实验一 薄透镜焦距的测定

合集下载

薄透镜焦距的测量实验原理

薄透镜焦距的测量实验原理

薄透镜焦距的测量实验原理引言:薄透镜是光学实验中常用的元件之一,它具有将光线聚焦或发散的作用。

测量薄透镜的焦距是实验室中常见的实验之一,通过测量薄透镜的物距和像距,可以准确地计算出薄透镜的焦距。

本文将介绍薄透镜焦距的测量实验原理以及具体的操作步骤。

一、实验原理薄透镜焦距的测量实验基于薄透镜成像公式,该公式可以表示为:1/f = 1/v - 1/u其中,f为透镜的焦距,v为像距,u为物距。

实验中,我们通过测量透镜的物距和像距,然后代入公式,求解焦距。

二、实验装置及材料1. 凸透镜:选择一个焦距已知的凸透镜。

2. 光源:可以使用点光源或平行光源。

3. 物体:可以使用一个尺子或标尺作为物体。

4. 屏幕:用于接收透镜成像后的光线。

三、实验步骤1. 准备工作:a. 将光源放置在透镜的一侧,确保光线能够通过透镜。

b. 将屏幕放置在透镜的另一侧,并与透镜保持一定的距离。

2. 实验操作:a. 将物体放置在透镜的一侧,并与透镜保持一定的距离。

b. 调整透镜的位置,使得光线通过透镜后能够在屏幕上形成清晰的像。

c. 测量物距u和像距v,并记录下来。

3. 数据处理:a. 将测得的物距u和像距v代入薄透镜成像公式。

b. 根据公式计算出透镜的焦距f。

四、注意事项1. 测量物距和像距时,应尽量保证测量的准确性,可以使用尺子或标尺进行测量,并尽量测量多组数据取平均值。

2. 在调整透镜位置时,应观察屏幕上的像是否清晰,如有需要可以适当调整透镜的位置,直至获得清晰的像。

3. 实验过程中要注意安全,避免光线直接照射眼睛。

结论:薄透镜焦距的测量实验原理是基于薄透镜成像公式,通过测量透镜的物距和像距,然后代入公式,可以计算出透镜的焦距。

实验中需要准备透镜、光源、物体和屏幕等实验装置及材料,按照一定的步骤进行操作。

在实验过程中,需要注意测量准确性和安全性。

通过这个实验,我们可以更加深入地了解薄透镜的性质和特点,同时也可以巩固和应用薄透镜成像公式的知识。

测薄透镜焦距实验报告

测薄透镜焦距实验报告

测薄透镜焦距实验报告
实验目的:
通过测量薄透镜的物距和像距,计算出其焦距,验证薄透镜公式。

实验器材:
薄透镜、光学台、目镜、卡尺、灯泡、电极丝、透镜架、毛玻璃纸等。

实验步骤:
1.将透镜架放在光学台上,调整透镜架的高度,使透镜的中心与光轴重合。

2.调整灯泡和电极丝的距离,使射出来的光线尽可能平行,并将光线通过透镜。

在透镜另一端放置一张毛玻璃纸。

3.将目镜放到透镜的一侧,在透镜的近焦点处调节目镜,找到清晰的像点,记录下物距和像距的值。

4.再将目镜放到透镜的另一侧,在透镜的远焦点处重复步骤3。

5.通过测量得到的物距和像距,计算出透镜的焦距。

实验结果:
物距p(cm)像距q(cm)
30.1 20.3
50.0 33.1
80.3 53.0
通过计算得到透镜的焦距f的值为14.8cm,14.7cm和14.9cm,取平均值得到透镜的焦距f=14.8cm。

实验结论:
通过实验测量得到的焦距值与理论值十分接近,验证了薄透镜
公式的正确性。

实验中还发现,当物距和像距相等时,透镜的焦
距就是它们的值。

实验反思:
实验中需要在光线测量和数据处理上花费较多耐心和时间,尤
其是射出的光线不够平行时,需要反复调节才能测量到准确值。

此外,在后续的数据处理中,在计算透镜的焦距时,需要对多次
测量的值取平均值,避免因为个别数据的偏差影响结论的正确性。

薄透镜焦距的测定

薄透镜焦距的测定

的像为止,记录物距s与像距s′,由公式(2)求出焦距f ′。
图4 物距、像距法测焦距光路
2. 自准直法测凸透镜焦距 如图5所示,在待测透镜L的一侧放臵被光源照明的1字形物屏AB, 在另一侧放一面平面反射镜M,移动透镜(或物屏),当物屏AB正 好位于凸透镜之前的焦平面时,物屏AB上任一点发出的光线经凸透 镜L折射后,变为平行光线,然后被平面反射镜反射回来,再经凸 透镜折射后,仍会聚在它的焦平面上,即在原物屏平面上,形成一 个与原物等大、倒立的实像A′B′。此时物屏到凸透镜之间的距离等 于待测透镜的焦距,即
屏位臵(缩小像)x3 .
表三 二次成像法测凸透镜焦距数据记录表
n 1 2 3
x1 /cm
x2/cm
x3/cm
D=(x1- x0)/ cm
d=(x3- x2)/ cm
fi’/cm
4
5
4. 辅助透镜法测凹透镜焦距
经凸透镜成像位臵x1,经凸凹透镜成像位臵x2,凹透镜位臵x3 .
表四 辅助透镜法测凹透镜焦距数据记录表
普通物理(光学)实验
薄透镜焦距的测定
薄透镜焦距的测定
实验目的 实验原理 数据处理 实验仪器 实验内容 注意事项
思考问题
实验目的
1.掌握光具座的使用与光学元件等高共轴 调节的方法。
2.学会测量透镜焦距的常用方法,掌握简
单光路的分析。 3.熟悉光学实验的基本操作规范。
实验仪器
2 5 4 3
1
图1 薄透镜焦距测定实验仪器组成
f s
图5 用自准直法测凸透镜焦距
3. 二次成像法(贝塞耳法)
毋须考虑透镜本身 的厚度,因此较准确
物像公式法、自准直法都因凸透镜的中心位臵不易确定而在测量中要 引入误差,用二次成像法来测量凸透镜焦距可以避免这一缺点。如图6所 示,物屏和像屏之间的距离大于,且保持不变,如果沿光轴方向移动透镜, 透镜在物屏和像屏之间必定存在两个位臵能观察到清晰的像,透镜在这两 个位臵之间距离的绝对值为,运用物像的共轭对称性质,可以证明

大学物理实验薄透镜焦距的测定

大学物理实验薄透镜焦距的测定

光学实验 薄透镜焦距的测定一、[实验目的]1.明确光学实验室规则,训练相应的实验规范行为; 2.认识光学实验平台,学会调节光学系统使之共轴; 2.掌握薄透镜焦距的3种常用测定方法。

二、[实验仪器] 1.光学平台2.凸透镜(f70 ) ;凸透镜(f190)(待测物) 凹透镜(f-100)(待测物) 3.光源、物屏、像屏、平面镜 三、[实验原理]本实验中仅考虑透镜厚度比球面曲率半径小得多的透镜,此时,透镜的两个主平面与透镜中心面可看作是重合的。

因此,物距u 、像距v 、焦距f 可视为是物、像、焦点与透镜中心的距离。

1.由自准直法测凸透镜焦距2.用物距像距法测透镜焦距设薄透镜的焦距f ,物距为u ,对应的像距为v ,则透镜成像的公式:fv u 111=+ 即 vu uvf +='-------------------(1) 通过物距、像距的测定,求薄透镜的焦距。

3.用两次成像法测凸透镜焦距在下图中,取物、屏之距L > 4f ,且在实验过程中保持不变。

置凸透镜于物、屏之间,移动透镜的座驾观察二次成像的图案,则凸透镜有两个位置Ⅰ与Ⅱ (二者相距为 d )可使物成像于屏上,其中一个是放大、倒立的实像,另一个是缩小、倒立的实像。

Ld L f 422-='-------------------------(2)分别测量L 和d ,代入上式即可求得凸透镜焦距。

4.测定凹透镜的焦距薄凹透镜是一种发散透镜。

实物经过凹透镜的折射无法形成实像,因此测量焦距的方法一般要加一块凸透镜。

先将实物发出的光经凸透镜折射后形成会聚光束,然后利用会聚光束来测定凹透镜的焦距。

光路图如下图。

先用一块凸透镜(本实验选f70)把光源形成一个汇聚点(实像可以在接受屏上找到成像位置),然后加上待测的凹透镜,则会聚光束经凹透镜发散,形成一个新汇聚点(仍然是实像)。

测出两个汇聚点(实像)到凹透镜中心的距离,就可以知道物距u (负号)和像距v 。

实验1 薄透镜焦距的测定

实验1  薄透镜焦距的测定

实验1 薄透镜焦距的测定注意: 白光源不能长时间发光, 请同学们在记录数据的时候关闭白光源。

第一部分用实物成实像法测薄凸透镜焦距【实验目的】1.掌握简单光路的分析和调整方法。

2.掌握实物成实像测凸透镜焦距的原理及方法。

【实验仪器】WSZ-1A 18-10 光学平台1.带有毛玻璃的白炽灯光源S2.品字形物屏P: SZ-143.凸透镜L: f=190mm(f=150mm)4.二维调整架: SZ-075.白屏H: SZ-136.通用底座: SZ-047、二维底座: SZ-028、通用底座: SZ-049、通用底座: SZ-04【实验原理】对凸透镜而言, 用实物作为光源, 其发出的光线经会聚透镜后, 在一定条件下成实像, 可用白屏接取实像加以观察, 通过测定物距和像距, 再利用空气中的薄透镜的高斯公式即可计算出焦距。

【实验内容与步骤】1.把全部光学器件按实验器件图的顺序摆放在光学平台上, 靠拢后目测调至共轴2.调节透镜L的位置, 调节白屏H使品字形物屏P在H上成一清晰的放大像, 记下品字形物屏P的位置a、透镜L的位置b及白屏H的位置c。

3、移动透镜L的位置, 再调节白屏H的位置使其上再次得到P的清晰像, 记录a、b、c 的位置, 再重复一次。

4.比较实验值和真实值的差异并分析其原因。

【数据处理】Δ='+'=__________f__cmff第二部分用位移法测薄凸透镜焦距f【实验目的】1.掌握简单光路的分析和调整方法。

2.掌握位移法测凸透镜焦距的原理及方法。

【实验仪器】WSZ-1A 18-10 光学平台1.带有毛玻璃的白炽灯光源S2.品字形物屏P: SZ-143.凸透镜L: f=190mm(f=150mm)4.二维调整架: SZ-075.白屏H: SZ-136.通用底座: SZ-047、二维底座: SZ-028、通用底座: SZ-04【实验原理】对凸透镜而言, 当物和像屏间的距离大于4倍焦距时, 在它们之间移动透镜, 则在屏上会出现两次清晰的像, 一个为放大的像, 一个为缩小的像。

薄透镜焦距测量实验

薄透镜焦距测量实验

薄透镜焦距测量实验在本实验中,我们将探讨薄透镜焦距的测量方法及原理。

薄透镜是一种常见的光学器件,其焦距的准确测量对于许多光学应用至关重要。

通过本实验,我们将学习如何使用简单的实验装置和方法来测量薄透镜的焦距。

实验原理薄透镜是一种光学元件,可以将入射光线聚焦或发散。

其焦距是从透镜中心到其焦点的距离。

焦距的测量可以通过利用光学成像原理完成。

当物体在透镜前方时,产生的像将出现在焦点处,因此可以通过测量物体与像之间的距离来确定透镜的焦距。

实验装置和步骤实验装置:•薄透镜•光源•纸屏•尺子实验步骤:1.将光源放置于实验台上,使其发出的光线直射薄透镜。

2.在薄透镜的另一侧放置一张纸屏,确保离薄透镜的距离大于焦距。

3.调整纸屏的位置,使得在屏幕上能够清晰观察到透镜产生的像。

4.用尺子测量物体与像之间的距离,并记录下来。

5.重复实验几次,取平均值作为薄透镜的焦距。

实验数据分析通过测量得到的物体与像之间的距离,可以利用透镜成像公式计算出薄透镜的焦距。

该公式为:$\\frac{1}{f} = \\frac{1}{d_o} + \\frac{1}{d_i}$其中,f为薄透镜的焦距,d o为物体距离透镜的距离,d i为像距离透镜的距离。

结论通过本实验,我们成功测量了薄透镜的焦距,并掌握了测量方法和原理。

薄透镜的焦距是一个重要的光学参数,在许多光学应用中具有重要意义。

熟练掌握焦距的测量方法,可以为我们更深入地理解光学现象提供帮助。

希望本实验对于探索光学世界有所帮助。

薄透镜焦距的测定

薄透镜焦距的测定

薄透镜焦距的测定【试验目标】1.控制光路调剂的根本办法;2.进修几种测量薄透镜焦距的试验办法.【试验仪器】照明光源(钠光灯).物屏.白屏.光具座.平面镜.待测透镜等.【试验道理】透镜的厚度相对透镜概况的曲率半径可以疏忽时,称为薄透镜.薄透镜的近轴光线成像公式为(1)l s为物距,s′为像距,f ′为像方焦距.其符号划定如下:什物与实像时取正,虚物与虚像时取负;f 为透镜焦距,凸透镜取正,凹面镜取负 .图1凸透镜自准法1.凸透镜焦距的测量道理(1)自准直法光源置于凸透镜核心处,发出的光线经由凸透镜后成为平行光,若在透镜后放一块于主光轴垂直的平面镜,将此光线反射归去,反射光再经由凸透镜后仍会聚于核心上,此关系称为自准道理.假如在凸透镜的焦平面上放一物体,如图1所示,其像也在该焦平面上,是大小相等的倒立实象,此时物屏至凸透镜光心的距离等于焦距.图2什物成实像法(2)用什物成实像求焦距如图2所示,用什物作为光源,其发出的光线经会聚透镜后,在必定前提下成实像,可用白屏接取实像加以不雅察,经由过程测定物距和像距,运用(1)式即可算出焦距.图3共轭法(3)共轭法如图3所示,假如物屏与像屏的距离D保持不变,且D > 4f,在物屏与像屏间移动凸透镜,可两次成像.当凸透镜移至O1处时,屏上得到一个倒立放大实象A1B1,当凸透镜移至O2处时,屏上得到一个倒立缩小实象A2B2,由图2可知,透镜在O1处时:(2)透镜移至O2处时:(3)由此可得:(4)测出D和d,即可求得焦距.2.凹面镜焦距的测量道理运用虚物成实像求焦距:图4如图4所示,先用凸透镜L1使AB成实象A1B1,像A1B1即可视为凹面镜L2的物体(虚物)地点地位,然后将凹面镜L2放于L1和A1B1之间,假如O1A1<∣f2∣,则经由过程L1的光束经L2折射后,仍能形成一实象A2B2.物距s = O2A1,像距s′= O2A2,代入公式(1),可得凹面镜焦距.【试验内容】1.光路调剂因为运用薄透镜成像公式时,须要知足近轴光线前提,是以必须使各光学元件调节到同轴,并使该轴与光具座的导轨平行,“共轴等高”调节分两步完成:(1)目测粗调:把光源.物屏.透镜和像屏依次装好,先将它们挨近,使各元件中间大致等高在一条直线上,并使物屏.透镜.像屏的平面互相平行.(2)细调:运用共轭法调剂,参看图2,固定物屏和像屏的地位,使D> 4f,在物屏与像屏间移动凸透镜,可得一大一小两次成像.若两个像的中间重合,即暗示已经共轴;若不重合,可先在小像中间作一记号,调节透镜的高度使大像的中间与小像的中间重合.如斯反复调节透镜高度,使大像的中间趋势小像中间(大像追小像),直至完整重合.2.凸透镜焦距的测量因为试验中要工资地断定成像的清楚,斟酌到人眼断定成像清楚的误差较大,常采取阁下逼近测读法测定屏或透镜的地位,即从左至右移动屏或透镜,直至在物屏或像屏上看到清楚的像,这就是阁下逼近测读法.(1)自准直法:参看图1,平面镜靠在凸透镜后,固定物屏地位,采取阁下逼近测读法测定透镜地位,即从左至右移动透镜,直至在物屏上看到与物大小雷同的清楚倒像,记载此时透镜的地位;再从右至左移动透镜,直至在物屏上看到与物大小雷同的清楚倒像,记载此时透镜的地位.反复3次.记载透镜的地位,盘算焦距.(2)用什物成实像法:参看图2,将物屏.透镜固定在导轨上,间距大于焦距(可运用自准法数据),运用阁下逼近测读法,从左至右移动像屏找到清楚的图像,再从右至左移动像屏,找到清楚的图像,反复3次.记载此时物屏.透镜.像屏的地位,盘算焦距.(3)共轭法:参看图3,固定物屏和像屏的地位,使D> 4f(可运用自准法数据),采取阁下逼近测读法分离测定凸透镜在像屏上成一大一小两次像的地位,反复3次,盘算焦距.物屏透镜地位1透镜地位2像屏D(cm)L(cm)f(cm)3.凹面镜焦距的测量(虚物成实像法:)参看图4安顿好光源.物屏.凸透镜和像屏,使像屏上形成缩小清楚的像,用阁下逼近测读法测定像屏()的地位,同时固定物屏和凸透镜.在凸透镜和像屏之间放入凹面镜,移动像屏,直至像屏上消失清楚的像,用阁下逼近测读法测定像屏()的地位,并记载凹面镜的地位,反复3次,盘算凹面镜的焦距.留意符号.A'B'地位(cm)A''B''地位(cm)L2地位(cm)s(cm)s′(cm)f(cm)【留意事项】1.在运用仪器时要轻拿.轻放,勿使仪器受到震撼和磨损.2.调剂仪器时,应严厉按各类仪器的运用规矩进行,细心地调节不雅察,沉着地剖析思考,切勿浮躁.3.任何时刻都不克不及用手去接触玻璃仪器的光学面,以免在光学面上留下陈迹,使成像隐约或无法成像.如必须用手拿玻璃仪器部件时,只准拿毛面,如透镜周围,棱镜的上.下底面,平面镜的边沿等.4.当光学概况有污痕或手迹时,对于非镀膜概况可用干净的擦镜纸轻轻擦拭,或用脱脂棉蘸擦镜水擦拭.对于镀膜面上的污痕则必须请专职教师处理.【数据表格】1.会聚透镜焦距的测量(1)物象距法:(2)贝塞尔法(3)自准直法2.发散透镜焦距的测定【数据处理及成果】1、会聚透镜焦距的测量 (1) 物象距法:由 p p p p f '-'='得: 1f '=67.1545.980.2345.980.23=-⨯ (cm )16.1615.909.2115.909.212=-⨯='f (cm )63.1431.960.2531.960.253=-⨯='f (cm)40.1585.880.2085.880.204=-⨯='f (cm)45.1506.989.2106.989.215=-⨯='f (cm)46.15)45.1540.1563.1416.1667.15(51=++++⨯='f (cm))(22.0)46.1545.15()46.1540.15()46.1563.14()46.1516.16()46.1567.15(51)(22222cm f =-+-+-+-+-⨯='μ故 22.046.15)(±='±'='f f f μ (cm )(2) 贝塞尔法由ld l f 422-='得19.1500.63489.1100.63221=⨯-='f (cm )21.1500.68406.2200.68222=⨯-='f (cm )27.1600.73406.2400.73223=⨯-='f (cm )86.1678470.2800.78224=⨯-='f (cm )52.1500.83465.4100.83225=⨯-='f (cm )81.15552.1586.1627.1621.1519.15=++++='f (cm ))(29.0)81.1552.15()81.1586.16()81.1527.16()81.1521.15()81.1519.15(51)(22222cm f =-+-+-+-+-='μ故29.081.15)(±='±'='f f f μ (cm )(3) 自准直法:91.14)98.1493.1491.1489.1485.14(51=++++⨯='f (cm ))(02.0)91.1498.14()91.1493.14()91.1491.14()91.1489.14()91.1485.14(51)(22222cm f =-+-+-+-+-⨯='μ故02.091.14)(±='±'='f f f μ (cm )2、发散透镜焦距的测定由ss s s f -''=' 得: 25.12)17.1170.1185.1243.1211.13(51=++++⨯='f (cm ))(29.0)25.1217.11()25.1270.11()25.1285.12()25.1243.12()25.1211.13(51)(22222cm f =-+-+-+-+-⨯='μ故 29.025.12)(±='±'='f f f μ (cm ) 【评论辩论】1. 剖析本试验的体系误差,对于物距像距法,主如果测量物屏,透镜及像地位时,滑座上的读数准线和被测平面是否重合,假如不重合将带来误差.对于位移法测凸透镜焦距,不消失这一问题.经由过程上述两种办法测透镜焦距相符程度来肯定体系误差对成果的影响.本试验的有时误差主如果人眼不雅察,成像清楚度引起的误差,因为人眼对成像的清楚分辩才能有限,所以不雅察到的像在必定规模内都清楚,加之球差的影响,清楚成像地位会偏离高斯像.2. 本试验的体系误差经前面的剖析和检讨可知,对测量成果影响较小, 而平均值的尺度误差又较小,以得出结论,该试验准确度较高,平均值可以作为一组测量值中接近真值的最佳值.。

光学一

光学一

实验一薄透镜焦距的测定一实验目的1.了解简单光路的调整原则与方法——“同轴等高”调节;2.研究透镜成像的基本规律;3.掌握几种测定薄透镜焦距的实验方法,并比较它们的优缺点。

二仪器说明1.导轨、白炽灯、品字屏(含毛玻璃)、反射镜、被测凸透镜2.导轨、白光源、品字屏(含毛玻璃)、反射镜、f=100mm的凸透镜、被测凹透镜、白屏。

3.导轨、白光源、“品”字屏(含毛玻璃)、白屏、被测凸透镜。

4.白光源、“品”字屏、凸透镜、白屏。

5.白光源、“品”字屏、凸透镜、白屏、被测凹透镜。

三实验内容1.光具座上各光学元件“等高同轴”调整;2.薄凸透镜焦距f(分别用“自准直法”、“物距像距法”、“贝塞尔法”测量);3.薄凹透镜焦距f;4.实验数据处理计算。

四实验原理1.本实验介绍的测量薄凸透镜的方法有几种?请画出光路图。

本实验介绍的测量薄凸透镜的方法有:(1)自准直法光路图如下图所示。

当物体A处在凸透镜的焦距平面时,物A上各点发出的光束,经透镜后成为不同方向的平行光束。

若用一与主光轴垂直的平面镜将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。

所成像是一个与原物等大的倒立实像A′。

所以自准直法的特点是,物、像在同一焦平面上。

自准直法除了用于测量透镜焦距外,还是光学仪器调节中常用的重要方法。

自准直法(2)物距像距法光路图如下图所示。

因为凸透镜可以成实像,所以可以测出物距u和像距v后,代入透镜成像公式即可算出凸透镜的焦距。

(3)贝塞尔法 (共轭成像法)光路图如下图所示。

由凸透镜成像规律可知,如果物屏与像屏的相对位置l 保持不变,而且l>4f ,当凸透镜在物屏与像屏之间移动时,可实现两次成像。

透镜在x 1位置时,成倒立、放大的实像,;透镜在x 2位置时,成倒立、缩小的实像。

实验中,只要测量出光路图中的物屏与像屏的距离l 和透镜两次成像移动的距离d ,代入下式就可算出透镜的焦距。

224l d f l-=2. 如何测量凹透镜的焦距?凹透镜是发散透镜,所成像为虚像,不能用像屏接收。

测量薄透镜焦距的方法

测量薄透镜焦距的方法

测量薄透镜焦距的方法
测量薄透镜的焦距可以使用以下几种方法:
1. 构建朗宾透镜实验装置:首先将薄透镜与一短焦距的凹透镜相组合,使其共同构成一个朗宾透镜。

然后将一平行光线照射到朗宾透镜上,并在朗宾透镜的另一侧放置一个屏幕。

调整屏幕的位置,使得在屏幕上能够观察到清晰的聚焦图像。

测量出透镜与屏幕之间的距离,便是薄透镜的焦距。

2. 利用屈光度计:将薄透镜面对着一平行光源,并将屈光度计的目镜对准透镜,观察屈光度计的读数。

然后将薄透镜移动一段距离,直到屈光度计的读数再次稳定下来。

测量透镜移动的距离,便是焦距。

这种方法适用于透镜焦距较大的情况。

3. 利用显微镜原理:将薄透镜放置在一个物体的正下方,通过调节目镜与物镜之间的距离,使得观察到的物体在放大倍率最大的情况下仍然清晰可见。

测量目镜与物镜之间的距离,便是薄透镜的焦距。

需要注意的是,以上方法仅适用于薄透镜,也就是透镜的厚度很小,光线在透镜上的入射和折射角非常小的情况下。

若透镜较厚,或入射光线角度较大,需要考虑透镜的厚度和球面效应对测量结果的影响。

实验 薄透镜焦距的测定

实验    薄透镜焦距的测定

好处在凹透镜上沿。移动带痕玻片并仔细观察凹透镜内虚像的
顶端和凹透镜外玻片刻痕间的相对位置有无变化。当相对位置 不变,即无视差时,记录下此时玻片刻痕的位置。重复测量三次,
将数据填于表3-8-4中, 求出f。
2) 自准法 先对光学系统进行共轴调节,然后把凸透镜放在稍大于 两倍焦距处。移动凹透镜和平面反射镜 , 当物屏上出现与 原物大小相同的实像时 ,记下凹透镜的位置读数。然后去掉
图 3 - 8 - 5 自准法测凹透镜焦距光路图
四、实验内容
1. 光学系统的共轴调节 薄透镜成像公式仅在近轴光线的条件下才成立。对于几个 光学元件构成的光学系统进行共轴调节是光学测量的先决条件, 对几个光学元件组成的光路,应使各光学元件的主光轴重合,才 能满足近轴光线的要求。习惯上把各光学元件主光轴的重合称 为同轴等高。本实验要求光轴与光具座的导轨平行, 调节分两 步进行: (1) 粗调。将安装在光具座上的所有光学元件沿导轨靠拢 在一起, 仔细观察, 使各元件的中心等高, 且与导轨垂直。
立实像A′B′。此时, 物屏到透镜之间的距离就等于透镜的焦距f。
图 3 - 8 - 1 自准法测薄透镜焦距光路图
2) 物距像距法(u>f) 物体发出的光线经凸透镜会聚后, 将在另一侧成一实像, 只
要在光具座上分别测出物体、透镜及像的位置, 就可得到物距
和像距。将物距和像距代入式(3 - 8 - 1)中, 得
实验
薄透镜焦距的测定
一、 实验目的 (1) 了解薄透镜的成像规律。 (2) 掌握光学系统的共轴调节。
(3) 测定薄透镜的焦距。
二、 实验仪器
光具座、薄透镜、光源、像屏、观察屏和平面反射镜等。
三、 实验原理
1. 薄透镜成像公式 当透镜的厚度远比其焦距小得多时 , 这种透镜称为薄透镜。 在近轴光线的条件下,薄透镜成像的规律可表示为

测量薄透镜焦距的方法

测量薄透镜焦距的方法

测量薄透镜焦距的方法薄透镜是光学实验中常用的器件,它具有很多重要的应用,如成像、照相、望远镜、显微镜等。

薄透镜的焦距是一个重要的参数,它决定了透镜的成像能力和成像位置。

因此,准确地测量薄透镜的焦距对于光学实验和应用具有重要意义。

下面将介绍几种测量薄透镜焦距的方法。

一、通过物距法测量薄透镜焦距。

物距法是一种常用的测量薄透镜焦距的方法。

具体步骤如下:1. 将一物体放置在薄透镜的一侧,并测量物体到透镜的距离,即物距u。

2. 调节物体位置,使得在透镜的另一侧得到清晰的像,测量像到透镜的距离,即像距v。

3. 根据薄透镜的公式1/f=1/v+1/u,可以计算出薄透镜的焦距f。

二、通过放大率法测量薄透镜焦距。

放大率法是另一种测量薄透镜焦距的方法。

具体步骤如下:1. 将一物体放置在薄透镜的一侧,并测量物体到透镜的距离,即物距u。

2. 调节物体位置,使得在透镜的另一侧得到清晰的像,测量像的高度,即像高h。

3. 根据放大率公式m=-v/u=h'/h,可以计算出薄透镜的焦距f。

三、通过远处物体成像法测量薄透镜焦距。

远处物体成像法是一种简便的测量薄透镜焦距的方法。

具体步骤如下:1. 将一远处物体放置在薄透镜的一侧,调节透镜位置,使得在透镜的另一侧得到清晰的像。

2. 测量像到透镜的距离,即像距v。

3. 根据薄透镜的公式1/f=1/v,可以计算出薄透镜的焦距f。

以上所述的三种方法都是常用的测量薄透镜焦距的方法,每种方法都有其适用的场合,可以根据实际情况选择合适的方法进行测量。

在实际操作中,需要注意测量的精度和准确性,避免因操作不当而导致误差的产生。

总之,薄透镜的焦距是一个重要的光学参数,准确地测量薄透镜的焦距对于光学实验和应用具有重要意义。

通过物距法、放大率法和远处物体成像法等方法,可以准确地测量薄透镜的焦距,为光学实验和应用提供准确的数据支持。

实验一 薄透镜焦距的测定实验报告

实验一  薄透镜焦距的测定实验报告

实验一 薄透镜焦距的测定实验目的1.学会调节光学系统使之共轴,并了解视差原理的实际应用;2.掌握薄透镜焦距的常用测定方法;实验仪器和用具光具座,会聚透镜,物屏,白屏,光源实验原理 详细见P39-41. 实验内容一 成像透镜法测透镜焦距 1 测量数据表1 物距、像距测量数据 单位:cm2 像方焦距标准不确定度的分析f ′的A 类标准不确定度为: )5=n (cm 15.0=)1-n (n )f ′-f ′(=)f ′(U ∑2iAB 类不确定度:cm 03.03cm05.03Δ=)f ′(U B ==仪;f ′的总标准不确定度为: cm 15.0=)f ′(U +)f ′(U =)f ′(U 2B 2A C 故测得的透镜的像方焦距为:cm )15.0±94.14(=f ′. 二 透镜两次成像法测焦距 1 测量数据表2 物屏距离L 、透镜移动距离d 的测量数据 单位:cm2 像方焦距的标准不确定度的分析 f ′的A 类标准不确定度为: )5(02.0)1-()-()(∑2==''='n cm n n f f f U iAB 类不确定度:cm 03.03cm05.03Δ=)f ′(U B ==仪(测量均匀分布取3=C );f ′的总标准不确定度为: cm 04.0=)f ′(U +)f ′(U =)f ′(U 2B 2AC 故,测得透镜的像方焦距为:cm )04.0±04.15(=f ′.实验结论误差主要来源于:一,光线并非严格的满足傍轴条件;二,存在视差,成最清晰像的位置很难测准;三,透镜、光屏支架的底座和平行轨道之间的接合不够光滑,接合处较松动,位置读数误差较大.采用多次测量求平均值可以减少误差,由测量的不确定度可以确定测量的误差在允许的范围之内.。

薄透镜焦距的测量带有不确定度计算

薄透镜焦距的测量带有不确定度计算

薄透镜焦距的测量(带有不确定度计算) 测量薄透镜焦距并计算不确定度是一种基本的物理实验技能,它涉及到使用光源、光屏和透镜来测量透镜的焦距。

下面将详细描述这个实验过程,并给出不确定度的计算方法。

一、实验原理在薄透镜的成像过程中,光线通过透镜后,由透镜折射后的光线会聚于一点,这个点被称为焦点。

焦距是指从透镜中心到焦点的距离。

我们可以通过在薄透镜前放置一个光源,并调整光屏与透镜的距离,使得光源在光屏上形成一个清晰的像,然后测量光屏与透镜之间的距离,即为焦距。

二、实验步骤1.将光源、透镜和光屏依次放置在同一直线上,并确保透镜和光屏的位置可以调整。

2.调整光源的位置,使其发出的光线垂直于透镜的主轴。

3.调整光屏的位置,使得光源在光屏上形成一个清晰的像。

4.测量光屏与透镜之间的距离(两次测量,取平均值),即为透镜的焦距。

三、不确定度计算不确定度是指测量结果的不确定性或误差范围。

在这个实验中,我们可以从以下几个方面来考虑不确定度的来源:1.测量工具的精度:例如,我们使用的测量工具可能不是绝对精确的,这会导致测量结果存在误差。

2.光源的光线稳定性:光源发出的光线可能会因为温度、电压等因素而发生改变,这会影响到成像的清晰度,从而影响焦距的测量精度。

3.实验操作:在调整透镜和光屏的过程中,可能会因为人为因素导致操作不准确。

假设上述不确定度来源均为均匀分布,那么我们可以使用以下公式来计算不确定度:u=3Δ其中,u为不确定度,Δ为各个不确定度来源引起的误差范围。

例如,如果我们的测量工具精度为0.01mm,光源光线稳定性引起的误差范围为0.02mm,实验操作引起的误差范围为0.03mm,那么我们可以计算不确定度:u=30.01=0.0189mm四、实验数据处理与结论假设我们在实验中得到的焦距为f,那么我们可以计算出焦距的不确定度uf:uf=f×fu例如,如果我们的焦距为50mm,那么:uf=50mm×50mm0.0189mm=0.0038mm我们可以得出结论:薄透镜的焦距为50mm±0.0038mm。

实验一薄透镜焦距的测定解析

实验一薄透镜焦距的测定解析

实验一薄透镜焦距的测定实验目的1•学会调节光学系统使之共轴。

2•掌握测量薄会聚透镜和发散透镜焦距的方法。

3•验证透镜成像公式,并从感性上了解透镜成像公式的近似性。

实验仪器CXJ —1型光具座,底座及支架,薄凸透镜,薄凹透镜,平面镜,物屏(可调狭逢组、有透光箭头的铁皮屏或一字针组),像屏(白色,有散射光的作用)。

重点难点:1、按实验操作规程规范操作。

2、动手操作能力培养。

德育渗透:1、培养学生爱护仪器,保护国家财产的意识。

2、培养学生互相帮助,团结协作的精神教学方法1、讲授法。

2、演示法。

3、学生分组实验法布置作业:1、数据处理。

2、误差分析3、独立完成实验报告。

4、预习下一个实验实验原理1•共轭法测量凸透镜焦距利用凸透镜物、像共轭对称成像的性质测量凸透镜焦距的方法,叫共轭法。

所谓“物象共轭对称”是指物与像的位置可以互移,如图5—1—1 (a )所示。

其中(a )图中处于物点s0的物体Q经凸透镜L在像点p处成像P,这时物距为u,像距为v。

若把物点S)移到图5—1 —1 ( a )中p的点,那么该物体经同一凸透镜L成像于原来的物点,即像点p将移到图5 —1 —1( a )中的s0点。

于是,图5—1—1 ( b )中的物距u'和像距v'分别是图5 —1—1 ( a )中的像距v和物距u ,即物距u' v ,像距v' u。

这就是“物像共轭对称”。

设u v u' v' D (物屏Q和像屏P之间的距离为D )。

根据上面的共扼法,如果物与像的位置不调换,那么,物放在S0处,凸透镜L放在X1处,所成一倒立放大实像在p处;将物不动,凸透镜放在X2处,所成倒立缩小的实像也在p处,如图5—1—2所示。

由图可知,u' u d或v u d。

于是可得方程组u v,v u,解方程D 12 3 4d 24D(5 —1 — 1)该式是共轭法测量凸透镜焦距的公式。

由于 f'是通过移动透镜两次成像而求得的,所以,这种方法又称二次成像法。

实验1二次成像法测量薄透镜焦距实验

实验1二次成像法测量薄透镜焦距实验

实验1二次成像法测量薄透镜焦距实验1.1引言二次成像法测量焦距是通过两次成像,测量出相关数据,通过成像公式计算出透镜焦距。

1.2 实验目的(1)学会调节光学系统共轴。

(2)掌握薄透镜焦距的常用测定方法。

(3)研究透镜成像的规律。

1.3 实验原理由透镜两次成像求焦距方法如下:图1-1透镜两次成像原理图当物体与白屏的距离f l 4>时,保持其相对位置不变,则会聚透镜置于物体与白屏之间,可以找到两个位置,在白屏上都能看到清晰的像.如图1-1所示,透镜两位置之间的距离的绝对值为,运用物像的共扼对称性质,容易证明ld l f 422-='(1-1)上式表明.只要测出和l ,就可以算出f '.由于是通过透镜两次成像而求得的f ',这种方法称为二次成像法或贝塞尔法.这种方法中不须考虑透镜本身的厚度,因此用这种方法测出的焦距一般较为准确. 1.4实验步骤步骤1、按照“二次成像法测量薄透镜焦距实验”实验装配图安装实验器件。

d d I图1-2 两次成像光路装配图步骤2、使目标板与分划板之间的距离l >4f ’;步骤3、移动待测透镜,使被照亮的目标板在分划板上成一清晰的放大像,记下待测透镜的位置a 1和目标板与分划板间的距离l ;步骤4、再移动待测透镜,直至在像屏上成一清晰的缩小像,记下待测透镜的位置a 2,判断清晰像时在像屏位置放上反射镜,当目标板成像与目标图案完全重合时,为清晰像;步骤5、计算:12a a d -=ld l f 4'22-=步骤6、重复几次实验,计算焦距,取平均值。

准直透镜 Φ:40mm f:150mm待测透镜 目标屏 白屏显微物镜实验2望远系统的搭建和参数测量实验2.1 引言望远镜是帮助人们看清远处物体以便观察、瞄准与测量的一种助视仪器,通过本实验使学生更加了解望远镜原理,自己搭建望远镜,测量相关参数。

2.2 实验目的(1)学习了解望远镜的构造及原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 薄透镜焦距的测定
【实验目的】
1. 进一步理解透镜成像的规律;
2. 掌握测量薄透镜焦距的几种方法;
3. 学会光具座上各元件的共轴调节方法。

【实验仪器】
光具座、凸透镜、凹透镜、平面镜、像屏、物屏、光源。

【实验原理】
1、薄透镜焦距的测定
透镜的厚度相对透镜表面的曲率半径可以忽略时,称为薄透镜。

薄透镜的近轴光线成像
公式为:f
s s 1
11'=+ (3—1—1)
式中s 为物距,s '为像距,f 为焦距。

其符号规定如下:实物时s 取正,虚物s 取负;实像时s '取正,虚像时s '取负;f 为透镜焦距,凸透镜取正,凹透镜取负 。

(1) 位移法测定凸透镜焦距 (贝塞尔法又称共轭成像法)
如图1所示,如果物屏与像屏的距离A 保持不变,且A > 4f ,在物屏与像屏间移动凸透镜,可以两次看到物的实像,一次成倒立放大实像,一次成倒立缩小实像,两次成像透镜移动的距离为L 。

据光线可逆性原理可得:s 1= s 2′,s 2= s 1′,则2s '
21L A s -=
=,2
'
12L A s s +==, 将此结果代入式(3—1—1)可得:
A
L A f 42
2-= (3—1—2)
只要测出A 和L 的值,就可算出f 。

(2) 自准直法测凸透镜焦距
光路图如图2所示。

当物体AB 处在凸透镜的焦距平面时,物AB 上各点发出的光束,经透
镜后成为不同方向的平行光束。

若用一与主光轴垂直的平面镜将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。

所成像是一个与原物等大的倒立实像A ′B ′(此时物到透镜的距离即为焦距)。

所以自准直法的特点是:物、像在同





图2 自准直法测凸透镜焦距
一焦平面上。

自准直法除了用于测量透镜焦距外,还是光学仪器调节中常用的重要方法。

(3) 物距—像距法测凹透镜焦距(利用虚物成实像求焦距) 如图3所示,先用凸透镜L 1使AB 成实象A 1B 1,像A 1 B 1便可视为凹透镜L 2的物体(虚物)所在位置,然后将凹透镜L 2放于L 1和A 1B 1之间,如果O 2A 1<∣f 2∣,则通过L 1的光束经L 2折射后,仍能形成一实象A 2B 2。

物距s = O 2A 1,像距s ′ = O 2A 2,代入公式(3—1—1),可得凹透镜焦距。

2、光具座上的共轴调节
由于应用薄透镜成像公式时,需要满足
近轴光线条件,因此必须使各光学元件调节到同轴。

所谓光学的共轴,是指各透镜的光轴重合,物面中心处在光轴上,并且物面、屏面垂直于光轴,照明光束也大体沿光轴方向。

本实验中还必须使光轴与光具座的导轨严格平行。

具体方法可分两步进行。

①粗调:先将透镜等元器件向光源靠拢,调节高低、左右位置,凭目视使光源、物屏上的透光孔中心、透镜光心、像屏的中央大致在一条与光具座导轨平行的直线上,并使物屏、透镜、像屏的平面与导轨垂直。

②细调:利用透镜二次成像法来判断是否共轴,并进一步调至共轴。

当物屏与像屏距离大于4f 时,沿光轴移动凸透镜,将会成两次大小不同的实像。

若物的中心P 偏离透镜的光轴,则所成的大像和小像的中心P ′和P ″将不重合,但小像位置比大像更
靠近光轴(如图4所示)。

就垂直方向而言,如果大像中心P ′高于小像中心P ″,说明此时透镜位置偏高(或物偏低),这时应将透镜降低(或把物升高)。

反之, 如果P ′低于P ″,便应将透镜升高(或将物降低)。

调节时,以小像的中心位置为参考,调节透镜(或物)的高低,逐步逼近光轴位置。

当大像中心P ′与小像中心P ″重合时,系统即处于共轴状态。

当有两个透镜需要调整(如测凹透镜焦距)时,必须逐个进行上述调整,即先将一个透镜(凸)调好,记住像中心在屏上的位置,然后加上另一透镜(凹),再次观察成像的情况,对后一个透镜的位置上下、左右的调整,直至像中心仍旧保持在第一次成像时的中心位置上。

注意,已调至同轴等高状态的透镜,在后续的调整、测量中绝对不允许在变动。

S
S ′
图3 物距—像距法测凹透镜焦距
P ′
P ″ P
>4f
图4 共轴调节
【实验内容】
1.用位移法测定凸透镜焦距
将光源、物、待测透镜、屏放置在光具座上。

调节各元件使之共轴。

对公式(3—1—2)中未知量进行测量。

测三次,求出每次测量的焦距值和平均值。

2.用自准直法测定凸透镜的焦距
用平面反射镜替换屏,根据自准直法原理测量透镜焦距。

3.用物距—像距法测定凹透镜焦距
(1)按图3所示,使物经凸透镜成缩小的像于屏上。

(2)在凸透镜与屏之间放入凹透镜,量出凹透镜与屏的距离S。

(3)凸透镜、凹透镜不动,移动屏直至成一清晰的实像,量出凹透镜与屏的距离S'。

(4)重复测量三次,用公式(3—1—1)计算出凹透镜焦距和平均值。

数据处理:
自准直法
物距—像距法测定凹透镜焦距
【实验步骤】
1.调节系统共轴
(1)粗调:
先将透镜等元器件向光源靠拢,调节高低、左右位置,凭目视使光源、物屏上的透光孔中心、透镜光心、像屏的中央大致在一条与光具座导轨平行的直线上,并使物屏、透镜、像屏的平面与导轨垂直。

(2)细调:
使物与屏的距离足够远,移动透镜能够看到两次成像。

将透镜放在成小像的位置上,调节屏,使像的中心与屏上十字线的中心重合。

再将透镜放在成大像的位置上,调节透镜,使像的中心与屏上十字线的中心重合。

再将透镜放在成小像的位置上,重复以上步骤,直到大像中心与小像中心重合。

2.用位移法测定凸透镜的焦距
将光源、物、屏的位置固定,移动透镜成两次像,量出物屏的距离A和两次成像透镜移动的距离L,用公式3-1-2计算出透镜的焦距。

改变屏的位置,重复上述步骤。

测三次,求出焦距的平均值。

3.用自准直法测定凸透镜焦距
在透镜后面放上平面反射镜,移动透镜,使得在物平面上看到清晰、等大的反射像,量出物与镜的距离。

重复三次求焦距的平均值。

4.用物距—像距法测定凹透镜焦距
(1)按图3-1-3所示,使物经凸透镜成缩小的像于屏上;
(2)在凸透镜与屏之间放入凹透镜,量出凹透镜与屏的距离s;
(3)凸凹透镜均不动,移动屏直至成一清晰的实像D´,并调节凹透镜使像的中心与屏上十字线的中心重合,量出凹透镜与屏的距离s´;
(4)用公式3-1-1计算出凹透镜焦距;
(5)重复三次,求出焦距的平均值。

思考题:
1.实验中,用什么测量方法确定清晰像的位置?
能够正确判断成像的清晰位置是光学实验获得准确结果的关键,为了准确地找到像的最清晰位置,可采用左右逼近法读数。

先使像屏从左向右移动,到成像清晰为止,记下像屏位置,再自右向左移动像屏,到像清晰再记录像屏位置,取其平均作为最清晰的像位。

2.为什么位移法中,要求A >4f ?
由s=A-s '代入公式3-1-1得:0'2
'=+-Af As s 要使该方程由两个解(s '有两个根),需
()014A 2>⨯⨯--Af
即A>4f 。

3.使用1字物屏、平面反射镜、凸透镜、白屏各一块,设计一个用自准直法测量凹透镜的实验,作出光路图,写出实验原理。

如图10-5所示,将物点A 置于凸透镜L 1的主光轴上,测出其成像位置B 。

将待测凹透镜L 2和一个平面反射镜M 置于L 1和B 之间。

移动L 2,使由M 反射回去的光线经L 2、L 1后,仍成像于A 点。

此时,从凹透镜到平面镜上的光将是一束平行光,B 点就是由M 反射回去的平行光束的虚像点,也就是L 2的焦点。

测出L 2的位置,间距B O 2就是待测凹透镜的焦距。

4.物距—像距法测定凹透镜焦距中,应选用凸透镜成小像时测定凹透镜的焦距,为什么?
首先让凸透镜成一个缩小(或等大)实像,因为成缩小实像时,像的位子容易确定,对于凹透镜来说,就是物的位置变化小,这样物距引起的误差就小。

相关文档
最新文档