计量经济学作业1-4
计量经济学精要习题参考答案(第四版)
计量经济学(第四版)习题参考答案第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。
为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础2.1 略,参考教材。
2.2 NS S x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。
2.3 原假设 120:0=μH备择假设 120:1≠μH 检验统计量()10/25XX μσ-Z ====查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即此样本不是取自一个均值为120元、标准差为10元的正态总体。
计量经济学1-4复习及练习
要求会计算参数估计值、Y的估计值、残差、 随机扰动项方差(见32页)
4、回归线性质
5、最小二乘估计式性质 (线性性、无
偏性、最小方差性。各自的含义) 6、基本假定
一元回归模型 的估计
ˆ
2
= ( ei ) (n 2)
2
n 2为残差平方和的自由度
多元随机扰动项的方差如何估计?
ˆ
VARIABLE COEFFICIENT STD.ERROR T-STAT P C 99.469 13.473 7.383 0 X1 2.502 0.754 ( ) X2 - 6.581 1.376 ( ) R-squared 0.949 Mean of dependent var 80.000 Adjusted R- squared ( ) S.D. of dependent var 19.579 S.E of regression 4.997 Sum of squared resid 174.792 Durbin-Watson stat F – statistics ( )
8.调整后的判定系数与判定系数之间的关系
叙述不正确的有( ) A. 均非负 2 B.判断多元回归模型拟合优度时,使用 R C.模型中包含的解释变量个数越多, R2与 R 2 就相差越大 D.只要模型中包括截距项在内的参数的个数 大于1,则 R 2 R 2
9、若k为回归模型中的参数个数,n为样本
ˆ 达到最小值 B. 使 Yi Y i
C. 使 D. 使
ˆ max Yt Y t
达到最小值
2
Y Yˆ
n t 1 t t
达到最小值
5、价格(X,元)与供给量(Y,吨)之间
计量经济学上机作业试题以及答案
题目:第二题:下表中,Y代表新客车出售量,X1代表新车价格指数,X2代表消费者价格指数,X3代表个人可支配收入,X4代表利率,X5代表就业人数。
试建模并估计结果。
年度 1X2X3 X451971 10227 112 121.3 776.8 4.89 793671972 10872 111 125.3 839.6 4.55 821531973 11350 111.1 133.1 949.8 7.38 850641974 8775 117.5 147.7 1038.4 8.61 867941975 8539 127.6 161.2 1142.8 6.16 858461976 9994 135.7 170.5 1252.6 5.22 887521977 11046 142.9 181.5 1379.3 5.5 920171978 11164 153.8 195.3 1551.2 7.78 960481979 10559 166 217.7 1729.3 10.25 988241980 8979 179.3 247 1918 11.28 993031981 8535 190.2 272.3 2127.6 13.731982 7980 197.6 286.6 2261.4 11.2 995261983 9179 202.6 297.4 2428.1 8.691984 10394 208.5 307.6 2670.6 9.651985 11039 215.2 318.5 2841.1 7.751986 11450 224.4 323.4 3022.1 6.31第三题为了了解影响电信业务的发展情况,特收集了如下数据,请建模并估计合理的结果。
年电信业务总量邮政业务总量中国人口数市镇人口比重人均GDP人均消费水平1991 1.5163 0.5275 11.5823 0.2637 1.879 0.896 1992 2.2657 0.6367 11.7171 0.2763 2.287 1.070 1993 3.8245 0.8026 11.8517 0.2814 2.939 1.331 1994 5.9230 0.9589 11.9850 0.2862 3.923 1.746 1995 8.7551 1.1334 12.1121 0.2904 4.854 2.236 1996 12.0875 1.3329 12.2389 0.2937 5.576 2.641 1997 12.6895 1.4434 12.3626 0.2992 6.053 2.834 1998 22.6494 1.6628 12.4810 0.3040 6.307 2.972 1999 31.3238 1.9844 12.5909 0.3089 6.534 3.143第四题:X代表职工的工龄,Y代表薪水。
计量经济学习题及全部答案
计量经济学习题一一、判断正误1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法; 2.最小二乘法进行参数估计的基本原理是使残差平方和最小;3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1; 4.当我们说估计的回归系数在统计上是显着的,意思是说它显着地异于0; 5.总离差平方和TSS 可分解为残差平方和ESS 与回归平方和RSS 之和,其中残差平方和ESS 表示总离差平方和中可由样本回归直线解释的部分; 6.多元线性回归模型的F 检验和t 检验是一致的;7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差; 8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关;9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果; 10...DW 检验只能检验一阶自相关; 二、单选题1.样本回归函数方程的表达式为 ;A .i Y =01i i X u ββ++B .(/)i E Y X =01i X ββ+C .i Y =01ˆˆi i X e ββ++D .ˆi Y =01ˆˆiX ββ+ 2.下图中“{”所指的距离是 ;A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示 ;A .当X 增加一个单位时,Y 增加1β个单位B .当X 增加一个单位时,Y 平均增加1β个单位C .当Y 增加一个单位时,X 增加1β个单位D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指 ;A .剩余平方和占总离差平方和的比重B .总离差平方和占回归平方和的比重C .回归平方和占总离差平方和的比重D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估计用的样本容量为24,则随机误差项i u 的方差估计量为 ;A .B .40C .D .6.设k 为回归模型中的参数个数不包括截距项,n 为样本容量,ESS 为残差平方和,RSS 为回归平方和;则对总体回归模型进行显着性检验时构造的F 统计量为 ;A .F =RSSTSSB .F =/(1)RSS k ESS n k --C .F =/1(1)RSS k TSS n k --- D .F =ESSTSS7.对于模型i Y =01ˆˆi iX e ββ++,以ρ表示i e 与1i e -之间的线性相关系数2,3,,t n =,则下面明显错误的是 ;A .ρ=,..DW =B .ρ=-,..DW =-C .ρ=0,..DW =2D .ρ=1,..DW =08.在线性回归模型 011...3i i k ki i Y X X u k βββ=++++≥;如果231X X X =-,则表明模型中存在 ;A .异方差B .多重共线性C .自相关D .模型误设定9.根据样本资料建立某消费函数 i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为 ;A .2B .4C .5D .610.某商品需求函数为ˆi C =100.5055.350.45i i D X ++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,所有参数均检验显着,则城镇家庭的消费函数为 ;A .ˆi C =155.850.45i X +B .ˆiC =100.500.45i X + C .ˆi C =100.5055.35i X +D .ˆiC =100.9555.35i X + 三、多选题1.一元线性回归模型i Y =01i i X u ββ++的基本假定包括 ;A .()i E u =0B .()i Var u =2σ常数C .(,)i j Cov u u =0 ()i j ≠D .(0,1)iu NE .X 为非随机变量,且(,)i i Cov X u =02.由回归直线ˆi Y =01ˆˆi X ββ+估计出来的ˆiY ; A .是一组平均数 B .是实际观测值i Y 的估计值 C .是实际观测值i Y 均值的估计值 D .可能等于实际观测值i Y E .与实际观测值i Y 之差的代数和等于零 3.异方差的检验方法有A .图示检验法B .Glejser 检验C .White 检验D ...DW 检验E .Goldfeld Quandt -检验4.下列哪些非线性模型可以通过变量替换转化为线性模型 ;A .i Y =201i i X u ββ++B .1/i Y =01(1/)i i X u ββ++C .ln i Y =01ln i i X u ββ++D .i Y =iui i AK L e αβE .i Y =1122012iiX X i e e u ββααα+++5.在线性模型中引入虚拟变量,可以反映 ;A .截距项变动B .斜率变动C .斜率与截距项同时变动D .分段回归E .以上都可以 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;3.简述序列相关性检验方法的共同思路; 五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,并写出过程保留3位小数;Dependent Variable: Y Method: Least Squares Included observations: 132.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;F 分布百分位表α=3.有人用广东省1978—2005年的财政收入AV 作为因变量,用三次产业增加值作为自变量,进行了三元线性回归;第一产业增加值——1VAD ,第二产业增加值——2VAD ,第三产业增加值——3VAD ,结果为:AV =12335.1160.0280.0480.228VAD VAD VAD +-+2R =,F =- ..DW =试简要分析回归结果; 五、证明题求证:一元线性回归模型因变量模拟值ˆi Y 的平均值等于实际观测值i Y 的平均值,即ˆiY =i Y ; 计量经济学习题二一、判断正误正确划“√”,错误划“×” 1.残差剩余项i e 的均值e =()i e n ∑=0;2.所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自的真值; 3.样本可决系数高的回归方程一定比样本可决系数低的回归方程更能说明解释变量对被解释变量的解释能力;4.多元线性回归模型中解释变量个数为k ,则对回归参数进行显着性检验的t 统计量的自由度一定是1n k --;5.对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值; 6.若回归模型存在异方差问题,可以使用加权最小二乘法进行修正;7.根据最小二乘估计,我们可以得到总体回归方程;8.当用于检验回归方程显着性的F 统计量与检验单个系数显着性的t 统计量结果矛盾时,可以认为出现了严重的多重共线性9.线性回归模型中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;10.一般情况下,用线性回归模型进行预测时,单个值预测与均值预测相等,且置信区间也相同; 二、单选题1.针对同一经济指标在不同时间发生的结果进行记录的数据称为A .面板数据B .截面数据C .时间序列数据D .以上都不是 2.下图中“{”所指的距离是A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在模型i Y =01ln i i X u ββ++中,参数1β的含义是A .X 的绝对量变化,引起Y 的绝对量变化B .Y 关于X 的边际变化C .X 的相对变化,引起Y 的平均值绝对量变化D .Y 关于X 的弹性4.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=90,估计用的样本容量为19,则随机误差项i u 方差的估计量为A .B .6C .D .55.已知某一线性回归方程的样本可决系数为,则解释变量与被解释变量间的相关系数为A .B .0.8C .D .6.用一组有20个观测值的样本估计模型i Y =01i i X u ββ++,在的显着性水平下对1β的显着性作t 检验,则1β显着异于零的条件是对应t 统计量的取值大于 A .0.05(20)t B .0.025(20)t C .0.05(18)t D .0.025(18)t7.对于模型i Y =01122ˆˆˆˆi ik ki iX X X e ββββ+++++,统计量22ˆ()/ˆ()/(1)ii i Y Y kY Y n k ----∑∑服从A .()t n k -B .(1)t n k --C .(1,)F k n k --D .(,1)F k n k --8.如果样本回归模型残差的一阶自相关系数ρ为零,那么..DW 统计量的值近似等于 ;A .1B .2C .4D .9.根据样本资料建立某消费函数如下i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为A .2B .4C .5D .610.设消费函数为i C =012i i i i X D X u βββ+++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭具有同样的消费行为A .1β=0,2β=0B .1β=0,2β≠0C .1β≠0,2β=0D .1β≠0,2β≠0 三、多选题1.以i Y 表示实际观测值,ˆiY 表示用OLS 法回归后的模拟值,i e 表示残差,则回归直线满足A .通过样本均值点(,)X YB .2ˆ()i iY Y -∑=0 C .(,)i i Cov X e =0 D .i Y ∑=ˆiY ∑ E .i i e X ∑=0 2.对满足所有假定条件的模型i Y =01122i i i X X u βββ+++进行总体显着性检验,如果检验结果显示总体线性关系显着,则可能出现的情况包括A .1β=2β=0B .10β≠,2β=0C .10β≠,20β≠D .1β=0,20β≠E .1β=2β≠0 3.下列选项中,哪些方法可以用来检验多重共线性 ;A .Glejser 检验B .两个解释变量间的相关性检验C .参数估计值的经济检验D .参数估计值的统计检验E ...DW 检验 4.线性回归模型存在异方差时,对于回归参数的估计与检验正确的表述包括A .OLS 参数估计量仍具有线性性B .OLS 参数估计量仍具有无偏性C .OLS 参数估计量不再具有效性即不再具有最小方差D .一定会低估参数估计值的方差5.关于虚拟变量设置原则,下列表述正确的有A .当定性因素有m 个类型时,引入1m -个虚拟变量B.当定性因素有m个类型时,引入m个虚拟变量会产生多重共线性问题C.虚拟变量的值只能取0和1D.在虚拟变量的设置中,基础类别一般取值为0E.以上说法都正确四、简答题1.简述计量经济学研究问题的方法;2.简述异方差性检验方法的共同思路;3.简述多重共线性的危害;五、计算分析题1.下表是某次线性回归的EViews输出结果,被略去部分数值用大写字母标示,根据所学知识解答下列各题计算过程保留3位小数;本题12分Dependent Variable: YMethod: Least SquaresIncluded observations: 181求出A 、B 的值;2求TSS2.有人用美国1960-1995年36年间个人实际可支配收入X 和个人实际消费支出Y 的数据单位:百亿美元建立收入—消费模型 i Y =01i i X u ββ++,估计结果如下:ˆiY =9.4290.936i X -+ t :2R = ,F = ,..DW =1检验收入—消费模型的自相关状况5%显着水平; 2用适当的方法消除模型中存在的问题; 五、证明题证明:用于多元线性回归方程显着性检验的F 统计量与可决系数2R 满足如下关系: 计量经济学习题三 一、判断对错1、在研究经济变量之间的非确定性关系时,回归分析是惟一可用的分析方法;2、对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值;DW 检验临界值表α=3、OLS 回归方法的基本准则是使残差平方和最小;4、在存在异方差的情况下,OLS 法总是高估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1;6、线性回归分析中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;7、当我们说估计的回归系数在统计上是显着的,意思是说它显着异于0; 8、总离差平方和TSS 可分解为残差平方ESS 和与回归平方和RSS,其中残差平方ESS 表示总离差平方和可由样本回归直线解释的部分;9、所谓OLS 估计量的无偏性,是指回归参数的估计值与真实值相等; 10、当模型中解释变量均为确定性变量时,则可以用DW 统计量来检验模型的随机误差项所有形式的自相关性;二、单项选择1、回归直线t ^Y =0ˆβ+1ˆβX t 必然会通过点 A 、0,0; B 、_X ,_Y ;C 、_X ,0;D 、0,_Y ;2、针对经济指标在同一时间所发生结果进行记录的数据列,称为 A 、面板数据;B 、截面数据;C 、时间序列数据;D 、时间数据;3、如果样本回归模型残差的一阶自相关系数ρ接近于0,那么DW 统计量的值近似等于 A 、0 B 、1 C 、2 D 、44、若回归模型的随机误差项存在自相关,则参数的OLS 估计量A 、无偏且有效B 、有偏且非有效C 、有偏但有效D 、无偏但非有效 5、下列哪一种检验方法不能用于异方差检验A、戈德菲尔德-夸特检验;B、DW检验;C、White检验;D、戈里瑟检验;6、当多元回归模型中的解释变量存在完全多重共线性时,下列哪一种情况会发生A、OLS估计量仍然满足无偏性和有效性;B、OLS估计量是无偏的,但非有效;C、OLS估计量有偏且非有效;D、无法求出OLS估计量;7、DW检验法适用于的检验A、一阶自相关B、高阶自相关C、多重共线性 D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则可决系数R2A、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,回归平方和为40,则回归方程的拟合优度为A、 B、 C、 D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、计量经济模型中的随机误差项主要包含哪些因素3、简答经典单方程计量模型的异方差性概念、后果以及修正方法;4、简述方程显着性检验F检验与变量显着性检验t检验的区别;5、对于一个三元线性回归模型,已知可决系数R2=,方差分析表的部份结果如下:1样本容量是多少2总离差平方和TSS为多少3残差平方和ESS为多少4回归平方和RSS和残差平方和ESS的自由度各为多少5求方程总体显着性检验的F统计量;四、案例分析下表是中国某地人均可支配收入INCOME与储蓄SAVE之间的回归分析结果单位:元:Dependent Variable: SAVEMethod: Least SquaresSample: 1 31Included observations: 31Variable CoefficientStd.Errort-Statistic Prob.CINCOME――――R-squared Mean dependent var AdjustedR-squared. dependent var. of regression Akaike info criterionSum squared resid1778097Schwarz criterion.Log likelihood F-statisticDurbin-Watsonstat ProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 29=;4、下表给出了White异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题四一、判断对错1、一般情况下,在用线性回归模型进行预测时,个值预测与均值预测结果相等,且它们的置信区间也相同;2、对于模型Yi =β+β1X1i+β2X2i+……+βkXki+μi,i=1,2, ……,n;如果X2=X5+X6, 则模型必然存在解释变量的多重共线性问题;3、OLS回归方法的基本准则是使残差项之和最小;4、在随机误差项存在正自相关的情况下,OLS法总是低估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n-1;6、一元线性回归模型的F检验和t检验是一致的;7、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;8、在近似多重共线性下,只要模型满足OLS的基本假定,则回归系数的最小二乘估计量仍然是一BLUE估计量;9、所谓参数估计量的线性性,是指参数估计量是解释变量的线性组合;10、拟合优度的测量指标是可决系数R2或调整过的可决系数,R2越大,说明回归方程对样本的拟合程度越高;二、单项选择1.在多元线性回归模型中,若两个自变量之间的相关系数接近于1,则在回归分析中需要注意模型的问题;A、自相关;B、异方差;C、模型设定偏误;D、多重共线性;2、在异方差的众多检验方法中,既能判断随机误差项是否存在异方差,又能给出异方差具体存在形式的检验方法是A、图式检验法;B、DW检验;C、戈里瑟检验;D、White检验;3、如果样本回归模型残差的一阶自相关系数ρ接近于1,那么DW统计量的值近似等于A、0B、1C、2D、44、若回归模型的随机误差项存在异方差,则参数的OLS估计量A、无偏且有效B、无偏但非有效C、有偏但有效D、有偏且非有效5、下列哪一个方法是用于补救随机误差项自相关问题的A、OLS;B、ILS;C、WLS;D、GLS;6、计量经济学的应用不包括:A、预测未来;B、政策评价;C、创建经济理论;D、结构分析;7、LM检验法适用于的检验A、异方差;B、自相关;C、多重共线性; D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则调整可决系数2RA、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,总离差平方和为100,则回归方程的拟合优度为A、;B、;C、;D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、简述计量经济研究的基本步骤3、简答经典单方程计量模型自相关概念、后果以及修正方法;4、简述对多元回归模型01122...i i i k ki i Y X X X u ββββ=+++++进行显着性检验F 检验的基本步骤5、对于一个五元线性回归模型,已知可决系数R 2=,方差分析表的部份结果如下:1样本容量是多少2回归平方和RSS 为多少3残差平方和ESS 为多少 4回归平方和RSS 和总离差平方和TSS 的自由度各为多少 5求方程总体显着性检验的F 统计量;四、实验下表是某国1967-1985年间GDP 与出口额EXPORT 之间的回归分析结果单位:亿美元:Dependent Variable: EXPORT Method: Least Squares Sample: 1967 1985Included observations: 19VariableCoefficientStd. Errort-Statist icProb. CGDP――――R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared residSchwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t 检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 17=;4、下表给出了White 异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM 序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题五一、判断正误正确划“√”,错误划“x ”1、最小二乘法进行参数估计的基本原理是使残差平方和最小;2、一般情况下,用线性回归模型进行预测时,个值预测与均值预测相等,且置信区间也相同;3、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;4、若回归模型存在异方差问题,应使用加权最小二乘法进行修正;5、多元线性回归模型的F 检验和t 检验是一致的;6、DW 检验只能检验随机误差项是否存在一阶自相关;7、总离差平方和TSS 可分解为残差平方RSS 和与回归平方和ESS,其中残差平方RSS 表示总离差平方和可由样本回归直线解释的部分;8、拟合优度用于检验回归方程对样本数据的拟合程度,其测量指标是可决系数或调整后的可决系数;9、对于模型011... 1,2,...,i i n ni i Y X X u i n βββ=++++=;如果231X X X =-,则模型必然存在解释变量的多重共线性问题;10、所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自真值; 二、单项选择1、回归直线01ˆˆˆi iY X ββ=+必然会通过点A、0,0B、_X,_YC、_X,0D、0,_Y2、某线性回归方程的估计的结果,残差平方和为20,回归平方和为80,则回归方程的拟合优度为A、 B、C、 D、无法计算3、针对经济指标在同一时间所发生结果进行记录的数据列,称为A、面板数据B、截面数据C、时间序列数据D、时间数据4、对回归方程总体线性关系进行显着性检验的方法是A、Z检验B、t检验C、F检验D、预测检验5、如果DW统计量等于2,那么样本回归模型残差的一阶自相关系数ρ近似等于A、0B、-1C、1D、6、若随机误差项存在异方差,则参数的普通最小二乘估计量A、无偏且有效B、有偏且非有效C、有偏但有效D、无偏但非有效7、下列哪一种方法是用于补救随机误差项的异方差问题的A、OLS;B、ILS;C、WLSD、GLS8、如果某一线性回归方程需要考虑四个季度的变化情况,那么为此设置虚拟变量的个数为A、1B、2C、3D、49、样本可决系数R2越大,表示它对样本数据拟合得A、越好B、越差C、不能确定D、均有可能10、多元线性回归模型中,解释变量的个数越多,可决系数R2A、越大;B、越小;C、不会变化;D、无法确定三、简答题1、简述计量经济学的定义;2、多元线性回归模型的基本假设有哪些3、简答异方差概念、后果以及修正方法;4、简述t检验的目的及基本步骤;四、计算对于一个三元线性回归模型,已知可决系数20.8R ,方差分析表的部份结果如下:变差来源平方和自由度源于回归ESS 200源于残差RSS总变差TSS 221样本容量是多少2总变差TSS为多少3残差平方和RSS为多少4ESS和RSS的自由度各为多少5求方程总体显着性检验的F统计量值;计量经济学习题六-案例题一、根据美国各航空公司航班正点到达的比率X%和每10万名乘客投诉的次数Y 进行回归,EViews输出结果如下:Dependent Variable: YMethod: Least SquaresSample: 1 9Included observations: 91对以上结果进行简要分析包括方程显着性检验、参数显着性检验、DW值的评价、对斜率的解释等,显着性水平均取;2按标准书写格式写出回归结果;二、以下是某次线性回归的EViews输出结果,部分数值已略去用大写字母标示,但它们和表中其它特定数值有必然联系,分别据此求出这些数值,并写出过程;保留3位小数Dependent Variable: YMethod: Least SquaresSample: 1 13Included observations: 131求A 的值; 2求B 的值; 3求C 的值;三、用1970-1994年间日本工薪家庭实际消费支出Y 与实际可支配收入X 单位:103日元数据估计线性模型Y =01X u ββ++,然后用得到的残差序列t e 绘制以下图形; 1试根据图形分析随机误差项之间是否存在自相关若存在,是正自相关还是负自相关答:图形显示,随机误差项之间存在着相关性,且为正的自相关; 2此模型的估计结果为 试用DW 检验法检验随机误差项之间是否存在自相关;四、用一组截面数据估计消费Y —收入X 方程Y =01X u ββ++的结果为1根据回归的残差序列et 图分析本模型是否存在异方差注:abset 表示et 的绝对值;2其次,用White 法进行检验;EViews 输出结果见下表:附表:DW 检验临界值表α=White Heteroskedasticity Test:Dependent Variable: RESID^2 Method: Least Squares Sample: 1 60Included observations: 60若给定显着水平0.05α=,以上结果能否说明该模型存在异方差查卡方分布临界值的自由度是多少五、下图描述了残差序列{}t e 与其滞后一期值1{}t e -之间的散点图,试据此判断随机误差项之间是否存在自相关若存在,则是正自相关还是负自相关六、在一多元线性回归模型中,为检验解释变量之间是否存在多重共线性问题,以解释变量1x 作为被解释变量,对其余解释变量进行辅助回归,得到可决系数20.95R =;试计算变量1x 的方差扩大因子1VIF ,并根据经验判断解释变量间是否存在多重共线性问题七、下表是中国某地人均可支配收入INCOME 与储蓄SAVE 之间的回归分析结果单位:元:Sample: 1 31Included observations: 31VariableCoefficientStd. Errort-Statist ic Prob.CINCOME--R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared resid 1778097. Schwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量INCOME 回归系数的经济含义2、解释可决系数的含义3、若给定显着性水平5%α=,试对自变量INCOME 的回归系数进行显着性检验已知0.025(29) 2.045t =4、在5%α=的显着性水平下,查31n =的DW 临界值表得 1.363L d =, 1.496U d =,试根据回归结果判断随机误差项是否存在一阶自相关5、下表为上述回归的White 检验结果,在5%α=的显着性水平下,试根据P 值检验判断随机误差项是否存在异方差 White Heteroskedasticity Test:F-statisticProbabilityObsR-squaredProbability计量经济学习题一答案一、判断正误1. × 2. √ 3. √ 4. √ 5. × 6. × 7. ×8. × 9. √ 10. √ 二、单选题每小题分,共15分1. D ;2. B ;3. B ;4. C ;5. B ; 6. B ;7. B ;8. B ;9. B ;10. A ; 三、多选题1. ABCE 2. BCDE 3. ABCE 4. ABCD 5. ABCDE ; 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么答:随机干扰项包括的主要因素有:1众多细小因素的影响;2未知因素的影响;3数据测量误差或残缺;4模型形式不完善;5变量的内在随机性;随机误差项羽残差不同,残差是样本观测值与模拟值的差,即i e =ˆi iY Y -;残差项是随机误差项的估计;2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;答:最小二乘法得到的回归直线是对因变量与自变量关系的一种描述,但它是不是恰当的描述呢一般会用与样本点的接近程度来判别这种描述的优劣,而当获得以上问题的肯定判断之后,还需要确定每一个参数的可靠程度,即参数本身以及对应的变量该不该保留在方程里,这就有必要进行参数的显着性检验;这种检验是确定各个参数是否显着地不等于零;检验分为三个步骤:①提出假设:原假设0:0i H β=;备择假设1:0i H β≠ ②在原假设成立的前提下构造统计量:()ˆ~(1)ˆiit t n k Se ββ=--③给定显着性水平α,查t 分布表求得临界值/2(1)t n k α--,把根据样本数据计算出的t 统计量值t *与/2(1)t n k α--比较:若/2(1)t t n k α*>--,则拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量有显着影响;若/2(1)t t n k α*<--,则不能拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量没有显着影响.3.简述序列相关性检验方法的共同思路;答:由于自相关性,使得相对于不同的样本点,随机干扰项之间存在相关关系,那么检验自相关性,首先根据OLS 法估计残差,将残差作为随机干扰项的近似估计值,然后检验这些近似估计值之间的相关性以判定随机干扰项是否存在序列相关;各种检验方法就是在这个思路下发展起来的;五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,Dependent Variable: Y Method: Least Squares Included observations: 13解:A=ˆ()Se β=ˆt β=7.10604.3903=;B=2R =211(1)1n R n k -----=1311(10.8728)1321-----=由公式2ˆσ=21ien k --∑,得C=2ie ∑=2ˆ(1)n k σ--=21.1886(1321)--=; 2.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;α。
伍德里奇《计量经济学导论》(第4版)笔记和课后习题详解-第1~4章【圣才出品】
Байду номын сангаас
2.假设让你进行一项研究,以确定较小的班级规模是否会提高四年级学生的成绩。
4 / 119
圣才电子书 十万种考研考证电子书、题库视频学习平台
(i)如果你能设定你想做的任何实验,你想做些什么?请具体说明。 (ii)更现实地,假设你能搜集到某个州几千名四年级学生的观测数据。你能得到他们 四年级班级规模和四年级末的标准化考试分数。你为什么预计班级规模与考试成绩存在负相 关关系? (iii)负相关关系一定意味着较小的班级规模会导致更好的成绩吗?请解释。 答:(i)假定能够随机的分配学生们去不同规模的班级,也就是说,在不考虑学生诸如 能力和家庭背景等特征的前提下,每个学生被随机的分配到不同的班级。因此可以看到班级 规模(在伦理考量和资源约束条件下的主体)的显著差异。 (ii)负相关关系意味着更大的班级规模与更差的考试成绩是有直接联系的,因此可以 发现班级规模越大,导致考试成绩越差。 通过数据可知,两者之间的负相关关系还有其他的原因。例如,富裕家庭的孩子在学校 可能更多的加入小班,而且他们的成绩优于平均水平。 另外一个可能性是:学校的原则是将成绩较好的学生分配到小班。或者部分父母可能坚 持让自己的孩子进入更小的班级,而同样这些父母也更多的参与子女的教育。 (iii)鉴于潜在的其他混杂因素(如 ii 所列举),负相关关系并不一定意味着较小的班 级规模会导致更好的成绩。控制混杂因素的方法是必要的,而这正是多重回归分析的主题。
计量经济学各章作业习题后附答案
《计量经济学》习题集第一章绪论一、单项选择题1、变量之间的关系可以分为两大类,它们是【】A 函数关系和相关关系B 线性相关关系和非线性相关关系C 正相关关系和负相关关系D 简单相关关系和复杂相关关系2、相关关系是指【】A 变量间的依存关系B 变量间的因果关系C 变量间的函数关系D 变量间表现出来的随机数学关系3、进行相关分析时,假定相关的两个变量【】A 都是随机变量B 都不是随机变量C 一个是随机变量,一个不是随机变量D 随机或非随机都可以4、计量经济研究中的数据主要有两类:一类是时间序列数据,另一类是【】A 总量数据B 横截面数据C平均数据 D 相对数据5、下面属于截面数据的是【】A 1991-2003年各年某地区20个乡镇的平均工业产值B 1991-2003年各年某地区20个乡镇的各镇工业产值C 某年某地区20个乡镇工业产值的合计数D 某年某地区20个乡镇各镇工业产值6、同一统计指标按时间顺序记录的数据列称为【】A 横截面数据B 时间序列数据C 修匀数据 D原始数据7、经济计量分析的基本步骤是【】A 设定理论模型?收集样本资料?估计模型参数?检验模型B 设定模型?估计参数?检验模型?应用模型C 个体设计?总体设计?估计模型?应用模型D 确定模型导向?确定变量及方程式?估计模型?应用模型8、计量经济模型的基本应用领域有【】A 结构分析、经济预测、政策评价B 弹性分析、乘数分析、政策模拟C 消费需求分析、生产技术分析、市场均衡分析D 季度分析、年度分析、中长期分析9、计量经济模型是指【】A 投入产出模型B 数学规划模型C 包含随机方程的经济数学模型D 模糊数学模型10、回归分析中定义【】A 解释变量和被解释变量都是随机变量B 解释变量为非随机变量,被解释变量为随机变量C 解释变量和被解释变量都是非随机变量D 解释变量为随机变量,被解释变量为非随机变量11、下列选项中,哪一项是统计检验基础上的再检验(亦称二级检验)准则【】A. 计量经济学准则 B 经济理论准则C 统计准则D 统计准则和经济理论准则12、理论设计的工作,不包括下面哪个方面【】A 选择变量B 确定变量之间的数学关系C 收集数据D 拟定模型中待估参数的期望值13、计量经济学模型成功的三要素不包括【】A 理论B 应用C 数据D 方法14、在经济学的结构分析中,不包括下面那一项【】A 弹性分析B 乘数分析C 比较静力分析D 方差分析二、多项选择题1、一个模型用于预测前必须经过的检验有【】A 经济准则检验B 统计准则检验C 计量经济学准则检验D 模型预测检验E 实践检验2、经济计量分析工作的四个步骤是【】A 理论研究B 设计模型C 估计参数D 检验模型E 应用模型3、对计量经济模型的计量经济学准则检验包括【】A 误差程度检验B 异方差检验C 序列相关检验D 超一致性检验E 多重共线性检验4、对经济计量模型的参数估计结果进行评价时,采用的准则有【】A 经济理论准则B 统计准则C 经济计量准则D 模型识别准则E 模型简单准则三、名词解释1、计量经济学2、计量经济学模型3、时间序列数据4、截面数据5、弹性6、乘数四、简述1、简述经济计量分析工作的程序。
计量经济学习题集及详解答案
第一章绪论一、填空题:1.计量经济学是以揭示经济活动中客观存在的__________为内容的分支学科,挪威经济学家弗里希,将计量经济学定义为__________、__________、__________三者的结合。
2.数理经济模型揭示经济活动中各个因素之间的__________关系,用__________性的数学方程加以描述,计量经济模型揭示经济活动中各因素之间__________的关系,用__________性的数学方程加以描述。
3.经济数学模型是用__________描述经济活动。
4.计量经济学根据研究对象和内容侧重面不同,可以分为__________计量经济学和__________计量经济学。
5.计量经济学模型包括__________和__________两大类。
6.建模过程中理论模型的设计主要包括三部分工作,即__________、____________________、____________________。
7.确定理论模型中所包含的变量,主要指确定__________。
8.可以作为解释变量的几类变量有__________变量、__________变量、__________变量和__________变量。
9.选择模型数学形式的主要依据是__________。
10.研究经济问题时,一般要处理三种类型的数据:__________数据、__________数据和__________数据。
11.样本数据的质量包括四个方面__________、__________、__________、__________。
12.模型参数的估计包括__________、__________和软件的应用等内容。
13.计量经济学模型用于预测前必须通过的检验分别是__________检验、__________检验、__________检验和__________检验。
14.计量经济模型的计量经济检验通常包括随机误差项的__________检验、__________检验、解释变量的__________检验。
计量经济学课程作业
广东石油化工学院 2015—2016学年第二学期《计量经济学》作业班级:作业11、下表是中国2007年各地区税收Y和国内生产总值GDP的统计资料。
单位:亿元以Eviews软件完成以下问题:(1)作出散点图,建立税收随国内生产总值GDP变化的一元线性回归方程,并解释斜率的经济意义;散点图如图所示:建立如下的回归模型根据Eviews软件对表中数据进行回归分析的计算结果知:R^2 = 0.760315 F=91.99198斜率的经济意义:国内生产总值GDP每增加1亿元,国内税收增加0.071亿元。
(2)对所建立的方程进行检验;从回归估计的结果看,模型拟合较好。
可决系数R2=0.760315,表明国内税收变化的76.03%可由国内生产总值GDP的变化来解释。
从斜率项的t检验值看,大于10%显著性水平下自由度为n-2=29的临界值t0.05(29)=1.699,且该斜率值满足0<0.071<1,符合经济理论中税收乘数在0与1之间的说法,表明2007年,国内生产总值GDP每增加1亿元,国内税收增加0.071亿元。
(3)若2008年某地区国内生产总值为8500亿元,求该地区税收收入的预测值和预测区间。
由上图可得知该地区国内生产总值的预测值:Y i= -10.63+0.071*8500=592.87(亿元)下面给出国内生产总值90%置信度的预测区间E(GDP)=8891.126Var(GDP)=57823127.64在90%的置信度下,某地区E(Y0)的预测区间为(60.3,1125.5)。
2、已知某市货物运输总量Y(万吨),国内生产总值GDP(亿元,1980不变价)1985年-1998年的样本观测值见下表。
年份Y GDP 年份Y GDP1985 18249 161.69 1992 17522 246.921986 18525 171.07 1993 21640 276.81987 18400 184.07 1994 23783 316.381988 16693 194.75 1995 24040 363.521989 15543 197.86 1996 24133 415.511990 15929 208.55 1997 25090 465.781991 18308 221.06 1998 24505 509.1资料来源:《天津统计年鉴》,1999年。
计量经济学习题及参考答案
计量经济学各章习题第一章绪论1.1试列出计量经济分析地主要步骤.1.2计量经济模型中为何要包括扰动项?1.3什么是时间序列和横截面数据? 试举例说明二者地区别1.4估计量和估计值有何区别?第二章计量经济分析地统计学基础2.1名词解释随机变量概率密度函数抽样分布样本均值样本方差协方差相关系数标准差标准误差显著性水平置信区间无偏性有效性一致估计量接受域拒绝域第I 类错误2.2请用例 2.2中地数据求北京男生平均身高地99%置信区间.2.325 个雇员地随机样本地平均周薪为130元,试问此样本是否取自一个均值为120 元、标准差为10 元地正态总体?文档收集自网络,仅用于个人学习2.4某月对零售商店地调查结果表明,市郊食品店地月平均销售额为2500 元,在下一个月份中,取出16 个这种食品店地一个样本,其月平均销售额为2600 元,销售额地标准差为480 元.试问能否得出结论,从上次调查以来,平均月销售额已经发生了变化?文档收集自网络,仅用于个人学习第三章双变量线性回归模型3.1判断题(判断对错;如果错误,说明理由)(1)OLS 法是使残差平方和最小化地估计方法.(2)计算OLS 估计值无需古典线性回归模型地基本假定.(3)若线性回归模型满足假设条件(1)~(4),但扰动项不服从正态分布,则尽管OLS 估计量不再是BLUE ,但仍为无偏估计量.文档收集自网络,仅用于个人学习(4)最小二乘斜率系数地假设检验所依据地是t 分布,要求地抽样分布是正态分布.2(5)R2=TSS/ESS.(6)若回归模型中无截距项,则.(7)若原假设未被拒绝,则它为真.(8)在双变量回归中,地值越大,斜率系数地方差越大.3.2设和分别表示Y 对X 和X 对Y 地OLS 回归中地斜率,证明r 为X 和Y 地相关系数.3.3证明:(1)Y 地真实值与OLS 拟合值有共同地均值,即;(2)OLS 残差与拟合值不相关,即.3.4证明本章中( 3.18)和( 3.19)两式:(1)(2)3.5考虑下列双变量模型:模型1:模型2:(1)1 和1地OLS 估计量相同吗?它们地方差相等吗?(2)2 和2地OLS 估计量相同吗?它们地方差相等吗?3.6有人使用1980-1994 年度数据,研究汇率和相对价格地关系,得到如下结果:其中,Y=马克对美元地汇率X=美、德两国消费者价格指数(CPI)之比,代表两国地相对价格(1)请解释回归系数地含义;(2)X t 地系数为负值有经济意义吗?(3)如果我们重新定义X 为德国CPI与美国CPI之比,X 地符号会变化吗?为什么?3.7随机调查200 位男性地身高和体重,并用体重对身高进行回归,结果如下:其中Weight 地单位是磅(lb ),Height 地单位是厘米(cm).(1)当身高分别为177.67cm、164.98cm、187.82cm 时,对应地体重地拟合值为多少?(2)假设在一年中某人身高增高了 3.81cm,此人体重增加了多少?3.8设有10 名工人地数据如下:X 10 7 10 5 8 8 6 7 9 10Y 11 10 12 6 10 7 9 10 11 10 其中X= 劳动工时,Y= 产量(1)试估计Y=α+βX + u(要求列出计算表格);(2)提供回归结果(按标准格式)并适当说明;(3)检验原假设β=1.0.3.9用12 对观测值估计出地消费函数为Y=10.0+0.90X ,且已知=0.01,=200,=4000,试预测当X=250 时Y 地值,并求Y 地95%置信区间.文档收集自网络,仅用于个人学习3.10设有某变量(Y)和变量(X)1995—1999 年地数据如下:(3)试预测X=10 时Y 地值,并求Y 地95%置信区间.3.11根据上题地数据及回归结果,现有一对新观测值X =20,Y=7.62,试问它们是否可能来自产生样本数据地同一总体?文档收集自网络,仅用于个人学习3.12有人估计消费函数,得到如下结果(括号中数字为t 值):=15 + 0.81 =0.98(2.7)(6.5)n=19(1)检验原假设:=0(取显著性水平为5%)(2)计算参数估计值地标准误差;(3)求地95%置信区间,这个区间包括0 吗?3.13试用中国1985—2003 年实际数据估计消费函数:=α+β + u t其中:C代表消费,Y 代表收入.原始数据如下表所示,表中:Cr=农村居民人均消费支出(元)Cu=城镇居民人均消费支出(元)Y =国内居民家庭人均纯收入(元) Yr =农村居民家庭人均纯收入(元) Yu=城镇居民家庭人均可支配收入(元) Rpop=农村人口比重(%) pop=历年年底我国人口总数(亿人)P=居民消费价格指数(1985=100)Pr=农村居民消费价格指数(1985=100)Pu=城镇居民消费价格指数(1985=100)数据来源:《中国统计年鉴2004》使用计量经济软件,用国内居民人均消费、农村居民人均消费和城镇居民人均消费分别对各自地人均收入进行回归,给出标准格式回归结果;并由回归结果分析我国城乡居民消费行为有何不同.文档收集自网络,仅用于个人学习第四章多元线性回归模型4.1某经济学家试图解释某一变量Y 地变动.他收集了Y 和 5 个可能地解释变量~地观测值(共10 组),然后分别作三个回归,结果如下(括号中数字为t 统计量):文档收集自网络,仅用于个人学习( 1) = 51.5 + 3.21 R=0.63(3.45) (5.21)2) 33.43 + 3.67 + 4.62 + 1.21 R=0.75 文档收集自网络,仅用于个人学(3.61 )(2.56)(0.81) (0.22)3) 23.21 + 3.82 + 2.32 + 0.82 + 4.10 + 1.21(2.21 )(2.83)(0.62) (0.12) (2.10) (1.11)文档收集自网络,仅用于个人学习R=0.80 你认为应采用哪一个结果?为什么?4.2为研究旅馆地投资问题,我们收集了某地地1987-1995 年地数据来估计收益生产函数R=ALKe ,其中R=旅馆年净收益(万年) ,L=土地投入,K=资金投入, e 为自然对数地底.设回归结果如下(括号内数字为标准误差) :文档收集自网络,仅用于个人学习= -0.9175 + 0.273lnL + 0.733lnK R=0.94(0.212) (0.135) (0.125)(1)请对回归结果作必要说明;( 2)分别检验α和β 地显著性;( 3)检验原假设:α =β = 0;4.3我们有某地1970-1987 年间人均储蓄和收入地数据,用以研究1970-1978 和1978 年以后储蓄和收入之间地关系是否发生显著变化. 引入虚拟变量后,估计结果如下(括号内数据为标准差) :文档收集自网络,仅用于个人学习= -1.7502 + 1.4839D + 0.1504 - 0.1034D·R=0.9425 文档收集自网络,仅用于个人学习(0.3319) (0.4704) (0.0163) (0.0332)其中:Y=人均储蓄,X=人均收入,D= 请检验两时期是否有显著地结构性变化.4.4说明下列模型中变量是否呈线性,系数是否呈线性,并将能线性化地模型线性化.(1)(2)(3)4.5有学者根据某国19年地数据得到下面地回归结果:其中:Y=进口量(百万美元),X1 =个人消费支出(百万美元),X2 =进口价格/国内价格.(1)解释截距项以及X1和X2系数地意义;(2)Y 地总变差中被回归方程解释地部分、未被回归方程解释地部分各是多少?(3)进行回归方程地显著性检验,并解释检验结果;(4)对“斜率”系数进行显著性检验,并解释检验结果.4.6由美国46个州1992年地数据,Baltagi 得到如下回归结果:其中,C=香烟消费(包/人年),P=每包香烟地实际价格Y=人均实际可支配收入(1)香烟需求地价格弹性是多少?它是否统计上显著?若是,它是否统计上异于-1?(2)香烟需求地收入弹性是多少?它是否统计上显著?若不显著,原因是什么?(3)求出.4.7有学者从209 个公司地样本,得到如下回归结果(括号中数字为标准误差):其中,Salary=CEO 地薪金Sales=公司年销售额roe=股本收益率(%)ros=公司股票收益请分析回归结果.4.8为了研究某国1970-1992 期间地人口增长率,某研究小组估计了下列模型:其中:Pop=人口(百万人),t=趋势变量,.(1)在模型 1 中,样本期该地地人口增长率是多少?(2)人口增长率在1978 年前后是否显著不同?如果不同,那么1972-1977和1978-1992 两时期中,人口增长率各是多少?文档收集自网络,仅用于个人学习4.9设回归方程为Y= β0+β1X1+β2X2+β3X3+ u, 试说明你将如何检验联合假设:β1= β2 和β3 = 1 .文档收集自网络,仅用于个人学习4.10下列情况应引入几个虚拟变量,如何表示?(1)企业规模:大型企业、中型企业、小型企业;(2)学历:小学、初中、高中、大学、研究生.4.11在经济发展发生转折时期,可以通过引入虚拟变量来表示这种变化.例如,研究进口消费品地数量Y 与国民收入X 地关系时,数据散点图显示1979 年前后明显不同.请写出引入虚拟变量地进口消费品线性回归方程.文档收集自网络,仅用于个人学习4.12柯布-道格拉斯生产函数其中:GDP=地区国内生产总值(亿元)K=资本形成总额(亿元)L= 就业人数(万人)P=商品零售价格指数(上年=100)试根据中国2003 年各省数据估计此函数并分析结果.数据如下表所示第五章模型地建立与估计中地问题及对策5.1判断题(判断对错;如果错误,说明理由)(1)尽管存在严重多重共线性,普通最小二乘估计量仍然是最佳线性无偏估计量(BLUE ).(2)如果分析地目地仅仅是为了预测,则多重共线性并无妨碍. (3)如果解释变量两两之间地相关系数都低,则一定不存在多重共线性. (4)如果存在异方差性,通常用地t 检验和 F 检验是无效地. (5)当存在自相关时,OLS 估计量既不是无偏地,又不是有效地.(6)消除一阶自相关地一阶差分变换法假定自相关系数必须等于 1. (7)模型中包含无关地解释变量,参数估计量会有偏,并且会增大估计量地方差,即增大误差.(8)多元回归中,如果全部“斜率”系数各自经t 检验都不显著,则R2值也高不了.(9)存在异方差地情况下,OLS 法总是高估系数估计量地标准误差.(10)如果一个具有非常数方差地解释变量被(不正确地)忽略了,那么OLS 残差将呈异方差性.5.2考虑带有随机扰动项地复利增长模型:Y 表示GDP,Y0是Y 地基期值,r 是样本期内地年均增长率,t 表示年份,t=1978,⋯,2003.文档收集自网络,仅用于个人学习试问应如何估计GDP 在样本期内地年均增长率?5.3 检验下列情况下是否存在扰动项地自相关 .(1) DW=0.81,n=21,k=3(2)DW=2.25,n=15,k=2(3)DW=1.56,n=30,k=55.4有人建立了一个回归模型来研究我国县一级地教育支出:Y= β0+β1X1+β 2X2+β3X3+u其中:Y,X1,X2 和X3分别为所研究县份地教育支出、居民人均收入、学龄儿童人数和可以利用地各级政府教育拨款.文档收集自网络,仅用于个人学习他打算用遍布我国各省、市、自治区地100 个县地数据来估计上述模型.(1)所用数据是什么类型地数据?(2)能否采用OLS 法进行估计?为什么?(3)如不能采用OLS 法,你认为应采用什么方法?5.5试从下列回归结果分析存在问题及解决方法:(1)= 24.7747 + 0.9415 - 0.0424 R=0.9635SE:(6.7525)(0.8229)(0.0807)其中:Y=消费,X2=收入,X3=财产,且n=5000 (2)= 0.4529 - 0.0041t R=0.5284t:(-3.9606) DW=0.8252其中Y= 劳动在增加值中地份额,t=时间该估计结果是使用1949-1964 年度数据得到地.5.6工资模型:wi=b0+b1Si+b2Ei+b3Ai+b4Ui+ui其中Wi=工资,Si=学校教育年限,Ei=工作年限,Ai=年龄,Ui=是否参加工会.在估计上述模型时,你觉得会出现什么问题?如何解决?5.7你想研究某行业中公司地销售量与其广告宣传费用之间地关系.你很清楚地知道该行业中有一半地公司比另一半公司大,你关心地是这种情况下,什么估计方法比较合理.假定大公司地扰动项方差是小公司扰动项方差地两倍.文档收集自网络,仅用于个人学习(1)若采用普通最小二乘法估计销售量对广告宣传费用地回归方程(假设广告宣传费是与误差项不相关地自变量),系数地估计量会是无偏地吗?是一致地吗?是有效地吗?文档收集自网络,仅用于个人学习(2)你会怎样修改你地估计方法以解决你地问题?(3)能否对原扰动项方差假设地正确性进行检验?5.8考虑下面地模型其中GNP=国民生产总值,M =货币供给. (1)假设你有估计此模型地数据,你能成功地估计出模型地所有系数吗?说明理由.(2)如果不能,哪些系数可以估计?(3)如果从模型中去掉这一项,你对(1)中问题地答案会改变吗?(4)如果从模型中去掉这一项,你对(1)中问题地答案会改变吗?5.9采用美国制造业1899-1922年数据,Dougherty得到如下两个回归结果:(1)(2)其中:Y=实际产出指数,K=实际资本投入指数,L =实际劳动力投入指数,t=时间趋势(1)回归式(1)中是否存在多重共线性?你是如何得知地?(2)回归式(1)中,logK 系数地预期符号是什么?回归结果符合先验预期吗?为什么会这样?(3)回归式(1)中,趋势变量在其中起什么作用?(4)估计回归式(2)背后地逻辑是什么?(5)如果(1)中存在多重共线性,那么(2)式是否减轻这个问题?你如何得知?(6)两个回归地R2可比吗?说明理由.5.10有人估计了下面地模型:其中:C=私人消费支出,GNP=国民生产总值,D=国防支出假定,将(1)式转换成下式:使用1946-1975数据估计(1)、(2)两式,得到如下回归结果(括号中数字为标准误差):1)关于异方差,模型估计者做出了什么样地假定?你认为他地依据是什么?2)比较两个回归结果.模型转换是否改进了结果?也就是说,是否减小了估计标准误差?说明理由.5.11设有下列数据:RSS1=55,K =4,n1=30RSS3=140,K =4,n3=30 请依据上述数据,用戈德佛尔德-匡特检验法进行异方差性检验(5%显著性水平).5.12考虑模型(1)也就是说,扰动项服从AR (2)模式,其中是白噪声.请概述估计此模型所要采取地步骤.5.13对第 3 章练习题 3.13 所建立地三个消费模型地结果进行分析:是否存在序列相关问题?如果有,应如何解决?5.14为了研究中国农业总产值与有效灌溉面积、化肥施用量、农作物总播种面积、受灾面积地相互关系,选31 个省市2003 年地数据资料,如下表所示:文档收集自网络,仅用于个人学习表中:Y=农业总产值(亿元,不包括林牧渔)X1=有效灌溉面积(千公顷)X2=化肥施用量(万吨)X23=化肥施用量(公斤/亩)X3=农作物总播种面积(千公顷)X4=受灾面积(千公顷)(1)回归并根据计算机输出结果写出标准格式地回归结果;(2)模型是否存在问题?如果存在问题,是什么问题?如何解决?第六章动态经济模型:自回归模型和分布滞后模型6.1判断题(判断对错;如果错误,说明理由)(1)所有计量经济模型实质上都是动态模型.(2)如果分布滞后系数中,有地为正有地为负,则科克模型将没有多大用处. (3)若适应预期模型用OLS 估计,则估计量将有偏,但一致. (4)对于小样本,部分调整模型地OLS 估计量是有偏地.(5)若回归方程中既包含随机解释变量,扰动项又自相关,则采用工具变量法,将产生无偏且一致地估计量.(6)解释变量中包括滞后因变量地情况下,用德宾-沃森d 统计量来检测自相关是没有实际用处地.6.2用OLS 对科克模型、部分调整模型和适应预期模型分别进行回归时,得到地OLS 估计量会有什么样地性质?文档收集自网络,仅用于个人学习6.3简述科克分布和阿尔蒙多项式分布地区别.6.4考虑模型假设相关.要解决这个问题,我们采用以下工具变量法:首先用对和回归,得到地估计值,然后回归其中是第一步回归(对和回归)中得到地.(1)这个方法如何消除原模型中地相关?(2)与利维顿采用地方法相比,此方法有何优点?6.5设其中:M=对实际现金余额地需求,Y*=预期实际收入,R*=预期通货膨胀率假设这些预期服从适应预期机制:其中和是调整系数,均位于0和1之间.(1)请将M t 用可观测量表示;(2)你预计会有什么估计问题?6.6考虑分布滞后模型假设可用二阶多项式表示诸如下:若施加约束==0,你将如何估计诸系数(,i=0,1, (4)6.7为了研究设备利用对于通货膨胀地影响,T. A.吉延斯根据1971年到1988年地美国数据获得如下回归结果:文档收集自网络,仅用于个人学习其中:Y=通货膨胀率(根据GNP 平减指数计算)X t=制造业设备利用率X t-1 =滞后一年地设备利用率1)设备利用对于通货膨胀地短期影响是什么?长期影响又是什么?(2)每个斜率系数是统计显著地吗?(3)你是否会拒绝两个斜率系数同时为零地原假设?将利用何种检验?6.8考虑下面地模型:Y t = α+β(W0X t+ W1X t-1 + W2X t-2 + W3X t-3)+u t 请说明如何用阿尔蒙滞后方法来估计上述模型(设用二次多项式来近似) .6.9下面地模型是一个将部分调整和适应预期假说结合在一起地模型:Y t*= βX t+1eY t-Y t-1 = δ(Y t*- Y t-1) + u tX t+1e- X t e= (1-λ)( X t - X t e);t=1,2,⋯, n式中Y t*是理想值,X t+1e和X t e是预期值.试推导出一个只包含可观测变量地方程,并说明该方程参数估计方面地问题.文档收集自网络,仅用于个人学习第七章时间序列分析7.1单项选择题(1)某一时间序列经一次差分变换成平稳时间序列,此时间序列称为()地.A.1 阶单整B.2阶单整C.K 阶单整D.以上答案均不正确文档收集自网络,仅用于个人学习(2)如果两个变量都是一阶单整地,则().A .这两个变量一定存在协整关系B.这两个变量一定不存在协整关系C.相应地误差修正模型一定成立D.还需对误差项进行检验文档收集自网络,仅用于个人学习(3)如果同阶单整地线性组合是平稳时间序列,则这些变量之间关系是() .A. 伪回归关系B.协整关系C.短期均衡关系D. 短期非均衡关系(4).若一个时间序列呈上升趋势,则这个时间序列是().A .平稳时间序列B.非平稳时间序列C.一阶单整序列 D. 一阶协整序列7.2请说出平稳时间序列和非平稳时间序列地区别,并解释为什么在实证分析中确定经济时间序列地性质是十分必要地.文档收集自网络,仅用于个人学习7.3什么是单位根?7.4Dickey-Fuller(DF)检验和Engle-Granger(EG)检验是检验什么地?文档收集自网络,仅用于个人学习7.5什么是伪回归?在回归中使用非均衡时间序列时是否必定会造成伪回归?7.6由1948-1984 英国私人部门住宅开工数(X)数据,某学者得到下列回归结果:注:5%临界值值为-2.95,10%临界值值为-2.60. (1)根据这一结果,检验住宅开工数时间序列是否平稳.(2)如果你打算使用t 检验,则观测地t 值是否统计显著?据此你是否得出该序列平稳地结论?(3)现考虑下面地回归结果:请判断住宅开工数地平稳性.7.7由1971-I 到1988-IV 加拿大地数据,得到如下回归结果;A.B.C.其中,M1=货币供给,GDP=国内生产总值,e t=残差(回归A)(1)你怀疑回归 A 是伪回归吗?为什么?(2)回归 B 是伪回归吗?请说明理由.(3)从回归 C 地结果,你是否改变(1)中地结论,为什么?(4)现考虑以下回归:这个回归结果告诉你什么?这个结果是否对你决定回归 A 是否伪回归有帮助?7.8 检验我国人口时间序列地平稳性,数据区间为1949-2003 年.单位:万人7.9对中国进出口贸易进行协整分析,如果存在协整关系,则建立E CM 模型.1951-2003 年中国进口(im )、出口(ex)和物价指数(pt,商品零售物价指数)时间序列数据见下表.因为该期间物价变化大,特别是改革开放以后变化更为激烈,所以物价指数也作为一个解释变量加入模型中.为消除物价变动对进出口数据地影响以及消除进出口数据中存在地异方差,定义三个变量如下:文档收集自网络,仅用于个人学习第八章联立方程模型8.1判断题(判断对错;如果错误,说明理由)(1)OLS 法适用于估计联立方程模型中地结构方程.(2)2SLS 法不能用于不可识别方程.(3)估计联立方程模型地2SLS 法和其它方法只有在大样本地情况下,才能具有我们期望地统计性质 .(4) 联立方程模型作为一个整体,不存在类似 R 2这样地拟合优度测度 .(5) 如果要估计地方程扰动项自相关或存在跨方程地相关, 则 2SLS 法和其它估 计结构方程地方法都不能用 .(6) 如果一个方程恰好识别,则 ILS 和 2SLS 给出相同结果 .8.2 单项选择题1) 结构式模型中地方程称为结构方程 .在结构方程中, 解释变量可以是前定变3) 如果联立方程模型中某个结构方程包含了模型中所有地变量,则这个方程5)当一个结构式方程为恰好识别时,这个方程中内生解释变量地个数( A .与被排除在外地前定变量个数正好相等 B .小于被排除在外地前定变量个数 C .大于被排除在外地前定变量个数D .以上三种情况都有可能发生 文档收集自网络,仅用于个人学习6) 简化式模型就是把结构式模型中地内生变量表示为 ( ).A. 外生变量和内生变量地函数关系B.前定变量和随机误差项地模型C.滞后变量和随机误差项地模型 D.外生变量和随机误差项地模量,也可以是 ( ).文档收集自网络,仅用于个人学习 A. 外生变量 B.滞后变量2)前定变量是 ( )地合称 .A.外生变量和滞后内生变量C.内生变量D. 外生变量和内生变量 C.外生变量和虚拟变量 D. 解释变量和被解释变量( ).A. 恰好识别B.不可识别 (4) 下面说法正确地是( ).A.内生变量是非随机变量 C.外生变量是随机变量 C.过度识别 D.不确定B. 前定变量是随机变量个人收集整理勿做商业用途型7) 对联立方程模型进行参数估计地方法可以分两类,即:( ).A.间接最小二乘法和系统估计方法B.单方程估计法和系统估计方法个人收集整理勿做商业用途C.单方程估计法和二阶段最小二乘法D.工具变量法和间接最小二乘法(8)在某个结构方程过度识别地条件下,不适用地估计方法是().A. 间接最小二乘法B.工具变量法C.二阶段最小二乘法D.有限信息极大似然估计法8.3行为方程和恒等式有什么区别?8.4如何确定模型中地外生变量和内生变量?8.5考虑下述模型:C t = α + β D t +u t I t = γ + δD t-1 + νt D t = C t +I t + Z t ;t=1 ,2,⋯,n其中 C = 消费支出,D= 收入,I = 投资,Z = 自发支出. C、I 和D是内生变量.试写出消费支出地简化型方程,并研究各方程地识别问题.8.6考虑下述模型:Y t = C t + I t +G t +X tC t = β 0 + β 1D t + β2C t-1 + u tD t = Y t –T tI t = α0 + α1Y t + α2R t-1 +νt 模型中各方程是正规化方程,u t、νt为扰动项.(1)请指出模型中地内生变量、外生变量和前定变量.(2)写出用2SLS法进行估计时,每个阶段中要估计地方程.8.7下面是一个简单地美国宏观经济模型(1960-1999)其中C=实际私人消费,I= 实际私人总投资,G=实际政府支出,Y =实际GDP,M= 当年价M2,R=长期利率;P=消费价格指数.内生变量:C,I,R,Y 前定变量:C t-1,I t-1,M t-1,P t,R t-1 和G t.(1)应用识别地阶条件,决定各方程地识别状态;(2)你打算用什么方法来估计可识别行为方程?8.8假设有如下计量经济模型:其中,Y=国民收入,I=净资本形成,C=个人消费,Q =利润,P=生活费用指数,R= 工业劳动生产率1)写出模型地内生变量、外生变量和前定变量;个人收集整理勿做商业用途(2)用识别地阶条件确定各方程地识别状态;(3)此模型中是否有可以用ILS 法估计地方程?如有,请指出;(4)写出用2SLS 法进行估计时,每个阶段中要估计地方程. 8.9考虑下述模型:消费方程:C t=α0 +α 1Y t +α2C t-1 +u①投资方程:I t=β0 +β1Y t +β2I t –1+u2t②进口方程:M t = 0 + 1Y t + u3t ③Y t = C t+ I t + G t + X t - M t模型中各方程是正规化方程,u 1t, ⋯u3t为扰动项.(1)请指出模型中地内生变量、外生变量和前定变量.(2)利用阶条件识别各行为方程.(3)写出用3SLS 进行估计时地步骤.8.10考察下述国民经济地简单模型式中,C为消费,Y 为国民收入,I 为投资,R为利率.设样本容量n 为20,已算得中间结果为:(1)判别模型中消费方程地识别状态;(2)用间接最小二乘法求消费方程结构式系数;(3)将采用哪种方法估计投资方程?为什么?(不必计算)8.11由联立方程模型;得到其简化式如下:(1)两结构方程可识别吗?(2)如果知道,识别情况有何变化?(3)若对简化式进行估计,结果如下:个人收集整理勿做商业用途试求出结构参数地值,并说明如何检验原假设个人收集整理勿做商业用途版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理。
第1-4章 计量经济学 复习题(2015.5)
第1-4章计量经济学复习题(2015.5)第一部分简单线性回归的基本思想2.1 解释概念1、总体回归函数(PRF)答:总体回归函数反映了被解释变量的均值同一个或多个解释变量之间的关系。
即2、样本回归函数(SRF)样本回归函数是总体回归函数的近似。
即3、随机总体回归函数从总体上表明了单个y同解释变量和随机干扰项之间的关系。
即4、随机样本回归函数从所抽取样本的角度说明了被解释变量与被解释变量以及残差之间的关系。
即5、线性回归模型回归参数为线性的回归模型。
6、随机误差项()它代表了与被解释变量y有关但未被纳入模型变量的影响。
每一个随机误差项对于y的影响都是非常小的,且是随机的。
随机误差项的均值为零。
即7、残差项()它是随机误差项的近似。
即8、回归系数或回归参数若,则称为回归系数或回归参数。
9、回归系数的估计量回归系数的估计量()说明了如何通过样本数据来计算回归系数()的估计值。
也称为样本回归估计值。
2.2 随机总体回归函数与随机样本回归函数有什么区别?随机总体回归函数是从总体上表明了单个y同解释变量和随机干扰项之间的关系。
即随机样本回归函数是从所抽取样本的角度说明了被解释变量与被解释变量以及残差之间的关系。
即2.3讨论:“既然不能观察到总体回归函数,为什么还要研究它呢?”答:就像经济理论中的完全竞争模型一样,总体回归函数也是一个理论化的、理想化的模型,在现实中很难得到。
但是这样一个理想化的模型有助于我们把握所研究问题的本质。
2.4判断正误并说明理由。
1、随机误差项与残差项是一回事。
答:错误。
残差项是随机误差项的一个近似(估计值)。
2、总体回归函数给出了与自变量每个取值相对应的因变量的值。
答:错误。
总体回归函数给出了在解释变量给定条件下被解释变量的条件均值。
3、线性回归模型意味着模型变量是线性的。
答:错误。
线性回归模型是指所建立的模型中回归系数为线性。
而其中的解释变量和被解释变量不一定是线性的。
4、在线性回归模型中,解释变量是因,因变量是果。
计量经济学习题四
计量经济学习题四一、单选题1、容易产生异方差的数据是( )A 、时间序列数据B 、虚变量数据C 、横截面数据D 、年度数据2、下列哪种方法不能检验异方差( )A 、哥德费尔特—夸特检验B 、怀特检验C 、戈里瑟检验D 、D-W 检验3、如果回归模型中的随机误差项存在异方差,则模型参数的OLS 估计量是( )A 、无偏、有效估计B 、无偏、非有效估计C 、有偏、有效估计D 、有偏、非有效估计4、设回归模型i i i X Y μβ+=,其中i i X Var 2)(σμ=,则β的最有效估计量为( )A 、∑∑=2ˆX XY βB 、∑∑∑∑∑--=22)(ˆX X n Y X XY n β C 、X Y =βˆ D 、∑=XY n 1ˆβ 5、当模型出现异方差现象时,估计模型参数的适当方法是( )A 、加权最小二乘法B 、工具变量法C 、广义差分法D 、使用非样本先验信息6、加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权重,从而提高估计精确度,即( )A 、重视大误差的作用,轻视小误差的作用B 、重视小误差的作用,轻视大误差的作用C 、重视小误差和大误差的作用D 、轻视小误差和大误差的作用7、如果Glejser 检验表明,OLS 估计结果的残差与解释变量有显著的形式为i i i X e ε+=457.0||的相关关系,则用WLS 估计模型参数时,权数为( )A 、i XB 、21i XC 、i X 1D 、iX 1 8、假设回归模型为i i i X Y μββ++=10,其中22)(i i X Var σμ=,则用WLS 估计模型时,应将模型变为( )A 、X X X X Yμββ++=10B 、X X X Yμββ++=10C 、X X X Y μββ++=10D 、21202X X XX Y μββ++= 9、下列哪种形式的序列相关可用D.W.统计量(i ε为具有零均值,常数方差且不存在序列相关的随机变量)( )A 、t t t ερμμ+=-1B 、t t t t εμρμρμ+++=-- 2211C 、t t ρεμ=D 、 ++=-12t t t ερρεμ10、假定某企业的生产决策是由模型t t t P S μββ++=10描述的(其中S 为产量,P 为价格),又知如果该企业在t-1期生产过剩,经济人员会削减t 期的产量,由此判断上述模型存在( )A 、异方差问题B 、序列相关问题C 、多重共线性问题D 、随机解释变量问题11、给定的显著性水平,若D.W.统计量的下和上临界值分别为L d 和U d ,则当U L d W D d <<..时,可认为随机误差项( )A 、存在一阶正相关B 、存在一阶负相关C 、不存在序列相关D 、存在序列相关与否不能确定12、采用一阶差分模型克服一阶线性自相关问题适用于下列哪种情况( )A 、0≈ρB 、1≈ρC 、01<<-ρD 、10<<ρ13、根据一个样本容量为30的样本估计i i i e X Y ++=^1^0ββ后计算得到2.1..=W D ,已知在5%的显著性水平下,35.1=L d ,49.1=U d ,则认为原模型( )A 、不存在一阶序列自相关B 、不能判断是否存在一阶自相关C 、存在正的一阶自相关D 、存在负的一阶自相关14、对于原模型i i i X Y μββ++=10广义差分模型是指( )A 、)()()(1)(10t tt t t t tX f X f X X f X f Y μββ++=B 、t t t X Y μβ∆+∆=∆1 B 、t t t X Y μββ∆+∆+=∆10D 、)()()1(11101----+-+-=-t t t t t t X X Y Y ρμμρβρβρ15、用矩阵形式表示的广义最小二乘参数估计量为Y X X X B 111)(ˆ---Ω'Ω'=,此估计量为( )A 、有偏、有效的估计量B 、有偏、非有效的估计量C 、无偏、非有效的估计量D 、无偏、有效的估计量16、对于模型i i i e X Y ++=^1^0ββ,以ρ表示t e 与1-t e 之间的线性相关系数(n t ,,2,1 =),则下面明显错误的是( )A 、4.0..,8.0==W D ρB 、4.0..,8.0-=-=W D ρC 、2..,0==WD ρ D 、0..,1==W D ρ17、采用GLS 关键的一步是得到随机误差项的方差协方差矩阵Ω,这就需要对原模型μ+=XB Y 首先采用( )以求得随机误差项的近似估计值,从而构成矩阵Ω的估计量。
【精品】清华大学课程《计量经济学》配套习题和答案
清华大学第一章《计量经济学》配套习题和答案第二章绪论(一)基本知识类题型1-1.什么是计量经济学?1-2.简述当代计量经济学发展的动向。
1-3.计量经济学方法与一般经济数学方法有什么区别?1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
1-5.为什么说计量经济学是一门经济学科?它在经济学科体系中的作用和地位是什么?1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。
1-8.建立计量经济学模型的基本思想是什么?1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么?1-10.试分别举出五个时间序列数据和横截面数据,并说明时间序列数据和横截面数据有和异同?1-11.试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。
1-12.模型的检验包括几个方面?其具体含义是什么?1-13.常用的样本数据有哪些?1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
1-15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题? 1-16.经济数据在计量经济分析中的作用是什么?1-17.下列假想模型是否属于揭示因果关系的计量经济学模型?为什么?⑴S R t t =+1120012..其中S t 为第t 年农村居民储蓄增加额(亿元)、R t 为第t 年城镇居民可支配收入总额(亿元)。
⑵S R t t -=+144320030..其中S t -1为第(1-t )年底农村居民储蓄余额(亿元)、R t 为第t 年农村居民纯收入总额(亿元)。
1-18.指出下列假想模型中的错误,并说明理由:(1)RS RI IV t t t =-+83000024112... 其中,RS t 为第t 年社会消费品零售总额(亿元),RI t 为第t 年居民收入总额(亿元)(城镇居民可支配收入总额与农村居民纯收入总额之和),IV t 为第t 年全社会固定资产投资总额(亿元)。
计量经济学(第四版)习题参考答案
计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析1.2 我们在计量经济模型中列出了影响因变量的解释变量,但它(它们)仅是影响因变量的主要因素,还有很多对因变量有影响的因素,它们相对而言不那么重要,因而未被包括在模型中。
为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4 估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y 就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础2.1 略,参考教材。
2.2 NSS x ==45=1.25用=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。
2.3 原假设 120:0=μH备择假设 120:1≠μH 检验统计量()10/2510/25XX μσ-Z ====查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即 此样本不是取自一个均值为120元、标准差为10元的正态总体。
计量经济学习题集(标注版)
计量经济学习题集(标注版)《计量经济学》习题集第⼀章绪论⼀、单项选择题1、变量之间的关系可以分为两⼤类,它们是【】A函数关系和相关关系B线性相关关系和⾮线性相关关系C正相关关系和负相关关系D简单相关关系和复杂相关关系2、相关关系是指【】A变量间的依存关系B变量间的因果关系C变量间的函数关系D变量间表现出来的随机数学关系3、进⾏相关分析时,假定相关的两个变量【】A都是随机变量B都不是随机变量C⼀个是随机变量,⼀个不是随机变量D随机或⾮随机都可以4、计量经济研究中的数据主要有两类:⼀类是时间序列数据,另⼀类是【】A总量数据B横截⾯数据C 平均数据D相对数据5、横截⾯数据是指【A】A 同⼀时点上不同统计单位相同统计指标组成的数据B同⼀时点上相同统计单位相同统计指标组成的数据C同⼀时点上相同统计单位不同统计指标组成的数据D同⼀时点上不同统计单位不同统计指标组成的数据6、下⾯属于截⾯数据的是【D】A 1991-2003 年各年某地区20 个乡镇的平均⼯业产值B 1991-2003 年各年某地区20 个乡镇的各镇⼯业产值C某年某地区20个乡镇⼯业产值的合计数D某年某地区20个乡镇各镇⼯业产值7、同⼀统计指标按时间顺序记录的数据列称为【B 】A横截⾯数据B时间序列数据 C 修匀数据D原始数据8、经济计量分析的基本步骤是【B 】A 设定理论模型→收集样本资料→估计模型参数→检验模型B设定模型→估计参数→检验模型→应⽤模型C个体设计→总体设计→估计模型→应⽤模型D确定模型导向→确定变量及⽅程式→估计模型→应⽤模型9、计量经济模型的基本应⽤领域有【】A 结构分析、经济预测、政策评价B弹性分析、乘数分析、政策模拟C消费需求分析、⽣产技术分析、市场均衡分析D季度分析、年度分析、中长期分析10、计量经济模型是指【C 】A投⼊产出模型B数学规划模型C包含随机⽅程的经济数学模型D模糊数学模型11、设M 为货币需求量,Y 为收⼊⽔平,r 为利率,流动性偏好函数为:M=a+bY+cr+u,b’和c’分别为b、c的估计值,根据经济理论,有【A 】A b’应为正值,c’应为负值B b’应为正值,c’应为正值C、应为负值,c’应为负值 D b’应为负值,c’应为正值12、回归分析中定义【B 】A解释变量和被解释变量都是随机变量B解释变量为⾮随机变量,被解释变量为随机变量C解释变量和被解释变量都是⾮随机变量D解释变量为随机变量,被解释变量为⾮随机变量13、线性模型的影响因素【】A只能是数量因素B只能是质量因素C可以是数量因素,也可以是质量因素D只能是随机因素14、下列选项中,哪⼀项是统计检验基础上的再检验(亦称⼆级检验)准则【】A.计量经济学准则B经济理论准则C 统计准则D统计准则和经济理论准则15、理论设计的⼯作,不包括下⾯哪个⽅⾯【】A选择变量B确定变量之间的数学关系C 收集数据D拟定模型中待估参数的期望值16、计量经济学模型成功的三要素不包括【】A理论 B 应⽤C 数据D⽅法17、在模型的经济意义检验中,不包括检验下⾯的哪⼀项【】A参数估计量的符号B参数估计量的⼤⼩C参数估计量的相互关系D参数估计量的显著性18、计量经济学模型⽤于政策评价时,不包括下⾯的那种⽅法【】A⼯具变量法B⼯具—⽬标法C 政策模拟D最优控制⽅法19、在经济学的结构分析中,不包括下⾯那⼀项【】A弹性分析 B 乘数分析C⽐较静⼒分析D⽅差分析⼆、多项选择题1、使⽤时序数据进⾏经济计量分析时,要求指标统计的【】A对象及范围可⽐B时间可⽐C⼝径可⽐D计算⽅法可⽐E内容可⽐2、⼀个模型⽤于预测前必须经过的检验有【】A经济准则检验B统计准则检验C计量经济学准则检验D模型预测检验E实践检验3、经济计量分析⼯作的四个步骤是【】A理论研究B设计模型C估计参数D检验模型E应⽤模型4、对计量经济模型的统计准则检验包括A估计标准误差评价B拟合优度检验C预测误差程度评价D总体线性关系显著性检验E单个回归系数的显著性检验5、对计量经济模型的计量经济学准则检验包括【】A误差程度检验B异⽅差检验C序列相关检验D超⼀致性检验E多重共线性检验6、对经济计量模型的参数估计结果进⾏评价时,采⽤的准则有【】A经济理论准则B统计准则C经济计量准则D模型识别准则E模型简单准则7、经济计量模型的应⽤⽅向是【】A⽤于经济预测B⽤于结构分析C仅⽤于经济政策评价D⽤于经济政策评价E仅⽤于经济预测、经济结构分析三、填空题1、计量经济学是的⼀个分⽀学科,是以揭⽰中的客观存在的为内容的分⽀学科。
计量经济学习题1参考答案
计量经济学习题1参考答案
(第1-2章)
一、单项选择题
1.B 2.B 3.C
4.D 5.C 6.B 7.A
二、多项选择题
1.ABC
2.ACD
3.ABCDE
三、计算题
解:(1)建立中国1978年-1997年的财政收入Y 和国内生产总值X 的线性回归方程
利用1978年-1997年的数据估计其参数,结果为
ˆ857.840.10t t Y X =+
(12.78) (46.05)
20.99R = 20T =
斜率系数的经济意义:GDP 增加1亿元,平均说来财政收入将增加0.1亿元。
(2)20.991593ESS R TSS
==,说明总离差平方和的99%被样本回归直线解释,仅有不到1%未被解释,因此,样本回归直线对样本点的拟合优度是很高的。
给出显著水平
=0.05,查自由度v=20-2=18的t 分布表,得临界值
=2.10,,,故回归系数均显著不为零,说明国内生产总值对财政收入有显著影响,并且回归模型中应包含常数项。
从以上得评价可以看出,此模型是比较好的。
(3)若是1998年的国内生产总值为78017.8亿元,确定1998年财政收入的点预测值为
ˆ857.840.1078017.88659.62t
Y =+⨯= (亿元)
1998年财政收入单个值的预测区间()为: 1998
ˆ[8659.62 2.10 1.45,8659.62 2.10 1.45]Y ∈-⨯+⨯ [8656.58,8662.67]∈。
(完整版)《计量经济学》作业答案
计量经济学作业答案第一次作业:1-2. 计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?答:计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律(或者说,计量经济学是利用数学方法,根据统计测定的经济数据,对反映经济现象本质的经济数量关系进行研究)。
计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用,即应用计量经济学;无论是理论计量经济学还是应用计量经济学,都包括理论、方法和数据三种要素。
计量经济学模型研究的经济关系有两个基本特征:一是随机关系;二是因果关系。
1-4.建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和一致性;(3)估计模型参数;(4)模型检验,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。
1-6.模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型预测检验。
在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
第二次作业:2-1 P27 6条2-3 线性回归模型有哪些基本假设?违背基本假设的计量经济学模型是否就不可估计?答:线性回归模型的基本假设(实际是针对普通最小二乘法的基本假设)是:解释变量是确定性变量,而且解释变量之间互不相关;随机误差项具有0均值和同方差;随机误差项在不同样本点之间是独立的,不存在序列相关;随机误差项与解释变量之间不相关;随机误差项服从0均值、同方差的正态分布。
计量经济学平时作业习题及答案
德州学院计量经济学平时作业课程名称:计量经济学学生姓名***专业班级:国际经济与贸易本1—2班第一章绪论(略)第二章一元线性回归模型1、(例1)令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为μβ+βkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
解答:(1)收入、年龄、家庭状况、政府的相关政策等也是影响生育率的重要的因素,在上述简单回归模型中,它们被包含在了随机扰动项之中。
有些因素可能与增长率水平相关,如收入水平与教育水平往往呈正相关、年龄大小与教育水平呈负相关等。
(2)当归结在随机扰动项中的重要影响因素与模型中的教育水平educ相关时,上述回归模型不能够揭示教育对生育率在其他条件不变下的影响,因为这时出现解释变量与随机扰动项相关的情形,基本假设4不满足。
2、(例2)已知回归模型μα+βE,式中E为某类公司一名新员工的起始+=N薪金(元),N为所受教育水平(年)。
随机扰动项μ的分布未知,其他所有假设都满足。
(1)从直观及经济角度解释α和β。
(2)OLS估计量αˆ和βˆ满足线性性、无偏性及有效性吗?简单陈述理由。
(3)对参数的假设检验还能进行吗?简单陈述理由。
解答:(1)Nα+为接受过N年教育的员工的总体平均起始薪金。
当N为零时,平均薪β金为α,因此α表示没有接受过教育员工的平均起始薪金。
β是每单位N变化所引起的E 的变化,即表示每多接受一年学校教育所对应的薪金增加值。
(2)OLS估计量αˆ和仍βˆ满足线性性、无偏性及有效性,因为这些性质的的成立无需随机扰动项μ的正态分布假设。
μ的分布未知,则所有的假设检验都是无效的。
因为t检验与F检验是建立(3)如果t在μ的正态分布假设之上的。
3、(例3)在例2中,如果被解释变量新员工起始薪金的计量单位由元改为100元,估计的截距项与斜率项有无变化?如果解释变量所受教育水平的度量单位由年改为月,估计的截距项与斜率项有无变化?解答:首先考察被解释变量度量单位变化的情形。
计量经济学期末考试试卷集 含答案
财大计量经济学期末考试标准试题计量经济学试题一 (1)计量经济学试题一答案 (4)计量经济学试题二 (9)计量经济学试题二答案 (11)计量经济学试题三 (15)计量经济学试题三答案 (18)计量经济学试题四 (22)计量经济学试题四答案 (25)计量经济学试题一课程号:课序号:开课系:数量经济系一、判断题(20分)1.线性回归模型中,解释变量是原因,被解释变量是结果。
()2.多元回归模型统计显着是指模型中每个变量都是统计显着的。
()3.在存在异方差情况下,常用的OLS法总是高估了估计量的标准差。
()4.总体回归线是当解释变量取给定值时因变量的条件均值的轨迹。
()5.线性回归是指解释变量和被解释变量之间呈现线性关系。
()R的大小不受到回归模型中所包含的解释变量个数的影响。
()6.判定系数27.多重共线性是一种随机误差现象。
()8.当存在自相关时,OLS估计量是有偏的并且也是无效的。
()9.在异方差的情况下,OLS估计量误差放大的原因是从属回归的2R变大。
()10.任何两个计量经济模型的2R都是可以比较的。
()二.简答题(10)1.计量经济模型分析经济问题的基本步骤。
(4分)2.举例说明如何引进加法模式和乘法模式建立虚拟变量模型。
(6分)三.下面是我国1990-2003年GDP对M1之间回归的结果。
(5分)1.求出空白处的数值,填在括号内。
(2分)2.系数是否显着,给出理由。
(3分)四.试述异方差的后果及其补救措施。
(10分)五.多重共线性的后果及修正措施。
(10分)六.试述D-W检验的适用条件及其检验步骤(10分)七.(15分)下面是宏观经济模型变量分别为货币供给M、投资I、价格指数P和产出Y。
1.指出模型中哪些是内是变量,哪些是外生变量。
(5分)2.对模型进行识别。
(4分)3.指出恰好识别方程和过度识别方程的估计方法。
(6分)八、(20分)应用题为了研究我国经济增长和国债之间的关系,建立回归模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业一
1、双对数模型01ln ln Y X u ββ=++中,参数β1的含义是( )
A .X 的相对变化,引起Y 的期望值绝对量变化
B .Y 关于X 的边际变化
C .X 的绝对量发生一定变动时,引起因变量Y 的相对变化率
D .Y 关于X 的弹性
2、设OLS 法得到的样本回归直线为12i i i Y X e ββ=++
,以下说法不正确的是 ( ) A .0i e =∑ B .(,)X Y 在回归直线上 C .Y Y = D .(,)0i i COV X e ≠
3、下列说法正确的有( )
A .时序数据和横截面数据没有差异
B. 对总体回归模型的显著性检验没有必要
C. 总体回归方程与样本回归方程是有区别的
D. 判定系数R 2不可以用于衡量拟合优度
4、在回归分析中,下列有关解释变量和被解释变量的说法正确的有( )
A .被解释变量和解释变量均为随机变量
B .被解释变量和解释变量均为非随机变量
C .被解释变量为随机变量,解释变量为非随机变量
D .被解释变量为非随机变量,解释变量为随机变量
5、一元线性回归分析中的回归平方和ESS 的自由度是( )
A 、n
B 、n-1
C 、n-k
D 、1
6、对样本的相关系数γ,以下结论错误的是( )
A .γ越接近1,X 与Y 之间线性相关程度高
B .γ越接近0,X 与Y 之间线性相关程度高
C .01γ≤≤
D . X 与Y 相互独立,则γ=0,
7、同一时间,不同单位相同指标组成的观测数据称为( )
A .原始数据
B .横截面数据
C .时间序列数据
D .修匀数据
8、根据样本资料估计得出人均消费支出Y 对人均收入X 的回归模型为ln i Y =2.00+0.75lnXi ,
这表明人均收入每增加1%,人均消费支出将增加( )
A 、0.2%
B 、0.75%
C 、2%
D 、7.5%
9、利用OLS 估计得到的样本回归直线12i i Y X ββ=+ 必然通过点 ( )
A 、(,)X Y
B 、(,0)X
C 、(0,)Y
D 、(0,0)
10、多元线性回归分析中的 RSS 反映了( )
A .应变量观测值总变差的大小
B .应变量回归估计值总变差的大小
C .应变量观测值与估计值之间的总变差
D .Y 关于X 的边际变化
11、将内生变量的前期值作解释变量,这样的变量称为( )
A 、虚拟变量
B 、控制变量
C 、政策变量
D 、滞后变量
12、回归分析中使用的距离是点到直线的垂直坐标距离。
最小二乘准则是指( )
A 、使2n t t t 1ˆ(Y -Y )=∑达到最小值;
B 、使n 2t t t 1
ˆ(|Y-Y|)=∑达到最小值; C 、使2t t ˆmax|Y-Y|达到最小值; D 、使∑=n 1t 2t
t )Y ˆ-(Y 达到最小值。
作业二
1、横截面数据是指同一时点某个指标在不同空间的观测数据。
( )
2、总体回归函数的参数β1和β2是理论上确定的常数,而样本回归函数的参数^1β和^
2β随抽样的变化而变化。
( )
3、线性回归模型意味着因变量的平均值是自变量的线性函数。
( )
4、一旦模型中的解释变量是随机变量,则违背了基本假设,使得模型的OLS 估计量有偏且不一致。
( )
5、在多元回归模型中,回归模型的标准误的估计值^σ控制着被解释变量Y 预测的区间,一般来说,^σ越大,对Y 的预测区间就越宽,意味着预测的精度下降。
( )
6、同一指标按时间顺序记录的数据被称为面板数据。
( )
7、在简单线性回归模型中,解释变量是非随机变量,而被解释变量是随机变量。
( )
8、对计量经济模型进行的各种检验中,t 检验是关于回归系数的显著性检验。
( )
9、计量经济研究遵循的步骤依次是模型设定、模型检验、估计参数和模型应用。
( )
10、由于被解释变量12i i i Y X u ββ=++,所以Y i 的分布性质取决于i u ,对随机扰动项i u 的零均值,同方差、正态分布等基本假定也同样适用Y i 。
( )
11、总体回归线与样本回归线均过样本均值点。
( )
12、线性模型的而影响因素可能数量因素,也可能是质量因素。
( )
的显著性检验(t检验)与对回归总体系数的显著性13、在一元线性回归模型中,对参数
2
检验(F检验)是等价的。
()
14、在一元回归模型下,对参数的t检验与F检验是一致的。
()
作业三
1.请举例说明什么是时间序列数据、截面数据、面板数据和虚拟变量数据。
2.对回归参数进行假设检验的基本思想是什么
3.计量经济模型的应用包含哪些方面?
4.如果线性回归模型的OLS估计量具有无偏性,那么需要哪些假定条件?OLS估计量具
有有效性,需要哪些假定条件?
5.什么是计量经济模型检验,模型检验包含哪些方面?
6.多元线性回归模型的古典假设有哪些?
作业四
1. 根据中国1998-2014年城镇居民人均年消费支出数据Y 和城镇居民人均可支配年收入X ,得到消费函数模型
()()ˆ262.700.8042.640.02Y
X =+
括号中为参数估计值的标准差,取显著性水平为0.05,0.0250.025(15) 2.131,(16) 2.120t t ==,2
26.60i e =∑。
(1)请计算F 值、2R 值、2
i y ∑。
(2)请问t 检验的0H 是什么?请对参数进行显著性检验。
(3)求ˆσ。
2. 样本回归方程为12ˆˆi i i
Y X e ββ=++,其样本信息数据整理如下(小写表示离差): n=32,
487i X =∑,393i Y =∑,78i x =∑,52i y =∑,210697i x =∑,27565i y =∑,12678i i x y =∑,2221,725,000i i x y =∑,21280i e =∑,27F X =,取显著性水平0.05α=,0.025(30) 2.042t =。
(1)计算12
ˆˆ,ββ。
(2)在5%显著性水平,计算Y 的个别值的预测区间。