八年级下册第七章 二次根式测试题

合集下载

八年级数学下册《二次根式计算题》练习题与答案(人教版)

八年级数学下册《二次根式计算题》练习题与答案(人教版)

八年级数学下册《二次根式计算题》练习题与答案(人教版)一、选择题1.下列等式成立的是( ) A.9-4= 5 B.5×3=15 C.9=±3 D.(-9)2=-92.计算2(6÷3)的结果是( )A. 3B. 2C.2D.2 23.下列变形正确的是( ) A. ; B. ; C. ; D. ;4.关于8的叙述正确的是( )A.在数轴上不存在表示8的点B.8=2+ 6C.8=±2 2D.与8最接近的整数是35.下列计算正确的是( )A.2+3= 5B.6×2=2 3C.6÷122=12 3D.32﹣2=3 6.已知a ,b 分别是6﹣13的整数部分和小数部分,则2a ﹣b 的值为( ) A.3﹣13 B.4﹣13 C.13 D.2+13二、填空题7.计算:8+2= .8.计算:(2﹣3)2+26= .9.计算:(2-23)2= .10.计算(1-2)2+18的值是________. 11.计算28﹣312+2= .12.比较大小:2+6________3+ 5.三、解答题13.计算:12×68.14.计算:(212-313)× 615.计算:(46-42+38)÷2 2.16.计算:6×(13﹣1)17.计算:(2+1)2﹣8+(﹣2)2.18.计算:(27+72)2﹣(27﹣72)2.19.先化简,再求值:(2x +y)2+(x -y)(x +y)-5x(x -y),其中x =2+1,y =-1.20.已知x ,y 为实数,且y =x -12+12-x +12,求4x +|2y ﹣1|﹣y 2-2y +1的值.21.已知a=5+2,b=5﹣2,求a 2+b 2﹣2ab 的值.22.已知121121-=+=y x , ;3x 2+4xy+3y 2求的值.23.阅读下列材料,回答有关问题:在实数这章中,遇到过这样的式子,我们把这样的式子叫做二次根式,根号下的数叫做被开方数.如果一个二次根式的被开方数中有的因数能开得尽方,可以利用a ·b =a ·b(a ≥0,b ≥0);a b =a b (a ≥0,b>0)将这些因数开出来,从而将二次根式化简.当一个二次根式的被开方数中不含开得尽方的因数或者被开方数中不含有分母时,这样的二次根式叫做最简二次根式,例如,13化成最简二次根式是33,27化成最简二次根式是33,几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如上面的例子中的13和27就是同类二次根式.(1)请判断下列各式中,哪些是同类二次根式?(2)二次根式中的同类二次根式可以像整式中的同类项一样合并,请计算:2+75-18-150+127- 3.24.阅读下列解题过程.请回答下列问题:(1)观察上面解题过程,请直接写出的结果为 .(2)利用上面所提供的解法,请化简:的值.(3)不计算近似值,试比较(13-11)与(15-13)的大小,并说明理由.参考答案1.B2.C.3.C.4.D.5.B6.C7.答案为:3 2.8.答案为:5.9.答案为:16-8 3.10.答案为:42﹣1.11.答案为:3 2.12.答案为:<.13.解:原式=12×68=9=3. 14.解:原式=9 2.15.解:原式=4+ 6.16.解:原式=6×13﹣6=2﹣ 6.17.解:原式=3+22﹣22+4=7.18.解:原式=(27+72+27﹣72)×(27+72﹣27+72) =47×142=5614.19.解:原式=4x 2+4xy +y 2+x 2-y 2-5x 2+5xy =9xy当x =2+1,y =2-1时原式=9(2+1)(2-1)=9×(2-1)=9×1=9.20.解:∵x ﹣12≥0且12﹣x ≥0 ∴x =12,∴y =12∴原式=4x +|2y ﹣1|﹣(y -1)2=4x +|2y ﹣1|﹣|y ﹣1|=2﹣12=32. 21.解:∵a=5+2,b=5﹣ 2∴a﹣b=2 2∴a2+b2﹣2ab=(a﹣b)2=(22)2=8.22.解:x=2-1,y=2+1,原式的值为2223.解:(1)75=5 3 18=3 21 50=210127=39∴ 2 18150是同类二次根式;751273是同类二次根式.(2)原式=2+53-32-210+39-3=-21210+3739.24.解:(1);。

八年级下册二次根式计算题

八年级下册二次根式计算题

八年级下册二次根式计算题一、二次根式计算题20题及解析。

1. 计算:√(12) - √(3)- 解析:- 先将√(12)化简,√(12)=√(4×3)=2√(3)。

- 则原式= 2√(3)-√(3)=√(3)。

2. 计算:√(27)+√(48)- 解析:- 化简√(27)=√(9×3)=3√(3),√(48)=√(16×3)=4√(3)。

- 原式= 3√(3)+4√(3)=7√(3)。

3. 计算:√(18)-√(8)- 解析:- √(18)=√(9×2)=3√(2),√(8)=√(4×2)=2√(2)。

- 原式= 3√(2)-2√(2)=√(2)。

4. 计算:√(50)-√(32)- 解析:- √(50)=√(25×2)=5√(2),√(32)=√(16×2)=4√(2)。

- 原式= 5√(2)-4√(2)=√(2)。

5. 计算:√(frac{1){2}}+√(frac{1){8}}- √(frac{1){2}}=(√(1))/(√(2))=(√(2))/(2),√(frac{1){8}}=(√(1))/(√(8))=(√(2))/(4)。

- 原式=(√(2))/(2)+(√(2))/(4)=(2√(2)+ √(2))/(4)=(3√(2))/(4)。

6. 计算:√(12)+√(frac{1){3}}- 解析:- √(12)=2√(3),√(frac{1){3}}=(√(1))/(√(3))=(√(3))/(3)。

- 原式= 2√(3)+(√(3))/(3)=(6√(3)+√(3))/(3)=(7√(3))/(3)。

7. 计算:(√(3)+1)(√(3)-1)- 解析:- 根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=√(3),b = 1。

- 原式=(√(3))^2-1^2=3 - 1=2。

8. 计算:(√(5)+√(2))^2- 解析:- 根据完全平方公式(a + b)^2=a^2+2ab + b^2,这里a=√(5),b=√(2)。

八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题含答案

八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。

八年级数学下册《二次根式》练习题含答案

八年级数学下册《二次根式》练习题含答案

八年级数学下册《二次根式》练习题一、选择题(每题3分,共18分)1.下列各式中,是二次根式的为( ) A .π B .12 C D2.下列判断正确的是( )A .带根号的式子一定是二次根式;B 一定是二次根式C ;D .二次根式的值必定是无理数3 ) A .x 是非负数 B .x 是实数 C .x 是正实数 D .x 是不等于零的实数4.当x=5时,在实数范围内没有意义的式子是( )A B52=a-1成立的条件是( ) A .a<1 B .a ≠1 C .a ≥1 D .a ≤16有意义的实数x 的值有( )A .0个B .1个C .2个D .无数个二、填空题(每题3分,共12分)7.________. 8.当______时,代数式2x -有意义.9.计算:()2=______,()2=________. 10.把919写成一个正数的平方形式是________.三、计算题(8分)11.()2)2-)0.四、解答题(每题11分,共22分)12.若0<x<1,试化简:│x │+2.13.已知,求(xy-64)2的算术平方根.参考答案一、1.C2.B3.C4.C5.C6.B二、7.a≤3 28.x≥1且x≠29.175;4x10.2三、11.解:原式=32)2+8-1=9×2-9+8-1=16.四、12.解:原式=│x│+(1-x)-│x-1│-1,13.解:依题意,得70,70.xx-≥⎧⎨-≥⎩解得7≤x≤7,所以x=7.代入解得x=9..。

二次根式初二练习题及答案

二次根式初二练习题及答案

二次根式初二练习题及答案一、选择题1. 将下列二次根式化简,得出最简形式:a) $\sqrt{8}$b) $\sqrt{75}$c) $\sqrt{27}$d) $\sqrt{50}$A) $2\sqrt{2}$ B) $3\sqrt{5}$ C) $6\sqrt{3}$ D) $5\sqrt{2}$2. 根据题意,判断下列等式是否成立:a) $\sqrt{16} = 4$b) $\sqrt{82} = 9$c) $\sqrt{5^2} = 5$d) $\sqrt{11^2} = -11$A) 是 B) 否3. 将下列二次根式化成标准形式:a) $3\sqrt{2} + \sqrt{8}$b) $5\sqrt{3} - 2\sqrt{12}$c) $4\sqrt{5} + 2\sqrt{20}$d) $2\sqrt{3} - 3\sqrt{6}$A) $5\sqrt{2}$ B) $3\sqrt{3}$ C) $6\sqrt{5}$ D) $-3\sqrt{3}$4. 计算:a) $\sqrt{25} + \sqrt{9}$b) $2\sqrt{49} - \sqrt{64}$c) $3\sqrt{36} + 4\sqrt{16}$d) $5\sqrt{81} - 2\sqrt{64}$A) 20 B) 4 C) 12 D) 85. 填空:a) $\sqrt{4} =$ ________b) $\sqrt{100} =$ ________c) $\sqrt{121} =$ ________d) $\sqrt{144} =$ ________A) 2 B) 10 C) 11 D) 12二、解答题1. 将下列各式化简为最简形式:a) $\sqrt{18}$b) $\sqrt{32}$c) $\sqrt{50}$d) $\sqrt{98}$2. 简化下列二次根式:a) $2\sqrt{27} - 3\sqrt{48}$b) $5\sqrt{15} + 3\sqrt{20}$c) $\sqrt{45} - 2\sqrt{12}$d) $4\sqrt{80} + 2\sqrt{45}$三、综合运用1. 解方程:$2x^2 - 18 = 0$2. 一个正方形的边长为$x$,则它的对角线长为多少?3. 某正方形面积等于某长方形面积的五分之一,且长方形的宽为$y$,则长方形的长是多少?四、答案选择题答案:1. A) $2\sqrt{2}$ 2. A) 是 3. B) $3\sqrt{3}$ 4. C) 12 5. A) 2解答题答案:1. a) $3\sqrt{2}$ b) $4\sqrt{2}$ c) $5\sqrt{2}$ d) $7\sqrt{2}$2. a) $\sqrt{6}$ b) $4\sqrt{5}$ c) $\sqrt{45} - \sqrt{8}$ d) $6\sqrt{5} + 3\sqrt{2}$三、综合运用答案1. 解方程:$x = 3$ 或 $x = -3$2. 对角线长为$x\sqrt{2}$3. 长方形的长为$5y$通过以上练习题的训练,相信同学们对初二阶段的二次根式有了更深的理解和掌握。

鲁教版数学八年级下《第七章二次根式》单元测试卷含答案

鲁教版数学八年级下《第七章二次根式》单元测试卷含答案

第七章二次根式单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.要使二次根式有意义必须满足( )≤2 ≥2 >2 <22.下列二次根式中,不能与合并的是( )A. B. C. D.3.下列二次根式中,最简二次根式是( )A. B. C. D.4.下列各式计算正确的是( )A.+=B.4-3=1C.2×3=6D.÷=35.下列各式中,一定成立的是( )A.=()2B.=()2C. 1D.=·6.已知+1,则a与b的关系为( )1 17.计算÷×的结果为( )A. B. C. D.8.已知为△的三边长,且0,则△的形状是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形9.已知2-1,则(1)(1)的值为( )B.3C.3-2D.-110.实数a、b在数轴上对应点的位置如图所示,那么化简的结果是( )A.2 C.2二、填空题(每题3分,共24分)11.计算:-3.12.若最简二次根式与可以合并,则m的值为.13.已知=,则x2+.14.有一个密码系统,其原理如图所示,当输出的值为时,则输入的.输入x →→输出15.若整数x满足≤3,则使为整数的x的值是(只需填一个).16.已知为两个连续..的整数,且a<<b,则.17.若>0,则二次根式x化简的结果为.18.已知为实数,且-+4,则的值为.三、解答题(19题12分,24,25题每题11分,其余每题8分,共66分)19.计算:(1)3-2+; (2)×;(3)×(-)2.20.先化简,再求值:÷,其中2+2-.21.已知是△的三边长,化简:-+.22.已知2,求+的值.23.已知长方形的长,宽.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.24.全球气候变暖导致一些冰川融化并消失.在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下的关系式7×(t≥12).其中d代表苔藓的直径,单位是厘米代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,问冰川约是多少年前消失的?25.阅读下面的材料,解答后面给出的问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,+1与-1. (1)请你再写出两个含有二次根式的代数式,使它们互为有理化因式: ;这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==,===.(2)请仿照上面给出的方法化简:;(3)计算:+++…+.参考答案一、1.【答案】B 2.【答案】C 3.【答案】D4.【答案】D5.【答案】A6.【答案】A解:===+1,故选A.7.【答案】B解:原式===.8.【答案】B解:原等式可化为0,∴0且0,∴,即△是等边三角形.9.【答案】A解:(1)(1)()-1.将2-1整体代入上式,得原式=-(2-1)-1.10.【答案】B解:本题利用了数形结合的解题思想,由数轴上点的位置知a<0<0,所以.二、11.【答案】12.【答案】3解:∵最简二次根式与可以合并,∴它们的被开方数相同,即54=25,解得3.13.【答案】8解:x2+2+-2+2=+2=()2+2=6+2=8.14.【答案】215.【答案】-2(答案不唯一)解:∵≤3,∴-3≤x≤3.当2时,==3;当3时,==2,∴使为整数的x 的值是-2或3(填写一个即可).16.【答案】11解:因为5<<6,所以56,所以11.17.【答案】-解:由题意知x<0<0,所以x.解此类题要注意二次根式的隐含条件:被开方数是非负数.18.【答案】-1或-7解:由二次根式有意义,得解得x2=9,∴±34,∴1或-7.三、19.解:(1)原式=3×2-2×4+2=6-8+22+2.(2)原式=×+×=1+9=10.(3)原式3+2+8=8-.20.解:原式=÷=·=,当2+2-时,原式===.21.解:∵是△的三边长,∴>0>0<0,∴原式()+()=3.22.解:由题意,知a<0<0,所以原式=+=+=+=2.分析:此题易出现以下错误:原式=+==2.出错的原因在于忽视了隐含条件,进而导致在解答过程中进行了非等价变形.事实上,由2,可知a<0<0,所以将+变形成+是不成立的.23.解:(1)2()=2×=2×(2+)=6.故长方形的周长为6.(2)4=4=4=4×2=8.因为6>8,所以长方形的周长大.24.解:(1)7×,当16时7×=14.即冰川消失16年后苔藓的直径为14厘米.(2)在7×中,当35时,有35=7×,∴=5,∴37.即苔藓的直径是35厘米时,冰川约是37年前消失的.25.解:(1)+与-(答案不唯一)(2)===17-12.(3)原式=(-1)+(-)+(-)+…+(-)1+-+-++…-+1+1+10=9.。

八年级数学下册《二次根式》练习题附答案-人教版

八年级数学下册《二次根式》练习题附答案-人教版

八年级数学下册《二次根式》练习题附答案-人教版一、选择题1.下列函数中,自变量x的取值范围为x<1的是( )A.y=11-xB.y=1-1xC.y=1-xD.y=11-x2.若a<1,化简(a-1)2﹣1= ( )A.a﹣2B.2﹣aC.aD.﹣a3.下列根式是最简二次根式的是( )A.13B.0.3C. 3D.204.下列运算正确的是( )A.2+3= 5B.18=2 3C.2·3= 5D.2÷12=25.当a<0,b<0时,把化为最简二次根式,得( )A. B.- C.- D.6.下列二次根式中,与3是同类二次根式的是( )9 B.30 C.12 D.87.下列运算正确的是( )2+5=7 B.22×32=6 2 C.8÷2=2 D.32﹣2=38.已知a,b分别是6﹣13的整数部分和小数部分,则2a﹣b的值为( )A.3﹣13B.4﹣13C.13D.2+139.化简a+1+aa+1-a﹣a+1-aa+1+a的结果是( )A.2a+2B.4a+2C.4a2+aD.﹣4a2+a10.已知a+b=3,a﹣b=2,c=5,则代数式a2﹣b2﹣c2﹣2bc的值是( )A.正数B.负数C.零D.无法确定二、填空题11.当x________时,二次根式2x +3在实数范围内有意义. 12.当x =-2时,二次根式2-7x 的值 .13.计算:8+2= .14.计算(1-2)2+18的值是________.15.若a+b=5+ 3 ,ab=15- 3 ,则x+y=_______.16.比较大小:2+6________3+ 5.三、解答题17.计算:.18.计算:(32-23)(32+23).19.计算:1212﹣(313+2).20.计算:33﹣(3)2+(π+3)0﹣27+|3﹣2|;21.已知x ,y 为实数,且y =x -12+12-x +12,求4x +|2y ﹣1|﹣y 2-2y +1的值.22.有一个长、宽之比为5∶2的长方形过道,其面积为 10 m2.(1)求这个长方形过道的长和宽;(2)用40块大小一样的正方形地板砖刚好把这个过道铺满,求这种地板砖的边长.23.设x=2+5,y=-2+5,求x2+y2﹣2xy的值.24.对于任意不相等的两个实数a,b,定义运算“*”如下:a*b=a+ba-b﹣a-ba-b(a>b>0).如4*3=4+34-3﹣4-34-3=7﹣1,试求下列各式的值:(1)13*5.(2)6*5﹣5×(8*3).25.小明在学习《二次根式》后,发现一些含根号的式子可以写成另一个式子的平方如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为整数),则有a+b2=m2+2n2+2mn 2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+2b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得a=________,b=________;(2)利用所探索的结论,找一组正整数a,b,m,n填空:________+________3=(________+________3)2;(3)若a+43=(m+n3)2,且a,m,n均为正整数,求a的值.参考答案1.D.2.D.3.C.4.D.5.B6.C7.C.8.C9.C.10.B11.答案为:≥-3212.答案为:4.13.答案为:3 214.答案为:42﹣1.15.答案为:4- 316.答案为:<.17.解:原式=-22;18.解:原式=6.19.解:原式=3﹣3﹣2=﹣ 2.20.原式=﹣3 3.21.解:∵x ﹣12≥0且12﹣x ≥0 ∴x =12,∴y =12∴原式=4x +|2y ﹣1|﹣(y -1)2=4x +|2y ﹣1|﹣|y ﹣1|=2﹣12=32.22.解:(1)设这个长方形过道的长为5x(m),宽为2x(m)则5x·2x=10∴x2=1,解得x1=1,x2=-1(不合题意,舍去).答:这个长方形过道的长为5 m,宽为2 m;(2)设这种地板砖的边长为m(m)则40m2=10∴m2=0.25解得m1=0.5,m2=-0.5(不合题意,舍去).答:这种地板砖的边长为0.5 m.23.解:∵x2+y2﹣2xy=(x﹣y)2∴把x=2+5,y=﹣2+5代入得:原式=(2+5+2﹣5)2=16.24.解:(1)13*5=13+513-5﹣13-513-5=328﹣228=28.(2)6*5﹣5×(8*3)=6+56-5﹣6-56-5﹣5×(8+38-3﹣8-38-3)=11﹣1﹣11+5=5﹣1.25.解:(1)∵a+b3=(m+n3)2∴a+b3=m2+3n2+2mn 3∴a=m2+3n2,b=2mn.(2)答案不唯一,如:设m=1,n=1∴a=m2+3n2=4,b=2mn=2.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m,n为正整数∴m=2,n=1或m=1,n=2∴a=22+3×12=7或a=12+3×22=13.。

(完整)八年级二次根式综合练习题及答案解析.docx

(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。

【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。

【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。

m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。

【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。

【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。

【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。

2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。

【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。

1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。

华师大版八年级数学下册第七章 二次根式 测试题.docx

华师大版八年级数学下册第七章 二次根式 测试题.docx

第七章 二次根式 测试题一、选择题(每小题3分,共24分)1. 如果代数式有意义,那么x 的取值范围是( )A .x≥0B .x≠1C .x >0D .x≥0且x≠12. 下列二次根式中,是最简二次根式的是( ) A.xy 2 B.2ab C.21 D.422x x y + 3. 下列计算正确的是( )A .3B. C .2= D .4 4. 等式2111x x x -⋅+=-成立的条件是( )A.1x >B.1x <-C. ≥D. ≤5. 已知()2320x y x y -+++=,则x y +的值为( )A. 0B. 1-C. 1D.36. 估计31-2的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间7. 设0>a ,0>b ,则下列运算中错误..的是( ) A.b a ab ⋅= B.b a b a +=+ C.a a =2)( D.b a b a =8. 下列二次根式中,不能与12合并的是( ) A.48 B.18 C.311 D.75- 二、填空题(每小题4分,共32分)9. 若242x x =,则x 的取值范围是 .10. 化简:= . 11. 计算()5082-÷的结果是 .12. 计算:18322-+= . 13. 当x= 时,二次根式1+x 取最小值,其最小值为 .14. 若整数x 满足|x|≤3,则使7x -为整数的x 的值可以是 (只需填一个).15.16. k ,m ,n 为整数,若135=k 15,450=15m ,180=6n ,则k ,m ,n 的大小关系为 .三、解答题(共64分)17.(每小题4分,共8分)计算:(1)75+28-200; (2)0293618(32)(12)23+--+-+-. 18.(8分)先化简,再求值:22321121a a a a a a-+÷-+-,其中3a =.19.(8分)是否存在这样的整数x ,使它同时满足下列两个条件:①式子20-x 和x -30有意义;②x 的值仍为整数.如果存在,求出x 的值;如果不存在,说明理由.20.(10分)已知直角三角形斜边长为(26+3)cm ,一直角边长为(6+23)cm ,求这个直角三角形的面积.21.(10分)先化简,再求值:(a +b )2+(a -b )(2a +b )-3a 2,其中a =-2-3,b =3-2.22.(10分)一个三角形的三边长分别为1545,20,5245x x x x. (1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.23.(10分)如图是小华同学设计的一个计算机程序,请看懂后回答下列问题.(1)若输入的数x =5,则输出的结果是________;(2)若输出的结果是0且没有返回运算,则输入的数x 是________;(3)请你输入一个数,使它经过第一次运算时返回,经过第二次运算时可输出结果,你觉得可以输入的数是______,输出的数是________.第七章 二次根式测试题一、1. D 2. A 3. C 4. C 5. C 6. C 7. B 8. B二、9. 0x ≥10.11. 3 12. 32213. -1 0 14. -2或3 15. 1 16. m <k <n 三、17.(1)53-6 2.(2)0293618(32)(12)23+--+-+- 3322(12)1|12|2=--+++-. 3322121212=---++-. 3212=-. 18. 原式=2a .当3a =时,原式=3.19. 存在,x=25.20. 根据勾股定理,另一条直角边长为22)326()362(+-+=3(cm ).所以直角三角形的面积S =21×3×(326+)=(23336+)cm 2. 21. 原式=a 2+2ab +b 2+2a 2-ab -b 2-3a 2=ab .当a =-2-3,b =3-2时,原式=1.22.(1)周长1545205245x x x x=++= . (2)当20x =时,周长5520252=⨯=.(答案不唯一,符合题意即可) 23.(1) 6(2)±7 (3)答案不唯一,如分别填2,22- 6.初中数学试卷马鸣风萧萧。

八年级数学下册二次根式练习题及参考答案:(含答案)

八年级数学下册二次根式练习题及参考答案:(含答案)

二次根式练习题(1)____班 姓名__________ 分数__________一、选择题(每小题3分,共30分)1.若m -3为二次根式,则m 的取值为 ( )A .m≤3B .m <3C .m≥3D .m >32.下列式子中二次根式的个数有 ( ) ⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个3.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-24.下列计算正确的是 ( ) ①69494=-⋅-=--))((;②69494=⋅=--))((; ③145454522=-⋅+=-;④145452222=-=-;A .1个B .2个C .3个D .4个5.化简二次根式352⨯-)(得 ( )A .35-B .35C .35±D .306.对于二次根式92+x ,以下说法不正确的是 ( )A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是37.把ab a123分母有理化后得 ( )A .b 4B .b 2C .b 21 D . b b2 8.y b x a +的有理化因式是 ( )A .y x +B .y x -C .y b x a -D .y b x a +9.下列二次根式中,最简二次根式是 ( )A .23aB .31 C .153 D .143 10.计算:abab b a 1⋅÷等于 ( ) A .ab ab 21B .ab ab 1C .ab b1 D .ab b 二、填空题(每小题3分,共分)11.当x___________时,x 31-是二次根式.12.当x___________时,x 43-在实数范围内有意义.13.比较大小:23-______32-.14.=⋅ba ab 182____________;=-222425__________. 15.计算:=⋅b a 10253___________.16.计算:2216a c b =_________________. 17.当a=3时,则=+215a ___________.18.若x x x x --=--3232成立,则x 满足_____________________.三、解答题(46分)19.(8分)把下列各式写成平方差的形式,再分解因式:⑴52-x ; ⑵742-a ;⑶15162-y ; ⑷2223y x -.20.(12分)计算: ⑴))((36163--⋅-; ⑵63312⋅⋅;⑶)(102132531-⋅⋅; ⑷z y x 10010101⋅⋅-.21.(12分)计算: ⑴20245-; ⑵14425081010⨯⨯..; ⑶521312321⨯÷; ⑷)(ba b b a 1223÷⋅.22.(8分)把下列各式化成最简二次根式: ⑴27121352722-; ⑵b a c abc 4322-.23.(6分)已知:2420-=x ,求221xx +的值.参考答案:一、选择题1.A ;2.C ;3.B ;4.A ;5.B ;6.B ;7.D ;8.C ;9.D ;10.A .二、填空题11.≤31;12.≤43;13.<;14.31,7;15.ab 230;16.a c b 4;17.23;18.2≤x <3.三、解答题19.⑴))((55-+x x ;⑵))((7272-+a a ;⑶))((154154-+y y ; ⑷))((y x y x 2323-+;20.⑴324-;⑵2;⑶34-;⑷xyz 10;21.⑴43-;⑵203;⑶1;⑷43;22.⑴33;⑵ bc a c 242-;23.18.。

八年级下册《二次根式》单元测试题题

八年级下册《二次根式》单元测试题题

八年级下册数学第七章《二次根式》单元测试题(时间:45分钟 满分:100分)班级_____ _____姓名____ _________日期___ _____一、 选择题(每小题3分,共30分)1.二次根式5-x 中,x 的取值范围是( )(A)x ≥5 (B)x>5 (C)x<5 (D)x ≤52.下列根式中,最简二次根式的是( ) (A)5.0 (B)52 (C)yz x 22 (D)12+a 3.化简32的结果是( )(A)25 (B)24 (C)23 (D)264.计算2)2(-的结果是( )(A)4 (B)±2 (C)2 (D)-25.计算3÷6的结果是( )(A)21 (B)26 (C)23 (D)2 6.计算18(-)8÷2的结果是( )(A)21 (B)2 (C)22 (D)42 7.下列选项中,使根式有意义的a 的取值范围为a<1的是( ) (A)1-a (B)a -1 (C)2)1(a - (D)a-11 8.下列各组二次根式化简后,是同类二次根式一组是( )((A)93和 (B)313和 (C)318和 (D)2412和 9.下列代数式中,x 能取一切实数的是( )A.x 1 B.42+x C.x 3 D.1—x 10.下列运算错误的是( ) (A)2×3=6 (B)21=22 (C)22+23=25 (D)221()—=1-2 二、填空题(每小题3分,共30分)11.计算81=__________. 12.计算2)23(=_________13.计算210-=___________14.如2x =4,则x=__________15.计算22)3()3(--=___________16.在x 51-中字母x 的取值范围为_______________17.在直角坐标系中,点A (-5,3)到原点的距离是__________18.计算36a ÷3a 的结果是____________ 19.长方形的长a=502厘米, b=323厘米,则长方形的面积s 为__________20.已知一个自然数的算术平方根为a ,则比这个自然数小3的数是_________三、解答题(共40分。

八年级下册数学二次根式测试题及答案(2套,高分必做)

八年级下册数学二次根式测试题及答案(2套,高分必做)

初中数学二次根式测试题(一)判断题:(每小题1分,共5分).1.2)2(=2.……() 2.21x --是二次根式.……………( )3.221213-=221213-=13-12=1.( )4.a ,2ab ,ac1是同类二次根式.……( )5.b a +的有理化因式为b a -.…………()(二)填空题:(每小题2分,共20分)6.等式2)1(-x =1-x 成立的条件是_____________.7.当x ____________时,二次根式32-x 有意义.8.比较大小:3-2______2-3.9.计算:22)21()213(-等于__________.10.计算:92131·3114a =______________. 11.实数a 、b 在数轴上对应点的位置如图所示: a o b 则3a -2)43(b a -=______________.12.若8-x +2-y =0,则x =___________,y =_________________. 13.3-25的有理化因式是____________.14.当21<x <1时,122+-x x -241x x +-=______________. 15.若最简二次根式132-+b a 与a b -4是同类二次根式,则a =_________,b =__________. (三)选择题:(每小题3分,共15分)16.下列变形中,正确的是………( )(A )(23)2=2×3=6 (B )2)52(-=-52 (C )169+=169+ (D ))4()9(-⨯-=49⨯17.下列各式中,一定成立的是……( )(A )2)(b a +=a +b (B )22)1(+a =a 2+1(C )12-a =1+a ·1-a (D )ba =b1ab18.若式子12-x -x 21-+1有意义,则x 的取值范围是………………………( ) (A )x ≥21 (B )x ≤21 (C )x =21(D )以上都不对19.当a <0,b <0时,把ba化为最简二次根式,得…………………………………( )(A )ab b 1 (B )-ab b 1 (C )-ab b-1 (D )ab b20.当a <0时,化简|2a -2a |的结果是…( )(A )a (B )-a (C )3a (D )-3a(五)计算:(每小题5分,共20分)23.(48-814)-(313-5.02);24.(548+12-76)÷3;25.50+122+-421+2(2-1)0;26.(b a 3-ba +2ab +ab )÷ab .(六)求值:(每小题6分,共18分)27.已知a =21,b =41,求ba b --ba b+的值.28.已知x =251-,求x 2-x +5的值.29.已知y x 2-+823-+y x =0,求(x +y )x 的值.(七)解答题:30.(7分)已知直角三角形斜边长为(26+3)cm ,一直角边长为(6+23)cm ,求这个直角三角形的面积.31.(7分)已知|1-x |-1682+-x x =2x -5,求x 的取值范围.试卷答案【答案】1.√;2.×;3.×;4.√;5.×. 6.【答案】x ≤1. 7.【提示】二次根式a 有意义的条件是什么?a ≥0.【答案】≥23. 8.【提示】∵243=<,∴ 023<-,032>-.【答案】<.9.【提示】(321)2-(21)2=?【答案】23.10.【答案】92aa . 11.【提示】从数轴上看出a 、b 是什么数?[a <0,b >0.]3a -4b 是正数还是负数? [3a -4b <0.]【答案】6a -4b .12.【提示】8-x 和2-y 各表示什么?[x -8和y -2的算术平方根,算术平方根一定非负,]你能得到什么结论?[x -8=0,y -2=0.]【答案】8,2.13.【提示】(3-25)(3+25)=-11.【答案】3+25.14.【提示】x 2-2x +1=( )2;41-x +x 2=( )2.[x -1;21-x .]当21<x <1时,x -1与21-x 各是正数还是负数?[x -1是负数,21-x 也是负数.]【答案】23-2x . 15.【提示】二次根式的根指数是多少?[3b -1=2.]a +2与4b -a 有什么关系时,两式是同类二次根式?[a +2=4b -a .] 【答案】1,1.16.【答案】D .17.【答案】B .18.【答案】C .19.【答案】B .20.【答案】D .23.【答案】33.24.22-221.25.52.26.a 2+a -ba+2. 27.【解】原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时,原式=4121412-⨯=2. 28.【提示】本题应先将x 化简后,再代入求值. 【解】∵ x =251-=4525-+=25+.∴x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45.29.【解】∵y x 2-≥0,823-+y x ≥0,而 y x 2-+823-+y x =0, ∴⎩⎨⎧=-+=-.082302y x y x 解得 ⎩⎨⎧==.12y x ∴ (x +y )x =(2+1)2=9.30.【解】在直角三角形中,根据勾股定理:另一条直角边长为:22)326()362(+-+=3(cm ).∴ 直角三角形的面积为:S =21×3×(326+)=23336+(cm 2)答:这个直角三角形的面积为(23336+)cm 2.31.【解】由已知,等式的左边=|1-x |-2)4(-x =|1-x |-|x -4 右边=2x -5.只有|1-x |=x -1,|x -4|=4-x 时,左边=右边.这时⎩⎨⎧≤-≤-.0401x x 解得1≤x ≤4.∴x 的取值范围是1≤x ≤4.二次根式一、选择题(共20分):1、下列各式中,不是二次根式的是( )A B 2、下列根式中,最简二次根式是( )3、计算:3÷6的结果是 ( )A 、12B 、62C 、32 D 、 2 4、如果a 2=-a ,那么a 一定是 ( )A 、负数B 、正数C 、正数或零D 、负数或零 5、下列说法正确的是( )A 、若 ,则a <0B 、若 ,则a >0C 、D 、5的平方根是6、若2m-4与3m-1是同一个数的平方根,则m 为( ) A 、-3 或1 D 、-18X C.6X 3 D.X 2+1a 2=- a a 2= a 5a 4b 8=a 2b 47、能使等式 成立的x 值的取值范围是( )A 、x ≠2B 、x ≥0C 、x >2D 、x ≥2 8、已知xy >0,化简二次根式2x yx -的正确结果是( )9、已知二次根式2x 的值为3,那么x 的值是( ) A 、3B 、9C 、-3D 、3或-310、若a =,5b =,则a b 、两数的关系是( )A 、a b =B 、5ab =C 、a b 、互为相反数D 、a b 、互为倒数 二、填空题(共30分):11、当a=-3时,二次根式1-a 的值等于 。

人教版八年级下册二次根式、勾股定理考试测试卷(含word解析)

人教版八年级下册二次根式、勾股定理考试测试卷(含word解析)

数学试卷(二次根式、勾股定理)、单 选题(共10题;共20分)1 .在下列各式中,一定是二次根式的是( )A. 3 2B. ..Ho c. ,.a 21 D. a a3 .下列变形中,正确的是( A. (26)2=2 X 3=6 C.匕-♦ 6; - -5 -小 64 .下列组合哪个不是勾股数(A.30,40,50B. 7,24,25BT -D . '",)「;-4)7二5 .下列二次根式中,与 内是同类二次根式的是( )A.B.c.D.6 .一棵大树在一次强台风中于离地面 5 m 处折断倒下,倒下后树顶落在树根部大约12 m 处.这棵大树折断前离度估计为()7 .如图,a 、b 、c 分别表示直角三角形的三边向外作的正方形的面积,2.若式子运 在实数范围内有意义,则 A. x>1B.女1x 的取值范围是()(X>1D.<1A. 25m B. 18 m C. 17 m D. 13mA. a+b=cB.2+b 2=c 2C.ab=cD.a+b=cC. 5,12,13D. 1,2,3卜列关系正确的是8 .如果最简根式,以二8与是同类二次根式,那么使有意义的x 的取值范围是()A. x< 10 iB. x> 10C. xv 10 uD. x> 109 .等式,营=不与成立的条件是( )10 .下列根式中,最简二次根式是 ( )A.差吧.C.、填空题(共6题;共18分)11 .当a= -2时,二次根式 \f2-a 的值是12 .如图,将一根长为 20cm 的筷子置于底面直径为 5cm,高为12cm 的圆柱形水杯中,筷子 露在杯子外面的长度为 cm.13 .已知三角形的三边长分别为 ^45 cm, 厢cm, y125 cm ,则这个三角形的周长为 _______ cm.14 .如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形 A 、B 、C 、D 的边长分别是3、4、2、3,则最大正方形 E 的面积是15 .若直角三角形的两直角边长为 a 、b,且满足 标二五*9-|b —4 = 0则该直角三角形的斜边长为A. xW3'B. x>0 C. x>0且 xw3 D. x>3D.16 .中国数学史上最先完成勾股定理证明的数学家是公元 3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副 "弦图:后人称其为 赵爽弦图”(如图1) .图2由弦图变化得到, 它是由八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH 正方形ABCD的面积分别记为 S , S 2 , S 3 , 若S i +&+Q=18,则正方形EFGH 的面积为三、计算题(共2题;共15分)17 .计算: 标i-而-1/+ 12x3—1 — 1- I18.计算:⑴廊+杀-屈-旧(2)JI (后行)-中-旧2嘎青六黄41四、解答题(共5题;共47分,19,20,22每题10分,21题5分,23题12分)19.如图,在4ABC 中,AB=13, BC=10, BC边上的中线AD=12.(1)求证:AD^BC;(2)求AC的长.20. (1)已知y/—1 - J-x,求的平方根.(2)当-4<x< 1时,化简,举+&V+16 - 2,d・占+].21.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A 沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?22.综合题⑴试比较而与后调的大小;(2)你能比较谒二访与向距的大小吗?其中k为正整数.23.如图,B地在A地的正东方向,两地相距28。

华师大版八年级数学下册第七章《二次根式》单元水平测试测试1.docx

华师大版八年级数学下册第七章《二次根式》单元水平测试测试1.docx

《二次根式》单元测试卷1姓名 班级 得分一、选择题(每小题4分,共40分)1、下列二次根式中,是最简二次根式的是( )A .a 16B .22y x +C .a bD .452、在根式2、75、501、271、15中与3是同类二次根式的有( )A .1个B .2个C .3个D .4个3、实数a 、b 在数轴上对应的位置如图,则=---22)1()1(a b ( )A .b-aB .2-a-bC .a-bD .2+a-b4、化简2)21(-的结果是( ) A .21- B .12- C .)12(-± D .)21(-±5、下列计算中,正确的是( )A .3232=+ B .3936==+ C .35)23(3253--=- D .72572173=- 6、如果2121--=--x x x x ,那么x 的取值范围是( )A .1≤x ≤2B .1<x ≤2C .x ≥2D .x >27、设0>a 、0>b ,则下列运算中错误..的是( ) A .b a ab ⋅= B .b a b a +=+ C .a a =2)( D .b a b a =8、已知n 18是正整数,则实数n 的最小值是( )A .3B .2C .1D .181 9、代数式22)3()1(a a -+-的值为常数2,则a 的取值范围是( ) A .3≥a B .1≤a C .31≤≤a D .1=a 或3=a10、把a a 1-的根号外的因式移动到根号内的结果是( )A .a -B .a --C .aD .a -二、填空题(每小题4分,共32分)11、如果代数式1-x x 有意义,那么x 的取值范围是______________ 12、若588+-+-=x x y ,则xy = _______13、若整数m 满足条件2)1(+m =1+m 且m <52,则m 的值是 .14、比较-与---15是同类二次根式,那么b=16、在实数范围内分解因式944-x = 17、若用a 表示121-的整数部分,用b 表示其小数部分,则22b a -=18、观察分析下列数据,寻找规律:0,3,6,3,32……那么第10个数据应是 。

新鲁教版五四制八年级数学下册《二次根式》单元测试题及答案.docx

新鲁教版五四制八年级数学下册《二次根式》单元测试题及答案.docx

(新课标)鲁教版五四制八年级下册第七章 二次根式 测试题 (时间:90分钟 满分:120 分)班级: 姓名: 得分:一、选择题(每小题3分,共24分)1.下列各式中,一定是二次根式的是( )AB C D 2x 应满足的条件是( )A .x ≥5B .x ≤5C .x >5D .x <53合并的是( )A B C D .4 )A.5.下列计算正确的是( ) A=B =C =D 2=67===7===.对于两位同学的解法,正确的判断是( ) A .小燕、小娟的解法都正确B .小燕的解法正确,小娟的解法不正确C .小燕、小娟的解法都不正确D .小娟的解法正确,小燕的解法不正确7.若23x <<的值为( ) A .1B .25x -C .1或25x -D .1-8.已知226a b ab +=,且0a b >>,则a b a b+-的值是( )C二、填空题(每小题4分,共32分) 9n 的最小值为 .10的结果是 .11可以合并,则_____m =.12.用“<”号把下列各数连接起来:0.13-π--,,,13.已知x =y =x yy x+的值是 . 14.已知21+=m ,21-=n ,则代数式mn n m 322-+的值为_______.15.大于的整数是 .16.三角形的周长为cm ,cm ,第三边的长 是 cm .三、解答题(共64分)17.(每小题6分,共12分)计算: (1)220(3)1)3)--+-;(2)1(6232)3282x x x x x-+÷.18.(10分)先化简,再求值:2222)11(y xy x yy x y x +-÷+--,其中x =1+2,y =1-2.19. (10分)假期中,王强和同学们到某海岛上去玩探宝旅游,按照探宝图(如图1),他们在A点登陆后先往东走83千米到H 点,又往北走23千米,遇到障碍后又往西走33千米,再折向北走到63千米处往东一拐,再走3千米就找到宝藏埋藏点B.问:他们共走了多少千米?20.(10分)已知118812y x x =--,22x y x y y x y x+++-值.21.(10分)如图2所示,某学校计划在校园内修建一个正方形的花坛,在花坛中央还要修一个正方形的小喷水池.设计方案需要考虑有关的周长,如果小喷水池的面积是2平方米,花坛的边长是小喷水池的3倍,问花坛的外周长与小喷水池的周长一共是多少米?图222.(12分)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:222222142a b c S a b ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦①(其中a ,b ,c 为三角形的三边长,S 为面积.)而古希腊也有求三角形面积的海伦公式:()()()S p p a p b p c =--- (其中2a b cp ++=.) 若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积S.参考答案一、1. B 2. A 3. C 4. C 5. A 6. A 7. A 8. D二、9.6 10. 11. 1 12.0.13 3.14-<--<<π1314.3 15. -1,0,1,2,3 16.三、17. (1)原式=1(319+---1319=++-359=-.(2)原式=÷=÷32=. 18.原式=))((2y x y x y -+·y y x 2)(2-=yx y x +-.当x =1+2, y =1-2时,原式=2121)21(21-++--+=2.19. 他们共走了.20. 8101881,018,081=∴=-=-∴≥-≥-x x x x x Θ,∴21=y .∴111824x y=÷=,11428y x =÷=.因此,原式53122==-=. 21.设小喷水池正方形的边长为x 米,则22x =,所以x =边长为因此,花坛的外周与小喷水池的周长一共是:=.22.解:S====又1p=++=.所以S==(578)102。

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)

八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册第七章《二次根式》检测A 卷
(考试时间:60分钟,满分100分)
一、选择题 :(3分x8=24分)
A.1个
B.2个
C.3个
D.4个
A.2个
B.3个
C.4个
D.5个 3.下列各式的化简中,正确的有( )
A.1个
B.2个
C.3个
D.4个
4.下列各式中,一定是二次根式的是( ).
A. C. D.5.计算2712-
的结果是( ).
A 、 -3
B 、3
C 、 53 D.-53 6、下列等式不成立的是( ) A 、()a a =2
B 、a a
=2
C 、33a a -=-
D 、a a
a
-=-
1
7. ,则( )
A .a ≥4
B .a ≥0
C .0≤a ≤4
D .a 为一切实数
8. 化简2006
2007
2)
2)
∙的结果为( ).
A 、 –1
B 、23-
C 、23+ D. 23--
二、填空题:(3分x8=24分)
1.化简:
3
2= .
2.化简:3
2
3b a = ; (a>0 ,b>0)
3. 计算:最简二次根式3a a = ,
b = ;
4. 计算: 6223∙= .
5计算:()2(2
=_______。

6.若,则a 的取值范围是______________________.
7.化简 :2
-
8.在直角坐标系中,点A (-6,2)到原点的距离是__________ 三、解答题(1—4题,每题8分;5—6题,每题10分) 1. 计算: 27×32÷6
2. 计算:-.
3.)54)(54()523(2
-+-+
4. 13
()÷
16
5. 已知:12+=x ,求代数式
2
2
221
x x x x ---+的值.
6.已知x=3+2,y=3-2,求x 2+2xy+y 2
的值
八年级下册第七章《二次根式》检测A 卷答案
一、选择题:
1、D
2、B
3、B
4、D
5、A
6、D
7、A
8、C 二、填空题:
3、a=1,b=1 5、484 6、a ≤0 7、-1
八年级下册第七章《二次根式》检测B 卷
(考试时间:60分钟,满分100分)
青州市庙子初级中学 刘兴红
一、选择题(每题3分,共24分) 1、在3
16x 、3
2-
、5.0-、
x
a 中,最简二次根式的个数是( )
A 、1
B 、2
C 、3
D 、4 2、设10的小数部分为b ,则)3(+b b 的值是( )
A 、1
B 、是一个无理数
C 、3
D 、无法确定 3、如果1≤a ≤2,则2122
-++-a a a 的值是( )
A 、a +6
B 、a --6
C 、a -
D 、1 4、式子
1
31
3--=
--x x x x 成立的条件是( )
A 、x ≥3
B 、x ≤1
C 、1≤x ≤3
D 、1<x ≤3 5、式子3
ax
--
(a >0)化简的结果是( )
A 、ax x -
B 、ax x --
C 、ax x
D 、ax x -
6、m
m
m m m m 154
62
-+的值(
)
A .是正数
B .是负数
C .是非负数
D .不能确定
7、如果最简根式3a -8 与17-2a 是同类二次根式,那么使4a -2x 有意义的x 的范围是( )
A 、x ≤10
B 、x ≥10
C 、x<10
D 、x>10 8、
A.1
B.-1
C.0
D.2a 二、填空题(每题3分,共24分) 1、当a 时,23-a 无意义。

2、最简二次根式b a 34+与162++-b b a 是同类二次根式,则a = ,b = 。

3、如果b a b b
ab
b a )(23
2
2
-=+-,则a 、b 应满足 。

4、把根号外的因式移到根号内:当b >0时,x x
b = ;a
a --11)
1(= 。

5、若04.0-=m ,则2
2m m -

6、若m <0,化简:3
3
2
2m
m
m m +
+
+= 。

7、已知xy =3,那么y
x y x
y x
+的值_________.
8、已知
22
3
= 22
3 ,33
8
= 338
,44
15
= 44
15
…请你用含n 的式子将其中蕴涵的规律表示出来: . 三、计算题:(每题8分,共32分) 1、 2
2
(212 +41
8
-348 )
2、62332)(62332(+--+)
3、11
10
)562()562(+-
4、)0()1225
10(931
2
>--m m
m
m m
m m
四、解答题(共20分) 1、已知的值求b a ab b a +-=+=+,36,23。

2、先观察下列等式,再回答问题。

11
-
111
+=1
12
12
-
111
21
6
=+
1111
3
31
12
-
=+
(1)
(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式,并加以验证。

八年级下册第七章《二次根式》检测B卷答案
一、选择题:
1、A
2、B
3、D
4、D
5、A
6、B
7、A
8、B。

相关文档
最新文档