万有引力与航天计算题
(物理)物理万有引力与航天练习题20篇含解析
(物理)物理万有引力与航天练习题20篇含解析一、高中物理精讲专题测试万有引力与航天1.某星球半径为6610R m =⨯,假设该星球表面上有一倾角为30θ=︒的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3μ=,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11226.6710N?m /kg G -=⨯,求(计算结果均保留一位有效数字)(1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】26/g m s =,【解析】 【分析】 【详解】(1)对物块受力分析如图所示;假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有:211111sin 02F s fs mgs mv θ--=- N mgcos θ= f N μ=小物块在力F 2作用过程中有:222221sin 02F s fs mgs mv θ---=-由题图可知:1122156?3?6?F N s m F N s m ====,;, 整理可以得到:(2)根据万有引力等于重力:,则:,,代入数据得2.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
这颗卫星是地球同步卫星,其运行周期与地球的自转周期T 相同。
已知地球的 半径为R ,地球表面的重力加速度为g ,求该卫星的轨道半径r 。
【答案】22324R gTr π= 【解析】 【分析】根据万有引力充当向心力即可求出轨道半径大小。
【详解】质量为m 的北斗地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有:2224Mm G m r r Tπ=; 在地球表面:112Mm Gm g R= 联立解得:222332244GMT R gTr ππ==3.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr = 将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算4.我国航天事业的了令世界瞩目的成就,其中嫦娥三号探测器与2013年12月2日凌晨1点30分在四川省西昌卫星发射中心发射,2013年12月6日傍晚17点53分,嫦娥三号成功实施近月制动顺利进入环月轨道,它绕月球运行的轨道可近似看作圆周,如图所示,设嫦娥三号运行的轨道半径为r ,周期为T ,月球半径为R .(1)嫦娥三号做匀速圆周运动的速度大小 (2)月球表面的重力加速度 (3)月球的第一宇宙速度多大.【答案】(1) 2r T π;(2) 23224r T R π;2324rT Rπ【解析】 【详解】(1)嫦娥三号做匀速圆周运动线速度:2rv r Tπω==(2)由重力等于万有引力:2GMmmg R= 对于嫦娥三号由万有引力等于向心力:2224GMm m rr T π=联立可得:23224r g T Rπ=(3)第一宇宙速度为沿月表运动的速度:22GMm mv mg R R== 可得月球的第一宇宙速度:2324r v gR T Rπ==5.我们将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,且沿半径不同的同心轨道作匀速圆周运动,设双星间距为L ,质量分别为M 1、M 2(万有引力常量为G)试计算:()1双星的轨道半径 ()2双星运动的周期.【答案】()2112121?M M L L M M M M ++,;()()122?2LL G M M π+;【解析】设行星转动的角速度为ω,周期为T .()1如图,对星球1M ,由向心力公式可得: 212112M M GM R ωL=同理对星2M ,有:212222M M G M R ωL= 两式相除得:1221R M (R M ,=即轨道半径与质量成反比) 又因为12L R R =+ 所以得:21121212M M R L R L M M M M ==++,()2有上式得到:()12G M M 1ωLL+=因为2πT ω=,所以有:()12L T 2πL G M M =+答:()1双星的轨道半径分别是211212M M L L M M M M ++,;()2双星的运行周期是()12L2πLG M M +点睛:双星靠相互间的万有引力提供向心力,抓住角速度相等,向心力相等求出轨道半径之比,进一步计算轨道半径大小;根据万有引力提供向心力计算出周期.6.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用7.设想若干年后宇航员登上了火星,他在火星表面将质量为m 的物体挂在竖直的轻质弹簧下端,静止时弹簧的伸长量为x ,已知弹簧的劲度系数为k ,火星的半径为R ,万有引力常量为G ,忽略火星自转的影响。
高考物理万有引力与航天解题技巧(超强)及练习题(含答案)
最新高考物理万有引力与航天解题技巧(超强)及练习题(含答案)一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求:(1)小球抛出的初速度v o(2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hR t【解析】(1)小球做平抛运动,在水平方向:x=vt ,解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2,解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m ,由万有引力等于物体的重力得:mg=2Mm GR所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2);(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得:22Mm vGmRR重力等于万有引力,即mg=2Mm GR,解得该星球的第一宇宙速度为:2hR v gRt2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G )【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有w 1=w 2 ① (1分)r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R .(1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t月(2)222hR MGt;2hR vt【解析】【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ;飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小.【详解】(1)月球表面附近的物体做自由落体运动h =12g 月t2月球表面的自由落体加速度大小g 月=22h t(2)若不考虑月球自转的影响G2Mm R=mg月月球的质量222hR M Gt=质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2vR月球的“第一宇宙速度”大小2hR v g R t月==【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .4.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
高中物理万有引力与航天题20套(带答案)
高中物理万有引力与航天题20套(带答案)一、高中物理精讲专题测试万有引力与航天1.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(23)T =【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R = 22022hv RM GL =(2)1v ===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:T =2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)【答案】【解析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、r2,角速度分别为w1,w2.根据题意有w1=w2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P点,远地点为同步圆轨道Ⅲ上的Q点.到达远地点Q时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G,地球质量为M,地球半径为R,飞船质量为m,同步轨道距地面高度为h.当卫星距离地心的距离为r时,地球与卫星组成的系统的引力势能为p GMmEr=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.4.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞行轨道近似为圆形,距月球表面高度为H ,飞行周期为T ,月球的半径为R ,引力常量为G .求:(1) “嫦娥一号”绕月飞行时的线速度大小; (2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运行的线速度应为多大. 【答案】(1)()2R H Tπ+(2)()3224R H GT π+(3)()2R H R HTRπ++ 【解析】(1)“嫦娥一号”绕月飞行时的线速度大小12π()R H v T+=. (2)设月球质量为M .“嫦娥一号”的质量为m .根据牛二定律得2224π()()R H MmG m R H T +=+解得2324π()R H M GT+=. (3)设绕月飞船运行的线速度为V ,飞船质量为0m ,则2002Mm V G m RR =又2324π()R H M GT+=. 联立得()2πR H R HV TR++=5.设地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.若把一质量为m 的物体放在地球表面的不同位置,由于地球自转,它对地面的压力会有所不同.(1)若把物体放在北极的地表,求该物体对地表压力的大小F 1; (2)若把物体放在赤道的地表,求该物体对地表压力的大小F 2;(3)假设要发射一颗卫星,要求卫星定位于第(2)问所述物体的上方,且与物体间距离始终不变,请说明该卫星的轨道特点并求出卫星距地面的高度h .【答案】(1)2GMm R (2)22224Mm F G m R R T π=-(3)2324GMTh R π= 【解析】【详解】(1) 物体放在北极的地表,根据万有引力等于重力可得:2MmG mg R = 物体相对地心是静止的则有:1F mg =,因此有:12MmF GR = (2)放在赤道表面的物体相对地心做圆周运动,根据牛顿第二定律:22224Mm GF mR RTπ-=解得: 22224Mm F G m R R Tπ=-(3)为满足题目要求,该卫星的轨道平面必须在赤道平面内,且做圆周运动的周期等于地球自转周期T以卫星为研究对象,根据牛顿第二定律:2224()()Mm GmR h R h Tπ=++解得卫星距地面的高度为:2324GMTh R π=-6.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.7.一名宇航员抵达一半径为R 的星球表面后,为了测定该星球的质量,做下实验:将一个小球从该星球表面某位置以初速度v 竖直向上抛出,小球在空中运动一间后又落回原抛出位置,测得小球在空中运动的时间为t ,已知万有引力恒量为G ,不计阻力,试根据题中所提供的条件和测量结果,求:(1)该星球表面的“重力”加速度g 的大小; (2)该星球的质量M ;(3)如果在该星球上发射一颗围绕该星球做匀速圆周运动的卫星,则该卫星运行周期T 为多大?【答案】(1)2v g t =(2)22vR M Gt=(3)2T π=【解析】 【详解】(1)由运动学公式得:2vt g=解得该星球表面的“重力”加速度的大小 2v g t=(2)质量为m 的物体在该星球表面上受到的万有引力近似等于物体受到的重力,则对该星球表面上的物体,由牛顿第二定律和万有引力定律得:mg =2mM GR解得该星球的质量为 22vR M Gt= (3)当某个质量为m′的卫星做匀速圆周运动的半径等于该星球的半径R 时,该卫星运行的周期T 最小,则由牛顿第二定律和万有引力定律2224m M m RG R Tπ''=解得该卫星运行的最小周期 22Rt T vπ= 【点睛】重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.本题要求学生掌握两种等式:一是物体所受重力等于其吸引力;二是物体做匀速圆周运动其向心力由万有引力提供.8.神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX ﹣3双星系统,它由可见星A 和不可见的暗星B 构成.将两星视为质点,不考虑其他天体的影响,A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,(如图)所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .(1)可见星A 所受暗星B 的引力FA 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m1、m2,试求m ′(用m1、m2表示); (2)求暗星B 的质量m2与可见星A 的速率v 、运行周期T 和质量m1之间的关系式; (3)恒星演化到末期,如果其质量大于太阳质量ms 的2倍,它将有可能成为黑洞.若可见星A 的速率v =2.7×105 m/s ,运行周期T =4.7π×104s ,质量m1=6ms ,试通过估算来判断暗星B 有可能是黑洞吗?(G =6.67×10﹣11N •m 2/kg2,ms =2.0×103 kg )【答案】(1)()32212'm m m m =+()3322122m v T Gm m π=+(3)有可能是黑洞 【解析】试题分析:(1)设A 、B 圆轨道的半径分别为12r r 、,由题意知,A 、B 的角速度相等,为0ω,有:2101A F m r ω=,2202B F m r ω=,又A B F F =设A 、B 之间的距离为r ,又12r r r =+ 由以上各式得,1212m m r r m +=① 由万有引力定律得122A m m F Gr =将①代入得()3122121A m m F G m m r =+令121'A m m F G r =,比较可得()32212'm m m m =+② (2)由牛顿第二定律有:211211'm m v G m r r =③ 又可见星的轨道半径12vT r π=④ 由②③④得()3322122m v T Gm m π=+ (3)将16s m m =代入()3322122m v T G m m π=+得()3322226s m v TGm m π=+⑤ 代入数据得()3222 3.56s s m m m m =+⑥设2s m nm =,(n >0)将其代入⑥式得,()322212 3.561s sm n m m m m n ==+⎛⎫+ ⎪⎝⎭⑦可见,()32226s m m m +的值随n 的增大而增大,令n=2时得20.125 3.561s s sn m m m n =<⎛⎫+ ⎪⎝⎭⑧要使⑦式成立,则n 必须大于2,即暗星B 的质量2m 必须大于12m ,由此得出结论,暗星B 有可能是黑洞.考点:考查了万有引力定律的应用【名师点睛】本题计算量较大,关键抓住双子星所受的万有引力相等,转动的角速度相等,根据万有引力定律和牛顿第二定律综合求解,在万有引力这一块,设计的公式和物理量非常多,在做题的时候,首先明确过程中的向心力,然后弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算9.“嫦娥四号”卫星从地球经地一月转移轨道,在月球附近制动后进入环月轨道,然后以大小为v 的速度绕月球表面做匀速圆周运动,测出其绕月球运动的周期为T ,已知引力常量G ,月球的半径R 未知,求: (1)月球表面的重力加速度大小;(2)月球的平均密度。
高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)含解析
高考物理万有引力与航天解题技巧及经典题型及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力与航天1. 如下图,质量分别为m 和 M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 二者中心之间距离为L .已知A 、B 的中心和O 三点一直共线,A 和B 分别在 O 的双侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L, r= m L,( 2) 2πL 3【答案】 (1) R=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:GmM 4 2 4 2L 2mR2Mr2TT 可得R=M,又由于 LR rrm因此能够解得: M L , rm L ;RMmMm(2)依据( 1)能够获得 : GmM4 2 4 2ML 2m2 Rm2MLTTm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 .2.“天宫一号 ”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013年 6 月,“神舟十号 ”与 “天宫一号 ”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物 理课.已知 “天宫一号 ”飞翔器运转周期 T ,地球半径为 R ,地球表面的重力加快度为g , “天宫一号 ”围绕地球做匀速圆周运动,万有引力常量为 G .求:(1)地球的密度;(2)地球的第一宇宙速度v ;(3) 天“宫一号 ”距离地球表面的高度.【答案】 (1)3g (2) vgR (3) h3gT 2 R 2 R4 GR42【分析】(1)在地球表面重力与万有引力相等:GMmmg ,R 2M M 地球密度:V4 R 33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mgmvgRv 2R(3)天宫一号的轨道半径 r Rh ,Mmm R h42据万有引力供给圆周运动向心力有:G 22,R hT解得: h3gT 2 R 2 R243. 地球同步卫星,在通信、导航等方面起到重要作用。
万有引力与航天典型题集(精)
1.已知地球同步卫星离地心的距离为r,运行速度为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R,则下列比值正确的是:R r a a 21 221 r R a a R r v v 21 r Rv v 21 A B C D2.用m 表示地球通讯卫星(同步卫星)的质量,用h 表示它离地面的高度,R 0表示地球半径,g 0表示地球表面处的重力加速度,ω0表示地球自转的角速度。
则通讯卫星所受的地球对它的万有引力大小:A.等于 0 B.等于20020h R gR m C.等于340020 g R m D.以上均不对 3.近地人造卫星1和2绕地球做匀速圆周运动的周期分别为T 1和T 2,设在卫星1、卫星2各自所在的高度上的重力加速度大小分别为g 1、g 2,则A. B. C. D.4.宇宙飞船以周期为T 绕地地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示。
已知地球的半径为R,地球质量为M,引力常量为G,地球自转周期为T 0,太阳光可看作平行光,宇航员在A 点测出的张角为 ,则A. 飞船绕地球运动的线速度为B. 一天内飞船经历“日全食”的次数为T/T 0C. 飞船每次“日全食”过程的时间为D. 飞船周期为T=5. 某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远镜观察被太阳光照射的此卫星,试问,春分那天(太阳光直射赤道)在日落12小时内有多长时间该观察者看不见此卫星?已知地球半径为R,地球表面处的重力加速度为g,地球自转周期为T,不考虑大气对光的折射 22sin()RT/(2)aT 222sin()sin()R RGM6.我国发射的“嫦娥一号”探月卫星沿近似于圆形的轨道绕月飞行。
为了获得月球表面全貌的信息,让卫星轨道平面缓慢变化。
卫星将获得的信息持续用微波信号发回地球。
设地球和月球的质量分别为M 和m,地球和月球的半径分别为R 和R 1,月球绕地球的轨道半径和卫星绕月球的轨道半径分别为r 和r 1,月球绕地球转动的周期为T。
高中物理万有引力与航天专项训练及答案及解析.docx
高中物理万有引力与航天专项训练及答案及解析一、高中物理精讲专题测试万有引力与航天1. 据每日邮报 2014 年 4 月 18 日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地 ”行星 .假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星 “北极 ”距该行星地面附近 h 处自由释放 -个小球 ( 引力视为恒力 ),落地时间为 t. 已知该行星半径为 R ,万有引力常量为 G ,求:1 2该行星的第一宇宙速度;该行星的平均密度.【答案】 12h R ?2 ? 3h. t 2 2 R2Gt【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求 M 出质量与运动的周期,再利用,从而即可求解.V【详解】1 根据自由落体运动求得星球表面的重力加速度h1 gt 22解得: g 2ht2则由 mgm v 2R求得:星球的第一宇宙速度vgR2h 2 R ,t2 由 GMm mg m2h R 2t 2有: M2hR 2Gt2所以星球的密度M3hV2Gt 2R【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2. 宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个星体的质量均为m,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为G,则 :(1)直线三星系统中星体做囿周运动的周期为多少?(2)三角形三星系统中每颗星做囿周运动的角速度为多少?L3( 2)3Gm【答案】( 1)435Gm L【解析】【分析】(1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期;(2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度;【详解】(1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则:Gm2Gm2m( 2 )2L(2 L)2L2TT 4L35Gm(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗Gm2L星,满足:2m (2)2 cos30cos30L解得:=3GmL33.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为,引力常量为,求:R G(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】 (1) g 2v0(2)3v0(3)2v0 R t2πRGtvt【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间2v0 tg可得星球表面重力加速度: g2v0.tGMm (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:mg R2gR22v0 R2得:MGtG4 R3因为V3M3v0则有:2πRGtV(3)重力提供向心力,故该星球的第一宇宙速度mg m v2Rv gR2v0Rt【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度 v0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t. 已知引力常量为G,月球的半径为 R,不考虑月球自转的影响,求:(1)月球表面的重力加速度大小g月;(2)月球的质量 M;(3)飞船贴近月球表面绕月球做匀速圆周运动的周期T.【答案】 (1)2v0; (2)2R2v0; (3)2Rt t Gt2v0【解析】【详解】(1) 小球在月球表面上做竖直上抛运动,有2v0 tg月月球表面的重力加速度大小g月2v 0t (2)假设月球表面一物体质量为m,有MmGR2=mg月月球的质量M 2R2v0 Gt(3) 飞船贴近月球表面做匀速圆周运动,有G Mmm22RR 2T飞船贴近月球表面绕月球做匀速圆周运动的周期T 2Rt2v 05. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为求:(1)行星的质量 M ;(2)行星表面的重力加速度 g ;(3)行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【解析】【详解】(1)设宇宙飞船的质量为 m ,根据万有引力定律求出行星质量(2)在行星表面求出 :(3)在行星表面求出 :【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.6. 如图所示, A 是地球的同步卫星.另一卫星B 的圆形轨道位于赤道平面内.已知地球自转角速度为0 ,地球质量为 M , B 离地心距离为 r ,万有引力常量为G , O 为地球中心,不考虑 A 和 B 之间的相互作用.(图中 R 、h 不是已知条件)(1)求卫星 A 的运行周期T A(2)求 B 做圆周运动的周期T B(3)如卫星 B 绕行方向与地球自转方向相同,某时刻A、B 两卫星相距最近(O、 B、 A 在同一直线上),则至少经过多长时间,它们再一次相距最近?2r3t2【答案】(1)T A(2) T B2( 3)GMGM r30【解析】【分析】【详解】(1) A 的周期与地球自转周期相同2T AGMm m(2)2 r(2)设 B 的质量为 m,对 B 由牛顿定律 :r 2T B解得:T Br 3 2GM(3) A、 B 再次相距最近时 B 比 A 多转了一圈,则有:(B0 ) t2t2GM解得:r 3点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第 3 问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.7.假设在月球上的“玉兔号”探测器,以初速度v0竖直向上抛出一个小球,经过时间t 小球落回抛出点,已知月球半径为R,引力常数为G.(1)求月球的密度.(2)若将该小球水平抛出后,小球永不落回月面,则抛出的初速度至少为多大?3v02Rv0【答案】(1)( 2)2 GRt t【解析】【详解】(1) 由匀变速直线运动规律:v0gt 2所以月球表面的重力加速度g 2v0 t由月球表面,万有引力等于重力得GMmmg R2gR 2 MG月球的密度M3v0=2 GRtV2(2) 由月球表面,万有引力等于重力提供向心力:mg m vR2Rv0可得: vt8.某行星表面的重力加速度为g ,行星的质量为M ,现在该行星表面上有一宇航员站在地面上,以初速度v0竖直向上扔小石子,已知万有引力常量为G .不考虑阻力和行星自转的因素,求:(1)行星的半径R;(2)小石子能上升的最大高度.GM v02【答案】 (1) R =( 2)hg2g【解析】GMm(1)对行星表面的某物体,有:mg-2R得: R =GM g(2)小石子在行星表面作竖直上抛运动,规定竖直向下的方向为正方向,有:0v022ghv02得: h2g9.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为 +Q,静电力常量为 k,推导距离点电荷 r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为 M ,半径为 R ,引力常量为 G .a .请参考电场强度的定义,推导距离地心r 处(其中 r ≥R )的引力场强度E 引 的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中 r <R )的引力场强度 E 引 的表达式.【答案】( 1)kQGM GMr2 ( 2) a . E 引r 2b . E 引R 3rE【解析】【详解】(1)由 EF , Fk qQ,得 EkQqr 2r 2(2) a .类比电场强度定义,E 引F 万 ,由 F 万GMm ,m r 2得 E 引 GMr2b .由于质量分布均匀的球壳对其内部的物体的引力为 0,当 r < R 时,距地心 r 处的引力场强是由半径为 r 的“地球 ”产生的.设半径为 r 的“地球 ”质量为 M r ,M r4 M4 r 3 r 3 M.R 33R 33得 E引GM r GM rr 2R 310. 2017 年 4 月 20 日 19 时 41 分天舟一号货运飞船在文昌航天发射中心由长征七号遥二运载火箭成功发射升空。
高考物理万有引力与航天题20套(带答案)含解析
高考物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求:()1该行星的第一宇宙速度; ()2该行星的平均密度.【答案】(()231 2?2hGt R π. 【解析】 【分析】根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用MVρ=,从而即可求解. 【详解】()1根据自由落体运动求得星球表面的重力加速度212h gt =解得:22h g t=则由2v mg m R=求得:星球的第一宇宙速度v ==()2由222Mm hG mg m Rt==有:222hR M Gt= 所以星球的密度232M h V Gt R ρπ== 【点睛】本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解.2.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看作是平坦的),已知月球半径为R ,万有引力常量为G ,求: (1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大? (3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【答案】(1)22022hV R M GL =(2)02V hR L (3)0()2()L R H R H T RV hπ++=【解析】 【详解】(1)由平抛运动的规律可得:212h gt =0L v t =2022hv g L=由2GMmmg R= 22022hv RM GL= (2)012v GMv RG hR R L===(3)万有引力提供向心力,则()()222GMmm R H T R H π⎛⎫=+ ⎪⎝⎭+解得:()()2L R H R H T Rv hπ++=3.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R 月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .4.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大?(3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能)【答案】(1)2GMm R (23【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMmmv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:2v = (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R =则探测器离开飞船时的速度(相对于地心)至少是:3v =. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.5.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gt π;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.6.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GT π=;22GM R c '=【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r T π⎛⎫= ⎪⎝⎭解得23024r M GT π=b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c '=7.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R 和R 1,地球半径为r ,月球半径为r 1,地球表面重力加速度为g ,月球表面重力加速度为.求: (1)卫星在停泊轨道上运行的线速度大小; (2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得; (2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.8.宇航员王亚平在“天宫一号”飞船内进行了我国首次太空授课.若已知飞船绕地球做匀速圆周运动的周期为T ,地球半径为R ,地球表面重力加速度g ,求: (1)地球的第一宇宙速度v ; (2)飞船离地面的高度h . 【答案】(1)v gR =(2)22324gR T h R π= 【解析】 【详解】(1)根据2v mg m R=得地球的第一宇宙速度为:v gR =.(2)根据万有引力提供向心力有:()2224()Mm G m R h R h Tπ=++, 又2GM gR =, 解得:22324gR T h R π=- .9.我国首颗量子科学实验卫星于2016年8月16日1点40分成功发射。
高中物理万有引力与航天题20套(带答案)含解析
高中物理万有引力与航天题20套(带答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”. 【答案】(1)02v g t = (2) 032πv RGt ρ=(3)02v Rv t= 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度02v Rv gR t==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) 02v R h【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度202v g h'=(2) 卫星贴近星球表面运行,则2v mg m R'=解得:星球上发射卫星的第一宇宙速度02R v g R v h=='4.我国预计于2022年建成自己的空间站。
高考物理万有引力与航天解题技巧及练习题(含答案)
高考物理万有引力与航天解题技巧及练习题(含答案)一、高中物理精讲专题测试万有引力与航天 1. 如下图,A 是地球的同步卫星,另一卫星B 的圆形轨道位于赤道平面内,离地面高度为 h.已知地球半径为R ,地球自转角速度为ω0,地球表面的重力加快度为g ,O 为地球中心.(1)求卫星B 的运转周期.(2)如卫星B 绕行方向与地球自转方向同样,某时辰A 、B 两卫星相距近来(O 、B 、 A 在同一直线上),则起码经过多长时间,它们再一次相距近来?(R + h) 3t2【答案】 (1) T B = 2p(2)gR2gR 2( Rh)3【分析】【详解】Mm m 4 2R h ① , GMm(1)由万有引力定律和向心力公式得G2 2 mg ②R hT B R 2R3联立①②解得 : T B h③ 2R 2 g(2)由题意得0 t 2 ④ ,由③得BgR 2 ⑤BR3ht2R 2g代入④得3R h2. 据每天邮报 2014 年 4 月 18 日报导,美国国家航空航天局当前宣告初次在太阳系外发现“类地 ”行星 .若是宇航员乘坐宇宙飞船抵达该行星,进行科学观察:该行星自转周期为T ;宇航员在该行星 “北极 ”距该行星地面邻近 h 处自由开释 -个小球 ( 引力视为恒力 ),落地时间为 t. 已知该行星半径为 R ,万有引力常量为 G ,求:1 该行星的第一宇宙速度;2 该行星的均匀密度.2h2 ? 3h【答案】1 2 R ?2 .t2Gt R【分析】【剖析】依据自由落体运动求出星球表面的重力加快度,再依据万有引力供给圆周运动向心力,求M 出质量与运动的周期,再利用,进而即可求解.V【详解】1 依据自由落体运动求得星球表面的重力加快度h1 gt 22解得: g 2h2t则由 mgm v 2R求得:星球的第一宇宙速度 vgR2hR ,t 22 由 G Mm 2hR 2 mg m t 2有: M2hR 2Gt2M3h所以星球的密度2Gt 2 RV【点睛】此题重点是经过自由落体运动求出星球表面的重力加快度,再依据万有引力供给圆周运动向心力和万有引力等于重力争解.3. 如下图,宇航员站在某质量散布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0 抛出一个小球,测得小球经时间 t 落到斜坡上另一点 Q ,斜面的倾角为 α,已知该星球半径为 R ,万有引力常量为G ,求:(1) 该星球表面的重力加快度; (2) 该星球的质量。
万有引力与航天 -典型例题
万有引力与航天--例题考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g 4πGR.(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r3GT 2;②若已知天体半径R ,则天体的平均密度ρ=M V =M 43πR3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.例1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22C .月球的质量m 月=4π2L 31GT 21D .可求月球、地球及太阳的密度1.[天体质量的估算]“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km 的圆形轨道上运行,运行周期为127分钟.已知引力常量G =×10-11N·m 2/kg 2,月球的半径为×103km.利用以上数据估算月球的质量约为( ) A .×1010kg B .×1013kg C .×1019kg D .×1022kg2.[天体密度的计算]“嫦娥三号”探测器已于2013年12月2日1时30分,在西昌卫星发射中心成功发射.“嫦娥三号”携带“玉免号”月球车首次实现月球软着陆和月面巡视勘察,并开展月表形貌与地质构造调查等科学探测.已知月球半径为R 0,月球表面处重力加速度为g 0,地球和月球的半径之比为R R 0=4,表面重力加速度之比为g g 0=6,则地球和月球的密度之比ρρ0为( )C .4D .6估算天体质量和密度时应注意的问题(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.(2)区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径.考点二卫星运行参量的比较与计算1.卫星的各物理量随轨道半径变化的规律2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为 km/s.(3)两种卫星的轨道平面一定通过地球的球心.例2(2013·广东·14)如图1,甲、乙两颗卫星以相同的轨道半径分别绕质量为M和2M的行星做匀速圆周运动,下列说法正确的是( )图1A.甲的向心加速度比乙的小B.甲的运行周期比乙的小C.甲的角速度比乙的大D.甲的线速度比乙的大3.[卫星运行参量的比较](2013·海南·5)“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和倍.下列说法正确的是( ) A .静止轨道卫星的周期约为中轨道卫星的2倍 B .静止轨道卫星的线速度大小约为中轨道卫星的2倍C .静止轨道卫星的角速度大小约为中轨道卫星的17 D .静止轨道卫星的向心加速度大小约为中轨道卫星的174.[同步卫星问题的有关分析]已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是( ) A .卫星距地面的高度为 3GMT 24π2B .卫星的运行速度小于第一宇宙速度C .卫星运行时受到的向心力大小为G Mm R2D .卫星运行的向心加速度小于地球表面的重力加速度同步卫星的六个“一定”考点三 卫星变轨问题分析1.当卫星的速度突然增大时,G Mm r 2<m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v = GMr可知其运行速度比原轨道时减小.2.当卫星的速度突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v = GMr可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.例3在完成各项任务后,“神舟十号”飞船于2013年6月26日回归地球.如图2所示,飞船在返回地面时,要在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的一点,M为轨道Ⅰ上的另一点,关于“神舟十号”的运动,下列说法中正确的有( )图2A.飞船在轨道Ⅱ上经过P的速度小于经过Q的速度B.飞船在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过M的速度C.飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期D.飞船在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过M的加速度5.[变轨中运行参量的比较]2013年12月2日,我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图3所示,地面发射后奔向月球,在P点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q为轨道Ⅱ上的近月点.下列关于“嫦娥三号”的运动,正确的说法是( )图3A.发射速度一定大于 km/sB.在轨道Ⅱ上从P到Q的过程中速率不断增大C.在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过P的速度D.在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过P的加速度6.[变轨中运行参量的比较]如图4所示,搭载着“嫦娥二号”卫星的长征三号丙运载火箭在西昌卫星发射中心点火发射,卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100 km、周期为118 min的工作轨道,开始对月球进行探测,则( )图4A .卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小B .卫星在轨道Ⅲ上经过P 点的速度比在轨道Ⅰ上经过P 点时的大C .卫星在轨道Ⅲ上运行周期比在轨道Ⅰ上短D .卫星在轨道Ⅲ上的运行周期比在轨道Ⅰ上长考点四 宇宙速度的理解与计算1.第一宇宙速度又叫环绕速度.推导过程为:由mg =mv 21R =GMmR2得:v 1=GMR=gR = km/s. 2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度. 3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度. 注意 (1)两种周期——自转周期和公转周期的不同.(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度. (3)两个半径——天体半径R 和卫星轨道半径r 的不同.(4)第二宇宙速度(脱离速度):v2= km/s,使物体挣脱地球引力束缚的最小发射速度.(5)第三宇宙速度(逃逸速度):v3= km/s,使物体挣脱太阳引力束缚的最小发射速度.例4“伽利略”木星探测器,从1989年10月进入太空起,历经6年,行程37亿千米,终于到达木星周围.此后在t秒内绕木星运行N圈后,对木星及其卫星进行考察,最后坠入木星大气层烧毁.设这N圈都是绕木星在同一个圆周上运行,其运行速率为v,探测器上的照相机正对木星拍摄整个木星时的视角为θ(如图5所示),设木星为一球体.求:图5(1)木星探测器在上述圆形轨道上运行时的轨道半径; (2)木星的第一宇宙速度.7.[第一宇宙速度的理解与计算]某人在一星球表面上以速度v 0竖直上抛一物体,经过时间t 后物体落回手中.已知星球半径为R ,那么沿星球表面将物体抛出,要使物体不再落回星球表面,抛射速度至少为( ) B.2v 0RtC.v 0Rt8.[宇宙速度的理解与计算]2011年中俄联合实施探测火星计划,由中国负责研制的“萤火一号”火星探测器与俄罗斯研制的“福布斯—土壤”火星探测器一起由俄罗斯“天顶”运载火箭发射前往火星.已知火星的质量约为地球质量的19,火星的半径约为地球半径的12.下列关于火星探测器的说法中正确的是( ) A .发射速度只要大于第一宇宙速度即可 B .发射速度只有达到第三宇宙速度才可以C .发射速度应大于第二宇宙速度而小于第三宇宙速度D .火星探测器环绕火星运行的最大速度为地球第一宇宙速度的23考点五 双星或多星模型绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图6所示,双星系统模型有以下特点:图6(1)各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L2=m 2ω22r 2 (2)两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2(3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L (4)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1(5)双星的运动周期T =2πL 3G m 1+m 2(6)双星的总质量公式m 1+m 2=4π2L3T 2G例5宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用相互绕转,称之为双星系统.在浩瀚的银河系中,多数恒星都是双星系统.设某双星系统A、B绕其连线上的O点做匀速圆周运动,如图7所示.若AO>OB,则( )图7A.星球A的质量一定大于星球B的质量B.星球A的线速度一定大于星球B的线速度C.双星间距离一定,双星的质量越大,其转动周期越大D.双星的质量一定,双星之间的距离越大,其转动周期越大(选做)9.[双星模型](2013·山东·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为( )T TT T(选做)10.[多星模型]宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m,半径均为R,四颗星稳定分布在边长为a的正方形的四个顶点上.已知引力常量为G.关于四星系统,下列说法正确的是( )A .四颗星围绕正方形对角线的交点做匀速圆周运动B .四颗星的轨道半径均为a2C .四颗星表面的重力加速度均为Gm R2D .四颗星的周期均为2πa 2a 4+2Gm万有引力与航天--例题-答案例1解析 对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G ,选项A 正确.对地球绕太阳运动来说,有Gm 太m 地L 22=m 地4π2T 22L 2,则m 太=4π2L32GT22,B 项正确.对月球绕地球运动来说,能求地球的质量,不知道月球的相关参量及月球的卫星的运动参量,无法求出它的质量和密度,C 、D 项错误. 答案 AB变式题组1答案 D 解析 由GMm R +h2=m (R +h )(2πT)2,解得月球的质量M =4π2(R +h )3/GT 2,代入数据得:M=×1022kg ,选项D 正确. 2答案 B解析 设星球的密度为ρ,由GMm ′R 2=m ′g 得GM =gR 2,ρ=M V =M 43πR3,联立解得:ρ=3g 4G πR,则:ρρ0=g ·R 0g 0·R ,将R R 0=4,g g 0=6代入上式,解得:ρρ0=32,选项B 正确.例2答案 A解析 由万有引力提供向心力得G Mm r 2=m v 2r =mω2r =ma =m 4π2T 2r ,变形得:a =GM r 2,v = GM r,ω= GM r 3,T =2π r 3GM,只有周期T 和M 成减函数关系,而a 、v 、ω和M 成增函数关系,故选A.变式题组3答案 A 4答案 BD解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆周运动,即F 万=F 向=m v 2r =4π2mr T 2.当卫星在地表运行时,F 万=GMmR2=mg (R 为地球半径),设同步卫星离地面高度为h ,则F 万=GMmR +h2=F 向=ma 向<mg ,所以C 错误,D 正确.由GMmR +h2=mv 2R +h得,v =GM R +h < GM R ,B 正确.由GMm R +h2=4π2m R +hT 2,得R +h = 3GMT 24π2,即h = 3GMT 24π2-R ,A 错误.例3解析由开普勒行星运动定律可知选项A正确;飞船在轨道Ⅰ上做匀速圆周运动,故飞船经过P、M两点时的速率相等,由于飞船在P点进入轨道Ⅱ时相对于轨道Ⅰ做向心运动,可知飞船在轨道Ⅱ上P点速度小于轨道Ⅰ上P点速度,故选项B正确;根据开普勒第三定律可知,飞船在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,选项C错误;根据牛顿第二定律可知,飞船在轨道Ⅱ上经过P的加速度与在轨道Ⅰ上经过M的加速度大小相等,选项D错误.答案AB递进题组5答案 ABC解析 “嫦娥三号”探测器的发射速度一定大于 km/s ,A 正确.在轨道Ⅱ上从P 到Q 的过程中速率不断增大,选项B 正确.“嫦娥三号”从轨道Ⅰ上运动到轨道Ⅱ上要减速,故在轨道Ⅱ上经过P 的速度小于在轨道Ⅰ上经过P 的速度,选项C 正确.在轨道Ⅱ上经过P 的加速度等于在轨道Ⅰ上经过P 的加速度,D 错. 6答案 AC[例4】答案 (1)vt 2πN(2)vsinθ2解析 (1)设木星探测器在题述圆形轨道运行时,轨道半径为r ,由v =2πrT可得:r =vT2π由题意可知,T =t N联立解得r =vt2πN(2)探测器在圆形轨道上运行时,万有引力提供向心力,G mM r 2=m v 2r. 设木星的第一宇宙速度为v 0,有,G m ′M R 2=m ′v 20R联立解得:v 0=rR v 由题意可知R =r sin θ2,解得:v 0=vsinθ2.变式题组7答案 B解析 要使物体不再落回星球表面,抛射速度必须达到星球的第一宇宙速度,满足v = GM R=gR ,而由竖直上抛规律知v 0=12gt ,所以v =2v 0Rt,B 对.8答案 CD解析 根据三个宇宙速度的意义,可知选项A 、B 错误,选项C 正确;已知M 火=M 地9,R 火=R 地2,则v mv 1=GM 火R 火∶GM 地R 地=23. 【例5】解析 设双星质量分别为m A 、m B ,轨道半径分别为R A 、R B ,两者间距为L ,周期为T ,角速度为ω,由万有引力定律可知:Gm A m B L2=m A ω2R A ① Gm A m B L 2=m B ω2R B ② R A +R B =L ③由①②式可得m A m B =R B R A,而AO >OB ,故A 错误.v A =ωR A ,v B =ωR B ,B 正确.联立①②③得G (m A +m B )=ω2L 3, 又因为T =2πω,故T =2πL 3G m A +m B,可知C 错误,D 正确.答案 BD变式题组9答案 B解析 双星靠彼此的引力提供向心力,则有G m 1m 2L 2=m 1r 14π2T2G m 1m 2L 2=m 2r 24π2T2 并且r 1+r 2=L 解得T =2πL 3G m 1+m 2当两星总质量变为原来的k 倍,两星之间距离变为原来的n 倍时T ′=2πn 3L 3Gk m 1+m 2=n 3k·T 故选项B 正确. 10 ACD解析 其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点,围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为22a ,故A 正确,B 错误;在星体表面,根据万有引力等于重力,可得G mm ′R 2=m ′g ,解得g =GmR2,故C 正确;由万有引力定律和向心力公式得Gm 22a2+2Gm2a2=m4π2T2·2a 2,T =2πa 2a 4+2Gm,故D 正确.高考模拟 明确考向1.(2014·新课标Ⅱ·18)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ,地球自转的周期为T ,引力常量为G .地球的密度为( )2.(2014·福建·14)若有一颗“宜居”行星,其质量为地球的p 倍,半径为地球的q 倍,则该行星卫星的环绕速度是地球卫星环绕速度的( ) 倍 倍 倍 倍3.(2014·天津·3)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大4.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O 点运动的( ) A .轨道半径约为卡戎的17B .角速度大小约为卡戎的17C .线速度大小约为卡戎的7倍D .向心力大小约为卡戎的7倍练出高分一、单项选择题1.(2013·江苏单科·1)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积2.2013年6月13日,神舟十号与天宫一号成功实现自动交会对接.假设神舟十号与天宫一号都在各自的轨道做匀速圆周运动.已知引力常量为G ,下列说法正确的是( ) A .由神舟十号运行的周期和轨道半径可以求出地球的质量 B .由神舟十号运行的周期可以求出它离地面的高度C .若神舟十号的轨道半径比天宫一号大,则神舟十号的周期比天宫一号小D .漂浮在天宫一号内的宇航员处于平衡状态(删)3.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的14,不考虑卫星质量的变化,则变轨前、后卫星的( )A .向心加速度大小之比为4∶1B .角速度大小之比为2∶1C .周期之比为1∶8D .轨道半径之比为1∶24.随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员登上月球并在月球表面附近以初速度v 0竖直向上抛出一个小球,经时间t 后小球回到出发点.已知月球的半径为R ,引力常量为G ,则下列说法正确的是( )A .月球表面的重力加速度为v 0tB .月球的质量为2v 0R2GtC .宇航员在月球表面获得v 0Rt的速度就可能离开月球表面围绕月球做圆周运动 D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为Rt v 05.小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍.某时刻,航天站使登月器减速分离,登月器沿如图1所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回.当第一次回到分离点时恰与航天站对接.登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g 0,月球半径为R ,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为( )图1A .πRg 0B .πR g 0C .πRg 0D .πR g 06.2012年,天文学家首次在太阳系外找到一个和地球尺寸大体相同的系外行星P ,这个行星围绕某恒星Q 做匀速圆周运动.测得P 的公转周期为T ,公转轨道半径为r .已知引力常量为G ,则( )A .恒星Q 的质量约为4π2r3GT 2B .行星P 的质量约为4π2r 3GT2C .以 km/s 的速度从地球发射的探测器可以到达该行星表面D .以 km/s 的速度从地球发射的探测器可以到达该行星表面7.2012年7月,一个国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O 做匀速圆周运动,如图2所示.此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的.假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )图2A .它们做圆周运动的万有引力保持不变B .它们做圆周运动的角速度不断变大C .体积较大星体圆周运动轨迹半径变大,线速度也变大D .体积较大星体圆周运动轨迹半径变大,线速度变小 二、多项选择题8.为了对火星及其周围的空间环境进行探测,我国发射了一颗火星探测器.假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时,周期分别为T 1和T 2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G .仅利用以上数据,可以计算出( ) A .火星的质量 B .探测器的质量 C .火星对探测器的引力 D .火星表面的重力加速度9.一行星绕恒星做匀速圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( )A .恒星的质量为v 3T 2πGB .行星的质量为4π2v3GT2C .行星运动的轨道半径为vT2πD .行星运动的加速度为2πvT.10.我国于2013年6月11日17时38分发射“神舟十号”载人飞船,并与“天宫一号”目标飞行器对接.如图3所示,开始对接前,“天宫一号”在高轨道,“神舟十号”飞船在低轨道,各自绕地球做匀速圆周运动,距离地面的高度分别为h 1和h 2(设地球半径为R ),“天宫一号”的运行周期约为90分钟.则以下说法正确的是( )图3A .“天宫一号”跟“神舟十号”的线速度大小之比为h 2h 1B .“天宫一号”跟“神舟十号”的向心加速度大小之比为R +h 22R +h 12C .“天宫一号”的角速度比地球同步卫星的角速度大D .“天宫一号”的线速度大于 km/s 三、非选择题11.(2014·北京·23)万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果.已知地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量均匀分布的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧秤的读数是F 0.a .若在北极上空高出地面h 处称量,弹簧秤读数为F 1,求比值F 1F 0的表达式,并就h =%R 的情形算出具体数值(计算结果保留两位有效数字);b .若在赤道地面称量,弹簧秤读数为F 2,求比值F 2F 0的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r 、太阳的半径为R S 和地球的半径R 三者均减小为现在的%,而太阳和地球的密度均匀且不变.仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的一年将变为多长高考模拟 明确考向1答案 B解析 物体在地球的两极时,mg 0=G Mm R 2,物体在赤道上时,mg +m (2πT )2R =G Mm R 2,又M =43πR 3ρ,联立以上三式解得地球的密度ρ=3πg 0GT 2g 0-g.故选项B 正确,选项A 、C 、D 错误.2答案 C解析 卫星绕行星做匀速圆周运动的向心力由行星对卫星的万有引力提供.设地球质量为M ,半径为R ,根据GMm R 2=mv 2R 得地球卫星的环绕速度为v = GMR ,同理该“宜居”行星卫星的环绕速度v ′= GpM qR ,故v ′为地球卫星环绕速度的pq倍.选项C 正确.3答案 A解析 地球的自转周期变大,则地球同步卫星的公转周期变大.由GMmR +h2=m4π2T 2(R +h ),得h = 3GMT 24π2-R ,T 变大,h 变大,A 正确.由GMm r 2=ma ,得a =GMr2,r 增大,a 减小,B 错误. 由GMm r 2=mv 2r,得v = GMr,r 增大,v 减小,C 错误.由ω=2πT可知,角速度减小,D 错误.4答案 A解析 本题是双星问题,设冥王星的质量、轨道半径、线速度分别为m 1、r 1、v 1,卡戎的质量、轨道半径、线速度分别为m 2、r 2、v 2,由双星问题的规律可得,两星间的万有引力分别给两星提供做圆周运动的向心力,且两星的角速度相等,故B 、D 均错;由Gm 1m 2L2=m 1ω2r 1=m 2ω2r 2(L 为两星间的距离),因此r 1r 2=m 2m 1=17,v 1v 2=ωr 1ωr 2=m 2m 1=17,故A 对,C 错.练出高分1答案 C解析 火星和木星在各自的椭圆轨道上绕太阳运动,速度的大小不可能始终相等,因此B 错;太阳在这些椭圆的一个焦点上,因此A 错; 在相同时间内,火星与太阳连线在相同时间内扫过的面积相等,木星与太阳连线在相同时间内扫过的面积相等,但这两个面积不相等,因此D 错.本题答案为C. 2答案 A解析 神舟十号和天宫一号都绕地球做匀速圆周运动,万有引力提供向心力,则有GMm R +h2=m (R +h )4π2T2,得T =4π2R +h 3GM,已知周期和轨道半径,又知道引力常量G ,可以求出地球质量M ,A 对.只知道周期而不知道地球质量和轨道半径无法求出高度,B 错.由T =4π2R +h3GM可知轨道半径越大,则周期越大,若神舟十号的轨道半径比天宫一号大,则神舟十号的周期比天宫一号大,C 错.漂浮在天宫一号内的宇航员和天宫一号一起做匀速圆周运动,不是处于平衡状态,D 错. 3答案 C解析 根据E k =12mv 2得v =2E km ,所以卫星变轨前、后的速度之比为v 1v 2=21.根据G Mm r 2=m v 2r,得卫星变轨前、后的轨道半径之比为r 1r 2=v 22v 21=14,选项D 错误;根据G Mmr2=ma ,得卫星变轨前、后的向心加速度大小之比为a 1a 2=r 22r 21=161,选项A 错误;根据G Mm r2=mω2r ,得卫星变轨前、后的角速度大小之比为ω1ω2= r 32r 31=81,选项B 错误;根据T =2πω,得卫星变轨前、后的周期之比为T 1T 2=ω2ω1=18,选项C 正确. 4答案 B解析 根据竖直上抛运动规律可得t =2v 0g ,g =2v 0t ,A 项错误;由GMm R 2=mg =m v 2R =m (2πT)2R 可得:M =2v 0R2Gt ,v =2v 0Rt,T =2πRt2v 0,故B 项正确,C 、D 项错误. 5答案 A解析 由题可知,月球半径为R ,则航天站的轨道半径为3R ,设航天站转一周的时间为T ,则有GM 月m 3R 2=m 4π2T 2(3R ),对月球表面的物体有m 0g 0=GM 月·m 0R 2,联立两式得T =63πR g 0.登月器的登月轨道是椭圆,从与航天站分离到第一次回到分离点所用时间为沿椭圆运行一周的时间T ′和在月球停留时间t 之和,若恰好与航天站运行一周所用时间相同时t 最小,则有:t min+T ′=T ,由开普勒第三定律有:3R 3T 2=⎝ ⎛⎭⎪⎫4R 23T ′2,得T ′=42πR g 0,则t min =T -T ′≈πRg 0,所以只有A 对. 6 A解析 根据万有引力提供向心力,以行星P 为研究对象有G Mm r 2=m 4π2T 2r ,得M =4π2r3GT 2,选项A正确;根据万有引力提供向心力只能求得中心天体的质量,因此根据题目所给信息不能求出行星P 的质量,选项B 错误;如果发射探测器到达该系外行星,需要克服太阳对探测器的万有引力,脱离太阳系的束缚,所以需要发射速度大于第三宇宙速度,选项C 、D 错误. 7答案 C解析 对双星M 1、M 2,设距离为L ,圆周运动半径分别为r 1、r 2,它们做圆周运动的万有引力为F =GM 1M 2L 2,距离L 不变,M 1与M 2的和不变,其乘积大小变化,则它们的万有引力发生变化,A 错;依题意双星系统绕两者连线上某点O 做匀速圆周运动,周期和角速度相同,由万有引力定律及牛顿第二定律有:G M 1M 2L 2=M 1ω2r 1,G M 1M 2L 2=M 2ω2r 2,r 1+r 2=L ,可解得:M 1+M 2=ω2L 3G ,M 1r 1=M 2r 2,由此可知ω不变,质量比等于圆周运动半径的反比,故体积较大的星体因质量减。
万有引力与航天专题(2024高考真题及解析)
万有引力与航天专题1.[2024·安徽卷] 2024年3月20日,我国探月工程四期鹊桥二号中继星成功发射升空.当抵达距离月球表面某高度时,鹊桥二号开始进行近月制动,并顺利进入捕获轨道运行,如图所示,轨道的半长轴约为51 900 km.后经多次轨道调整,进入冻结轨道运行,轨道的半长轴约为9900 km,周期约为24 h.则鹊桥二号在捕获轨道运行时()A.周期约为144 hB.近月点的速度大于远月点的速度C.近月点的速度小于在冻结轨道运行时近月点的速度D.近月点的加速度大于在冻结轨道运行时近月点的加速度1.B[解析] 冻结轨道和捕获轨道的中心天体是月球,根据开普勒第三定律得T12R13=T22R23,整理得T2=T1√R23R13≈288 h,A错误;根据开普勒第二定律得,鹊桥二号在捕获轨道运行时在近月点的速度大于在远月点的速度,B正确;在近月点从捕获轨道到冻结轨道变轨时,鹊桥二号需要减速进行近月制动,故鹊桥二号在捕获轨道近月点的速度大于在冻结轨道运行时近月点的速度,C错误;在两轨道的近月点所受的万有引力相同,根据牛顿第二定律可知,在捕获轨道运行时近月点的加速度等于在冻结轨道运行时近月点的加速度,D错误.2.[2024·北京卷] 科学家根据天文观测提出宇宙膨胀模型:在宇宙大尺度上,所有的宇宙物质(星体等)在做彼此远离运动,且质量始终均匀分布,在宇宙中所有位置观测的结果都一样.以某一点O为观测点,以质量为m的小星体(记为P)为观测对象.当前P到O点的距离为r0,宇宙的密度为ρ0.(1)求小星体P远离到2r0处时宇宙的密度ρ;(2)以O点为球心,以小星体P到O点的距离为半径建立球面.P受到的万有引力相当于球内质量集中于O点对P的引力.已知质量为m1和m2、距离为R的两个质点间的引力势能E p=-G m1m2R,G为引力常量.仅考虑万有引力和P远离O点的径向运动.①求小星体P从r0处远离到2r0处的过程中动能的变化量ΔE k;②宇宙中各星体远离观测点的速率v满足哈勃定律v=Hr,其中r为星体到观测点的距离,H为哈勃系数.H与时间t有关但与r无关,分析说明H随t增大还是减小.2.(1)18ρ0 (2)①-23G πρ0m r 02 ②H 随t 增大而减小[解析] (1)在宇宙中所有位置观测的结果都一样,则小星体P 运动前后距离O 点半径为r 0和2r 0的球内质量相同,即ρ0·43πr 03=ρ·43π(2r 0)3解得小星体P 远离到2r 0处时宇宙的密度ρ=18ρ0(2)①此球内的质量M =ρ0·43πr 03 P 从r 0处远离到2r 0处,由能量守恒定律得 动能的变化量ΔE k =-G Mmr 0-(-GMm 2r 0)=-23G πρ0m r 02 ②由①知星体的速度随r 0增大而减小,星体到观测点距离越大运动时间t 越长,由v =Hr知,H 减小,故H 随t 增大而减小3.[2024·甘肃卷] 小杰想在离地表一定高度的天宫实验室内,通过测量以下物理量得到天宫实验室轨道处的重力加速度,可行的是 ( ) A .用弹簧测力计测出已知质量的砝码所受的重力 B .测量单摆摆线长度、摆球半径以及摆动周期 C .从高处释放一个重物,测量其下落高度和时间D .测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径3.D [解析] 在天宫实验室内,物体处于完全失重状态,重力提供了物体绕地球做匀速圆周运动的向心力,故A 、B 、C 中的实验均无法得到天宫实验室轨道处的重力加速度;物体所受的万有引力提供物体绕地球做匀速圆周运动的向心力,有mg =G Mm r 2=m 4π2T 2r ,整理得轨道处的重力加速度为g =4π2T 2r ,故通过测量天宫实验室绕地球做匀速圆周运动的周期和轨道半径可行,D 正确.4.(多选)[2024·广东卷] 如图所示,探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以60 m/s 的速度竖直匀速下落.此时启动“背罩分离”,探测器与背罩断开连接,背罩与降落伞保持连接.已知探测器质量为1000 kg,背罩质量为50 kg,该行星的质量和半径分别为地球的110和12.地球表面重力加速度大小g 取10 m/s 2.忽略大气对探测器和背罩的阻力.下列说法正确的有 ( )A .该行星表面的重力加速度大小为4 m/s 2B .该行星的第一宇宙速度为7.9 km/sC .“背罩分离”后瞬间,背罩的加速度大小为80 m/s 2D .“背罩分离”后瞬间,探测器所受重力对其做功的功率为30 kW4.AC [解析] 设地球的质量为M ,半径为R ,行星的质量为M',半径为R',在星球表面可近似认为物体所受重力等于其所受万有引力,有GMm R2=mg ,可得GM =gR 2,同理,在该行星表面有GM'=g'R'2,联立得该星球表面的重力加速度g'=M 'R 2MR '2g =110×22×10 m/s 2=4 m/s 2,A 正确;地球的第一宇宙速度v =√GMR=7.9 km/s,则该行星的第一宇宙速度v'=√GM 'R '=√15×GM R =√15×7.9 km/s,B 错误;探测器及其保护背罩通过弹性轻绳连接降落伞,在接近某行星表面时以v =60 m/s 的速度竖直匀速下落,此时背罩受到降落伞的拉力F =(m 探+m 背)g'=4200 N,“背罩分离”后瞬间,由牛顿第二定律有F -m 背g'=m 背a ,解得背罩的加速度大小为a =80 m/s 2,C 正确;“背罩分离”后瞬间,探测器所受重力对其做功的功率为P =m 探g'v =1000×4×60 W=2.4×105 W=240 kW,D 错误.5.[2024·广西卷] 潮汐现象出现的原因之一是在地球的不同位置海水受到月球的引力不相同.图中a 、b 和c 处单位质量的海水受月球引力大小在( )A .a 处最大B .b 处最大C .c 处最大D .a 、c 处相等,b 处最小5.A [解析] 根据万有引力公式F =G Mm R 2,可知图中a 处单位质量的海水受到月球的引力最大,故选A .6.[2024·海南卷] 神舟十七号载人飞船返回舱于2024年4月30日在东风着陆场成功着陆,在飞船返回至离地面十几公里时打开主伞飞船快速减速,返回舱速度大大减小,在减速过程中()A.返回舱处于超重状态B.返回舱处于失重状态C.主伞的拉力不做功D.重力对返回舱做负功6.A[解析] 返回舱在减速过程中,加速度竖直向上,处于超重状态,故A正确,B错误;主伞的拉力与返回舱运动方向相反,对返回舱做负功,故C错误;返回舱的重力与返回舱运动方向相同,重力对返回舱做正功,故D错误.7.[2024·海南卷] 嫦娥六号进入环月圆轨道,周期为T,轨道高度与月球半径之比为k,引力常量为G,则月球的平均密度为 ()A.3π(1+k)3GT2k3B.3πGT2C.π(1+k)3GT2k D.3πGT2(1+k)37.D[解析] 设月球半径为R,质量为M,对嫦娥六号,根据万有引力提供向心力得G Mm [(k+1)R]2=m4π2T2·(k+1)R,月球的体积V=43πR3,月球的平均密度ρ=MV,联立可得ρ=3πGT2(1+k)3,故选D.8.(多选)[2024·河北卷] 2024年3月20日,“鹊桥二号”中继星成功发射升空,为“嫦娥六号”在月球背面的探月任务提供地月间中继通讯.“鹊桥二号”采用周期为24 h的环月椭圆冻结轨道(如图所示),近月点A距月心约为2.0×103 km,远月点B距月心约为1.8×104 km,CD 为椭圆轨道的短轴,下列说法正确的是()A.“鹊桥二号”从C经B到D的运动时间为12 hB.“鹊桥二号”在A、B两点的加速度大小之比约为81∶1C.“鹊桥二号”在C、D两点的速度方向垂直于其与月心的连线D.“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s8.BD[解析] “鹊桥二号”围绕月球沿椭圆轨道运动,根据开普勒第二定律可知,在近地点A处的速度最大,在远地点B处的速度最小,则从C→B→D的平均速率小于从D→A→C 的平均速率,所以从C→B→D的运动时间大于半个周期,即大于12 h,A错误;在A点,根据牛顿第二定律有G Mm(r OA)2=ma A,在B点,根据牛顿第二定律有G Mm(r OB)2=ma B,联立解得“鹊桥二号”在A、B两点的加速度大小之比约为a A∶a B=81∶1,B正确;物体做曲线运动时速度方向沿该点的切线方向,所以“鹊桥二号”在C、D两点的速度方向不垂直于其与月心的连线,C错误;“鹊桥二号”发射后围绕月球沿椭圆轨道运动,并未脱离地球引力束缚,所以“鹊桥二号”在地球表面附近的发射速度大于7.9 km/s且小于11.2 km/s,D正确.9.[2024·湖北卷] 太空碎片会对航天器带来危害.设空间站在地球附近沿逆时针方向做匀速圆周运动,如图中实线所示.为了避开碎片,空间站在P点向图中箭头所指径向方向极短时间喷射气体,使空间站获得一定的反冲速度,从而实现变轨.变轨后的轨道如图中虚线所示,其半长轴大于原轨道半径.则()A.空间站变轨前、后在P点的加速度相同B.空间站变轨后的运动周期比变轨前的小C.空间站变轨后在P点的速度比变轨前的小D.空间站变轨前的速度比变轨后在近地点的大9.A[解析] 空间站在P点变轨前、后所受到的万有引力不变,根据牛顿第二定律可知F 万=ma加,则空间站变轨前、后在P点的加速度相同,故A正确;空间站的圆轨道运动可以看作特殊的椭圆轨道运动,因为变轨后其轨道半长轴大于原轨道半径,根据开普勒第三定律可知a 2T2=k,则空间站变轨后的运动周期比变轨前的大,故B错误;变轨后在P点获得方向沿径向指向地球的反冲速度,与原来做圆周运动的速度合成,合速度大于原来的速度,故C错误;由于空间站变轨后在P点的速度比变轨前的大,但变轨后在P点的速度比同一轨道上在近地点的速度小,所以空间站变轨前的速度比变轨后在近地点的小,故D错误.10.(多选)[2024·湖南卷] 2024年5月3日,“嫦娥六号”探测器顺利进入地月转移轨道,正式开启月球之旅.相较于“嫦娥四号”和“嫦娥五号”,本次的主要任务是登陆月球背面进行月壤采集,并通过升空器将月壤转移至绕月运行的返回舱,返回舱再通过返回轨道返回地球.设返回舱绕月运行的轨道为圆轨道,半径近似为月球半径.已知月球表面重力加速度约为地球表面的16,月球半径约为地球半径的14.关于返回舱在该绕月轨道上的运动,下列说法正确的是( )A .其相对于月球的速度大于地球第一宇宙速度B .其相对于月球的速度小于地球第一宇宙速度C .其绕月飞行周期约为地球上近地圆轨道卫星周期的√23倍 D .其绕月飞行周期约为地球上近地圆轨道卫星周期的√32倍10.BD [解析] 返回舱绕月运行的轨道为圆轨道,半径近似为月球半径,则由万有引力提供向心力,有GM 月m r 月2=mv 月2r 月,根据在月球表面万有引力和重力的关系有GM 月m r 月2=mg 月,联立解得v 月=√g 月r 月,由于第一宇宙速度为近地卫星的环绕速度,同理可得v 地=√g 地r 地,则v 月v 地=√g 月g 地·r 月r 地=√16×14=√612,所以v 月<v 地,故A 错误,B 正确;根据线速度和周期的关系有T =2πv ·r ,则T 月T 地=r 月r 地·v 地v 月=14×√6=√32,故C 错误,D 正确.11.[2024·江西卷] “嫦娥六号”探测器于2024年5月8日进入环月轨道,后续经调整环月轨道高度和倾角,实施月球背面软着陆.当探测器的轨道半径从r 1调整到r 2时(两轨道均可视为圆形轨道),其动能和周期从E k1、T 1分别变为E k2、T 2.下列选项正确的是 ( )A .E k1E k2=r 2r 1,T 1T 2=√r 13√r 2B .E k1E k2=r 1r 2,T 1T 2=√r 13√r 2C .E k1E k2=r 2r 1,T 1T 2=√r 23√r 1D .E k1E k2=r 1r 2,T 1T 2=√r 23√r 1311.A [解析] 探测器环月运行,由万有引力提供向心力有G Mmr 2=m v 2r ,得v 2=GMr,其中M 为月球质量,m 为“嫦娥六号”质量,动能E k =12mv 2,则E k1E k2=r2r 1,B 、D错误;同理,由G Mm r 2=m 4π2T2r得T =√4π2r 3GM ,则T 1T 2=√r 13r 23,A 正确,C 错误.12.[2024·辽宁卷] 如图甲所示,将一弹簧振子竖直悬挂,以小球的平衡位置为坐标原点O ,竖直向上为正方向,建立x 轴.若将小球从弹簧原长处由静止释放,其在地球与某球状天体表面做简谐运动的图像如图乙所示(不考虑自转影响).设地球、该天体的平均密度分别为ρ1和ρ2,地球半径是该天体半径的n 倍,ρ1ρ2的值为 ( )A .2nB .n 2C .2n D .12n12.C [解析] 设地球表面的重力加速度为g ,球状天体表面的重力加速度为g',弹簧的劲度系数为k ,根据简谐运动的对称性有k ·4A -mg =mg ,k ·2A -mg'=mg',解得gg '=2,设球状天体的半径为R ,则地球的半径为nR ,在地球表面有G ρ1·43π(nR )3·m(nR )2=mg ,在球状天体表面有G ρ2·43πR 3·mR 2=mg',联立解得ρ1ρ2=2n,故C 正确.13.[2024·全国甲卷] 2024年5月,“嫦娥六号”探测器发射成功,开启了人类首次从月球背面采样返回之旅.将采得的样品带回地球,飞行器需经过月面起飞、环月飞行、月地转移等过程.月球表面自由落体加速度约为地球表面自由落体加速度的16.下列说法正确的是 ( )A .在环月飞行时,样品所受合力为零B .若将样品放置在月球正面,它对月球表面压力等于零C .样品在不同过程中受到的引力不同,所以质量也不同D .样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小13.D [解析] 在环月飞行时,样品所受合力提供所需的向心力,不为零,故A 错误;若将样品放置在月球正面,则它处于平衡状态,它对月球表面压力大小等于它在月球表面的重力大小,由于月球表面自由落体加速度约为地球表面自由落体加速度的16,则样品在地球表面的重力大于在月球表面的重力,所以样品放置在月球背面时对月球的压力比放置在地球表面时对地球的压力小,故B 错误,D 正确;样品在不同过程中受到的引力不同,但样品的质量不变,故C 错误.14.[2024·山东卷] “鹊桥二号”中继星环绕月球运行,其24小时椭圆轨道的半长轴为a.已知地球同步卫星的轨道半径为r ,则月球与地球质量之比可表示为 ( )A .√r 3a 3 B .√a 3r3C .r 3a3 D .a 3r314.D [解析] “鹊桥二号”中继星环绕月球运动的24小时椭圆轨道的半长轴为a ,则其24小时圆轨道的半径也为a ,由万有引力提供向心力得G M 月m 中a 2=m 中(2πT )2a ,对地球同步卫星,由万有引力提供向心力得GM 地m 同r 2=m 同(2πT )2r ,联立解得M 月M 地=a 3r 3,D 正确.15.[2024·新课标卷] 天文学家发现,在太阳系外的一颗红矮星有两颗行星绕其运行,其中行星GJ1002c 的轨道近似为圆,轨道半径约为日地距离的0.07倍,周期约为0.06年,则这颗红矮星的质量约为太阳质量的 ( ) A .0.001倍 B .0.1倍 C .10倍 D .1000倍15.B [解析] 设红矮星的质量为M 1,行星GJ1002c 的质量为m 1,轨道半径为r 1,运动周期为T 1;太阳的质量为M 2,地球的质量为m 2,日地距离为r 2,地球运动的周期为T 2;根据万有引力定律提供向心力有GM 1m 1r 12=m 14π2T 12r 1,G M 2m 2r 22=m 24π2T 22r 2,联立可得M 1M 2=(r 1r 2)3·(T 2T 1)2,由于行星GJ1002c 的轨道半径约为日地距离的0.07倍,周期约为0.06年,可得M 1M 2≈0.0730.062≈0.1,选B 正确.16.[2024·浙江6月选考] 与地球公转轨道“外切”的小行星甲和“内切”的小行星乙的公转轨道如图所示,假设这些小行星与地球的公转轨道都在同一平面内,地球的公转半径为R ,小行星甲的远日点到太阳的距离为R 1,小行星乙的近日点到太阳的距离为 R 2,则 ( )A .小行星甲在远日点的速度大于近日点的速度B .小行星乙在远日点的加速度小于地球公转加速度C .小行星甲与乙的运行周期之比T1T 2=√R 13R 23D .甲、乙两行星从远日点到近日点的时间之比t 1t 2=√(R 1+R)3(R 2+R)316.D [解析] 由开普勒第二定律知小行星甲在远日点的速度小于在近日点的速度,A 错误;小行星乙在远日点到太阳的距离与地球到太阳的距离相等,由G Mmr 2=ma 可知,小行星乙在远日点的加速度和地球公转加速度大小相等,B 错误;根据开普勒第三定律有(R 1+R 2)3T 12=(R 2+R 2)3T 22,解得T 1T 2=√(R 1+R)3(R 2+R)3,C错误;甲、乙两行星从远日点到近日点的时间之比t 1t 2=T 12T 22=√(R 1+R)3(R 2+R)3,D 正确.。
物理万有引力与航天题20套(带答案)及解析
物理万有引力与航天题20套(带答案)及解析一、高中物理精讲专题测试万有引力与航天1.如图所示,A是地球的同步卫星,另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ω0,地球表面的重力加速度为g,O为地球中心.(1)求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?【答案】(1)32()2BRhTgRp+= (2)23()tgRR hω=-+【解析】【详解】(1)由万有引力定律和向心力公式得()()2224BMmG m R hTR hπ=++①,2MmG mgR=②联立①②解得:()322BR hTR gπ+=③(2)由题意得()02Btωωπ-=④,由③得()23BgRR hω=+⑤代入④得()23tR gR hω=-+2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P点沿水平方向以初速度v0抛出一个小球,测得小球经时间t落到斜坡上另一点Q,斜面的倾角为α,已知该星球半径为R,万有引力常量为G,求:(1)该星球表面的重力加速度;(2)该星球的密度; (3)该星球的第一宇宙速度v ;(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;;(4)2【解析】 【分析】 【详解】(1) 小球落在斜面上,根据平抛运动的规律可得:20012tan α2gt y gt x v t v ===解得该星球表面的重力加速度:02tan αv g t=(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:2GMmmg R= 则该星球的质量:GgR M 2= 该星球的密度:33tan α34423v M gGR GRt R ρπππ===(3)根据万有引力提供向心力得:22Mm v G m R R= 该星球的第一宙速度为:v ===(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:2RT vπ=所以:22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.3.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n 圈所用时间为t ,到达A 点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B 点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n 圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192n Gtπ;(2)1237mt t m n (,,)==⋯ 【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tT n=,由万有引力提供向心力有:222Mm G m R R T π⎛⎫= ⎪⎝⎭又:343M R ρπ=,联立得:22233192n GT Gt ππρ==. (2)设飞船在轨道I 上的角速度为1ω、在轨道III 上的角速度为3ω,有:112T πω= 所以332T πω=设飞飞船再经过t 时间相距最近,有:312t t m ωωπ''=﹣所以有:1237mtt m n(,,)==⋯. 考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.4.用弹簧秤可以称量一个相对于地球静止的小物体m 所受的重力,称量结果随地理位置的变化可能会有所不同。
高中物理《万有引力与航天》练习题(附答案解析)
高中物理《万有引力与航天》练习题(附答案解析)学校:___________姓名:___________班级:_________一、单选题1.如图所示,两球间的距离为r ,两球的质量分布均匀,质量大小分别为m 1、m 2,半径大小分别为r 1、r 2,则两球间的万有引力大小为( )A .122m m Gr B .2212221m m G r r r ++C .12212()m m G r r +D .12212()m m Gr r r ++2.2021年5月15日,我国首次火星探测任务天问一号探测器在火星乌托邦平原南部预选着陆区成功软着陆。
用h 表示着陆器与火星表面的距离,用F 表示它所受的火星引力大小,则在着陆器从火星上空向火星表面软着陆的过程中,能够描述F 随h 变化关系的大致图像是( )A .B .C .D .3.发现万有引力定律和测出引力常量的科学家分别是( ) A .牛顿、卡文迪许 B .开普勒、卡文迪许 C .开普勒、库仑D .牛顿、库仑4.经典力学有一定的局限性。
当物体以下列速度运动时,经典力学不再适用的是( ) A .32.910m/s -⨯ B .02.910m/s ⨯ C .42.910m/s ⨯ D .82.910m/s ⨯5.有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球一起转动,b 在近地轨道做匀速圆周运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图所示。
关于这四颗卫星,下列说法正确的是( )A .a 的向心加速度等于重力加速度g B .c 在4 h 内转过的圆心角是6C .在相同时间内,这四颗卫星中b 转过的弧长最长D .d 做圆周运动的周期有可能是20小时6.2019年10月28日发生了天王星冲日现象,即太阳、地球、天王星处于同一直线,此时是观察天王星的最佳时间。
已知日地距离为0R ,天王星和地球的公转周期分别为T 和0T ,则天王星与太阳的距离为( )A 0B 0C 0D 07.如图所示,两颗人造卫星绕地球逆时针运动,卫星1、卫星2分别沿圆轨道、椭圆轨道运动,圆的半径与椭圆的半长轴相等,两轨道相交于A 、B 两点,某时刻两卫星与地球在同一直线上,如图所示,下列说法中正确的是( )A .两卫星在图示位置的速度v 1<v 2B .两卫星在A 处的加速度大小不相等C .两颗卫星可能在A 或B 点处相遇D .两卫星永远不可能相遇8.我们的银河系的恒星中大约四分之一是双星。
万有引力与航天测试
《万有引力与航天》单元测试一、不定项选择题(每小题5分,共计60分)1.关于公式k T R=23中的常量k ,下列说法中正确的是 ( )A .对于所有星球的行星或卫星,k 值都相等B .不同星球的行星或卫星,k 值不相等C :k 值是一个与星球无关的常量D .k 值是—个与星球有关的常量2、下面关于太阳对行星的引力说法中的正确的是 ( )A 、太阳对行星的引力等于行星做匀速圆周运动的向心力B 、太阳对行星的引力大小与行星的质量成正比,与行星和太阳间的距离成反比C 、太阳对行星的引力规律是由实验得出的D 、太阳对行星的引力规律是由开普勒定律和行星绕太阳做匀速圆周运动的规律推导出来的 3、关于太阳与行星间引力2r Mm G F =的下列说法中正确的是 ( ) A 、公式中的 G 是比例系数,是人为规定的 B 、这一规律可适用于任何两物体间的引力C 、太阳与行星的引力是一对平衡力D 、检验这一规律是否适用于其它天体的方法是比较观测结果与推理结果的吻合性4.如果认为行星围绕太阳做匀速圆周运动,那么下列说法中正确的是 ( )A .行星受到太阳的万有引力,万有引力提供行星圆周运动的向心力B .行星受到太阳的万有引力,行星运动不需要向心力C .行星同时受到太阳的万有引力和向心力D .行星受到太阳的万有引力与它运行的向心力不相等5.要使两物体间的万有引力减小到原来的1/4,下列办法不可采用的是( )A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的1/4,距离不变C.使两物体间的距离增为原来的2倍,质量不变D .使两物体间的距离和质量都减为原来的1/46.地球公转的轨道半径是R 1,周期是T 1,月球绕地球运转的轨道半径是R 2,周期是T 2,则太阳质量与地球质量之比是 ( )A . 22322131T R T RB .21322231T R T RC .21222221T R T RD .32223121T R T R 7.把太阳系各行星的轨迹近似的看作匀速圆周运动则离太阳越远的行星,写列说法错误的是( )A .周期越小B .线速度越小C .角速度越小D .加速度越小8、设地球表面重力加速度为g 0,物体在距离地心4R (R 是地球的半径)处,由于地球的作用而产生的加速度为g ,则g /g 0为( )A.1 B.1/9 C.1/4 D.1/169.有两颗质量相同的人造卫星A 、B ,其轨道半径分别为RA 、RB ,R A ∶R B =1∶4,那么下列判断中正确的有 ( )A .它们的运行周期之比T A ∶TB =1∶4B .它们的运行线速度之比v A ∶v B =4∶1C .它们所受的向心力之比F A ∶F B =4∶1D .它们的运行角速度之比ωA ∶ωB =8∶110.同步卫星是指相对于地面不动的人造地球卫星,则( )A 、它可以在地面上任一点的正上方,离地心的距离可以按需要选择不同值B 、它可以在地面上任一点的正上方,但离地心的距离是一定C 、它只能在赤道的正上方,但离地心的距离是一定的D 、它只能赤道的正上方,但离地心的距离可以按需要选择不同值11.(2011年高考•全国大纲版理综卷)我国“嫦娥一号”探月卫星发射后,先在“24小时轨道”上绕地球运行(即绕地球一圈需要24小时);然后,经过两次变轨依次到达“48小时轨道”和“72小时轨道”;最后奔向月球。
高中物理万有引力与航天练习题及答案
高中物理万有引力与航天练习题及答案一、高中物理精讲专题测试万有引力与航天1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:(1)该星球表面的重力加速度; (2)该星球的质量。
【答案】(1)02tan v g t θ=(2)202tan v R Gtθ【解析】 【分析】平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】(1)根据平抛运动知识可得200122gt y gt tan x v t v α===解得02v tan g tα=(2)根据万有引力等于重力,则有2GMmmg R = 解得2202v R tan gR M G Gtα==2.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.【答案】(1)2π=T ω;(2)2312=4GMT h R π- (3)h 1= h 2 【解析】 【分析】(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=Tω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:21212π=()()()Mm Gm R h R h T++ 解得:2312=4πGMTh R -(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,22222=()()()Mm Gm R h R h Tπ++ 解得:23224GMTh R π因此h 1= h 2.故本题答案是:(1)2π=T ω;(2)2312=4GMTh R π- (3)h 1= h 2 【点睛】对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.3.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯4.地球同步卫星,在通讯、导航等方面起到重要作用。
高中物理万有引力与航天解题技巧及经典题型及练习题(含答案)含解析
高中物理万有引力与航天解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试万有引力与航天1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hRt【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR, 解得该星球的第一宇宙速度为:2hRv gR ==2.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分)根据万有引力定律和牛顿定律,有 G ③ (3分) G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解3.我国发射的“嫦娥三号”登月探测器靠近月球后,经过一系列过程,在离月球表面高为h 处悬停,即相对月球静止.关闭发动机后,探测器自由下落,落到月球表面时的速度大小为v ,已知万有引力常量为G ,月球半径为R ,h R <<,忽略月球自转,求: (1)月球表面的重力加速度0g ; (2)月球的质量M ;(3)假如你站在月球表面,将某小球水平抛出,你会发现,抛出时的速度越大,小球落回到月球表面的落点就越远.所以,可以设想,如果速度足够大,小球就不再落回月球表面,它将绕月球做半径为R 的匀速圆周运动,成为月球的卫星.则这个抛出速度v 1至少为多大?【答案】(1)202v g h =(2)222v R M hG =(3)212v R v h=【解析】(1)根据自由落体运动规律202v g h =,解得202v g h=(2)在月球表面,设探测器的质量为m ,万有引力等于重力,02MmGmg R=,解得月球质量222v R M hG=(3)设小球质量为'm ,抛出时的速度1v 即为小球做圆周运动的环绕速度万有引力提供向心力212''v Mm G m R R =,解得小球速度至少为212v Rv h=4.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ 【解析】 【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt = 由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ=(2)星球表面的物体受到的重力等于万有引力,即:2MmGmg R= 可得:2202v R tan gR M G Gtθ==【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.5.在物理学中,常常用等效替代、类比、微小量放大等方法来研究问题.如在牛顿发现万有引力定律一百多年后,卡文迪许利用微小量放大法由实验测出了万有引力常量G 的数值,如图所示是卡文迪许扭秤实验示意图.卡文迪许的实验常被称为是“称量地球质量”的实验,因为由G 的数值及其它已知量,就可计算出地球的质量,卡文迪许也因此被誉为第一个称量地球的人.(1)若在某次实验中,卡文迪许测出质量分别为m 1、m 2相距为r 的两个小球之间引力的大小为F ,求万有引力常量G ;(2)若已知地球半径为R ,地球表面重力加速度为g ,万有引力常量为G ,忽略地球自转的影响,请推导出地球质量及地球平均密度的表达式.【答案】(1)万有引力常量为212Fr G m m =.(2)地球质量为2R gG,地球平均密度的表达式为34g RG ρπ=【解析】 【分析】根据万有引力定律122m m F Gr=,化简可得万有引力常量G ; 在地球表面附近的物体受到重力等于万有引力2MmG mg R=,可以解得地球的质量M ,地球的体积为343V R π=,根据密度的定义M Vρ=,代入数据可以计算出地球平均密度. 【详解】(1)根据万有引力定律有:122m m F Gr = 解得:212Fr G m m =(2)设地球质量为M ,在地球表面任一物体质量为m ,在地球表面附近满足:2MmGmg R= 得地球的质量为: 2R gM G =地球的体积为:343V R π=解得地球的密度为:34gRGρπ=答:(1)万有引力常量为212Fr G m m =.(2)地球质量2R gM G=,地球平均密度的表达式为34gRGρπ=.6.据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星.假设该行星质量约为地球质量的6倍,半径约为地球半径的2倍.若某人在地球表面能举起60kg 的物体,试求:(1)人在这个行星表面能举起的物体的质量为多少? (2)这个行星的第一宇宙速度是地球第一宇宙速度的多少倍?【答案】(1)40kg (2 【解析】 【详解】(1)物体在星体表面的重力等于物体受到的万有引力,又有同一个人在两个星体表面能举起的物体重力相同,故有:22GM m GM mmg m g R R ''行地地行地行===; 所以,2221260406R M m m kg kg M R '⋅⋅⨯行地行地===; (2)第一宇宙速度即近地卫星的速度,故有:22 GMm mv R R =所以,v =;所以, v v 行地;7.“场”是除实物以外物质存在的另一种形式,是物质的一种形态.可以从力的角度和能量的角度来描述场.反映场力性质的物理量是场强.(1)真空中一个孤立的点电荷,电荷量为+Q ,静电力常量为k ,推导距离点电荷r 处的电场强度E 的表达式.(2)地球周围存在引力场,假设地球是一个密度均匀的球体,质量为M ,半径为R ,引力常量为G .a .请参考电场强度的定义,推导距离地心r 处(其中r ≥R )的引力场强度E 引的表达式.b .理论上已经证明:质量分布均匀的球壳对壳内物体的引力为零.推导距离地心r 处(其中r <R )的引力场强度E 引的表达式. 【答案】(1)2kQE r =(2)a . 2GM E r =引 b . 3GM E r R =引【解析】 【详解】 (1)由F E q =,2qQ F k r= ,得 2kQE r = (2)a .类比电场强度定义,F E m=万引,由2GMmF r =万, 得 2GME r=引b .由于质量分布均匀的球壳对其内部的物体的引力为0,当r <R 时,距地心r 处的引力场强是由半径为r 的“地球”产生的.设半径为r 的“地球”质量为M r ,33334433r M r M r MR Rππ=⨯=. 得23r GM GME r r R==引8.已知火星半径为R ,火星表面重力加速度为g ,万有引力常量为G ,某人造卫星绕火星做匀速圆周运动,其轨道离火星表面高度等于火星半径R ,忽略火星自转的影响。
万有引力与航天专项练习
C.若v0=
D.若v0= 平抛运动
,小滑块能到达C点,且离开C点后做
,小滑块能到达C点,且离开C点后做
自由落体运动
解析:滑块通过C点的最小速度为vC,由mg=
由机械能守恒定律,若A点v0=0,vC=0,
实际上滑块在到达C点之前就离开轨道做斜上抛运动了, A、B错;若v0= C错,D正确. 小滑块通过C点后将做平抛运动,
g.则
(
)
A.圆筒边缘M点的线速度大小是ωR B.小球下落到圆筒上的时间是 C.经时间π/ω小球一定正好落在M点 D.若角速度ω=π 落在M点 ,则圆筒转半周时小球刚好
解析:由v=ωR可知A正确;小球下落过程:mg+Eq=ma, Eq=mg,得a=2g,再由2R= 上的时间t= at2可得:小球下落到圆筒 ,则圆筒的角速度ω=π ,B错误;若t=
时小球刚好落在M点,故C错误,D正确.
答案:AD
4.(2009· 南昌二中模拟)如图3所示,水平抛出的物体, 抵达斜面上端P处,其速度方向恰好沿着斜面方向, 然后沿斜面无摩擦滑下,图4所示的图象是描述物体沿
x方向和y方向运动的速度—时间图象,其中正确的是
பைடு நூலகம்( )
解析:由O到P过程物体做平抛运动,水平速度vx不变,竖 直速度vy=gt,随时间均匀增大,物体由P到Q过程,沿斜 面匀加速下滑,vx随时间均匀增大,故A、B均错误;而vy 也随时间均匀地增加,但竖直方向的加速度小于g,故C正 确,D错误.
解析:球落地时所用时间为t1=
=0.4 s或t2=
=0.6 s,
所以反弹点的高度为h1=
m,故选A. 答案:A
=0.8 m或h2=
=1.8
7.(2009· 黄冈中学模拟)我国探月的“嫦娥工程”已启动,
2023《 万有引力与航天》单元测试题(解析版)
万有引力与航天测试题一、单选题(每小题只有一个正确答案)1.物理学发展历史中,在前人研究基础上经过多年的尝试性计算,首先发表行星运动的三个定律的科学家是()A.哥白尼B.第谷C.伽利略D.开普勒2.通过一个加速装置对电子加一很大的恒力,使电子从静止开始加速,则对这个加速过程,下列描述正确的是()A.根据牛顿第二定律,电子将不断做匀加速直线运动B.电子先做匀加速直线运动,后以光速做匀速直线运动C.电子开始近似于匀加速直线运动,后来质量增大,牛顿运动定律不再适用D.电子是微观粒子,整个加速过程根本就不能用牛顿运动定律解释3.卫星绕某一行星的运动轨道可近似看成是圆轨道,观察发现每经过时间t,卫星运动所通过的弧长为L,该弧长对应的圆心角为θ弧度,如图所示.已知万有引力常量为G,由此可计算出太阳的质量为()A.M=B.M=C.D.4.宇宙中有这样一种三星系统,系统由两个质量为m的小星体和一个质量为M的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r.关于该三星系统的说法中正确的是( )①在稳定运行情况下,大星体提供两小星体做圆周运动的向心力②在稳定运行情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧③小星体运行的周期为T=④大星体运行的周期为T=A.①③ B.②③ C.①④ D.②④5.设在地球上和某天体上以相同的初速度竖直上抛一物体的最大高度比为k(均不计阻力),且已知地球与该天体的半径之比也为k,则地球与此天体的质量之比为()A. 1B.k2C.k D.6.我国绕月探测工程的预先研究和工程实施已取得重要进展.设地球、月球的质量分别为m1、m2,半径分别为R1、R2,人造地球卫星的第一宇宙速度为v,对应的环绕周期为T,则环绕月球表面附近圆轨道飞行的探测器的速度和周期分别为()A.v,T B.v,TC.v,T D.v,T7.土星周围有美丽壮观的“光环”,组成环的颗粒是大小不等、线度从1 μm到10 m的岩石、尘埃,类似于卫星,它们与土星中心的距离从7.3×104km延伸到1.4×105km.已知环的外缘颗粒绕土星做圆周运动的周期约为14 h,引力常量为6.67×10-11N·m2/kg2,则土星的质量约为(估算时不考虑环中颗粒间的相互作用)()A. 9.0×1016kg B. 6.4×1017kg C. 9.0×1025kg D. 6.4×1026kg8.一艘宇宙飞船绕一个不知名的行星表面飞行,要测定该行星的密度,仅仅需要()A.测定飞船的运行周期B.测定飞船的环绕半径C.测定行星的体积D.测定飞船的运行速度9.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.乙的周期大于甲的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方10.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O点运动的().A.轨道半径约为卡戎的B.角速度大小约为卡戎的C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍11.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.火星与木星公转周期相等B.火星和木星绕太阳运行速度的大小始终不变C.太阳位于木星运行椭圆轨道的某焦点上D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积12.某星球的半径为R,在其表面上方高度为aR的位置,以初速度v0水平抛出一个金属小球,水平射程为bR,a,b均为数值极小的常数,则这个星球的第一宇宙速度为()A.v0B.v0C.v0D.v013.关于我国发射的“亚洲一号”地球同步通讯卫星的说法,正确的是()A.若其质量加倍,则轨道半径也要加倍B.它在北京上空运行,故可用于我国的电视广播C.它以第一宇宙速度运行D.它运行的角速度与地球自转角速度相同14.人造卫星环绕地球运行的速率v=,其中g为地面处的重力加速度,R为地球半径,r为卫星离地球中心的距离.下列说法正确的是()A.从公式可见,环绕速度与轨道半径成反比B.从公式可见,环绕速度与轨道半径的平方根成反比C.从公式可见,把人造卫星发射到越远的地方越容易D.以上答案都不对15.如图所示,A为地球赤道上的物体,B为地球同步卫星,C为地球表面上北纬60°的物体.已知A、B的质量相同.则下列关于A、B和C三个物体的说法中,正确的是()A.A物体受到的万有引力小于B物体受到的万有引力B.B物体的向心加速度小于A物体的向心加速度C.A、B两物体的轨道半径的三次方与周期的二次方的比值相同D.A和B线速度的比值比C和B线速度的比值大,都小于1二、多选题(每小题至少有两个正确答案)16.(多选)2013年12月2日,我国探月卫星“嫦娥三号”在西昌卫星发射中心成功发射升空,飞行轨道示意图如图所示.“嫦娥三号”从地面发射后奔向月球,先在轨道∶上运行,在P点从圆形轨道∶进入椭圆轨道∶,Q为轨道∶上的近月点,则“嫦娥三号”在轨道∶上()“嫦娥三号”飞行轨道示意图A.运行的周期小于在轨道∶上运行的周期B.从P到Q的过程中速率不断增大C.经过P的速度小于在轨道∶上经过P的速度D.经过P的加速度小于在轨道∶上经过P的加速度17.(多选)假如地球自转角速度增大,关于物体所受的重力,下列说法正确的是()A.放在赤道地面上的物体的万有引力不变B.放在两极地面上的物体的重力不变C.放在赤道地面上的物体的重力减小D.放在两极地面上的物体的重力增加18.(多选)“嫦娥一号”探月卫星发动机关闭,轨道控制结束,卫星进入地月转移轨道,图中MN之间的一段曲线表示转移轨道的一部分,P是轨道上的一点,直线AB过P点且和两边轨道相切,下列说法中正确的是()A.卫星在此段轨道上,动能不变B.卫星经过P点时动能最小C.卫星经过P点时速度方向由P指向BD.卫星经过P点时加速度为019.2016年中国将发射“天宫二号”空间实验室,并发射“神舟十一号”载人飞船和“天舟一号”货运飞船,与“天宫二号”交会对接.“天宫二号”预计由“长征二号F”改进型无人运载火箭或“长征七号”运载火箭从酒泉卫星发射中心发射升空,由长征运载火箭将飞船送入近地点为A、远地点为B的椭圆轨道上,B点距离地面的高度为h,地球的中心位于椭圆的一个焦点上.“天宫二号”飞行几周后进行变轨进人预定圆轨道,如图所示.已知“天宫二号”在预定圆轨道上飞行n圈所用时间为t,引力常量为G,地球半径为R.则下列说法正确的是()A. “天宫二号”从B点沿椭圆轨道向A点运行的过程中,引力为动力B. “天宫二号”在椭圆轨道的B点的向心加速度大于在预定圆轨道上B点的向心加速度C. “天宫二号”在椭圆轨道的B点的速度大于在预定圆轨道上B点的速度D.根据题目所给信息,可以计算出地球质量20.(多选)在中国航天骄人的业绩中有这些记载:“天宫一号”在离地面343 km的圆形轨道上飞行;“嫦娥一号”在距月球表面高度为200 km的圆形轨道上飞行;“北斗”卫星导航系统由“同步卫星”(地球静止轨道卫星,在赤道平面,距赤道的高度约为 36 000千米)和“倾斜同步卫星”(周期与地球自转周期相等,但不定点于某地上空)等组成.则以下分析正确的是()A.设“天宫一号”绕地球运动的周期为T,用G表示引力常量,则用表达式求得的地球平均密度比真实值要小B. “天宫一号”的飞行速度比“同步卫星”的飞行速度要小C. “同步卫星”和“倾斜同步卫星”同周期、同轨道半径,但两者的轨道平面不在同一平面内D. “嫦娥一号”与地球的距离比“同步卫星”与地球的距离小三、填空题21.已知地球半径为R,质量为M,自转周期为T.一个质量为m的物体放在赤道处的海平面上,则物体受到的万有引力F=______,重力G=______.22.对太阳系的行星,由公式=,F=,=k可以得到F=________,这个公式表明太阳对不同行星的引力,与________成正比,与________成反比.23.地球赤道上的物体A,近地卫星B(轨道半径等于地球半径),同步卫星C,若用TA、TB、TC;v A、v B、v C;分别表示三者周期,线速度,则满足________,________.24.据报道,美国计划2021年开始每年送15 000名游客上太空旅游.如图所示,当航天器围绕地球做椭圆运行时,近地点A的速率________(填“大于”“小于”或“等于”)远地点B的速率.25.如图所示是某行星围绕太阳运行的示意图,则行星在A点的速率________在B点的速率.四、计算题26.假设几年后,你作为航天员登上了月球表面,如果你已知月球半径R,那么你用一个弹簧测力计和一个已知质量的砝码m,能否测出月球的质量M?怎样测定?27.宇宙中两个相距较近的天体称为“双星”,它们以两者连线上的某一点为圆心做匀速圆周运动,但两者不会因万有引力的作用而吸引到一起.设两者的质量分别为m1和m2,两者相距为L.求:(1)双星的轨道半径之比;(2)双星的线速度之比;(3)双星的角速度.答案解析1.【答案】D【解析】哥白尼提出了日心说,第谷对行星进行了大量的观察和记录,开普勒在第谷的观察记录的基础上提出了行星运动的三个定律,选项D正确,A、B、C错误.2.【答案】C【解析】电子在加速装置中由静止开始加速,开始阶段速度较低,远低于光速,此时牛顿运动定律基本适用,可以认为在它被加速的最初阶段,它做匀加速直线运动.随着电子的速度越来越大,接近光速时,相对论效应越来越大,质量加大,它不再做匀加速直线运动,牛顿运动定律不再适用.3.【答案】B【解析】线速度为v=∶角速度为ω=∶根据线速度和角速度的关系公式,有v=ωr∶卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律,有G=mvω∶联立解得M=,故选项B正确.4.【答案】B【解析】三星应该在同一直线上,并且两小星体在大星体相对的两侧,只有这样才能使某一小星体受到大星体和另一小星体的引力的合力提供向心力.由G+G=mr2,解得小星体的周期T=,所以选项B正确.5.【答案】C【解析】在地球上:h=某天体上;h′=因为=k所以=k根据G=mg,G=mg′可知=又因为=k联立得:=k6.【答案】A【解析】由向心力公式=,=,两式联立,得v2=v;由T2=,T=,两式联立,得T2=T,故A项正确.7.【答案】D【解析】环的外缘颗粒绕土星做圆周运动,根据万有引力提供向心力,列出等式:G=mR()2M=,其中R为轨道半径,大小为1.4×105km,T为周期,约为14 h.代入数据得:M≈6.4×1026kg.8.【答案】A【解析】取飞船为研究对象,由G=mR及M=πR3ρ,知ρ=,故选A.9.【答案】C【解析】人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、地球质量为M,有:G=m=mω2r=m()2r=ma解得:v=∶T=2π∶a=∶由∶∶∶式可以知道,人造卫星的轨道半径越大,线速度越小、周期越大、加速度越小,由于甲卫星的高度大,轨道半径大,故甲卫星的线速度小、周期大,加速度小;第一宇宙速度是近地圆轨道的环绕速度,也是圆轨道运行的最大速度;则C正确;甲只能在赤道上空,则D错误,故选C.10.【答案】A【解析】设冥王星和卡戎的质量分别为m1和m2,轨道半径分别为r1和r2,它们之间的距离为L.冥王星和卡戎绕它们连线上的某点做匀速圆周运动,转动周期和角速度相同,选项B错误;对于冥王星有=m1ω2r1,对于卡戎有=m2ω2r2,可知m1ω2r1=m2ω2r2,故==,选项A正确;又线速度v=ωr,故线速度大小之比==,选项C错误;因两星的向心力均由它们之间的万有引力提供,故大小相等,选项D错误.11.【答案】C【解析】根据开普勒第三定律,=k,k为常量,火星与木星公转的半径不等,所以火星与木星公转周期不相等,故A错误;开普勒第二定律:对每一个行星而言,太阳与行星的连线在相同时间内扫过的面积相等.行星在此椭圆轨道上运动的速度大小不断变化,故B错误;相同时间内,太阳行星的连线在相同时间内扫过的面积相等是对同一个行星而言,故D错误;开普勒第一定律的内容为所有行星分别沿不同大小的椭圆轨道绕太阳运动,太阳处于椭圆的一个焦点上,故C正确.12.【答案】A【解析】设该星球表面重力加速度为g,小球落地时间为t,抛出的金属小球做平抛运动,根据平抛运动规律得aR=gt2,bR=v0t,联立以上两式解得g=,第一宇宙速度即为该星球地表卫星线速度,根据地表卫星重力充当向心力得mg=m,所以第一宇宙速度v===v0,故选项A正确.13.【答案】D【解析】由G=m得r=,可知轨道半径与卫星质量无关,A错.同步卫星的轨道平面必须与赤道平面重合,即在赤道上空运行,不能在北京上空运行,B错.第一宇宙速度是卫星在最低圆轨道上运行的速度,而同步卫星在高轨道上运行,其运行速度小于第一宇宙速度,C错.所谓“同步”就是卫星保持与地面赤道上某一点相对静止,所以同步卫星的角速度与地球自转角速度相同,D对.14.【答案】B【解析】由于g是地球表面处的重力加速度,R是地球半径,都是定值,根据v=可得环绕速度与轨道半径的平方根成反比,B正确,A、D错误;虽然r越大,v越小,但把卫星发射到越远的地方火箭会有更多的动能转化为重力势能,需要的发射速度就越大,C错误.15.【答案】D【解析】根据万有引力定律F=G,且A、B的质量相同,可知,间距越大的,引力越小,因此A物体受到的万有引力大于B物体受到的万有引力,故A错误;由an=ω2r,因A与B的角速度相同,当半径越大时,则向心加速度越大,故B错误;A在地球表面,不是环绕地球做匀速圆周运动,因此不满足开普勒第三定律,故C错误;根据v=ωr,可知,B点线速度最大,而C的线速度最小,因此A与B的线速度之比,C与B的线速度之比,均小于1,再根据同步卫星轨道半径约是地球半径的5.7倍,则=,C为地球表面上北纬60°的物体,那C轨道半径为地球半径的一半,则=,因此=,故D正确.16.【答案】ABC【解析】根据开普勒第三定律=k,可判断嫦娥三号卫星在轨道∶上的运行周期小于在轨道∶上的运行周期,A正确;因为P点是远地点,Q点是近地点,故从P点到Q点的过程中速率不断增大,B正确;根据卫星变轨特点可知,卫星在P点从圆形轨道∶进入椭圆轨道∶要减速,C正确;根据牛顿第二定律和万有引力定律可判断在P点,卫星的加速度是相同的,D错误.17.【答案】ABC【解析】地球自转角速度增大,物体受到的万有引力不变,选项A正确;在两极,物体受到的万有引力等于其重力,则其重力不变,选项B正确,D错误;而对放在赤道地面上的物体,F万=G重+mω2R,由于ω增大,则G重减小,选项C正确.18.【答案】BCD19.【答案】AD【解析】“天宫二号”从B点沿椭圆轨道向A点运行的过程中,速度是变大的,故受到的地球引力为动力,所以A正确;在B点“天宫二号”产生的加速度都是由万有引力产生的,因为同在B点万有引力大小相等,故不管在哪个轨道上运动,在B点时万有引力产生的加速度大小相等,故B错误;“天宫二号”在椭圆轨道的B点的加速后做离心运动才能进入预定圆轨道,故“天宫二号”在椭圆轨道的B点的速度小于在预定圆轨道的B点的速度,故C错误;“天宫二号”在预定圆轨道上飞行n 圈所用时间为t,故周期为T=,根据万有引力提供向心力G=m,得地球的质量M==,故D正确.20.【答案】AC【解析】设地球轨道半径为R,“天宫一号”的轨道半径为r,运行周期为T,地球密度为ρ,则有=m()2r,M=ρ·,解得ρ=,A正确;轨道半径小,运动速度大,B错误;“同步卫星”和“倾斜同步卫星”周期相同,则轨道半径相同,轨道平面不同,C正确;“嫦娥一号”绕月球运动,与地球距离大于同步卫星与地球距离,D错误.21.【答案】-【解析】根据万有引力定律的计算公式,得F万=.物体的重力等于万有引力减去向心力,即mg=F万-F向=-.22.【答案】行星的质量行星和太阳间距离的二次方【解析】=k与F=得F=,再与=k联立消去T可以得到F=,这个公式表明太阳对不同行星的引力与行星的质量成正比,与行星和太阳间距离的二次方成反比.23.【答案】TA=TC>TB v B>v C>v A【解析】卫星A为同步卫星,周期与C物体周期相等,根据卫星绕地球做圆周运动,万有引力提供向心力得周期T=2π,所以TA=TC>TB;AC比较,角速度相等,由v=ωr,可知v A<v C;BC比较,同为卫星,由人造卫星的速度公式v=,可知v B>v C,故TA=TC>TB,v B>v C>v A.24.【答案】大于【解析】25.【答案】大于【解析】26.【答案】将砝码挂在弹簧测力计上,测出弹簧测力计的读数F,由F=mg月,得g月=①在月球表面,砝码的重力应等于月球的引力,mg月=G,则M=,②将①代入②,解得M==.故能测出月球的质量,用弹簧测力计测出砝码的重力F,依据表达式M=求出月球质量.【解析】将砝码挂在弹簧测力计上,测出弹簧测力计的读数F,由F=mg月,得g月=①在月球表面,砝码的重力应等于月球的引力,mg月=G,则M=,②将①代入②,解得M==.故能测出月球的质量,用弹簧测力计测出砝码的重力F,依据表达式M=求出月球质量.27.【答案】(1)(2)(3)【解析】这两颗星必须各自以一定的速度绕某一中心转动才不至于因万有引力而被吸引在一起,从而保持两星间距离L不变,且两者做匀速圆周运动的角速度ω必须相同.如图所示,两者轨迹圆的圆心为O,圆半径分别为R1和R2.由万有引力提供向心力,有G=m1ω2R1①G=m2ω2R2②(1)由,得=.(2)因为v=ωR,所以==.(3)由几何关系知R1+R2=L③联立①②③式解得ω=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力与航天联考题
1.(09·北京·22)(16分)已知地球半径为R,地球表面重力加速度为g,不考虑地球自转的影响。
(1)推导第一宇宙速度v1的表达式;(2)若卫星绕地球做匀速圆周运动,运行轨道距离地面高度为h,求卫星的运行周期T。
2.(08宁夏理综23)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(万有引力常量为G)
3.(07上海)宇航员在地球表面以一定初速度竖直上
抛一小球,经过时间t小球落回原处;若他在某星
球表面以相同的初速度竖直上抛同一小球,需经
过时间5t小球落回原处.(取地球表面重力加速度
g=10 m/s2,空气阻力不计)(1)求该星球表面附近
的重力加速度g′.(2)已知该星球的半径与地球
半径之比为R星∶R地=1∶4,求该星球的质量与地
球质量之比
4.(2013广西三校联考)已知地球绕太阳做圆周运动
的轨道半径为R、周期为T万有引力常量为G。
求:(1)
太阳的质量M; (2)已知火星绕太阳做圆周运动的周
期为1.9T,求地球与火星相邻两次距离最近时的时间
间隔t。
5.如图所示是月亮女神、嫦娥1号绕月做圆周运行时
某时刻的图片,用R1 R2 T1 T2分别表示月亮女神和嫦
娥1号的轨道半径及周期,用R表示月亮的半径。
(1)
请用万有引力知识证明:它们遵循
33
12
23
12
R R
K
T T
==,
(2)在经多少时间两卫星第一次相距最远;(3)请
用嫦娥1号所给的已知量,估测月球的平均密度。
6.(2012山西太原期末)北京时间8月25日消息,
据国外媒体报道,天文学家日前在距离地球127光年
处发现了一个拥有7颗行星的“太阳系”,这些行星
与其中央恒星之间遵循基本天体运行规律,和我们太
阳系的规则相似.这一星系的中央恒星名为
“HD10180”.分析显示,其中一个行星绕中央恒星
“HD10180”的公转周期为584天,是地球绕太阳公
转周期的1.6倍;与中央恒星“HD10180”的距离是
2.3亿公里,等于太阳和地球之间平均距离的1.6
倍,将行星与地球的公转轨道视为圆.(1)求恒星
“HD10180”的质量与太阳的质量之比.(2)已知该
行星的质量是地球质量的25倍,半径是地球半径的
16倍,求该行星的第一宇宙速度与地球的第一宇宙速
度之比,
7.(2013北京海淀期中)有一探测卫星在地球赤道正
上方绕地球做匀速圆周运动,已知地球质量为M,地
球半径为R,万有引力常量为G,探测卫星绕地球运
动的周期为T。
求:
(1)探测卫星绕地球做匀速圆周运动时的轨道半径;
(2)探测卫星绕地球做匀速圆周运动时的速度大小;
(3)在距地球表面高度恰好等于地球半径时,探测
卫星上的观测仪器某一时刻能观测到的地球表面赤
道的最大弧长。
(此探测器观测不受日照影响,不考
虑空气对光的折射)
8.(2013北京四中摸底)如图所示,A是地球的同步卫星.另一卫星B的圆形轨道位于赤道平面内,离地面高度为h.已知地球半径为R,地球自转角速度为ωo,地球表面的重力加速度为g,O为地球中心.求卫星B的运行周期.(2)如卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、B、A 在同一直线上),则至少经过
多长时间,它们再一次相距最
近?
9.(2013安徽皖南八校联考)在半径R=4800 km的某星球表面.宇航员做了如下实验,实验装置如图甲所示.竖直平面内的光滑轨道由AB和圆弧轨道BC组成.将质量 m=1. 0 kg的小球,从轨道 AB上高H处的某点静止滑下,用力传感器测出小球经过C点时对轨道的压力F,改变H 的大小,可测出相应的F大小。
.F随H的变化关系如图乙所示.求: (1)圆弧轨道的半径 (2) 该星球的第一宇宙速度.10.(2013四川绵阳一诊)“嫦娥一号”的成功发射,
为实现中华民族几千年的奔月梦想迈出了重要的一
步。
已知“嫦娥一号”绕月飞行轨道近似圆周,距
月球表面的高度为H,飞行周期为T,月球的半径为
R,万有引力常量为G,假设宇航長在飞船上,飞船在
月球表面附近竖直平面内俯冲,在最低点附近作半
径为r的圆周运动,宇航员质量是m,飞船经过最低
点时的速度是v;。
求:(1) 月球的质量M是多大?
(2) 经过最低点时,座位对宇航员的作用力F是多
大?
11.(湖南嘉禾一中2012届高三第一次学情摸底考试
03).(11分)地球质量为M,半径为R,自转角速度
为ω,万有引力恒量为G,若规定物体离无穷远处势
能为0,则质量为m的物体离地心距离为r时,具有
的引力势能可表示为
r
GMm
E
P
-
=。
(1)试证明一
质量m的卫星在离地面距离为h时所具有的机械能
为
)
(2h
R
GMm
E
+
-
=(2)国际空间站是在地球大气
层上空绕地球飞行的一个巨大人造天体,设空间站离
地面高度为h,如果在该空间站直接发射一颗质量为
m的小卫星,使其能达到地球同步卫星轨道并能在轨
道上正常运行,该卫星在离开空间站时必须具有多大
的初动能。
12.(广东省龙山中学2011届高三物理第一学期末模
拟考)宇航员在一星球表面上的某高处,沿水平方向
抛出一小球。
经过时间t,小球落到星球表面,测得
抛出点与落地点之间的距离为L。
若抛出时初速度增
大到2倍,则抛出点与落地点之间的距离为3L。
已
知两落地点在同一水平面上,该星球的半径为R,万
有引力常数为G。
求该星球的质量M。
13.(安徽省寿县一中2011届高三第三次月考物理试
卷)(14分)宇宙中存在一些离其它恒星较远的、由
质量相等的三颗星组成的三星系统,通常可忽略其它
星体对它们的引力作用。
已观测到稳定的三星系统存
在两种基本的构成形式:一种是三颗星位于同一直线
上,两颗星围绕中央星在同一半径为R的圆轨道上运
行;另一种形式是三颗星位于等边三角形的三个顶点
上,并沿外接于等边三角形的圆形轨道运行。
设每个
星体的质量均为m。
(1)试求第一种形式下,星体运动的线速度和周期。
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?。