ∠=∠=︒AC BD =OB OC =20.(本小题满分6分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将向左平移4个单位长度,再向下平移1个单位长度得到.画出平移后得到的;(2)将绕着点顺时针旋转,旋转后得到的,则点的坐标为______;点的坐标为______.21.(本小题满分8分)毛泽东主席曾亲笔题词号召全国人民“向雷锋同志学习”,“雷锋精神”激励着一代又一代中国人.今年3月5号,某校团委组织全校学生开展“学习雷锋精神,爱心捐款活动”,活动结束后对本次后动的捐款抽取了样本进行了统计,制作了下面的统计表,根据统计表回答下面的问题:图1图2(1)本次共抽取了______名学生的捐款;(2)补全条形统计图;(3)本次抽取样本学生捐款的众数是______元,中位数是______元;(4)求本次抽取样本学生捐款的平均金额.22.(本小题满分8分)某教育科技公司销售两种多媒体,这两种多媒体的进价与售价如表所示:AB进价(万元/套)3ABC △ABC △111A B C △111A B C △ABC △A 90 22AB C △2B 2C ,A B 2.4售价(万元/套)(1)若该教育科技公司计划购进两种多媒体共50套,共需资金132万元,该公司计划购进两种多媒体各多少套?(2)若该教育科技公司计划购进两种多媒体共50套,其中购进种多媒体套,当把购进的两种多媒体全部售出,求为何值时,能获得最大利润,最大利润是多少万元?23.(本小题满分10分)现有两种品牌的共享电动车,收费(元)与骑行时间(min )之间的函数关系如图所示,品牌收费为,品牌收费为.(1)直接写出品牌收费方式对应的函数关系式为______;(2)求品牌在当时间段内,与之间的函数关系式;(3)当时,求出两种收费相差元时的值.24.(本小题满分10分)如图1,对角线互相垂直的四边形叫做垂美四边形.数学兴趣小组的同学们在老师的带领下开展了对垂美四边形的研究.图1(1)【概念理解】如图2,在四边形中,,,则四边形______(填“是”或“不是”)垂美四边形.图23.3 2.8,A B ,A B ,A B A m ()1020m ≤≤m ,A B y x A 1y B 2y A B 10x >y x 10x >0.5x ABCD AB AD =CB CD =ABCD(2)【性质探究】如图1,四边形的对角线交于点,.小莹利用勾股定理的知识探索出四边形的四条边具有以下数量关系:.请判断小莹的结论是否正确,并说明理由.(3)【问题解决】如图3,分别以的直角边和斜边为边向外作等腰直角三角形和等腰直角三角形,使得,,,连接,已知,,请直接写出的值.图325.(本小题满分12分)如图,一次函数分别与坐标轴交于两点,分别与坐标轴交于两点,,两直线交于点;(1)求的值及点坐标;(2)点在直线上,连接,若,求出点坐标;(3)点在坐标轴上,点在直线上,若线段被直线垂直平分,请直接写出点坐标.(备用图)26.(本小题满分12分)数学课上,老师提出一个问题:如图1,已知等腰直角,,等腰直角,,连接,是中点,连接,,请探究线段,之间的关系.小明通过思考,将此探究题分解出如下问题,逐步探究并应用.请帮助他完成:(1)如图1,延长至,使得,连接,线段与线段的数量关系为______,位置关系为______;ABCD AC BD 、O AC BD ⊥ABCD 2222AB CD AD BC +=+Rt ABC △AC AB ACE ABD 90BAD CAE ∠=∠=︒AB AD =AC AE =,,CD BE DE 3BC =4AC =DE 4y x =-+,A B ,C D ()2,0C -E k E P CD OE POE BOE S S =△△P M N CD MN AB N ABC △AB AC =CDE △DC DE =BE F BE AF DF AF DF AF A 'AF A F '=A E 'AB A E '(2)如图2,延长交延长线于点,连接,.小明的思路是先证明,进而得出与的关系,再继续探究.请判断线段,之间的关系,并根据小明的思路,写出完整的证明过程.(3)方法运用:如图3,等边与等边,点在外部.,,连接,点为中点,连接,,若,请直接写出的值.图1图2图3八年级数学期末阶段性测试答案一、选择题1—5CBCBD6—10ACDBD二、填空题11.312.乙13.14.815.16.三、解答题17.(8分)(1.解:原式.(2.18.(6分)解二元一次方程组.解:,①+②,得,解得,把代入②,得,故原方程组的解为.19.证明:∵,,,∴ED BA GAD A D 'ACD A ED '≌△△AD A D 'AF DF ABC △DEC △,D E ABC △4AB =DE =BD F BD AF BE 3AF =BE 12x y =⎧⎨=⎩+44=-=+3241=+=+-=236x y x y -=⎧⎨+=⎩236x y x y -=⎧⎨+=⎩①②39x =3x =3x =3y =33x y =⎧⎨=⎩90A D ∠=∠=︒AC BD =BC BC =()Rt Rt HL BAC CDB ≌△△∴.∴(等角对等边).20.解:(1)如图所示,即为所求.(2)点的坐标为;点的坐标为.21.解:(1)50(2)(人)或(人)补全图形如下:图1(3)众数是10元;中位数是15元;(4)元,答:本次抽取样本学生捐款的平均金额16元.22.解:(1)设购进种多媒体套,种多媒体套,由题意可得:,解得,答:购进种多媒体20套,种多媒体30套;(2)设利润为元,由题意可得:,∴随的增大而减小,ACB DBC ∠=∠OB OC =111A B C △2B ()4,2-2C ()1,3-5041610812----=5024%12⨯=()145161012151008301650⨯+⨯+⨯+⨯+⨯=A a B b 503 2.4132a b a b +=⎧⎨+=⎩2030a b =⎧⎨=⎩A B W ()()()3.33 2.8 2.4500.120W m m m =-+-⨯-=-+W m∵,∴当时,取得最大值,此时,答:购进种多媒体10套时,能获得最大利润,最大利润是19万元.23.解:(1);(2)品牌在当时间段内,设与之间的函数关系式为,∵点,在该函数图象上,∴,解得,即品牌在当时间段内,与之间的函数关系式是;(3)当时,,解得:;当时,,解得:;由上可得,在15分钟或25分钟时,两种收费相差元.24.(1)是(2)正确∵,∴,由勾股定理得:,,∴;(3)25.(1)将代入,,,,(2)方法一:过点作交于,∴.点即为所求;∵,∴.∵,∴,代入,1020m ≤≤10m =W 19W =A 10.2y x =B 10x >y x 2y ax b =+()10,3()20,4103204a b a b +=⎧⎨+=⎩0.12a b =⎧⎨=⎩B 10x >y x 20.12y x =+210.5y y -=0.120.20.5x x +-=15x =120.5y y -=()0.20.120.5x x -+=25x =0.5AC BD ⊥90AOB BOC COD AOD ∠=∠=∠=∠=︒222222AB CD AO BO CO DO +=+++222222AD BC AO DO BO CO +=+++2222AB CD AD BC +=+DE =()2,0C -1y kx =+021k =-+12k =4112y x y x =-+⎧⎪⎨=+⎪⎩()2,2E B BP OE ∥CD P POE BOE S S =△△P ()2,2E :OE y x =BM OE ∥:BP y x b =+()0,4B∴.联立,∴同理∵为中点,∴.作交于,∴,.方法二:∵,∴若点在左侧,,令,∴,,,∴∴,∴.同理,若点在右侧,,(3)25.(1),(2),证明:∵,∴由四边形内角和为,∴由(1),∴,∴由(1),,∴.∴,∵是中点,∴∵,,∴.:4BP y x =+4112y x y x =+⎧⎪⎨=+⎪⎩()6,2P --E AB AOE BOE S S =△△AP OE '∥CD P ':4BP y x '=-()10,6P '112y x =+()0,1D P OE POE POD DOE BOE S S S S =+=△△△△1,12P m m ⎛⎫+ ⎪⎝⎭1EOD S =△12DOPS m=-△4BOE S =△1142m -=6m =-()6,2P --P OE P OE P OD DOE BOE S S S S ''=-=△△△△()10,6P '()16,4N ()24,3N AB A E '=AB A E '∥AF DF =AF DF⊥90BAC CDE ∠=∠=︒90GAC CDG ∠=∠=︒ABCD 360︒180ACD AGD ∠+∠=︒AB A E '∥180A ED AGD '∠+∠=︒A ED ACD '∠=∠A E AB AC '==CD DE =ACD A ED '≌△△AD A D '=ADC A DE '∠=∠F AA 'DF AF⊥90CDE ∠=︒90ADA CDE A DE ADC ''∠=∠-∠+∠=︒DF AF =11(3)思路:如图构造(1)中的基本图形:以为底边构造顶角为的等腰.则与是共底角顶点的两个等腰三角形,且底角互余.依据(1)(2)可得结论,且.CD 120︒GCD △ABC △GCD △C AF GF⊥AF =。

人教版初中数学八年级下册期末测试题、答案

人教版初中数学八年级下册期末测试题、答案

人教版初中数学八年级下册期末测试题一、选择题(本大题共小题,每小题分,共分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得分,选错、不选或多选均得零分.)A B C D 如图,O A B 为直角三角形,O A =,A B =,则点A 的坐标为()A()B ()C ()D ()如图,矩形A B C D 的对角线A C =,B O C Ð=°,则A B 的长为()A B C D 一次函数()y kx k =-¹的函数值y 随x 的增大而减小,它的图象不经过的象限是()A 第一象限B 第二象限C 第三象限D 第四象限如图,直线y x =和y k x b =+相交于点()P ,则不等式x k x b £+的解集为()A.x ³B.x £C.x ³D.x £一组数据:n a a a ×××的平均数为P ,众数为Z ,中位数为W ,则以下判断正确的是()A P 一定出现在n a a a ×××中B Z 一定出现在n a a a ×××中C W 一定出现在n a a a ×××中D P ,Z ,W 都不会出现在n a a a ×××中二、填空题(本大题共小题,每小题分,共分)将函数y x =的图象向下平移个单位,所得图象的函数解析式为______如图,点P 是正方形A B C D 内位于对角线A C 下方的一点,已知:P C A P B C Ð=Ð,则B P C Ð的度数为______.南吕是国家历史文化名城,其名源于“昌大南疆,南方昌盛”之意,市内的滕王阁、八一起义纪念馆、海昏候遗址、绳金塔、八大山人纪念馆等都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学,人数分别为:,,,,(单位:人),这组数据的中位数是______.一组数据,,,x 的众数只有一个,则x 的值不能为______.如图,在A B C 中,已知:A C B Ð=°,c m A B =,c m A C =,动点P 从点B 出发,沿射线B C 以c m s 的速度运动,设运动的时间为t 秒,连接P A ,当A B P △为等腰三角形时,t 的值为______.三、解答题(本大题共小题,每小题分,共分)()计算:+-()求x =.如图,点C为线段A B上一点且不与A,B两点重合,分别以A C,B C为边向A B的同侧做锐角为°的菱形.请仅用无刻度的直尺分别按下列要求作图.(保留作图痕迹)=,作出线段D F的中点M;()在图中,连接D F,若A C B C()在图中,连接D F,若A C B C¹,作出线段D F的中点N.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图、(图为图的平面示意图),推开双门,双门间隙C D的距离为寸,点C和点D距离门槛A B都为尺(尺寸),则A B 的长是多少?某种子站销售一种玉米种子,单价为元千克,为惠民促销,推出以下销售方案:付款金额y(元)与购买种子数量x(千克)之间的函数关系如图所示.()当x³时,求y与x之间的的函数关系式:()徐大爷付款元能购买这种玉米种子多少千克?已知:①,,,,的平均数是,方差是;②,,,,的平均数是,方差是;③,,,,的平均数是,方差是;④,,,,的平均数是,方差是;请按要求填空:()n,n+,n+,n+,n+的平均数是,方差是;()n,n+,n+,n+,n+的平均数是,方差是;()n,n,n,n,n的平均数是,方差是.四、解答题(本大题共小题,每小题分,共分)下表是某公司员工月收入的资料.职位总经理财务总监部门经理技术人员前台保安保洁人数月收入元()这家公司员工月收入的平均数是元,中位数是和众数是;()在()中的平均数,中位数和众数哪些统计量能反映该公司全体员工收入水平?说明理由;()为了避免技术人员流失,该公司决定给他们每人每月加薪x元至公司员工月收入的平均数,求x的值.已知:一次函数()()y m x m m =+-¹与x 轴、y 轴交于A点,B 点()当m =时,求O A B 的面积;()请选择你喜欢的两个不同的()m m ¹的值,求得到的两个一次函数的交点坐标;()m 为何值时,O A B 是等腰直角三角形?如图,若D E 是A B C 的中位线,则A B C A D E S S =△△,解答下列问题:()如图,点P 是B C 边上一点,连接P D 、P E ①若P D E S =△,则A B CS=;②若P D B S =△,P C E S =△,连接A P ,则A P DS =,A P E S =△,A B CS=.()如图,点P 是A B C 外一点,连接P D 、P E ,已知:P D BS=,P C E S =△,P D E S =△,求A B CS的值;()如图,点P 是正六边形F G H I J K 内一点,连接P G 、P F 、P K ,已知:P G F S =△,P K J S =△,P F K S =△,求F G H I J K S 六边形的值.五、综合题(本大题共小题,共分)已知直线y x =-+分别与x 轴、y 轴交于A 点,B 点,点()n n Q x y 为这条直线上的点,Q P x ^轴于点P ,Q R y ^轴于点R .()①将下表中的空格填写完整:nn x --ny --n nx y +②根据表格中的数据,下列判断正确的是.A .x y =,B .x yS S =,C .x y S +=.()当点Q 在第一象限时,解答下列问题:①求证:矩形O P Q R 的周长是一个定值,并求这个定值;②设矩形O P Q R 的面积为S ,求证:S £.()当点Q 在第四象限时,直接写出Q P ,Q R 满足的等式关系.参考答案B C B A D By x﹣°或或()解:()原式(=+-=(=,∴x-=,∴x=解:()如图点M为D F的中点()如图点N为D F的中点解:取A B的中点O,过D作D E⊥A B于E,如图所示:由题意得:O A O B A D B C,设O A O B A D B C r寸,则A B r(寸),D E寸,O E C D寸,∴A E(r-)寸,在R t△A D E中,A E D E A D,即(r-)r,解得:r,∴r(寸),∴A B寸.解:()当x³时,设y与x之间的的函数关系式为y k x b=+,将点(),()带入解析式得k b k b+=ìí+=î解得k b=ìí=î∴y x=+.()将y=时,带入y x=+中解得x=千克.答:徐大爷付款元能购买这种玉米种子千克.解:()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴数据n,n+,n+,n+,n+的平均数+n E=n+,方差依然是,()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴n,n+,n+,n+,n+的平均数是+n E=n+,方差依然是,()数据n,n,n,n,n是将,,,,分别乘以n所得,∴数据n,n,n,n,n的平均数为n,方差为n,解:()∵一共有++++++=(人),∴这组数据的中位数是第、个数据的平均数,而第、个数据分别为、,∴中位数是+=(元),∵数据出现次数最多,∴这组数据的众数为元,故答案为:元,元;()中位数和众数能反映该公司全体员工收入水平,该公司员工月收入的平均数为,在这名员工中只有名员工的收入在元以上,有名员工的收入在元以下,因此用平均数不能反映所有员工的收入水平,中位数和众数为元能反映多数员工的收入水平.()由题意列方程:x x +=+,解得x =元∴技术人员需要加薪元.解:()当m =时,y x =-,当x =时,y =-,∴()B -,∴O B =当y =时,x =,∴A æöç÷èø,∴O A =,O A B S O A O B =×=△;()取m =,y x =+,取m =,y x=,∴y x y x =+ìí=î解得x y=ìí=î∴两个一次函数的交点坐标为()()当x =时,y m =-,∴O B m =-;当y =时,m x m-=,∴m O A m -=,∵O A B 是等腰直角三角形,∴O A O B =,即m m m--=;∵m -¹,∴m =±.解:()如图,连接B E ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P D E =S △B D E =,∴S △A B E =,∴S △A B C =,②∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A B C =;()如图,连接A P ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,S △A B C =S △A D E ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A D E =S △A P D S △A P E ﹣S △P D E =,∴S △A B C =S △A D E =;()如图,延长G F ,J K 交于点N ,连接G J ,连接P N ,∵六边形F G H I J K 是正六边形,∴F G =F K =K J ,∠G F K =∠J K F =°,S 六边形F G H I J K =S 四边形F G J K ,∴∠N F K =∠N K F =°,∴△N F K 是等边三角形,∴N F =N K =F K =F G =K J ,∴S △P G F =S △P F N =,S △P K J =S △P K N =,F K 是△N G J 的中位线,∴S △N F K =S △P F N S △P K N ﹣S △P F K =,∵F K 是△N G J 的中位线,∴S △N G J =S △N F K =;∴S 四边形F G J K =﹣=,∴S 六边形F G H I J K =.()①填表如下:n n x --n y --n nx y +②x y ==´--+++++++,故A 正确;[]x S =--+--+-+-+-+-+-+-+-=[]y S =--+--+-+-+-+-+-+-+-=∴x y S S =,故B 正确;∵x y +=∴x y S +=故C 正确;故答案为:A 、B 、C()①设()Q x x -+,∵点Q 在第一象限,∴O P x =,P Q x =-+,∴()O P Q R C O P P Q ==矩形+,∴矩形O P Q R 的周长是一个定值,周长为;②∵()()S x x x x x -=--+=+-=-³∴S £.()设点Q 的坐标为()xx -+,∵点Q 在第四象限,∴Q R x =,Q P x =-,∴Q R Q P -=.。

山东省聊城市东昌府区2023-2024学年八年级上学期期末数学试题(含答案)

山东省聊城市东昌府区2023-2024学年八年级上学期期末数学试题(含答案)

2023-2024学年第一学期期末学业水平检测八年级数学试题说明:1,全卷共6页,考试时间为120分钟,满分120分.2.答卷前,考生必须将自己的姓名、准考证号、学校按要求填写在答卷密封线左边的空格内.3.答题可用黑色或蓝色字迹的钢笔或签字笔按要求答在答卷上,但不能用铅笔或红笔.4.答案写在试题上无效.5.一律不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12个小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.下列代数式中,不是分式的是( )A.B .C .D .3.若点与点关于轴对称,则的值为()A .3B .7C .11D .154.下列式子从左到右的变形一定正确的是( )A .B .C .D .5.某学校为了了解学生的读书情况,抽查了部分同学在一周内的阅读时间,并进行了统计,结果如表:()1x y m -2a b-3x x +a b a b+-()3,4A m -()2,6B n +y m n -11a a b b +=+a ac b bc =133ab ab =33a a b b=时间12345人数12201053则这些学生阅读时间的众数和中位数分别是()A .20,20B .2,2C .20,10D .2.5,26.下列命题中,是假命题的是()A .在同一平面内垂直于同一条直线的两条直线平行B .如果两个角互余,那么它们的余角也互余C .如果两个有理数的和为负数,那么它们的积也为负数D .如果两个角不相等,那么这两个角不是对顶角7.如图,交于点,添加以下四个条件中的一个,其中不能使的条件是( )第7题图A .B .C .D .8.若,则的值是( )A .B .C .D .9.如图,将矩形沿对角线折叠,点的对应点为点与交于点.若,则的度数为( )第9题图A .B .C .D .10.如图,,且于于.若,则的长为( )/h,AC BD ,O BO DO =A ABO CDO △≌△BAC DCA ∠=∠AB CD=AB CD ∥AO CO =32a b b -=a a b+4375-2757ABCD BD C ,E BE AD F 55CDB ∠=︒AFB ∠70︒60︒65︒40︒AB CD ⊥,AB CD CE AD =⊥,E BF AD ⊥F 7,4,3CE BF EF ===AD第10题图A .7B .8C .5D .411.如图,已知,下列说法:①;②是的中线;③;④与面积相等.其中正确的是:( )第11题图A .1个B .2个C .3个D .4个12.如图,为任意三角形,以为圆心,任意长为半径做弧,交于点,交于点,分别以点和点为圆心,以大于的长为半径作弧,两弧交于点,做射线,交于点,分别以点和为圆心,大于长为半径作弧,两弧相交于两点,作直线交于点,连接.下列结论正确的是( )第12题图A .B .C .D .第Ⅱ卷(非选择题 共84分)AOB COD △≌△ABO CBO ∠=∠OB ABC △AB CD ∥COD △BOC △ABC △B AB F BC G F G 12FG H BH AC D B D 12BD ,M N MN AB E DE 12DE BC =DE AE =AED ABC ∠=∠AD CD=二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13.当______时,分式的值为零.14.在直角坐标系中,直线是经过点,且平行于轴的直线,点与点,关于直线成轴对称,则______.15.如图,在中,点是边上的一点,连接垂直平分,垂足为,交于点,若,则______.第15题图16.若关于的方程无解.则______.17.如图,已知:射线,点在射线上,点在射线上,均为直角三角形,若,将各边边长分别扩大2倍得到,将各边边长分别扩大2倍得到……则的面积为______.第17题图三、解答题(本题共8小题,共69分.解答应写出必要的文字说明、推理过程或演算步骤)18.(8分)如图,在平面直角坐标系中,已知,x =2293x x x--l ()1,0y ()2,P n (),3Q m -l 2m n -=ABC △D BC ,AD CE AD F AB E 32,50ACB B ∠=︒∠=︒BED ∠=x 222x m x x =+--m =OM ON 、123A A A ⋅⋅⋅、、、OM 123B B B ⋅⋅⋅、、、ON 112223334A B B A B B A B B ⋅⋅⋅△、△、△、12121,2B B A B ==112A B B △223A B B △223A B B △334A B B △202021A B B △()()()4,2,2,0,1,4A B C --(1)在平面直角坐标系中画出,则的面积是______.(2)画出关于轴对称的,其中点的对应点分别为点(3)已知点为轴上一点,若的面积为3,求出点的横坐标.19.(7分)先化简,再从0,1,2,3中选择一个恰当的的值代入求值.20.(8分)甲、乙两名运动员参加某体育项目训练,为了便于研究,把最近6次训练成绩绘制成折线统计图.(1)要评价两名运动员的平均水平,你选择什么统计量?求这个统计量.(2)请根据折线图分别求出甲运动员的中位数是______,乙运动员的众数是______.(3)计算甲、乙两个运动员成绩的方差,并判断哪位运动员的成绩更稳定?21.(7分)八年级学生去距学校60千米的纪念馆参观,师生乘大巴车前往,某老师因有事情,推迟了20分钟出发,自驾汽车以大巴车速度的1.5倍前往,结果同时到达,求老师自驾汽车的速度是多少?22.(8分)如图所示,在中,平分交于点交于点是的中点.ABC △ABC △ABC △y A B C '''△,,A B C A B C '''、、P x ABP △P 2222112212x x x x x x x x x ---÷++++-x ABC △CD ACB ∠AB ,D DE AC ∥AB ,D F CD第22题图(1)试说明:平分.(2)若,那么的周长是多少?23.(9分)已知:如图,线段和射线交于点.第23题图(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线上作一点,使;②做的垂直平分线交的延长线于点,交于点,连接.(2)在(1)所作的图形中,若求的度数.24.(10分)如图,点在一条直线上,均为等边三角形,连接和,分别交于点交于点,连接,第24题图(1)试说明;(2)试判断的形状?并说明理由?25.(12分)如图:在中,,点是斜边的中点,.EF CED ∠13DB BC +=BDE △AB BM B BM C AC AB =AB DE BC E AC F BF 50A ∠=︒BFC ∠,,A B C ,ABD BCE △△AE CD AE ,CD BD ,,M P CD BE Q ,PQ BM AE CD =BPQ △ABC △90,BAC AB AC ∠=︒=D BC DE DF ⊥第25题图(1)试判断与的大小关系?并说明理由.(2)与全等吗?为什么?(3)若,求四边形的面积.2023—2024学年第一学期期末学业水平检测八年级数学试题参考答案一、选择题(本大题共12个小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.C 2.В 3.A 4.C 5.B 6.C 7.B 8.D 9.A 10.B 11.С 12.C二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13. 14.6 15.48° 16.2 17.三、解答题(本题共8小题,共69分.解答应写出必要的文字说明、推理过程或演算步骤)18.(8分)(1)如图所示的面积是9.(2)如图所示(3)设点的横坐标为,ADE ∠CDF ∠ADE △CDF △6cm AB =AEDF 3-382ABC △ABC △A B C '''△P x或点的横坐标为5或.19.(7分)为了使分式有意义,当时,原式20.(8分)解:(1)选择平均数,甲运动员:分乙运动员:分(2)甲运动员的中位数是7分,乙运动员的众数是8分.(3)因为,所以甲运动员的成绩更稳定.21.(7分)解:设大巴车的平均速度为千米/时,则老师自驾小车的平均速度为千米/时,根据题意列方程为:.解得经检验是分式方程的解,并且符合题意.1232ABC S x =⨯-=△23x -=23x -=±5x =1-P ∴1-2222112212x x x x x x x x x ---÷++++-()()()()21121(1)12x x x x x x x x x +---=÷+++-()()()()21112(1)12x x x x x x x x x +-+-=⋅++--x x=+2x=0,1,2x ≠3x =26x ==96767776+++++=458781076+++++=222(97)2(67)16S -+⨯-==甲22222(47)(57)2(87)(107)46S -+-+⨯-+-==乙22S S <乙甲x 1.5x 6060201.560x x =+60x =60x =所以,老师自驾汽车的速度是90千米/时.22.(8分)解:(1)平分,.又,,,为等腰三角形.是的中点,平分.(2)由(1)可知的周长:,所以的周长为13.23.(9分)(1)(2)垂直平分,.,,是的一个外角,.24.(10分)解:(1)为等边三角形,,.在和中,,,,,.1.590x =CD ACB ∠ACD BCD ∴∠=∠DE AC ∥ACD CDE ∴∠=∠BCD CDE ∴∠=∠DEC ∴△F CD EF ∴CED ∠DE EC=BDE △DB BE DE++DB BE CE=++DB BC=+13=BDE △DE AB AF BF ∴=50A ∠=︒ 50ABF ∴∠=︒BFC ∴∠ABF △5050100BFC ∴∠=︒+︒=︒,ABD BCE △△,,BC BE BD AB CBE EBD ABD EBD ∴==∠+∠=∠+∠CBD ABE ∴∠=∠CBD △EBA △BC BE =CBD ABE ∠=∠BD AB =CBD EBA ∴△≌△AE CD ∴=(2)为等边三角形,理由:,.由(1)可知.在和中,,,,,为等边三角形.25.(12分)解:(1),理由:,点是斜边的中点,,.又,,.(2)与全等.理由:,.又点是中点,,.在和中,,,,.(3),,BPQ △60CBE ABD ∠=∠=︒ 60EBP ∴∠=︒BCQ BEP ∠=∠CBQ △EBP △,BCQ BEP CB BE ∠=∠=CBQ PBE ∠=∠CBQ EBP ∴△≌△BQ BP ∴=BPQ ∴△ADE CDF ∠=∠90,BAC AB AC ∠=︒= D BC AD DC ∴⊥90CDF ADF ∴∠+∠=︒DE DF ⊥ 90ADE ADF ∴∠+∠=︒ADE CDF ∴∠=∠ADE △CDF △,90AB AC BAC =∠=︒ 45C ∴∠=︒ D BC 45CAD BAD ∴∠=∠=︒C EAD DAC ∴∠=∠=∠AD CD ∴=ADE △CDF △ADE CDF ∴∠=∠AD CD =C DAE ∠=∠ADE CDF ∴△≌△ADE CDF △≌△ADE CDF S S ∴=△△ADF DFCAEDF S S S ∴=+△△四边形11所以四边形的面积为.ADCS =△29cm =AEDF 29cm。

河南省南阳市油田2022-2023学年八年级下学期期末数学试题及答案

河南省南阳市油田2022-2023学年八年级下学期期末数学试题及答案

2023年春期南阳油田八年级期末教学质量检测试卷数学注意事项:1.本试卷共8页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列代数式中,是分式的是()A .53xB .1x π+C .2x xD .132x − 2.生物学家发现了某种花粉的直径约为0.0000021毫米,数据0.0000021用科学记数法表示正确的是() A .62110−⨯B .62.110−⨯C .52.110−⨯D .52110−⨯3.在数学活动课上,老师要求同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的四位同学拟定的方案,其中正确的是() A .测量对角线是否相互平分 B .测量两组对边是否分别相等C .测量一组对角是否都为直角D .测量四边形中的三个角是否都为直角4.下列计算正确的是()A .01122⎛⎫= ⎪⎝⎭B .(()011π−=−C .111−=D .11122−⎛⎫= ⎪⎝⎭5.反比例函数2k y x=(k 为常数,k ≠0)的图像位于()A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限6.某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是()A .22cmB .23.5cmC .23cmD .22.5cm7.如图,两个灯笼的位置A ,B 的坐标分别是(-3,3),(1,2)将点B 向右平移2个单位,再向上平移1个单位得到点B ',则关于点A ,B '的位置描述正确是()A.关于y轴对称B.关于x轴对称C.关于原点O对称D.关于直线y=x对称8.如图1,小亮家、报亭、羽毛球馆在一条直线上,小亮从家跑步到羽毛球馆打羽毛球,再去报亭看报,最后散步回家.小亮离家距离y与时间x之间的关系如图2所示.下列结论错误的是()A.小亮从家到羽毛球馆用了7分钟B.小亮从羽毛球馆到报亭平均每分钟走75米C.报亭到小亮家的距离是400米D.小亮打羽毛球的时间是37分钟9.如图,直线y=kx-2k+3(k为常数,k<0)与x,y轴分别交于点A,B,则23OA OB+的值是()A.-1 B.1 C.0 D.无法确定10.如图,用弹簧测力计将一铁块悬于盛有水的水槽中,然后匀速向上提起,使铁块完全露出水面,并上升一定高度,则下列能反映弹簧测力计的读数y(单位:N)与铁块被提起的时间x(单位:s)之间的函数关系的大致图象是()A .B .C .D .二、填空题(每小题3分,共15分)11.请写出一个y 随.x .的增大而减小的正比例函数............解析式__________(写出一个即可). 12.若点A (-3,y 1),B (-1,y 2)都在反比例函数6y x=的图象上,则y 1__________y 2(填“>”或“<”). 13.某商场销售A ,B ,C ,D 四种商品的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是__________元.14.如图,在直角坐标系中,O 为坐标原点,函数6y x =与2y x=在第一象限的图象分别为曲线l 1l 2,点P 为曲线l 1上的任意一点,过点P 作y 轴的垂线交l 2于点A ,交y 轴于点M ,作x 轴的垂线交l 2于点B ,则△AOB 的面积是__________.15.如图,在菱形ABCD 中,∠B =60°,G ,E 分别在边BC ,CD 上,BG =DE ,将AED 沿AE 折叠,点D 落在AG 的延长线上的点F 处,则∠FEC =__________°.三、解答题(本大题共8个小题,满分75分)16.(1)(5分)化简:2222441x x x x x x −−+⎛⎫−÷ ⎪−⎝⎭; (2)(5分)小丁和小迪分别解方程3122x x x x−−=−−的过程如下:你认为小丁和小迪的解法是否正确?若正确,请在他们的名字后的横线上打“√”;若错误,请在他们的名字后的横线上打“×”,并写出你的解答过程. 小丁:__________;小迪:__________.17.(9分)为了解A ,B 两款品质相近的智能玩具飞机在一次充满电后运行的最长时间,有关人员分别随机调查了A 、B 两款智能玩具飞机各10架,记录下它们运行的最长时间(分钟),并对数据进行整理、描述和分析(运行最长时间用x 表示,共分为三组:合格60≤x <70,中等70≤x <80,优等x ≥80),下面给出了部分信息:A 款智能玩具飞机10架一次充满电后运行最长时间是: 60,64,67,69,71,71,72,72,72,82B 款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73 两款智能玩具飞机运行最长时间统计表根据以上信息,解答下列问题:(1)求a,b,m的值;(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可).18.(9分)如图,一次函数94y kx=+(k为常数,k≠0)的图象与反比例函数myx=(m为常数,m≠0)的图象在第一象限交于点A(1,n),与x轴交于点B(-3,0).(1)求一次函数和反比例函数的解析式.(2)点P在x轴上,△APB是以AB为腰的等腰三角形,请直接写出点P的坐标.19.(9分)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=3,BC=4,求四边形OCED的周长和面积.20.(9分)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下任务:(1)如图,四边形ABCD是平行四边形,AC是对角线,请用直尺和圆规,作AC的垂直平分线交DC于点E,交AB于点F,垂足为点O.(只保留作图痕迹)(2)请利用你完成的(1)中的图形,求证:OE=OF;(3)小虹再进一步研究发现,过平行四边形对角线AC中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线__________.21.(9分)端午节是我国入选世界非物质文化遗产的传统节日,端午节吃粽子是中华民族的传统习俗.某超市为了满足人们的需求,计划在端午节前购进甲、乙两种粽子进行销售,经了解.每个乙种粽子的进价比每个甲种粽子的进价多2元,用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同.(1)甲、乙两种粽子每个的进价分别是多少元?(2)该超市计划购进这两种粽子共200个(两种都有),其中甲种粽子的个数不低于乙种粽子个数的2倍,若甲、乙两种粽子的售价分别为12元/个、15元/个,设购进甲种粽子m个,两种粽子全部售完时获得的利润为w元.①求w与m的函数关系式,并求出m的取值范围:②超市应如何进货才能获得最大利润,最大利润是多少元?22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F分别以每秒1个单位长度的速度同时从点A 出发,点E沿折线A→B→C方向运动,点F沿折线A→C→B方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)求y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.23.(10分)已知四边形ABCD和AEFG均为正方形.(1)观察猜想:如图1所示,当点A、B、G三点在一条直线上时,连接BE、DG,则线段BE与DG的数量关系是__________,位置关系是__________;(2)类比探究:如图2所示,将正方形AEFG在平面内绕点A逆时针旋转到图2时,则(1)的结论是否成立,若成立,请证明,若不成立,请说明理由;(3)拓展延伸:在(2)的条件下,将正方形AEFG在平面内绕点A任意旋转,若AE=2,AB=5,则BE的最大值为__________,最小值为__________.2023年春期南阳油田八年级期末教学质量检测数学试题参考答案及评分标准说明:1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分. 2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半. 3.评分标准中,如无特殊说明,均为累计给分. 4.评分过程中,只给整数分数. 一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11.y =-x (答案不唯一) 12.> 13.22.5 14.8315.20 解析:3.【答案】B 60.0000021 2.110−=⨯,故选:B . 4.【答案】CA 选项,原式=1,故该选项不符合题意; B 选项,原式=1,故该选项不符合题意; C 选项,原式=1,故该选项符合题意; D 选项,原式=2,故该选项不符合题意; 故选:C .8.【答案】DA .从函数图象可得出,小亮从家到羽毛球馆用了7分钟,故该选项正确,不符合题意; B .1000400754537−=−(米/分钟),即小亮从羽毛球馆到报亭平均每分钟走75米,故该选项正确,不符合题意;C .从函数图象可得出,报亭到小亮家的距离是400米,故该选项正确,不符合题意;D .小亮打羽毛球的时间是37-7=30分钟,故该选项不正确,符合题意; 故选:D .9.【答案】B y =kx -2k +3, ∴当y =0时,32x k=−+,当x =0时,y =-2k +3, ∴3232,23k OA OB k k k−=−+==−+,∴2323232312332232323k k OA OB k k k k k −+=+=−==−−−−−,故答案为:B . 10.【答案】A 由浮力知识得:F G F =−拉力浮力,读数y 即为F 拉力, 在铁块露出水面以前,浮力不变,则此过程中弹簧的读数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,弹簧的读数逐渐增大, 当铁块完全露出水面后,浮力等于0,拉力等于重力,弹簧的读数不变, 观察四个选项可知,只有选项A 符合,故选:A .13.【答案】22.5这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故答案为:22.5. 14.【答案】83设点6,P m m ⎛⎫⎪⎝⎭,可得()6620,,,,,3,0,m M A B m m m m N m ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴61126,122OMPN BNO S ON OM m S ON BN m m m=⨯=⨯==⨯=⨯⨯=△, 116112441,2232233AMO APB m S OM AM S AP PB m m m =⨯=⨯⨯==⨯⨯=⨯⨯=△△,∴486133AOB OMPN APB BON AMO S S S S S =−−−=−−=△△△△,故答案为83.15.【答案】20∵四边形ABCD 是菱形,∴AB =AD ,∠B =∠D =60°,∴∠BAD =120°,在△ABG 和△ADE 中,AB ADB D BG DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△ADE (SAS ),∴∠BAG =∠DAE ,∵将△ADE 沿AE 折叠,∴∠DAE =∠F AE ,∠AED =∠AEF , ∴1403DAE BAD ∠=∠=︒, ∴∠AED =180°-∠DAE -∠D =180°-40°-60°=80°. ∴∠FEC =180°-2∠AED =180°-160°=20°,故答案为:20.三、解答题(本大题共8个小题,满分75分)16.(1)解:(1)原式()()21222x x x x x x −−−=⋅− ()()2122x x x x x −−=⋅−12x x −=−; (2)×,×.解:去分母,得x +(x -3)=x -2. 去括号,得2x -3=x -2,解得,x =1. 检验:把x =1代入x -2=-1≠0, ∴x =1是原方程的解.17.解:(1)由题意可知10架A 款智能玩具飞机充满电后运行最长时间中,只有72出现了三次,且次数最多,则该组数据的众数为72,即a =72;∵B 款智能玩具飞机运行时间的扇形图可知,合格的百分比为40%, ∴B 款智能玩具飞机运行时间合格的架次为:10×40%=4(架), ∴B 款智能玩具飞机运行时间优等的架次为:10-4-5=1(架), ∴B 款智能玩具飞机的运行时间第五、第六个数据分别为:70,71, ∴B 款智能玩具飞机运行时间的中位数为:707170.52b +==; B 款智能玩具飞机运行时间优等的百分比为:1100%10%10⨯=, 即m =10.(2)B 款智能玩具飞机运行性能更好;因为B 款智能玩具飞机运行时间的方差比A 款智能玩具飞机运行时间的方差小,运行时间比较稳定. 18.解:(1)把点B (-3,0)代入一次函数94y kx =+得,9304k −+=,解得:34k =, 故一次函数的解析式为3944y x =+, 把点A (1,n )代入3944y x =+,得39344n =+=,∴A (1,3),把点A (1,3)代入my x=,得m =3, 故反比例函数的解析式为3y x=;(2)点P 的坐标为(-8,0)或(2,0)或(5,0). 解析:B (-3,0),A (1,3),AB =5, 当AB =PB =5时,P (-8,0)或(2,0),当P A =AB 时,点P ,B 关于直线x =1对称,∴P (5,0), 综上所述:点P 的坐标为(-8,0)或(2,0)或(5,0). 19.(1)解:四边形OCED 是菱形,理由:∵四边形ABCD 是矩形,∴AO =OC ,BO =OD ,AC =BD , ∴OD =OC ,∵DE ∥AC ,CE ∥BD , ∴四边形OCED 是平行四边形, ∴四边形OCED 是菱形;(2)∵四边形ABCD 是矩形,∴AO =OC ,BO =OD ,∠ABC =90°, 又∵AB =3,BC =4,∴AC =5, ∴1522OC AC ==, ∵四边形OCED 是菱形,∴四边形OCED 的周长=40C =10; 根据矩形的性质可知:1134344AOB AOD COD BOC ABCD S S S S S =====⨯⨯=△△△△四边形, ∵四边形OCED 是菱形,∴26OCD OCED S S ==△四边形. 20.解:(1)如图,即为所求:(2)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠ECO=∠F AO;∵EF垂直平分AC,∴AO=CO:又∵∠EOC=∠FOA,∴△COE≌△AOF(ASA),∴OE=OF.(3)被平行四边形一组对边所截,截得的线段被对角线的中点平分.21.解:(1)设甲粽子每个的进价为x元,则乙粽子每个的进价为(x+2)元,由题意得:100012002x x=+,解得:x=10,经检验:x=10是原方程的解,且符合题意,则x+2=12,答:甲粽子每个的进价为10元,则乙粽子每个的进价为12元;(2)解:①设购进甲粽子m个,则乙粽子(200-m)个,利润为w元,由题意得:w=(12-10)m+(15-12)(200-m)=-m+600,∵甲种粽子的个数不低于乙种粽子个数的2倍,∴m≥2(200-m),解得:11333 m≥,∴w与m的函数关系式为16001333w m m⎛⎫=−+≥⎪⎝⎭;②∵-1<0,∴w随m的增大而减小,11333m≥,即m的最小整数为134,∴当m=134时,w最大,最大值=-134+600=466,∴200-m=66.答:购进甲粽子134个,乙粽子66个才能获得最大利润,最大利润为466元。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

2022—2023学年度第一学期期末教学质量监测八年级数学试题真题卷(含参考答案)

2022—2023学年度第一学期期末教学质量监测八年级数学试题真题卷(含参考答案)

2022—2023学年度第一学期期末教学质量监测八年级数学试题一、选择题(本大题共10小题,共30分。

在每小题列出的选项中,选出符合题目的一项)1 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是A B C D2 在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为A (-4,5)B (-5,4)C (4,-5)D (5,-4)3 下列图象中,y是x的函数的是A B C D4 已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为A 0B 2cC 2a+2bD 2a+2b-2c5 对于一次函y=3x-1数,下列说法正确的是A 图象经过第一、二、三象限B 函数值y随x的增大而增大C 函数图象与直线y=3x相交D 函数图象与轴交于点(0,13)6 在△ABC中,∠ACB为钝角 用直尺和圆规在边AB上确定一点D,使∠ADC=2∠B,则符合要求的作图痕迹是ABCD7 下列命题中,假命题是A 两个全等三角形的面积相等B 周长相等的两个等边三角形全等C 三角形的一个外角大于与它不相邻的一个内角D 两条直线被第三条直线所截,同旁内角互补8 如图,在△ABC和△DEF中,点A,E,B,D在同一直线上,AC∥DF,AC=DF,只添加一个条件,能判定△ABC≌△DEF的是A BC=DEB AE=DBC ∠A=∠DEFD ∠ABC=∠D9 如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是A B C D10 在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,如图,折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是A 乙先出发的时间为0.5小时B 甲的速度比乙的速度快C 甲出发0.4小时后两车相遇D 甲到B地比乙到A地迟5分钟二、填空题(本大题共5小题,共15分)11 在函数y=4x槡-3x-2中,自变量的取值范围是12 如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx>-2的解集为13 如图,在△ABC中,AB=AC,点D为BC的中点,∠BAD=24°,AD=AE,∠EDC=度 第12题图 第13题图 第14题图 第15题图14 如图,在△ABC中,CD是AB边上的高线,BE平分∠ABC交CD于点E,BC=7,DE=2,则△BCE的面积等于15 如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在直线AC上,且△OMC的面积是△OAC的面积的14,则点M的坐标为三、解答题(本大题共7小题,共55分。

八年级数学下册期末试卷(附含答案)精选全文完整版

八年级数学下册期末试卷(附含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。

重庆八中2024届八年级数学第二学期期末达标检测试题含解析

重庆八中2024届八年级数学第二学期期末达标检测试题含解析

重庆八中2024届八年级数学第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.二次函数y =ax2+bx +c (a ≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④当x >-1时,y 的值随x 值的增大而增大.其中正确的结论有( )A .1个B .2个C .3个D .4个2.如图,直线y ax b =+与直线y mx n =+交于点(2,1)P --,则根据图象可知不等式ax b mx n +>+的解集是( )A .2x >-B .2x <-C .20x -<<D .1x >-3.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .924.下列调查中,适宜采用普查方式的是( )A .调查全国中学生心理健康现状B .调查一片试验田里五种大麦的穗长情况C .要查冷饮市场上冰淇淋的质量情况D .调查你所在班级的每一个同学所穿鞋子的尺码情况5.如图,在Rt △ABC 中(AB >2BC ),∠C =90°,以BC 为边作等腰△BCD ,使点D 落在△ABC 的边上,则点D 的位置有( )A .2个B .3个C .4个D .5个6.在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为( ) A .正五边形 B .正六边形 C .等腰梯形 D .平行四边形7.如图,在△ABC 中,BD 、CE 是△ABC 的中线,BD 与CE 相交于点O ,点F 、G 分别是BO 、CO 的中点,连结AO .若AO =6cm ,BC =8cm ,则四边形DEFG 的周长是( )A .14cmB .18 cmC .24cmD .28cm8.如图所示,在数轴上点A 所表示的数为a ,则a 的值为( )A .35--B .35-C .5-D .35-+9.如图,已知△ABC 为直角三角形,∠B =90°,若沿图中虚线剪去∠B ,则∠1+∠2=( )A .90°B .135°C .270°D .315°10.要使二次根式x 有意义,则x 的取值范围在数轴上表示正确的是( ) A . B . C .D .二、填空题(每小题3分,共24分)11.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A 、B 、C 、D 、E 五人的成绩,其余人的平均分是62分,那么在这次测验中,C 的成绩是_____分.12.已知a 、b 为有理数,m 、n 分别表示77-的整数部分和小数部分,且24amn bn +=,则2a b += . 13.化简33﹣23=_____. 14.如图,直线y =mx 与双曲线y =xk交于A 、B 两点,D 为x 轴上一点,连接BD 交y 轴与点C ,若C (0,-2)恰好为BD 中点,且△ABD 的面积为6,则B 点坐标为__________.15.关于x 的方程a 2x+x=1的解是__.16.如图,过点N (0,-1)的直线y=kx+b 与图中的四边形ABCD 有不少于两个交点,其中A (2,3)、B (1,1)、C (4,1)、D (4,3),则k 的取值范围____________1748化为最简二次根式的结果是________________ 18.当m =______时,分式方程2133x mx x -=--会产生增根. 三、解答题(共66分)19.(10分)小聪从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是小聪离家的距离y (单位:km )与时间x (单位:min )的图象。

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。

八年级数学期末试题

八年级数学期末试题

八年级数学期末试题(一)一. 认真填一填(每题3分,共30分)1.写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义) . 2.若52)2(--=m xm y 是反比例函数,那么m 的值是__.用科学记数法表示-0.00000032=___.3.如图由于台风的影响,一棵树在离地面m 6处折断,树顶落在离树干底部m 8处,则这棵树在折断前(不包括树根)长度是 m.4.已知a 1 -b1 =5,则b ab a bab a ---2232+ 的值是 .5.若分式方程a x ax =-+1无解,则a 的值为( )6.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 。

7.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( )..8.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( )9.在直角坐标系中有A(3,0)和B(0,4)两点,在坐标轴上有一点C, 使以A,B,C 为顶点的三角形是等腰三角形,则这样的C 点有_________个。

10.如图所示,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3, 那么AB 的长为( ).l 1l 2l 3ACB二 耐心解一解:11.(8分)的值求已知xx xx xaa a a a ----=22.3← → m 6 A BCD12.(10分)已知4 5 6.ab ac bca b a c b c===+++,, 求17137a b c +-的值..13(10分)有一只小鸟在一棵高4m 的小树梢上捉虫子,它的伙伴在离该树12m ,高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s 的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?14.(10分)己知一次函数x y 2501+=与x y 52=,回答下列问题:①能否说函数y 1的值比函数y 2的值大?为什么? ②这两个函数是否都随着x 的增大而增大? 当x 增加1个单位时,这两个函数的值分别增加多少?③当x 从1开始逐渐增大时,哪个函数的值先超过100?15(10分)如图,要在河边修建一个水泵站,分别向张村A 和李庄B 送水,已知张村A 、李庄B 到河边的距离分别为2km 和7km ,且张、李二村庄相距13km .(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置。

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本题共12个小题,每题3分,共36分。

每小题只有一个选项符合题目要求。

1.已知三条线段的长分别是3,8,a,若它们能构成三角形,则整数a的最大值是( )A.11 B.10C.9 D.72.如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的度数是( )A.90°B.80°C.60°D.40°3.下列图形:其中轴对称图形的个数是( )A.1 B.2C.3 D.44.如图,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线OC是∠AOB的平分线,请说明此做法的依据是( )A.SAS B.ASAC.AAS D.SSS5.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB =6,DE=3,则AC的长是( )A .8B .6C .5D .46.如图,在△ABC 中,AC >BC ,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧交于点D ,E ,经过点D ,E 作直线分别交AB ,AC 于点M ,N ,连接BN ,下列结论正确的是( )A .AN =NCB .AN =BNC .MN =12BCD .BN 平分∠ABC7.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A .2+xx−y B .2xx−y C .2+xxyD .x 2x+y8.分式x 2−x x−1的值为0,则x 的值是( ) A .0 B .-1 C .1D .0或19.若k 为任意整数,则(2k +3)2-4k 2的值总能( ) A .被2整除 B .被3整除 C .被5整除D .被7整除10.某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设大货车每辆运输x 吨,则所列方程正确的是( ) A .75x−5=50x B .75x =50x−5 C .75x+5=50xD .75x=50x+511.如图,在等边三角形ABC 中,D ,E 分别是BC ,AC 的中点,P 是线段AD 上的一个动点,当△PCE 的周长最小时,点P 的位置在( )A .A 点处B .D 点处C .AD 的中点处D .△ABC 三条高的交点处12.在正数范围内定义一种运算 “※”,其规则为a ※b =1a +1b ,如2※4=12+14,根据这个规则,方程3※(x -1)=1的解为( ) A .x =52 B .x =-1 C .x =12D .x =-3二、填空题:本题共6个小题,每小题3分,共18分。

湖北省武汉市江岸区2023-2024学年下学期八年级期末数学试题卷(含答案)

湖北省武汉市江岸区2023-2024学年下学期八年级期末数学试题卷(含答案)

2023-2024学年下学期期末八年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.有意义的条件是( )A. B. C. D.2.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )A.1,2,3B.2,3,4C.3,4,5D.4,5,63.下列图象中不能表示y 是x 的函数关系的是()A. B.C. D.4.下列计算正确的是( )B.5.将直线向上平移4个单位长度后所得的直线的解析式为( )A.B. C. D.6.对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,方差如下表所示,则四名选手中成绩最稳定的是()选手甲乙丙丁方差1.340.16 2.560.21A.甲B.乙C.丙D.丁7.如图,函数的图象与函数的图象交于点,其中k ,b ,m ,n 为常数,.则关于x 的不等式的解集是( )A. B. C. D.7题图8题图8.《九章算术》记载:今有坦高九尺,瓜生其上,蔓日长七寸;瓠生其下﹐蔓日长一尺.问几何日相逢?意思是有一道墙,高9尺,在墙头种一株瓜,瓜蔓沿墙向下每天长7寸(1尺=10寸);同时地上种着瓠沿墙向上每天长1尺,问瓜蔓、瓠蔓要多少天才相遇?小李绘制如图的函数模型解决了此问题.图中h (单位:尺)表示瓜蔓与瓠蔓离地面的高度,x (单位:天)表示生长时间.根据小李的模型,点P 的横坐标为( )A.B.C.D.3x ≤3x ≥3x <3x >=2===22y x =-2y x=24y x =-22y x =+26y x =-y kx b =+y mx n =+()2,3P -0k m >>kx b mx n +≤+2x >-2x ≥-2x <-2x ≤-9890179171739.如图,将四根木条用钉子钉成一个矩形框架,,.然后向左扭动框架,得到新的四边形(点E 在的上方).若在扭动后四边形面积减少了8,点P 和Q 分别为四边形和四边形对角线的交点,则的长为()D.29题图 10题图10.1765年数学家欧拉在其著作《三角形几何学》中首次提出定理:三角形三边的垂直平分线的交点,三条中线的交点以及三条高线的交点在一条直线上,这条线也被称为欧拉线.如图,已知的三个顶点分别为,,,则的欧拉线的解析式为( )A. B. C. D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡的指定位置.11._______.12.一次函数的图象不经过第_______象限.13.小明在课间活动中进行了8次一分钟跳绳练习,所跳个数分别为160,163,160,157,160,161,162,165.则160,163,160,157,160,161,162,165这8个数的众数为_______.14.如图,点E 为正方形对角线上一点,,点F 在边上,,则_______15.已知一次函数(k 为常数),其图象为直线l.下列四个结论:①无论k 取何值,直线l 都过点;②一次函数的图象与直线l 没有公共点,则;③直线l 不经过第三象限,则;④点和在直线l 上,若,则;其中正确的是_______.(填序号)16.如图,点O 为等边边的中点.以为斜边作(点A 与点D 在同侧且点D 在外),点F 为线段上一点,延长到点E 使,,若,,则ABCD 5AB =8AD =BCEF BC ABCD BCEF PQ OAB △()0,0O ()2,4A ()6,0B OAB △22y x =-3xy =4y x =-+2023y x =-+=32y x =-ABCD AC 20ADE ∠=︒AB ED BF =FED ∠=4y kx k =++()1,4A -2y x =2k =40k -≤<()11,B x y ()22,C x y ()()12120x x y y --<1k >-ABC △CB BC Rt DBC △BC ABC △OD AF EF AF =ABD DBE ∠=∠2OF =5CE =_______。

四川省成都市成都西川中学2023-2024学年八年级下学期期末数学试题

四川省成都市成都西川中学2023-2024学年八年级下学期期末数学试题

四川省成都市成都西川中学2023-2024学年八年级下学期期末数学试题一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.下列因式分解正确的是( ) A .()322a a a a a a ++=+ B .2(421))37(a a a a +-=-+ C .2242(2)a a a a -+=-+D .231(3)1x x x x -+=-+3.若分式242x x --的值为0,则x 的值是( )A .2-B .0C .2D .44.如图,在Rt ABC V 中,90306C B BC ∠=︒∠=︒=,,,AD 平分CAB ∠交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )AB C .2 D .35.不等式组()31214x x -≤-⎧⎨-<⎩的解集在数轴上表示为( )A .B .C .D .6.已知正n 边形的内角和是它的外角和的3倍,则这个正n 边形的内角为( ) A .108︒B .150︒C .120︒D .135︒7.甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x 个零件.可列方程为( ) A .120120301.2x x -= B .120120301.2x x -= C .120120301.260x x -= D .120120301.260x x -= 8.当25x ≤≤时,一次函数()2y m 1x 2=--+有最大值8-,则实数m 的值为( )A .1B .1或1-C .2D .2或2-二、填空题9.因式分解:22x y xy +=.10.如图,一次函数y kx b =+的图象经过点P ,则关于x 的不等式3kx b +<的解集为.11.如图,在Rt ABC △中,90ABC ∠=︒,D 、E 、F 分别为AB 、BC 、CA 的中点,若3DE =,则BF =.12.定义新运算:对于非零的两个实数a 和b ,规定12b a a b =-※,如12132236=-=-※.若(4)(1)0x x -+=※,则x 的值为.13.如图,在ABC V 中,45ACB ∠=︒,CD 是AB 边上的高,分别以点A ,C 为圆心,以大于12AC 的长为半径作弧,两弧交于点E ,F ,连接EF ,分别交CB ,CD ,CA 于点G ,M ,N ,连接AG 交CD 于点Q ,若3AD =,5CM =,则GN 的长为.三、解答题14.(1)解不等式组()2531421333x x xx ⎧-<-⎪⎨+≤-⎪⎩①②; (2)解方程:223142x x x=+--. 15.先化简:22224x x x x x x x +⎛⎫-÷ ⎪-+-⎝⎭,再从2-,1-,0,1,2之中选择一个合适的数作为x 的值代入求值.16.如图,在平面直角坐标系中,ABC V 的三个顶点坐标分别为()1,1A ,()4,1B ,()3,3C .(1)画出将ABC V 向下平移5个单位后得到的111A B C △,点A ,B ,C 的对应点分别为点1A ,1B ,1C ;(2)画出将ABC V 绕原点O 逆时针旋转90︒后得到的222A B C △,点A ,B ,C 对应点分别为点2A,2B ,2C ;(3)在y 轴上有一个动点P ,求12A P B P +的最小值.17.已知,如图,AD BE ,分别是ABC V 的BC 和AC 边上的中线,过C 作CF AB ∥,交AE 的延长线于点F ,连接AF .(1)求证:四边形ABCF 是平行四边形;(2)连接DE ,若345DE EC AFC ==∠=︒,,求线段BF 的长. 18.如图,在平面直角坐标系xOy 中,直线122y x =+与x 轴交于点A ,与直线21y kx k =-+相交于点B ;直线21y kx k =-+与x 轴交于点C .(1)当32k =时,求ABC V 的面积; (2)若45ABC ∠=︒,求k 的值;(3)若ABC V 是以BC 为腰的等腰三角形,求k 的值.四、填空题19.若112a b -=,则分式3533a ab b a ab b+-=--. 20.如图,在ABC V 中,,100AB AC BAC =∠=︒,在同一平面内,将ABC V 绕点A 顺时针旋转到11AB C △的位置,连接1BB ,若11BB AC ∥,则1CAC ∠的度数是.21.若关于x 的方程3122ax x x =+--无解,求a 的值. 22.定义:若x ,y 满足24x y k =+,24(y x k k =+为常数)且对x y ≠,则称点(,)M x y 为“妙点”,比如点()5,9-.若函数2y x b =+的图象上的“妙点”在第三象限,则b 的取值范围为. 23.如图,在Rt ABC △中,6AB =,30ACB ∠=︒,E 为BC 的中点,将ABC V 沿AC 边翻折得到AFC △,M N 、是AC 边上的两个动点,且2MN =,则四边形BENM 周长的最小值为.五、解答题24.某学校为参加春运会的同学准备了钢笔和笔记本两种奖品,已知钢笔比笔记本每件多12元;学校计划用1200元购买钢笔,960元购买笔记本,购买笔记本的数量是钢笔数量的2倍.(1)求钢笔和笔记本两种奖品的单价.(2)购买当日,正逢商店周年庆典,所有商品均按原价八折销售,学校调整了购买方案: 计划购买钢笔、笔记本两种奖品共200件,购买资金不少于1856元且不超过1880元,问购买钢笔、笔记本两种奖品有哪几种方案? 25.【阅读理解】定义:在同一平面内,有不在同一条直线上的三点M ,N ,P ,连接PM ,PN ,设线段PM ,PN 的夹角为α,PMw PN =,则我们把(),w α称为MPN ∠的“度比坐标”,把1,w α⎛⎫ ⎪⎝⎭称为NPM ∠的“度比坐标”.【迁移应用】如图,在平面直角坐标系xOy 中,直线4y kx =+与x 轴相交于点A ,与y 轴相交于点B .(1)求点A 的坐标,并写出AOB ∠的“度比坐标”(用含k 的代数式表示);(2)C ,D 为直线AB 上的动点(点C 在点D 左侧),且COD ∠的“度比坐标”为()90,1︒. ①若12k =,求CD 的长; ②在①的条件下,平面内是否存在点E ,使得DOE ∠的“度比坐标”与OCB ∠的“度比坐标”相等?若存在,请求出点E 的坐标;若不存在,请说明理由.26.在ABC V 中,AB AC =,D 是边BC 上一动点,连接AD ,将AD 绕点A 逆时针旋转至AE 的位置,使得180DAE BAC ∠+∠=︒.(1)如图1,求证:ABE AEB DAC ∠+∠=∠;(2)如图2,连接BE ,取BE 的中点G ,连接AG .猜想AG 与CD 存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG ,CE .若120BAC ∠=︒,4BC =,当AD BE ⊥时,求CE 的长.。

湖北省武汉市江汉区2023-2024学年八年级上学期期末数学试题(含解析)

湖北省武汉市江汉区2023-2024学年八年级上学期期末数学试题(含解析)

.....若一个三角形,两边长分别是5和,则第三边长可能是(.4.567A .B .7.下列计算正确的是( )A D ∠=∠BE =A .B 10.绿化队原来用漫灌方式浇绿地,则现在比原来每天节约用水吨数是(三、解答题(共5小题,共52明、证明过程、计算步骤或作出图形.2CD DE =(1)求证:;(2)若,19.(1)化简:(2)解方程:20.如图,在下列正方形网格中,(1)在图(1)中画图:①画边上的中线(2)在图(2)中画图:①画边上的高21.“数形结合”是数学上一种重要的数学思想,在整式乘法中,我们常用图形而积来解释一些公式.如图(1),通过观察大长方形而积,可得:(1)如图(2),通过观察大正方形的面积,可以得到一个乘法公式,直接写出此公式;AE FC =25C ∠=︒110EAB ∠=︒522m m ⎛+- -⎝11422x x x-=---AB CD AB CE28.已知,实数m ,n ,t 满足.(1)求m ,n ,t 的值;(2)如图,在平面直角坐标系中,A ,B 都是y 轴正半轴上的点,221216100|2|0m n m n t +--++-=①如图(1),若点A 与B 重合,,求B 点的坐标;②如图(2),若点A 与B 不重合,,,直接写出的面积.参考答案与解析1.D 【分析】本题考查了轴对称图形的识别,根据轴对称图形的定义进行判断作答即可.【详解】解:由题意知,是轴对称图形,故选:D .2.D【分析】本题考查了三角形三边关系,设三角形的第三边长为,根据三角形三边关系可得,由此即可得出答案,熟练掌握三角形的任意两边之和大于第三边,两边之差小于第三边,即可得出答案.【详解】解:设三角形的第三边长为,由三角形三边关系可得:,即,第三边长可能是,故选:D .3.A【分析】本题考查了科学记数法,根据科学记数法的定义解答,科学记数法的表示形式为的形式,其中为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当原数的绝对值时,n 是负数.熟悉科学记数法概念是解题的关键.【详解】解:,故选:A .4.CCD m =AD n =BC t =CBD △x 616x <<x 115115x -<<+616x <<∴710n a ⨯110,a n ≤<∣∣1>1<0.000085810-=⨯在中,, ABC AB AC =AD BC ∴⊥B C ∠=∠故答案为:﹣2.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.12.【分析】本题考查了点关于轴对称,根据关于轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,熟记关于轴对称的点的坐标是解题的关键.【详解】解:∵点关于轴对称,∴该对称点的坐标是,故答案为:.13.【分析】根据多边形的内角和公式以及外角和,列方程求解,即可得到答案.【详解】解:由题意得:,解得:,故答案为:.【点睛】本题考查了多边形的内角和公式以及外角和特征,掌握多边形外角和等于360°,正确列方程是解题关键.14.或6【分析】运用完全平方式的结构特征进行求解,完全平方公式.【详解】解:,,故答案为:或6.【点睛】此题考查了完全平方式概念的应用能力,关键是能准确理解并运用以上知识.15.5【分析】本题主要考查整式乘法运算,代入求值,掌握整式乘法运算的法则是解题的关键.运用整式乘法运算将展开,把代入即可.【详解】解:,∵,()23-,x x x ()23P ,x ()3-2,()3-2,10()21803604n -︒=︒⨯⋅10n =106-()2222a b a ab b ±=±+()22293x mx x mx ++=++± 6m ∴=±6-(3)(2)a a +-21a a +=()22(3)(2)66a a a a a a +-=--=-+21a a +=∴原式,故答案为:5.16.##110度【分析】本题考查线段垂直平分线的性质,连接,根据中垂线的性质,得到,进而得到,再根据,进行求解即可.掌握中垂线上的点到线段两端点的距离相等,是解题的关键.【详解】解:连接,∵边,的垂直平分线交于点D ,∴,∴,∵,,∴,即:,∴;故答案为:.17.(1);(2)【分析】(1)本题考查整式的运算,根据积的乘方,幂的乘方,单项式乘单项式,单项式除以单项式的法则,进行计算即可;(2)本题考查因式分解.先提公因式,再利用平方差公式法,进行因式分解即可.掌握因式分解的方法,是解题的关键.【详解】解:(1)原式;(2).18.(1)见解析615=-=110︒AD ,AD BD AD CD ==,BAD ABD CAD ACD ∠=∠∠=∠360BAD ABD CAD ACD BDC ∠+∠+∠+∠+∠=︒AD AB AC ,AD BD AD CD ==,BAD ABD CAD ACD ∠=∠∠=∠360BAD ABD CAD ACD BDC ∠+∠+∠+∠+∠=︒140BDC ∠=︒()2220BAD CAD ∠+∠=︒2220BAC ∠=︒=110BAC ∠︒110︒2xy ()()11a b b +-53421892x y x y xy =÷=()()()22111ab a a b a b b -=-=+-去括号得:,移项得:,合并同类项得:,系数化为1得:,当时,,原分式方程无解.20.(1)①见解析②见解析(2)①见解析②见解析【分析】本题主要考查复杂作图:(1)①找出格点T ,使四边形是矩形,连接,交于点D ,则为边上的中线;②找出格点K ,L ,连接,交于点P ,则点P 即为所求,使;(2)①取格点G ,H ,连接交于点E ,则为边上的高;②取格点D ,F ,连接,交于点Q ,则【详解】(1)解:①如图所求,线段为边上的中线;②点P 即为所求,使;(2)如图,为边上的高;②如图,1148x x =-+-+4811x x -=--36x =2x =2x =20x -=∴ATBC CT AB CD AB ,,,,AK DL CK DK BL APD BPC ∠=∠CG AB CE AB DF AB AQ CE=CD AB APD BPC ∠=∠CE AB AQ CE=关于m 的方程无解,故答案为:或1.【点睛】本题主要考查分式方程的解,理解分式方程无解产生的原因是解题的关键.24. 【分析】本题考查了幂的乘方,积的乘方等知识,①直接根据新定义即可求解设,②,,根据新运算定义用表示得方程即可求解,理解并运用新运算的定义是解题的关键.【详解】解:①依题意可得,∴,∴,设,,②依题意可知:,,∴,∴∴,故答案为:,.25.①②③④【分析】本题考查的是全等三角形的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,多边形的内角和定理的应用,作出合适的辅助线是解本题的关键;如图,设,证明,可得①符合题意;连接,求解,证明,可得②符合题意;过作交于,截取,而,证明,可得③符合题意;作,连接,证明,可得,,再证明,可得④符合题意;从而可得答案.【详解】解:如图,设,2-4200510m =520n =,m n ()()5,105,20+216c =4c =()2,164=510m =520n =()5,10m =()5,20n =()()5,105,20m n +=+()5,x m n=+5m nx +=55m n=⨯1020=⨯200=4200ACE x ∠=CAE ABD ≌△△GB 30DGB ∠=︒22DCG x ACE ∠==∠G GI AE ∥CE I FH FA =60DFC ∠=︒CAH GIF ≌BJ GH =GJ BHG GJB ≌BH GJ =GHB BJG ∠=∠120260BGJ x D x D ∠=︒--∠=︒-=∠ACE x ∠=∴,∵,∴,∴,∴连接,∵,∴,,120CAE ABD ∠=︒=∠AE BD =CAE ABD ≌△△EAF BAD ACE x ∠=∠=∠=AEC ∠DFC AEF EAF D BAD ∠=∠+∠=∠+∠GB CA CG CB ==CAG CGA ∠=∠CGB CBG ∠=∠∵是角平分线.∴,又∵∴AD DM DN =12·ACD S AC DN = ABD S △1:(2ABD ACD S S AB DM =⋅△△::S S DB DC =∵在中,,∴,∴是角平分线,即:又∵,,∴,∴,ABC CA CB =ACB ∠36CAB CBA ∠=∠=︒AD BAC ∠AE AC =AD AD =(SAS)AED ACD ≌DE CD =108AED ACB ∠=∠=∵,∴,又∵,∴,∴,∴是定直线,∴当Q 在点时, ACB PCQ α∠=∠=ACP BCQ ∠=∠AC BC =CP CQ =(SAS)BQC APC ≌CBQ CAP ∠=∠BQ D Q Q C DQ Q C DQ '''''+=+≤Q 'CQ +∵,∴,∵180BCD DAO ∠+∠=︒∠BCO OAD ∠=∠9090OBC BCO ∠=︒-∠=︒。

八年级期末考试(数学)试题含答案

八年级期末考试(数学)试题含答案

八年级期末考试(数学)(考试总分:150 分)一、 单选题 (本题共计8小题,总分24分)1.(3分)1.下列图形中,是轴对称图形的是( )A .B .C .D .2.(3分)2. 如图,小手盖住的点的坐标可能为( )A .(5,2)B .(-6,3)C .(46)--,D .(34)-,3.(3分)3.最“接近”1)的整数是( )A. 0B. 1C.2D.34.(3分)4.下列四组数中,哪一组数是勾股数( )A .1.5,2,2.5B .3,4,5C .4,5,6D .1,2,35.(3分)5.一次函数y =3x -4的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限6.(3分)6.到三角形三个顶点距离相等的点是( )A .三条角平分线的交点B .三条中线的交点C .三条高所在直线的交点D .三边垂直平分线的交点 7.(3分)7.如图,正方形网格中的每个小正方形边长都是1.已知A 、B 是两格点,若△ABC 为等腰三角形,且S △ABC =1,则满足条件的格点C 有( )A .2个B .3个C .4个D .5个8.(3分)8.如图①,在矩形中,动点从点出发,沿着方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函数图象如图②所示,下列说法不正确的是()A .当时,B .矩形的周长是18C .当时,D .当时,二、 填空题 (本题共计10小题,总分30分)9.(3分)9.25的算术平方根是 .10.(3分)10.等腰三角形中一个角是140°,则底角为 度.11.(3分)11.新冠疫情期间我国第一时间就向联合国卫生组织捐款2000 0000美元,其他物资不计其数,为世界防疫工作作出了巨大贡献,将2000 0000用科学记数法表示为 .12.(3分)12.点A (-3,3)关于y 轴的对称点A '的坐标为 .13.(3分)13.若点()3,1M m m -+在平面直角坐标系的x 轴上,则点M 的坐标是 .14.(3分)14.如果将直线y =2x ﹣3的图像向下平移3个单位,那么平移后所得直线的表达式是 .15.(3分)15.如图,函数y 1=ax+b 和y 2=kx 的图象交于点P ,则根据图象可得,方程ax+b ﹣kx =0的解是 .16.(3分)16.如图,在Rt △ABC 中,∠B =90°,AC 边的垂直平分线ED 分别交ACMNPQ R N N P Q M →→→M R x MNR ∆y y x 2x =5y =MNPQ 6x =10y =8y =10x =第15题于点D,交BC于点E.已知AB=6,AC=10,则BE为.17.(3分)17.如图,在平面直角坐标系中,OA=OB=,AB=.若点A坐标为(1,2),则点B的坐标为.18.(3分)18.如图,已知点A(a,0)在x轴正半轴上,点B(0,b)在y轴的正半轴上,ABC∆为等腰直角三角形,D为斜边BC上的中点.若OD=a b+=.三、解答题(本题共计9小题,总分96分)19.(10分)19.(本题满分10分,每小题5分)(1)计算:2020312716)(-+-(1)()()205352-+---π20.(10分)20.(本题满分10分,每小题5分)(2)求x的值:(1)812-22=)(x(2)()6423-=-x21.(8分)21.(本题满分8分)第18题第17题第16题ADCB如图,已知//DE AB ,DAE B ∠=∠,2DE =,4AE =,C 为AE 的中点.求证:△ABC ≌△EAD .22.(8分)22.(本题满分8分)画出函数y =2x+4的图象,利用图象:(1)求方程2x+4=0的解;(2)求不等式2x+4<0的解;(3)若﹣2≤y ≤6,求x 的取值范围.23.(10分)23.(本题满分10分)已知,在如图所示的网格中建立平面直角坐标系后,△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (2,4).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)借助图中的网格,请只用直尺(不含刻度)完成以下要求:(友情提醒:请别忘了标注字母!)①在图中找一点P ,使得P 到AB 、AC 的距离相等,且PA =PB ;②在x 轴上找一点Q ,使得△QAB 的周长最小。

2023年人教版八年级数学下册期末考试题及答案【完整版】

2023年人教版八年级数学下册期末考试题及答案【完整版】

2023年人教版八年级数学下册期末考试题及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.2020的相反数是( )A .2020B .2020-C .12020 D .12020-2.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是() A .5-313 B .3 C .313-5 D .-35.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是()A .7B .-1C .7或-1D .-5或36.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A .3B .4C .5D .68.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若2)21a b+=(,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.69.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.下列图形中,由AB∥CD,能得到∠1=∠2的是()A. B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)1.关于x的分式方程12122ax x-+=--的解为正数,则a的取值范围是_____.2.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是__________.3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是______.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是______元.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中23x .3.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.如图,正比例函数y=2x的图象与一次函数y=kx+b的图象交于点A(m,2),一次函数图象经过点B(﹣2,﹣1),与y轴的交点为C,与x轴的交点为D.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOD的面积.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、B5、A6、C7、D8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5a <且3a ≠2、a ≤2.3、720°.4、8.5、26、15.3三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、13x +,.3、(1)略;(2)4或4+.4、(1)略;(2)45°;(3)略.5、(1)y=x+1;(2)C (0,1);(3)16、(1) 60x y --; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。

八年级数学期末测试题-

八年级数学期末测试题-

八年级数学期末测试题八年级数学期末测试题一、选择题1.如果等边三角形的边长为3,那么连结各边中点所成的三角形的周长为( ).(A )9 (B )6 (C )3 (D )922.下列说法正确的是( ).(A )有两组对边分别平行的图形是平行四边形 (B )平行四边形的对角线相等 (C )平行四边形的对角互补,邻角相等(D )平行四边形的对边平等且相等3、要使式子32+x 有意义,字母x 的取值必须满足( )(A )、0≥x (B )、23≥x (C )、32≥x (D )、23-≥x 4、下列运算正确的是 ( )(A )、235=- (B )、312914=(C )、32321+=- (D )、()52522-=-5. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。

其中正确的说法的个数是( )A .1B .2C .3D .46.若函数y=(2m+1)x2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A .m>12B .m=12C .m<12D .m=-12八年级数学期末测试题7.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )7. 如图1,ΔABC 和ΔADE 都是等腰直角三角形,∠C 和∠ADE 都是直角,点C 在AE 上,ΔABC 绕着A 点经过逆时针旋转后能够与ΔADE 重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为( ).图312(A )45°,90°(B )90°,45°(C )60°,30°(D )30°,60° 二填空题1.在-52,3π3.14,01,21中,其中:整数有 ( );无理数有( );有理数有( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学期末检测题(本试卷满分:120分,时间:120分钟)一、选择题(每小题3分,共30分) 1.如图,在△中,,点是斜边的中点,,且,则∠( )A.B.C.D.2.如图,在□ABCD 中,EF ∥AB ,GH ∥AD ,EF 与GH 交于点O ,则该图中的平行四边形的个数为( )A.7 B .8 C .9 D.113.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是( )A.1个B.2个C.3个D.4个 4.下列命题,其中真命题有( )①4的平方根是2; ②有两边和一角相等的两个三角形全等; ③连接任意四边形各边中点的四边形是平行四边形.A.0个B.3个C.2个D.1个5.已知不等式组2112x x a-⎧⎪⎨⎪⎩≥,≥的解集是,则的取值范围为( )A.B.C.D.6.分式方程123-=x x 的解为( ) A. B.C.D.7.下列条件中,能判定四边形是平行四边形的是( )第1题图第3题图A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直式有意义,则应满足( )8.要使分A .≠-1 B .≠2 C .≠±1 D .≠-1且≠29.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为( ) A.24 B.36 C.40D.4810.若解分式方程441+=+-x mx x 产生增根,则( )A. B.C.D.二、填空题(每小题3分,共24分)11.如图,在△中,∠,是△的角平分线,于点,.则∠等于______.12.关于的不等式组⎩⎨⎧<->-ba x ab x 22,的解集为,则的值分别为_______.13.若□的周长是30,相交于点,且△的周长比△的周长大,则= .14.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长度到丙位置,则小花顶点A 在丙位置中的对应点A ′的坐标为________. 15.分解因式:__________.EA CDB第11题图16.张明与李强共同清点一批图书,已知张明清点完本图书所用的时间与李强清点完本图书所用的时间相同,且李强平均每分钟比张明多清点本,则张明平均每分钟清点图书本.程的解为正数,则的取值范围是 .17. 若分式方18.如图(1),平行四边形纸片的面积为,,.沿两条对角线将四边形剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(、重合)形成对称图形戊,如图(2)所示,则图形戊的两条对角线长度之和是 ___ .三、解答题(共66分)19.(6分)阅读下列解题过程:已知为△的三边长,且满足,试判断△的形状.解:因为,①所以. ②所以.③所以△是直角三角形. ④回答下列问题:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为;(2)错误的原因为;(3)请你将正确的解答过程写下来.20.(6分)甲、乙两地相距,骑自行车从甲地到乙地,出发后,骑摩托车也从甲地去乙地.已知的速度是的速度的3倍,结果两人同时到达乙地.求两人的速度.21.(6分)为了提高产品的附加值,某公司计划将研发生产的件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?22.(8分)某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们,如果每人送3本,则剩余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本,设该校买了本课外读物,有名学生获奖,请解答下列问题:(1)用含的代数式表示;(2)求出该校的获奖人数及所买课外读物的本数.23.(8分)如图,在□ABCD中,E、F分别是DC、AB上的点,且.求证:(1);(2)四边形AFCE是平行四边形.24.(8分)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长25.(12分)在△中,,AB的垂直平分线交AC于点N,交BC的延长线于点M,.(1)求的大小.(2)如果将(1)中的∠A的度数改为70°,其余条件不变,再求∠的大小.(3)你认为存在什么样的规律?试用一句话说明.(请同学们自己画图)(4)将(1)中的∠A改为钝角,对这个问题规律的认识是否需要加以修改?26.(12分)如图,在由小正方形组成的的网格中,点、和四边形的顶点都在格点上.(1)画出与四边形关于直线对称的图形;(2)平移四边形,使其顶点与点重合,画出平移后的图形;绕点逆时针旋(3)把四边形转180°,画出旋转后的图形.八年级数学第二学期质量检测试题一.选择题:每题3分,共45分.1.下列从左到右的变形中,是分解因式的是( ) A .a 2–4a +5=a (a –4)+5 B .(x +3)(x +2)=x 2+5x +6 C .a 2–9b 2=(a +3b )(a –3b ) D .(x +3)(x –1)+1=x 2+2x +2 2.若将分式24a b a +中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( )A .扩大为原来的2倍 B.分式的值不变 C.缩小为原来的21 D.缩小为原来的41 3.解关于x 的方程113-=--x mx x 产生增根,则常数m 的值等于( ) A.-1 B.-2 C.1 D.2.4.一个多边形的对角线的条数与它的边数相等,这个多边形的边数是( ) A .7 B .6 C .5 D .45.下列条件中,能判定四边形是平行四边形的是( ) A.一组对角相等 B.对角线互相平分 C.一组对边相等 D.对角线互相垂直6.如图,在平行四边形ABCD 中,过对角线BD 上一点P ,作EF ∥BC ,HG ∥AB ,若四边形AEPH 和四边形CFPG 的面积分另为S 1和S 2,则S 1与S 2的大小关系为( ) A .S 1=S 2 B .S 1>S 2 C .S 1<S 2 D .不能确定7.几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设参加旅游的同学共有x 人,则根据题意可列方程( )A .32180180=+-x xB . 31802180=-+xx C .3180180+-x x =2 D .21803180=-+xx 8.如图,直线l 、l '、l ''表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有 ( )A .一处B .二处C .三处D .四处 9.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为( ) A.24B.36C.40D.4810. 若平行四边形的对角线长度为6,8,一边长为2x -1,则x 的取值范围为( ) A .0<x <4 B .1<x <4 C .0<x <3 D .1<x <311.关x 的不等式组()⎪⎩⎪⎨⎧+>++-<a x x x x 4231332有四个整数解,则a 的取值范同是()A .25411-≤<-a B .25411-<≤-a C .25411-≤≤-a D .25411-<<-a 12.无论a 取何值时,下列分式一定有意义的是 ( )A .221aa + B .21aa +C .112+-a aD .112+-a a 13.已知实数x , y 满足084=-+-y x ,则以x , y 的值为两边长的等腰三角形的周长为( ) A .20或16 B .20 C .16 D .以上答案都不对 14.关x 的分式方程15=-x m,下列说法正确的是( ) A .m <一5时,方程的解为负数 B .方程的解是x=m +5 C .m >一5时,方程的解是正数 D .无法确定15.若a >b ,则下列式子正确的是( ) A.a -4>b -3 B.12a <12b C.3+2a >3+2b D.—3a >—3b 二、填空题(每小题3分,共27分)16. 当m 时,不等式(m+3)x >2的解集是x <32+m17.如果不等式组⎩⎨⎧>-≥+mx x x 148无解,则m 的取值范围是 .18.若1612++kx x 是一个完全平方式,则k = 19.如图,平行四边形ABCD 的周长为16 cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为( )A .4 cmB .6 cmC .8 cmD .10cm 20.当x =1时,分式nx mx -+2无意义,当x =4分式的值为零, 则n m +=__________. 21.已知关于x 的方程4723=-+x a x a 的解是x =1,则a =________.22.如图,在△ABC 中,BI 平分∠ABC ,CI 平分∠ACB ,∠BIC =130°,则∠A =_________.23.如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置, 先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长度到丙 位置,则小花顶点A 在丙位置中的对应点A ′的坐标为________.24. 若分式方程 的解为正数,则的取值范围是 . 三、解答题(本大题有9个小题,共48分)25.(10分)解不等式(组),并把解集在数轴上表示出来。

x x 21231)1(-≥- (2)⎪⎩⎪⎨⎧-≥+-<-x x x 22113226.解方程(5分) 2244212-=-++x x x x27.(本题12分,每小题6分)先化简,再求值:(1) 412)211(22-++÷+-x x x x ,其中3-=x (2) 22933x x x x x x -⎛⎫-∙ ⎪-+⎝⎭,其中2x =28.(6分)如图,在由小正方形组成的的网格中,点、和四边形的顶点都在格点上.(1)画出与四边形关于直线对称的图形;(2)平移四边形,使其顶点与点重合,画出平移后的图形;(3)把四边形绕点逆时针旋转180°,画出旋转后的图形.29.(8分)某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A、B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A、B两车间共同完成一半后,A车间突发故障停产,剩下的工作全部由B车间单独完成,结果前后共用20天完成全部任务,求AB两车间每天分别可以加工多少件.30、(本小题满分6分)如图,ABCD中,点E、F在BD上,且BF=DE.(1)写出图中所有你认为全等的三角形;(2)连接AF、CE,四边形AFCE是平行四边形吗?请证明你的结论.31、(本小题满分9分)在云南省中小学标准化建设工程中,我校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购进2台电脑和1台电子白板需要2.5万元。

相关文档
最新文档