生化实验:分光光度计使用及常用技术

合集下载

生化实验

生化实验

实验一基本技术操作及吸光光度法*********************************************实验须知一、实验目的1、通过实验验证生化的基本理论,巩固所学知识。

2、掌握生物化学及分子生物学基本实验方法。

3、培养严谨、认真、实事求是的态度和正确的思维方法。

二、实验要求1、课前预习,课中认真做笔记。

2、按照实验室要求规范操作,如实记录实验结果。

3、认真,按时(当堂)完成实验报告。

三、试剂使用1、核对标签,切勿拿错试剂。

2、刻度吸管或移液器头(Tip头)与试剂必需一一对应,以免引起试剂的交叉污染。

3、用后盖好瓶盖,归还原处。

切勿张冠李戴。

四、仪器使用1、爱护仪器设备,严格遵守操作规则,注意安全。

2、精密仪器,未经允许,不得动用。

3、仪器出现故障,应立即关闭电源,报告老师。

五、实验室规则1、穿工作服进入实验室,遵守课堂纪律。

2、节约水、电、试剂,实验完毕后,清洗所用器材。

3、注意安全,若发生酸碱灼伤,应立即用大量清水冲洗。

4、值日生负责实验室卫生,倒尽垃圾,关好水电、门窗,收齐实验报告。

基本技术操作一:玻璃仪器的洗涤及干燥:(一)意义:去除干扰物,提高实验结果的准确性。

(二)常用洗涤剂:1.洗衣粉,肥皂,洗洁精,去污粉----用于一般去污。

2.强酸,强碱,尿素------去除蛋白质,核酸。

3.铬酸洗液------见附2。

4.水(自来水,蒸馏水)------用来冲洗容器。

(三)洗涤方法:* 洗涤程序:泡→洗(→泡)→冲→漱1.新仪器的洗涤:2%的盐酸浸泡数小时→自来水冲净→洗涤剂溶液中浸泡过夜→试管刷蘸肥皂、洗衣粉或去污粉擦洗容器内外壁→自来水冲10遍→蒸馏水漱洗内壁3遍→包装、消毒→干燥备用。

2.非定量敞口仪器的洗涤(试管、烧杯等)用后立即放入洗涤剂溶液或清水中浸泡过夜→试管刷蘸肥皂、洗衣粉或去污粉擦洗容器内外壁→自来水冲10遍→检查是否洗净→蒸馏水漱洗内壁3遍→包装、消毒→干燥备用。

生物化学检验常用技术

生物化学检验常用技术
11
5.标准溶液设置的浓度范围足够大。
2.比较法
己知浓度的标准品和标本作同样处理,使用相同的空白,同时测定 标准管和标本的吸光度,根据测定的吸光度及标准品浓度,可直接计 算出标本的浓度,计算公式为:
CR=(AR ×Cs)/As
13
二、发射光谱分析法
处于激发态的待测元素,原子回到基态 时以辐射的形式释放出能量,由此而产生的 光谱称为发射光谱,对元素进行定性与定量 分析的方法。
2、试剂空白:用不加样品,而显色剂和其他试剂都相同的溶液作参比溶液。 选择原则:当显色剂本身有颜色或其它试剂有颜色,被测试样中又无其他有色离子时,选用试剂参比。
3、样品空白:用不加显色剂的样品溶液作参比溶液。 选择原则:当试样溶液有颜色,而试剂、显色剂均无颜色时,选用样品空白。
4、平行操作空白:按样品分析完全相同的操作步骤,用不含待测元素的样品进行平行操作, 以消除操作过程中引入干扰杂质所带来的误差。
可用电极测定的气体
CO2 + H2O === HCO3- + H+ NH3 + H2O === NH4+ + OHSO2 + H2O === HSO3- + H+ 2NO2 + H2O === NO3- + NO2- + H+ H2S + H2O === HS- + H3O+ HCN + H2O === H3O+ + CNHF + H2O === H3O+ + F-
第二节 电化学分析技术
一、电位分析法― ISE
电位分析法 利用电极电位与浓度的关系测定物质含量的电化学分析方法。
离子选择电极 ISE

生化实验

生化实验

实验一:分光光度法一:定义:分光光度法是根据物质对不同波长的光波具有选择性吸收的特性---即可以产生吸收光谱,而建立起来的一种定量,定性分析的方法。

分类:根据波长范围可分为紫外,可见和红外分光光度法。

特点:1,与其它光谱分析方法相比,起仪器设备和操作都比较简单,费用少,分析速度快,2,灵敏度高3,选择性好4,精密度和准确度较高5,用途广泛。

二:分光光度法基本原理:物质对光的选择性吸收1:光的基本性质:波动性,微粒性2:物质对光的选择性吸收:一种物质呈现何种颜色,是与入射光的组成和物质本身的结构有关。

溶液呈现不同的颜色是由溶液中的质点(离子或分子)对不同波长的光具有选择性吸收而引起的。

能复合成白光的两种颜色的光也称为互补色光。

3:吸收曲线(光谱)物质的分子内部存在状态:电子能级,振动能级,转动能级组成:紫外--可见吸收光谱,红外吸收光谱,远红外吸收光谱4、透光率和吸光度当一束单色光通过均匀的溶液时,入射光强度为I0,吸收光强度为Ia,透射光强度为It,反射光强度为Ir,则I0 = Ia + It + Ir 透光率(transmittance)T:透射光的强度It与入射光强度I0之比。

透光率愈大,溶液对光的吸收愈少;透光率愈小,溶液对光的吸收愈多。

吸光度A:透光率的负对数。

A愈大,溶液对光的吸收愈多。

5、Lambert-Beer定律Lambert定律:当一适当波长的单色光通过一固定浓度的溶液时,其吸光度与光通过的液层厚度成正比。

式中b为液层厚度,k1为比例系数,它与被测物质性质、入射光波长、溶剂、溶液浓度及温度有关,Lambert定律对所有的均匀介质都是适用的。

三:分光光度计的基本组成(1)光源光源的作用:发出所需波长范围内的连续光谱,有足够的光强度,稳定。

可见光区:钨灯,碘钨灯(320~2500 nm)紫外区:氢灯,氘灯(180~375 nm)(2) 单色器单色器的作用:从光源的连续光谱中,分出某一波长范围的光,作为吸光光度分析的光源。

分光光度计使用方法

分光光度计使用方法

最佳答案1.接通电源;打开仪器开关;掀开样品室暗箱盖;预热10分钟..2.将灵敏度开关调至“1”档若零点调节器调不到“0”时;需选用较高档..3.根据所需波长转动波长选择钮..4.将空白液及测定液分别倒入比色杯3/4处;用擦镜纸擦清外壁;放入样品室内;使空白管对准光路..5.在暗箱盖开启状态下调节零点调节器;使读数盘指针指向t=0处..6.盖上暗箱盖;调节“100”调节器;使空白管的t=100;指针稳定后逐步拉出样品滑竿;分别读出测定管的光密度值;并记录..7.比色完毕;关上电源;取出比色皿洗净;样品室用软布或软纸擦净分光光度计使用的外部环境要求分光光度计属于精密仪器;应当妥善保管和精心维护;这样才能保证分光光度计长期使用、长期的稳定可靠、测量精度高..元析公司在多年的生产和应用的过程中;得到了一套在一定环境下维护分光光度计的经验;具体如下:1、环境温度在条件容许的情况下;尽量保持在15-30摄氏度之间;这样能保持电器件稳定工作;不易老化;使分光光度计不易损坏;灯源的使用寿命得到延长..若条件不容许;在高温的情况下;缩短开机时间;高效使用分光光度计;使电器件不要长期保持在高温下..在低温下;使预热时间比常温下的预热时间要长;这样能保证在仪器稳定的情况下进行测试..2、环境湿度在条件容许的情况下;尽量保持在60%以下;这样能保证光度计内部的光学件和电器件不易受潮、腐蚀、和上霉..若条件不容许;在高湿度和低湿度的情况尽量保持通风..3、环境在条件容许的情况下尽量保持洁净;打扫环境时动作不宜太大;不要扬起灰尘;打扫之前用防尘罩盖上分光光度计;不要让灰尘进入分光光度计内部..以上仅就仪器使用的外部环境作了描述;以供使用用户参考..分光光度计的使用分光光度计的应用常识分光光度计已经成为现代分子生物实验室常规仪器..常用于核酸;蛋白定量以及细菌生长浓度的定量..分光光度计采用一个可以产生多个波长的光源;通过系列分光装置;从而产生特定波长的光源;光源透过测试的样品后;部分光源被吸收;计算样品的吸光值;从而转化成样品的浓度..样品的吸光值与样品的浓度成正比..核酸的定量核酸的定量是分光光度计使用频率最高的功能..可以定量溶于缓冲液的寡核苷酸;单链、双链DNA;以及RNA..核酸的最高吸收峰的吸收波长260nm..每种核酸的分子构成不一;因此其换算系数不同..定量不同类型的核酸;事先要选择对应的系数..如:1OD的吸光值分别相当于50μg/ml的dsDNA;37μg/ml的ssDNA;40μg/ml的RNA;30μg/ml的Olig..测试后的吸光值经过上述系数的换算;从而得出相应的样品浓度..测试前;选择正确的程序;输入原液和稀释液的体积;尔后测试空白液和样品液..然而;实验并非一帆风顺..读数不稳定可能是实验者最头痛的问题..灵敏度越高的仪器;表现出的吸光值漂移越大..事实上;分光光度计的设计原理和工作原理;允许吸光值在一定范围内变化;即仪器有一定的准确度和精确度..如EppendorfBiophotometer的准确度≤1.0%1A..这样多次测试的结果在均值1.0%左右之间变动;都是正常的..另外;还需考虑核酸本身物化性质和溶解核酸的缓冲液的pH值;离子浓度等:在测试时;离子浓度太高;也会导致读数漂移;因此建议使用pH值一定、离子浓度较低的缓冲液;如TE;可大大稳定读数..样品的稀释浓度同样是不可忽视的因素:由于样品中不可避免存在一些细小的颗粒;尤其是核酸样品..这些小颗粒的存在干扰测试效果..为了最大程度减少颗粒对测试结果的影响;要求核酸吸光值至少大于0.1A;吸光值最好在0.1-1.5A..在此范围内;颗粒的干扰相对较小;结果稳定..从而意味着样品的浓度不能过低;或者过高超过光度计的测试范围..最后是操作因素;如混合要充分;否则吸光值太低;甚至出现负值;混合液不能存在气泡;空白液无悬浮物;否则读数漂移剧烈;必须使用相同的比色杯测试空白液和样品;否则浓度差异太大;换算系数和样品浓度单位选择一致;不能采用窗口磨损的比色杯;样品的体积必须达到比色杯要求的最小体积等多个操作事项..除了核酸浓度;分光光度计同时显示几个非常重要的比值表示样品的纯度;如A260/A280的比值;用于评估样品的纯度;因为蛋白的吸收峰是280nm..纯净的样品;比值大于1.8DNA或者2.0RNA..如果比值低于1.8或者2.0;表示存在蛋白质或者酚类物质的影响..A230表示样品中存在一些污染物;如碳水化合物;多肽;苯酚等;较纯净的核酸A260/A230的比值大于2.0..A320检测溶液的混浊度和其他干扰因子..纯样品;A320一般是0..蛋白质的直接定量UV法这种方法是在280nm波长;直接测试蛋白..选择Warburg公式;光度计可以直接显示出样品的浓度;或者是选择相应的换算方法;将吸光值转换为样品浓度..蛋白质测定过程非常简单;先测试空白液;然后直接测试蛋白质..由于缓冲液中存在一些杂质;一般要消除320nm的“背景”信息;设定此功能“开”..与测试核酸类似;要求A280的吸光值至少大于0.1A;最佳的线性范围在1.0-1.5之间..实验中选择Warburg公式显示样品浓度时;发现读数“漂移”..这是一个正常的现象..事实上;只要观察A280的吸光值的变化范围不超过1%;表明结果非常稳定..漂移的原因是因为Warburg公式吸光值换算成浓度;乘以一定的系数;只要吸光值有少许改变;浓度就会被放大;从而显得结果很不稳定..蛋白质直接定量方法;适合测试较纯净、成分相对单一的蛋白质..紫外直接定量法相对于比色法来说;速度快;操作简单;但是容易受到平行物质的干扰;如DNA的干扰;另外敏感度低;要求蛋白的浓度较高..比色法蛋白质定量蛋白质通常是多种蛋白质的化合物;比色法测定的基础是蛋白质构成成分:氨基酸如酪氨酸;丝氨酸与外加的显色基团或者染料反应;产生有色物质..有色物质的浓度与蛋白质反应的氨基酸数目直接相关;从而反应蛋白质浓度..比色方法一般有BCA;Bradford;Lowry等几种方法..Lowry法:以最早期的Biuret反应为基础;并有所改进..蛋白质与Cu2+反应;产生蓝色的反应物..但是与Biuret相比;Lowry法敏感性更高..缺点是需要顺序加入几种不同的反应试剂;反应需要的时间较长;容易受到非蛋白物质的影响;含EDTA;Tritonx-100;ammoniasulfate等物质的蛋白不适合此种方法..BCABicinchoninine acid assay法:这是一种较新的、更敏感的蛋白测试法..要分析的蛋白在碱性溶液里与Cu2+反应产生Cu+;后者与BCA形成螯合物;形成紫色化合物;吸收峰在562nm波长..此化合物与蛋白浓度的线性关系极强;反应后形成的化合物非常稳定..相对于Lowry法;操作简单;敏感度高..但是与Lowry法相似的是容易受到蛋白质之间以及去污剂的干扰..Bradford法:这种方法的原理是蛋白质与考马斯亮兰结合反应;产生的有色化合物吸收峰595nm..其最大的特点是;敏感度好;是Lowry和BCA两种测试方法的2倍;操作更简单;速度更快;只需要一种反应试剂;化合物可以稳定1小时;方便结果;而且与一系列干扰Lowry;BCA反应的还原剂如DTT;巯基乙醇相容..但是对于去污剂依然是敏感的..最主要的缺点是不同的标准品会导致同一样品的结果差异较大;无可比性..某些初次接触比色法测定的研究者可能为各种比色法测出的结果并不一致;感到迷惑;究竟该相信哪种方法由于各种方法反应的基团以及显色基团不一;所以同时使用几种方法对同一样品得出的样品浓度无可比性..例如:Keller等测试人奶中的蛋白;结果Lowry;BCA测出的浓度明显高于Bradford;差异显着..即使是测定同一样品;同一种比色法选择的标准样品不一致;测试后的浓度也不一致..如用Lowry测试细胞匀浆中的蛋白质;以BSA作标准品;浓度1.34mg/ml;以a球蛋白作标准品;浓度2.64mg/ml..因此;在选择比色法之前;最好是参照要测试的样本的化学构成;寻找化学构成类似的标准蛋白作标准品..另外;比色法定量蛋白质;经常出现的问题是样品的吸光值太低;导致测出的样品浓度与实际的浓度差距较大..关键问题是;反应后1011分光光度计的重要配件——比色杯的颜色是有一定的半衰期;所以每种比色法都列出了反应测试时间;所有的样品包括标准样品;都必须在此时间内测试..时间过长;得到的吸光值变小;换算的浓度值降低..除此;反应温度、溶液PH值等都是影响实验的重要原因..此外;非常重要的是;最好是用塑料的比色法..避免使用石英或者玻璃材质的比色杯;因为反应后的颜色会让石英或者玻璃着色;导致样品吸光值不准确..细菌细胞密度OD600实验室确定细菌生长密度和生长期;多根据经验和目测推断细菌的生长密度..在遇到要求较高的实验;需要采用分光光度计准确测定细菌细胞密度..OD600是追踪液体培养物中微生物生长的标准方法..以未加菌液的培养液作为空白液;之后定量培养后的含菌培养液..为了保证正确操作;必须针对每种微生物和每台仪器用显微镜进行细胞计数;做出校正曲线..实验中偶尔会出现菌液的OD值出现负值;原因是采用了显色的培养基;即细菌培养一段时间后;与培养基反应;发生变色反应..另外;需要注意的是;测试的样品不能离心;保持细菌悬浮状态..分光光度计的重要配件——比色杯比色杯按照材质大致分为石英杯、玻璃杯以及塑料杯..根据不同的测量体积;有比色杯和毛细比色杯等..一般测试核酸和紫外定量蛋白;均采用石英杯或者玻璃杯;但是不适合比色法测定..因为反应中的染料如考马斯亮兰能让石英和玻璃着色;所以必须采用一次性的塑料杯..而塑料杯一般不适合用于在紫外范围内测试样品..由于另外测试的样品量不同;所以一般分光光度计厂家提供不同容积的比色杯以满足用户不同的需求..目前市场已经存在一种既可用于核酸、紫外蛋白质定量;亦可用于蛋白比色法测定的塑料杯;样品用量仅需50μl;比色杯单个无菌包装;可以回收样品..如EppendorfUVette塑料比色杯;是目前比色杯市场上一个革新..随着生命科学以及相关学科发展;对此类科学的实验研究提出更高的要求;分光光度计将是分子生物学实验室不可缺少的仪器;也成为微生物、食品、制药等相关实验室的必备设备之一..分光光度技术6.1基本原理利用紫外光、可见光、红外光和激光等测定物质的吸收光谱;利用此吸收光谱对物质进行定性定量分析和物质结构分析的方法;称为分光光度法或分光光度技术;使用的仪器称为分光光度计;这种分光光度计灵敏度高;测定速度快;应用范围广;其中的紫外/可见分光光度技术更是生物化学研究工作中必不可少的基本手段之一..因此本章重点讨论紫外/可见分光光度法的基本原理、仪器构造及其在生化领域中的应用等..1.光谱:光是电磁波;可用波长“λ”表示;电磁波谱是由不同性质的连续波长的光谱所组成;对于生物化学来说;最重要的波长区域是可见光和紫外光..光的波长是二个相邻的波峰之间的距离..光的传播是由相互垂直的电场分量“E”和磁场分量“H”所构成..λ=C/νλ——波长C——光速ν——频率;单位时间通过一个定点的波数..光又可以看作是由具有能量的粒子所组成..这些粒子所具有的原能量“E”由下式算出:E=hνH——普朗克常数6.624×10-27尔格秒ν——频率紫外区可分为紫外近紫外和真空紫外远紫外..由于吸收池又称样品池、比色杯等和光学元件以及氧气能吸收小于190nm波长的光;因此常规紫外测定集中在近紫外区;即200nm~400nm..可见光区为400nm~800nm..组成物质的分子均处于一定能态并不停地运动着;分子的运动可分为平动、转动、振动和分子内电子的运动;每种运动状态都处于一定的能级;因此分子的能量可以写成:E=E0+E平+E转+E振+E电E0是分子内在的不随分子运动而改变的能量;平动能E平只是温度的函数;因此与光谱有关的能量变化是分子的转动能量、振动能量和分子的电子能量..分子的每一种能量都有一系列的能级;能级不是任意的;而是具有量子化特征的;通常分子处于基态;当它吸收一定能量跃迁到激发态;则产生吸收光谱..分子转动、振动和电子能级的跃迁;相应地产生转动、振动及电子光谱..按照量子力学原理;分子能态按一定的规律跳跃式地变化;物质在入射光的照射下;分子吸收光时;其能量的增加是不连续的;物质只能吸收一定能量的光;吸收光的频率和两个能级间的能量差要符合下列关系:E=E2-E1=hE1、E2分别表示初能态和终能态的能量;初能态与终能态之间的能量差愈大;则所吸收的光的频率愈高即波长愈短;反之则所吸收的光的频率愈低即波长愈长..由于吸收是不连续的;因此在光的一定部位出现一系列吸收暗带..因为分子转动、振动及电子能级跃迁的能量差别较大;因此;它们的吸收光谱出现在不同的光谱区域..分子转动能级级差小;△E<0.05电子伏特ev;分子转动光谱的吸收出现在远红外或微波区..振动能级纵间的差别较大;E=0.05~1.0ev;振动光谱出现在中红外区..电子能级的级差更大;E=1~20ev;所以由电子跃迁得到的光谱出现在可见、紫外或波长更短的光谱区..可见光、紫外光吸收光谱;是由于分子中联系较松散的价电子被激发产生跃迁从而吸收光辐射能量形成的;即分子由基态变为激发态;电子由一个低能级的轨道即成键轨道;吸收了光能量跃迁到高能级轨道称为反键轨道..与吸收光谱有关的三种电子是:⑴二个原子的电子沿其对称方向相互形成的共价键即单键;称σ键;构成键的电子称σ电子;如C-C、C-H键..⑵平行于二个原子轨道形成的价键即双键;称π键;形成π键的电子称为π电子;如C=C键..⑶未共享成键的电子;称n电子..各种电子跃迁所需能量大小的顺序是:n→π*<π→π*≤n→σ*<π→σ*<σ→π*<σ→σ*紫外吸收光谱主要是由于双键电子;尤其是共轭双键中的π电子和未共享的电子对的激发所产生的..所以各种物质分子对紫外光的吸光性质取决于该分子的双键数目和未共享电子对的共轭情况等..如下表所示:电子跃迁类型与紫外吸收波长nm关系表电子跃迁类型例子紫外吸收波长范围σ→σ*C-H100~150nmπ→π*非共轭C=O<200nmπ→π*共轭=C-C=200~300nmn→π*C=O~300nmπ→π*跃迁:此类跃迁所需能量较小;吸收波长在紫外区的200~300nm;不饱和烃、共轭烯烃及芳香烃均可发生这类跃迁;氨基酸、蛋白质与核酸均含有大量共轭双键;因而200~300nm的紫外吸收测定;在生化实验技术中有极广泛的用途..若逐渐改变照射某物质的入射光的波长;并测定物质对各种波长光的吸收程度吸光度“A”或光密度“O.D”或透射程度透光度“T”;以波长λ作横坐标;“A”或“T”为纵座标;画出连续的“A~λ”或“T~λ”曲线;即为该物质的吸收光谱曲线..吸光度ADCBλmaxλmin波长nm由上图可以看出吸收光谱的特征:⑴曲线上“A”处称最大吸收峰;它所对应的波长称最大吸收波长;以λmax表示..⑵曲线上“B”处有一谷;称最小吸收;它所对应的波长;所对应的波长;称最小吸收波长;以λmin表示..⑶曲线上在最大吸收峰旁边有一小峰“C”;称肩峰..⑷在吸收曲线的波长最短的一端;曲线上“D”处;吸收相当强;但不成峰形;此处称为末端吸收..λmax是化合物中电子能级跃迁时吸收的特征波长;不同物质有不同的最大吸收峰;所以它对鉴定化合物极为重要..吸收光谱中;λmax、λmin、肩峰以及整个吸收光谱的形状决定于物质的性质;其特征随物质的结构而异;所以是物质定性的依据..测定某物质的紫外吸收光谱的曲线;可与已知标准的紫外光谱图相对照;对照时须注意测定的条件;如溶剂、浓度等..常用标准的紫处吸收光谱是萨德勒研究实验公司编制的“Sadtler”紫外标准图谱集;到七十年代末为止已收集28585个化合物紫外光谱图;此外还有药物和非极性溶剂紫外光谱图2000多幅..由于化合物紫外吸收峰较少;而且峰形都很宽;不象红外光谱是许多指纹峰;所以在用紫外吸收光谱进行化合物定性鉴定时;应注意:化合物相同;其紫外光谱应完全相同;但是紫外光谱相同不一定化合物就相同;可能仅是存在某些相同的发色团或基团;因此在鉴定时应与红外光谱相结合..由于电子跃迁的同时也引起分子的转动和振动光谱;要把电子跃迁和分子振动、转动的跃迁完全分开是不可能的;因此我们常见的紫外吸收光谱是由一个或几个宽的吸收谱带所组成..紫外光谱中常用的术语有发色团、助色团、增色效应和减色效应..发色团:凡是与饱和碳氢化合物连接能引起n→π*、π→π*、n→σ*等电子跃迁的基团称为发色团..例如:C=C、C=O等发色团..助色团:助色团是一些具有非共价键的基团如OH、NH2、SH等..这些基团在波长>200nm处没有吸收;当它与发色团相连接时;使发色团的吸收带向长波移动;称为红移或浅色效应;红移的同时吸收带的强度增加..若助色团与发色团相连接;产生n→π*跃迁;使吸收波长向短波移动;称为兰移或深色效应..增色效应hyperchromiceffect:核酸变性或降解;使得DNA或RNA溶液对紫外光的吸收明显增加;即ε值吸光系数或称消光系数显着升高;此现象称为增色效应..此效应是由于碱基之间电子相互作用的改变所致;通常在260nm处测量..减色效应hypochromiceffect:在一定的条件下;变性的核酸又可以复性;此时ε值又明显减少;回复到原来的核酸分子ε值较低的水平;即此时DNA或RNA溶液的紫外光吸收显着降低;此现象称为减色效应;此效应也是由于碱基之间电子相互作用的变化所引起的;通常在260nm条件下测量..2.光吸收定律:朗伯——比尔Lambert-beer光吸收定律:A=-lgT=εbcA——吸光度;又称光密度“O.D”..T——透光度;T=I/I..;I..——为照射到吸收池上的光强;I——为透过吸收池的光强..ε——摩尔吸光系数或克分子吸光系数Lmol-1cm-1..b——样品光程cm;通常使用1.0cm的吸收地;b=1cm..C——样品浓度mol/L..由上式可以看出:吸光度A与物质的吸光系数“ε”和物质的浓度“C”成正比..摩尔吸光系数:;是物质对某波长的光的吸收能力的量度..ε越大;吸收光的能力越强;相应的分光度法测定的灵敏度就越高..ε值越大;说明电子跃迁的几率大;通常ε=10~105:一般认为ε>104为强吸收;ε=103~104为较强吸收;ε<102为弱吸收;此时分光光度法不灵敏..因为通常使用分光光度计可检测出的最小吸光度A=0.001;所以;当b=1cm;ε=105时;可检测的溶液最小浓度是C=10-8mol/L..常用的吸光系数还有一种百分吸光系数;即在某一波长下;溶液浓度为1%W/V;液层厚度b=1cm时的吸光度;以E1%λmax表示..C——百分浓度W/V..L——液层厚度;吸收杯光径长度..A——吸光度..最大吸收波长λmax时的ε和E1%λmax值可用下式换算:ε=E1%λmax×分子量/10吸光度“A”有一个重要性质是其具有加和性:A=ε1C1b1+ε2C2b2+ε3C3b3+……=即混合物的总吸光度等于溶液中的各组份各自在该波长下吸光度的算术和..这是多元混合物分光光度法定量分析的基础..若溶液中各溶质的吸光系数ε相同;则各溶质吸光度的大小与溶质浓度成比例..例如;离子交换柱层析分离核苷酸实验中可利用吸光度计算回收率:m=CV;∵;∴m——溶质的量C——溶质浓度V——溶液体积A——吸光度ε——吸光系数b——吸收池光径∴回收率100%上式中假设ε总和各核苷酸的ε近似相等例一:尿嘧啶核苷酸溶液用1cm石英吸收池测定260nm处的吸光度为0.650;用同一吸收池测定纯溶剂的吸光度为0.070;计算尿嘧啶溶液的摩尔浓度;已知其摩尔吸光系数=8.2×103 M-1cm-1M=mol/L..∵A=εbC∵A=溶剂加样品的吸光度-溶剂的吸光度∴A=0.650-0.070=0.580∵b=1cm∴C==7.1×10-5mol/L例二:1%W/V;10mg/ml酪氨酸酶溶液的吸光度为24.91cm吸收池;280nm;计算A280=0.250的酪氨酸酶溶液的浓度..由于这两种酶溶液的百分吸光系数“E1%1cm;280nm”是相同的;因此可用正比例法计算浓度..∵∴∴C未知=0.01%=0.1mg/ml6.2分光光度计的组成和构造:1.组成:各种型号的紫外/可见分光度计;不论是何种型式;基本上都由五部分组成:1光源;2单色器包括产生平行光和把光引向检测器的光学系统;3样品室;4接收检测放大系统;5显示或记录器..光源单色器样品室检测放大系统显示器国产分光光度计近年来已有很大的发展;各种档次的分光光度计都已更新升级换代;可见光系列有:721、722、723等型号;紫外/可见光系列有:751、752、753、754、756等型号;主要生产厂为上海分析仪器总厂等..我系1985年购买的瑞士KONTRON康强公司生产的UNICON860型紫/可见光分光光度计;是双光束、快速自动扫描、荧屏显示的高档分光光度计..这种双光束分光光度计的特点是来自光源的连续光谱经凹面全息光栅分光后;由出射狭缝得到单色光;经过由电机带动的25周/秒左右的旋转镜分解为“样品”、“参比”光束;顺序分时通过参比池和样品吸收池;照射到光电倍增管上;由于两条光路是几乎同时测量;参比信号又不断与标准电压比较;使参比信号恒定;所以由光源、单色器、外界杂光、光电倍增管以及电源电压等带来的影响;仪器均能自动消除..最快波长扫描速度为1200nm/min;有五种测量功能和五种数据处理功能..我系2000年购买的德国耶拿蔡司公司生产的SPECORD200型高档紫外/可见光分光光度计的光路原理图如下:SPECORD200分光光度计的样品和参比光路;分别有各自的带温控的光电二极管检测器;因而取消了电机带动的旋转镜;大大提高了仪器的稳定性及各项检测指标;其波长范围是190nm~1100nm;吸光度测定范围是0~3A;可变狭缝宽度为1nm、2nm和5nm;仪器使用微机控制时;扫描速度最高可达6000nm/min;宽大的样品室可以安装各种附件;仪器性能优良;适合教学、科研使用..该仪器的使用说明详见附录..2.构造:⑴光源:理想光源的条件是:①能提供连续的辐射;②光强度足够大;③在整个光谱区内光谱强度不随波长有明显变化;④光谱范围宽;⑤使用寿命长;价格低..用于可见光和近红外光区的光源是钨灯;现在最常用的是卤钨灯Halogenlamp;即石英钨灯泡中充以卤素;以提高钨灯的寿命..适用波长范围是320~1100nm..由于能量输出的波动为电压波动的四次方倍;因此电源电压必须稳定..用于紫外光区的是氘灯Deuteriumlamp;适用波长范围是195~400nm;由于氘灯寿命有限;国产氘灯寿命仅五百小时左右;要注意节约灯时..⑵单色器:单色器是分光光度计的心脏部分;它的作用是把来自光源的混合光分解为单色光并能随意改变波长..它的主要组成部件和作用是:①入射狭缝——限制杂散光进入..②色散元件——即棱镜或光栅;是核心部件;可将混合光分解为单色光..③准直镜——把来自入射狭缝的光束转化为平等光;并把来自色散元件的平等光聚焦于出射狭缝上..④出射狭缝——只让额定波长的光射出单色器..转动棱镜或光栅的波长盘;可以改变单色器出射光束的波长;调节出入射狭缝隙的宽度;可以改变出射光束的带宽和单色光的纯度..光栅:光栅有透射光栅和反射光栅;实际应用的都是反射光栅;它又可分为平面反射光栅即通称的反射光栅或闪烁光栅和凹面反射光栅两类;凹面反射光栅可以起色散元件和准直镜两个作用;使色散后的光束聚焦于出射狭缝;得到锐线光谱..光栅的刻制方法有两种:机刻光栅:用金刚刀挤压镀于硬质玻璃上0.5~1的铝反射层而得..刻制工作量极大;一般每分钟只能刻10条线;刻100mm宽的600线/mm的光栅要100小时..最多刻到3600线/mm..由于其制造周期长;成本高;一般只能制得少量的母光栅;而实际应用的多是复制光栅;即在母光栅上涂上硅油;再镀上一层铝;用环氧树脂粘下来;就得到复制光栅..机刻光栅的缺点是线槽稍有缺陷时就会出现“鬼线”;即位于光谱强线两侧的模糊不清的假线..全息光栅:用全息照相法刻制的高精度光栅..即用高强度的相干性极好的单色光;如激光;用高分辨的感光材料——光致抗蚀剂记录干涉条纹;曝光1小时;化学处理掉受光部分;再进行真空镀膜镀铝;得到全息反射光栅..这种光栅几乎没有线槽间的周期误差;几乎没有“鬼线”;杂散光很少..最大线槽密度可达6500线/mm;最大直径可达400mm;刻线越多;分辨率就越高;最常用的是1200~1500线/mm的全息光栅..狭缝、光谱频带宽度和分辨率:出射狭缝的宽度通常有两种表示方法:一为狭缝的实际宽度;以毫米mm表示;另一种为光谱频带宽度;即指由出射狭缝射出光束的光谱宽度;以毫微米nm表示..例如;出射狭缝的宽度是6nm;并不是说出射狭缝的宽度是6nm;而是指由此狭缝射出的光具有6nm的光谱带宽..纯粹的单色光只是一种理想情况;分光光度计所能得到的“单色光”;实际上只是具有一定波长范围的谱带;狭缝越宽;所包括的波长范围也愈宽..对单色光纯度来说;狭缝是愈窄愈好;但光的强度也就越弱;因此狭缝不能无限制地小;狭缝的最小宽度取决于检测器能准确地进行测量的最小光能量..目前达到的最小宽度为0.1nm..。

实验一生化实验基本操作(移液管、离心机,分光光度计的使用)

实验一生化实验基本操作(移液管、离心机,分光光度计的使用)
➢ 平衡 两只装有待离心液体的离心管分别放入两个完 整的并且配备了橡皮软垫的离心套管之中,置天平两 侧配平,用滴管在较轻一侧离心管和套管之间加水, 直到平衡。
➢ 放置 检查离心机,机内应无异物和无用的套管,并 且运转平稳。将已配平的两管对称地放入离心机的离 心孔内,做好标记,盖好上盖,开启电源。
➢ 离心 顺时针慢慢旋动转速调节钮,增加离心机转速 。当离心机转速达到要求时,记录离心时间。
B:
• A.选用最大刻度的吸管
• B.应选用取液量最接近的刻度吸管
• C.选用最小刻度的吸管
• 3.离心时平衡好放入离心机时
A:Leabharlann • A.对称放置 B.分开放置 C. 紧挨放置
Lambert 定律 lgI0/I=K1L
Beer 定律 lgI0/I=K2C
Lambert-Beer 定律 lgI0/I=KCL
令A= lgI0/I 则 A= -lgT= KCL T为透光度; A为吸光度; K为消光系数
Fingure 1. The main elements of spectrometer
端旁;用橡皮球吸液体至刻度上,眼睛看着液面 上升;吸完后用食指顶住吸管顶端;吸管保持垂 直,尖端与试剂瓶接触,用食指控制液体下降至 所需体积的刻度处,液体凹面、刻度和视线应在 同一水平面上;吸管移入准备接受溶液的盛器中 ,放开食指,使液体自动流出
二、离心机的使用
➢ 装液 将待离心的液体置于玻璃离心管(刻度离心管 )或短试管中。
➢ 直接计算法: C样=A样/A标*C标
➢ 标准曲线法:浓度为X轴,吸光度为Y轴绘制标 准曲线,在标准曲线上获得未知浓度CoSO4的浓 度。
结果
管号 空白管 1
Abs
0

生化实验的基本操作和常用仪器使用-3

生化实验的基本操作和常用仪器使用-3

生化实验的基本操作和常用仪器使用-31、72型分光光度:72型分光光度计是可见光分光光度计,其波长范围为420—720毫微米。

(1)操作方法:① 按照接线要求,将稳压器和检流计连接在单色器上。

注意,将检流计与单色器相接时,应按三股接线的颜色准确连接。

而稳压器的输出接线柱与单色器相接。

② 在电源电压与仪器要求的电压相符时,分别插上稳压器和检流计的电源插头。

③ 将单色器的光路闸门找到黑点(关闭光路的指示)位置后,再将检流计上的电源开关旋到“开”处。

此时,指示光点即出现在标尺上,用零点调节器将光点中线准确地调至透光率标尺的。

“0”位上。

④ 打开稳压器的电源开关和单色器的光源开关,隔10分钟,再使用仪器。

⑤ 将比色杯架暗厢盖打开,取出比色杯架,将4支比色杯中的1支装入空白溶液或蒸馏水,其余3支装入待测液。

将比色杯置于架上,空白溶液杯应放在第一格内,放回暗厢内,盖好暗厢盖。

此时,空白溶液杯应在光路上。

⑥ 旋转波长调节器,将所需波长对准红线。

把光路闸门拨到红点(打开光路的指示)位置上,并以顺时针方向旋动光点调节器,使光点中线移至透光率“100”的刻度处。

数分钟后,待光电池趋于稳定,再轻轻转动光点调节器,使光点中线准确地处于透光率“100”的位置。

⑦ 将单色器的光路闸门拨回黑点处,校正检流计的光点中线于“0”位上。

然后,立即开启光路闸门,拨至红点处,校正检流计光点中线对准透光率“100”刻度上。

⑧ 调节好后,可以进行样品溶液的测定。

将比色杯定位装置的拉杆轻轻地拉出一格,使第二个比色杯内的待测液进人光路。

此时,检流计标尺上光点中心线所指示的读教,即为该溶液的光密度或透光率。

依此测定第二、第三个待测液,并读出数据。

重复2—3次后,取其平均值。

⑨ 在测定过程中,应经常关闭光路闸门,核对检流计的零点位置。

如有改变,及时用零点调节器核准。

⑩ 测定完毕,将每个旋钮、开关和调节器等复原或关闭。

拔掉电源插头,切断电源,并盖好仪器罩。

生物化学实验常用仪器

生物化学实验常用仪器

生物化学实验常用仪器一、分光光度计分光光度计是生物化学实验中常用的仪器之一。

它利用可见光或紫外光的吸收特性来测量溶液中化合物的浓度。

分光光度计由光源、选择光波长的光栅、样品池和光电探测器等部分组成。

它可以用于测定溶液中物质的浓度、反应速率、酶活性等。

二、离心机离心机是生物化学实验中常用的一种设备,用于分离溶液中的固体颗粒或液体。

离心机利用离心力将样品强制沉淀,使其在离心管中沉积下来。

离心机可用于分离细胞、蛋白质、DNA等生物大分子,广泛应用于细胞生物学、分子生物学和医学研究等领域。

三、pH计pH计是生物化学实验中常用的测量溶液酸碱性的仪器。

pH计通过测量溶液中氢离子浓度来确定其酸碱性。

pH计通常由电极、电极放大器和显示器组成。

在生物化学实验中,pH计可以用于调节溶液的酸碱性,控制酶催化反应的速率,研究酸碱催化等。

四、电泳仪电泳仪是生物化学实验中常用的一种分离技术。

它利用电场将带电的生物大分子(如DNA、蛋白质)在凝胶或缓冲溶液中进行分离。

电泳仪通常由电源、电极、凝胶槽和检测系统等组成。

在生物化学实验中,电泳仪可用于分离和鉴定DNA片段、蛋白质等,用于分子生物学研究、基因工程和医学诊断等领域。

五、高效液相色谱仪高效液相色谱仪(HPLC)是一种常用的分离和分析技术。

它利用溶液在高压下通过填充在柱中的固定相,通过固定相与溶液中分离物之间的相互作用来分离和鉴定化合物。

HPLC通常由溶液输送系统、柱和检测器等组成。

在生物化学实验中,HPLC可用于分离和鉴定氨基酸、蛋白质、核苷酸等生物大分子,广泛应用于生物医药、食品安全和环境监测等领域。

六、质谱仪质谱仪是生物化学实验中常用的一种分析仪器。

它利用样品中化合物的质量与电荷比来进行分析和鉴定。

质谱仪通常由质谱分析部分、离子源和检测器等组成。

在生物化学实验中,质谱仪可用于鉴定未知物质、分析蛋白质结构和代谢产物等,广泛应用于药物研发、天然产物分析和环境监测等领域。

以上是生物化学实验中常用的一些仪器,它们在生物化学研究和应用中发挥着重要作用。

生化试验

生化试验

实验一 分光光度计线性分辨范围测定一. 目的1.学习分光光度计的工作原理,掌握比色测定的基本操作方法。

2.掌握标准曲线的制作及分光光度计最佳测试浓度范围的确定。

二. 原理比色法是常用的生化分析方法。

利用分光光度计可以很方便地完成多种生物物质的定量分析。

比色法的理论基础是朗伯-比尔定律,其测定浓度范围要求在分光光度计线性分辨范围内。

光线的本质是电磁波的一种,有不同的波长。

肉眼可见的彩色光称为可见光,波长范围在400~750nm ;小于400nm 的光线称为紫外光;大于750nm 的光线称为红外光。

当光线通过透明溶液介质时,其辐射的波长有一部分被吸收,一部分透过,因此光线射出溶液之后,部分光波减少,这种光波的吸收和透过可用于某些物质的定性定量分析。

图1 Lambert-Beer 定律示意图分光光度法依据Lambert-Beer 定律:II 0lg = KCL令A = II 0lg,T =0I I,则A = KCL ,A = -lgT其中:T :透光率A :吸光度(有时用光密度OD 表示)I : 透射光强度 I 0:入射光强度 K :吸收系数 L :溶液的光径长度 C :溶液的浓度从上式可以看出,一束单色光通过溶液后,光波被吸收一部分,其吸收多少与溶液中溶质的浓度和溶液厚度成正比,当入射光、吸收系数K 和溶液的光径长度L 不变时,吸光度A 与溶液的浓度C 成正比。

用标准曲线法,即可对未知样品做定量分析。

三. 实验材料及设备1. 仪器UV5200型分光光度计。

2.器材I 0IC L刻度试管:25mL×21;移液器:1mL×1;吸头几支;烧杯:250mL×2,50mL×1;洗耳球:2;滴管:2;移液管(白线):1 mL×1,2 mL×1,5 mL×1;洗瓶、试管架、移液管架:各1。

四. 试剂的配制0.01mol/L硫氰化铁(Fe (SCN)3)溶液:称取30.000g (过量)KSCN和27.05g FeCl3·6H2O,加入2.5mol/L HCl 100mL,用蒸馏水溶解后定容至10000mL(经验提示:保质期1星期)。

分光光度计测还原糖含量-中国农大生化实验实验报告

分光光度计测还原糖含量-中国农大生化实验实验报告
还原糖含量(%)=【A*样品稀释总体积(ml)/(样品重*1000)】*100%
将数据代入公式,得
(1)还原糖含量=【0.0531*15*100/(1*1000)】*100%=7.96%
(2)还原糖含量=【0.0525*15*100/(1*1000)】*100%=7.88%
(3)平均值=(7.96%+7.88%)=7.92%
4.为什么还原糖与3,5-二硝基水杨酸溶液要先反应后稀释?
因为稀释前还原糖浓度较高,并且3,5-二硝基水杨酸溶液过量,这样可以使得还原糖充分反应,如果先稀释则还原糖浓度较低,反应时间加长,速率较慢。
5.结合实际应用,你认为本实验设计有什么不合理之处?
实验中,容量瓶的使用。
参考文献:揭念芹《基础化学》2000年9月第一版2008年7月第八次印刷
结果分析:
所得两组数据的吸光度值不相同,以至于所得浓度也不相同,其中可能存在的原因是使用具塞刻度试管稀释时存在终点标定误差。然而两组数据取平均值,使误差减小在允许范围内。
思考题:
1.比色测定法的原理及特点是什么?
原理:光吸收定律即朗伯-比尔定律,由于物质对光有选择吸收的作用且在一定浓度范围内,物质在某波长下的光吸收与其浓度成正比,所以利用标准溶液求得标准光吸收曲线,再根据所得吸光度值在标准曲线中寻找相对应的点即可知道未知溶液的浓度。光吸收简便,快速,灵敏度高,准确度较高,应用广泛。
2.植物样品中还原糖的提取
将植物样品—苹果称取1g放入研钵中,加入少量石英砂,磨成匀浆,转移到100毫升容量瓶中,用蒸馏水少量多次地清洗研钵,再将洗液转移到容量瓶中,至70-80ml,摇匀,置于80度恒温水浴中浸提半小时,其间摇匀数次,是还原糖浸出。
3.还原糖含量的测定

医学检验主管检验师资格考试复习资料生物化学(11)临床化学常用分析技术

医学检验主管检验师资格考试复习资料生物化学(11)临床化学常用分析技术

医学检验主管检验师资格考试复习资料生物化学(11)临床化学常用分析技术一、光谱分析(分光光度技术)利用各种化学物质所具有的发射、吸收或散射光谱谱系的特征,来确定其性质、结构或含量的技术,称为光谱分析技术。

特点:灵敏、快速、简便。

是生物化学分析中最常用的分析技术。

分类(一)可见及紫外分光光度法分光光度法的理论基础是朗伯-比尔定律。

mber-Beer定律:A=k·b·cA为吸光度k—吸光系数b—光径,单位:cmc—溶液浓度,单位:g/L2.摩尔吸光系数:在公式“A=k·b·c”中,当c=1mol/L,b=1cm时,则常数k可用ε表示。

3.比吸光系数:在公式“A=k·b·c”中,当c为百分浓度(w/v),b为cm时,则常数k可用E%表示,称为比吸光系数或百分吸光系数。

(二)原子吸收分光光度法原子吸收分光光度法是基于元素所产生的原子蒸气中待测元素的基态原子,对所发射的特征谱线的吸收作用进行定量分析的一种技术。

即在一定条件下,原子的吸光度同原子蒸气中待测元素基态原子的浓度成正比。

常用的定量方法有:标准曲线法、标准加入法、内标法。

1.标准曲线法:将一系列浓度不同的标准溶液按照一定操作过程分别进行测定,以吸光度为纵坐标,浓度为横坐标绘制标准曲线。

在相同条件下处理待测物质并测定其吸光度,即可从标准曲线上找出对应的浓度。

由于影响因素较多,每次实验都要重新制作标准曲线。

2.标准加入法:把待测样本分成体积相同的若干份,分别加入不同量的标准品,然后测定各溶液的吸光度,以吸光度为纵坐标,标准品加入量为横坐标,绘制标准曲线,用直线外推法使工作曲线延长交横轴,找出组分的对应浓度。

本法的优点是能够更好地消除样品基质效应的影响,较为常用。

3.内标法:在系列标准品和未知样品中加入一定量样本中不存在的元素(内标元素),分别进行测定。

以标准品与内标元素的比值为纵坐标,标准品浓度为横坐标绘制标准曲线,再根据未知样品与内标元素的比值依曲线计算出未知样品的浓度。

分光光度计使用说明书

分光光度计使用说明书
采用最优化设计和最新微处理机技术使仪器具有自动调ot和100t等控制功能以acf等测试方式721型无cf测试方式仪器配有标准的rs232双向通讯接口721型无此接口不仅可连接串口打印机同时还可以连接计算机可在windows操作系统上运行spd用户应用软件具有光度测试第二章主要技术指标及规格分光光度计使用说明书二二章主要技术指标及规盼721单光束光路1200条毫米衍射光栅lcd32010002001000鸽卤素灯鸽卤素灯筑灯硅光电池4nm4nm三三05t220nm360nm波长准确度飞波长重复性进射比重复性105t稳定性透射比测量范围1nm1nm05nm5t02t光电流05t3min暗电流土02t3min00t1250t二丑8232通讯口0301a1999a不支持选购不支持支持ac220v士22v50hz1hz475mm续茹搓部和使用说明书第三章仪器结构原理和光学系统萝三章仪器结构原理和光学系近一整机结构原理仪器微机的中央控制中心为cpu并有程序存储器rom和数据存储器ram通过输入输出接口分别对显示器卤鸽灯稳压电路进行控制
通过聚光镜落在样品室被测样品中心,样品吸收后透射的光射向光电池接收面。
检测器样品池聚焦镜
图二光学系统原理图
k Z Q

C

z ω
叫 泪
C Z
..m Z 4 ω
第四章/仪器简介分光光酣
一、主机正面
〈震四章仪器简子。
f使职糊辑:
2 3
1.样品室 用于放置参比样品和待测样品。
图三仪器正视图
2. 波长调节旋钮,波长显示窗 转动波长调节旋钮,从波长显示窗观察,调整至需要的测试波长。
~ ~1~Gt-UIFl 本公司已通过 1509001 :2000 质量管理体系认证
• • Instruments

生化实验教案(36学时)

生化实验教案(36学时)
1IU=1μmol/分=(1X10-6/60)mol/秒=16.67X10-9Kat
1 Kat=6X107IU
教学方法
1、讲授:讲述实验的目的,原理,主要使用的仪器试剂、操作,结果记录,结论,讨论
2、学生动手操作
3、实验中评讲
4、实验小结
5、先完成实验的同学可自行写实验报告。
使用的教材及参考资料
教材:《生物化学与分子生物学实验指导》本教研室自编教材
教学方法
1、讲授:讲述实验的目的,原理,主要使用的仪器试剂、操作,结果记录,结论,讨论。
2、学生动手操作:
注意观察学生点样、显色、烘干等操作。
3、实验小结。
4、先完成实验的同学可自行写实验报告。
使用的教材及参考资料
教材:《生物化学与分子生物学实验指导》本教研室自编教材
参考书目:生物化学、分子生物学实验技术
教学方式(请打√):讲授√□ 讨论□ 示教√□ 指导√□ 其它□
教学资源(请打√):多媒体□ 模型□ 标本□ 实物√□ 挂图□ 音像□ 其它□
教师姓名:职称:年月日
福建中医药大学教案
编号:
题目(教学章、节或主题)
实验项目凝胶层析
课时安排
3学时
班级人数
教学目的要求(分掌握、熟悉、了解三个层次)
1、掌握凝胶层析的基本原理以及方法
教材:《生物化学与分子生物学实验指导》本教研室自编教材
参考书目:生物化学、分子生物学实验技术
讨论、思考题、作业:
1、准备和点样、电泳、染色、定量各自应注意哪些?
2、临床上应用电泳技术检测血清蛋白其临床意义有哪些?
3、血清蛋白的醋酸纤维薄膜电泳优点、特点有哪些?
教学课型(请打√):理论课□实验课√□见习□ 其它□

分光光度法-生化实验

分光光度法-生化实验

常用生化实验技术:分光光度法有色溶液对光线有选择性的吸收作用,不同物质由于其分子结构不同,对不同波长光线的吸收能力也不同,因此每种物质都具有其特异的吸收光谱。

有些无色溶液,虽对可见光无吸收作用,但所含物质可以吸收特定波长的紫外线或红外线。

分光光度法主要是指利用物质特有的吸收光谱来鉴定物质性质及含量的技术,其理论依据是Lambert和Beer定律。

分光光度法是比色法的发展。

比色法只限于在可见光区,分光光度法则可以扩展到紫外光区和红外光区。

比色法用的单色光通过滤光片产生,谱带宽度为40-120nm,精度不高, 而分光光度法则要求近于真正单色光,其光谱带宽最人不超过3~5nm,在紫外光区可到I nm以下。

单色光通过棱镜或光栅产生,具有较高的精度。

一、光的基本知识光是由光量子组成的,具有二重性,即不连续的微粒性和连续的波动性。

波长和频率是光的波动性的特征,可用下式表示:A=C/u式中入为波长,具有相同的振动相位的相邻两点间的距离叫波长。

u为频率,即每秒钟振动次数。

c为光速,等于299 770±4km/s。

光属于电磁波。

自然界中存在各种不同波长的电磁波,列成表I」所示的波谱图。

分光光度法所使用的光谱范围在200nm~10Mm(lMm=1 OOOnm)之间。

其中200~400nm 为紫外光区,400~760nm 为可见光区,760-10 000 nm为红外光区。

二、朗伯一比尔(lambert—Beer)定律朗伯一比尔定律是比色分析的基本原理,这个定律是讨论有色溶液对单色光的吸收程度与溶液的浓度及液层厚度间的定量关系。

此定律是由朗伯定律和比尔定律归纳而得。

1. 朗伯定律一束单色光通过溶液后,由于溶液吸收了一部分光能,光的强度就要减弱:若溶液浓度不变,则溶液的厚度愈大(即光在溶液中所经过的途径愈长),光的强度减低也愈显著。

设光线通过溶液前的强度为lo(入射光的强度),通过液层厚为L溶液后.光的强度为It (透过光的强度),则仏表示透过光的强度是入射光强度的几分之几,称为透光度(transmitt ance),用T表示。

分光光度计使用方法

分光光度计使用方法

分光光度计使用方法分光光度计是一种用于测量溶液中物质浓度或溶液中特定物质含量的仪器,它利用光的吸收特性来进行测量。

在实验室中,分光光度计被广泛应用于化学、生物、环境等领域。

下面将介绍分光光度计的使用方法,希望能对您有所帮助。

1. 准备工作。

在使用分光光度计之前,首先要进行仪器的准备工作。

确保仪器处于正常工作状态,检查光源、光栅、检测器等部件是否完好。

同时,还需要校准仪器,以确保测量结果的准确性。

2. 样品处理。

在进行光度测量之前,需要对待测样品进行处理。

通常情况下,样品需要进行稀释或者过滤,以确保测量结果的准确性。

另外,还需要注意避免气泡的产生,因为气泡会影响光的透过性,从而影响测量结果。

3. 设置参数。

在进行光度测量之前,需要根据样品的特性来设置分光光度计的参数。

包括选择合适的波长、设定光程、调整灵敏度等。

这些参数的设置将直接影响到测量结果的准确性,因此需要认真对待。

4. 测量操作。

当准备工作完成并且参数设置好之后,就可以进行光度测量操作了。

将样品装入光度计的样品室中,关闭样品室,并启动仪器进行测量。

在测量过程中,需要确保仪器的稳定性,避免外界因素对测量结果的影响。

5. 数据处理。

测量完成后,得到的数据需要进行处理和分析。

根据实际情况选择合适的数据处理方法,比如绘制标准曲线、计算浓度等。

同时,还需要对测量结果进行验证,确保数据的准确性和可靠性。

6. 仪器维护。

在使用分光光度计之后,需要对仪器进行及时的清洁和维护工作。

清洁仪器表面和样品室,保持仪器的整洁和干净。

另外,还需要定期对仪器进行维护和保养,延长仪器的使用寿命。

总结。

分光光度计是一种非常重要的实验仪器,它在科研和实验室工作中扮演着重要的角色。

正确的使用方法和维护保养对于保证测量结果的准确性至关重要。

希望通过本文的介绍,能够帮助您更好地掌握分光光度计的使用方法,提高实验工作的效率和准确性。

分光光度计的操作规程

分光光度计的操作规程

分光光度计的操作规程
《分光光度计操作规程》
一、目的:
为了正确、安全地操作分光光度计,保证实验数据的准确性和可靠性。

二、操作步骤:
1. 打开分光光度计电源,并预热30分钟。

2. 打开分光光度计软件,进行系统自检,并调整仪器为待测物质的最佳波长。

3. 调整仪器的光谱扫描参数,包括扫描范围、扫描速度等。

4. 使用洁净的玻璃仪器盖,将待测溶液倒入比色皿中,放入分光光度计样品舱。

5. 调节光路长度,使得样品舱内的溶液透光度最大。

6. 在软件中启动光谱扫描,记录扫描结果。

7. 将待测溶液倒出,用纯水清洗比色皿和样品舱,然后用吸水纸吸干。

8. 关闭分光光度计软件,关闭仪器电源,清洁并整理工作台面。

三、注意事项:
1. 操作人员必须穿戴实验服和实验手套,避免对待测溶液的污染。

2. 切勿将溶液倒入分光光度计内部,防止对仪器造成损坏。

3. 操作过程中要注意光谱扫描的速度和范围,避免错过待测物质的吸收峰。

4. 定期对分光光度计进行维护保养,保证仪器的稳定性和准
确性。

四、总结:
分光光度计是一种精密的仪器,操作规程的严格执行可以确
保实验数据的准确性和可靠性。

操作人员应严格按照规程进行操作,同时定期对仪器进行维护保养,以保证其长期稳定运行。

【生化实验】分光光度法

【生化实验】分光光度法
分光光度法
如何求被测物质的含量
A kcl
1.利用标准管计算测定物的含量 2.利用标准曲线计算测定物含量 3.利用标准系数法求出待测溶液的浓度 4.利用消光系数法求出待测溶液的浓度
1.利用标准管计算测定物的含量
在相同条件下பைடு நூலகம்定已知浓度(CS)标准液的吸光度(AS), 同时也测定末知浓度(CU)的吸光度(AU),
● ●
0.2
C
标准曲线(浓度-吸光度曲线)
722分光光度计的使用
1. 接通电源,调整波长。
2. 比色杯中加入空白及待测样品,并放入分光光度计中 ,注意:加入样品量不超过比色杯体积的2/3。
3. 调模式为“透射比”,对空白对照进行调“0”(开盖) 和调“100”(闭盖)。
4. 调模式为“吸光度”,即空白对照吸光度为“0”,测定 待测样品的吸光度值。
若被测物质对光的吸收符合光的吸收定律,则必然得 到一条通过原点的直线,即标准曲线,亦称工作曲线。以 后对末知浓度物质测定时,无需再作标准管,据测定管吸 光度从标准曲线上即可求得测定物的浓度。
对末知浓度 物质测定时 ,无需再作 标准管,据 测定管吸光 度从标准曲 线上即可求 得测定物的
浓度。
A
0.8 0.6 0.4
722分光光度计使用的注意事项
• 比色杯应持其侧壁的毛玻璃面。 • 盛液时达到比色杯的2/3即可,不能太满,外
壁如有液体,只能用滤纸沾去水份,再用擦镜 纸擦干净。 • 测毕,比色液一般应倒回原试管中,直至计算 无误后方可倒掉。
根据定律得: Au KuCuLu As KsCsLs 因为: Ku Ks Lu Ls
所以As与Au之比值也等于两浓度之比值
即 Au Cu As Cs

生化实验方法

生化实验方法

实验一 准备实验(一)分光光度计的使用一. 目的通过电化教学方式学习分光光度计的工作原理 掌握比色测定的基本操作方法二. 原理光线的本质是电磁波的一种,有不同的波长。

肉眼可见的彩色光称为可见光,波长范围在400~750nm :小于400nm 的光线称为紫外光;大于750nm 的光线称为红外光。

当光线通过透明溶液介质时,其辐射的波长有一部分被吸收,一部分透过、因此光线射出溶液之后,部分光波减少,这种光波的吸收和透过可用于某些物质的定性定量分析。

分光光度法依据Lambert-Beer 定律:II 0lg = KCL令A = II 0lg,T =0I I,则A = KCL ,A = -lgT其中:T :透光率A :吸光度(有时用光密度OD 表示) I : 透射光强度 I 0:入射光强度 K :吸收系数 L :溶液的光径长度C :溶液的浓度从上式可以看出,一束单色光通过溶液后,光波被吸收一部分,其吸收多少与溶液中溶质的浓度和溶液厚度成正比,当入射光、吸收系数K 和溶液的光径长度L 不变时,吸光度A 与溶液的浓度C 成正比。

I 0IC L三. 实验材料及设备1. 仪器分光光度计放相机电视机2. 器材普通试管:20mL×3移液管:5mL×2烧杯:250mL×1洗耳球: 2洗瓶、试管架、移液管架:各1四. 试剂的配制重铬酸钾(K2Cr2O7)溶液(0.2mg/mL)称取0.2g K2Cr2O7,蒸馏水溶解后定容至1000mL。

五. 操作步骤1. 在电教室中看录像了解721型分光光度计的工作原理。

2. 在分光光度室中练习操作详细步骤见附录六。

3. 在实验室中应用练习取3支试管,按下表所示顺序操作。

六. 结果处理1. 求两个样品管A450的平均值—A450;2. 计算重铬酸钾的摩尔消光系数。

七. 思考题1. 到分光光度室中进行比色测定应携带哪些器材?它们分别起什么作用?2. 比色时,设一个“0”号管的意义是什么?实验二 3,5-二硝基水杨酸比色法测定糖的含量一. 目的了解3,5-二硝基水杨酸比色法测定糖的原理 掌握总糖定量测定的操作方法二. 原理还原糖是指含自由醛基或酮基的单糖(如葡萄糖)和某些具有还原性的双糖(如麦芽糖)。

生化实验分光度实验报告

生化实验分光度实验报告

1. 理解分光光度法的基本原理及其在生化实验中的应用。

2. 掌握分光光度法测定蛋白质浓度的操作步骤。

3. 学习如何绘制标准曲线并计算蛋白质浓度。

二、实验原理分光光度法是一种基于物质对特定波长光的吸收程度来定量分析物质的方法。

蛋白质分子中含有多种氨基酸,这些氨基酸具有不同的化学结构,使得蛋白质对不同波长的光具有不同的吸收特性。

通过测定蛋白质溶液在特定波长下的吸光度,可以计算出蛋白质的浓度。

三、实验材料与仪器1. 实验材料:- 牛血清白蛋白(BSA)标准品- 0.1M的NaOH溶液- 0.05M的Tris-HCl缓冲液(pH 6.8)- 0.9%的NaCl溶液- 0.1M的CuSO4溶液- 0.01M的Folin-Ciocalteu试剂- 0.1M的Na2CO3溶液- 试管、移液管、容量瓶、分光光度计、比色皿等。

2. 实验仪器:- 电子天平- 移液器- 磁力搅拌器- 紫外可见分光光度计1. 准备标准溶液:称取一定量的BSA标准品,用0.1M的NaOH溶液溶解,配制成一系列不同浓度的标准溶液。

2. 配制样品溶液:取一定量的蛋白质样品,用0.05M的Tris-HCl缓冲液(pH 6.8)稀释,使其浓度在标准曲线范围内。

3. 测定吸光度:将标准溶液和样品溶液分别加入比色皿中,用紫外可见分光光度计在540nm波长下测定吸光度。

4. 绘制标准曲线:以标准溶液的浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

5. 计算蛋白质浓度:根据样品溶液的吸光度,在标准曲线上找到对应的浓度值,即为样品溶液的蛋白质浓度。

五、实验结果与分析1. 标准曲线:根据实验数据绘制标准曲线,发现吸光度与蛋白质浓度呈线性关系。

2. 样品溶液的蛋白质浓度:根据样品溶液的吸光度,在标准曲线上找到对应的浓度值,计算得到样品溶液的蛋白质浓度为X mg/mL。

六、实验讨论1. 分光光度法是一种快速、简便、灵敏的定量分析方法,广泛应用于生化实验中。

2. 实验过程中,应注意以下几点:- 准确配制标准溶液和样品溶液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5) 吸光度A的测量:调整选择钮显示“A”,读数显示为 “.000”。如果不是此值,调消光零旋钮。再移动拉杆,使 标准液和待测液分别置于光路,读取“A”值。
(6) 打开检测室盖,取出比色杯,倾去比色液,用水冲洗干 净,倒置于铺有滤纸的平皿中。
7
分光光度计的注意事项
1. 拉比色杆时动作要轻。
2. 手持比色杯的毛面(粗糙面),不可用手或滤纸等摩 擦比色杯的透光面;比色杯先用蒸馏水冲洗后,再 用比色液润洗才能装比色液。盛装比色液时,约达 比色杯2/3体积,不宜过多或过少;若不慎使溶液 流至比色杯外,须用棉花或擦镜纸吸干,才能放入 比色架。比色杯用后应立即用自来水冲洗干净。
分光光度计使用及常用技术
1
生物化学实验要求
1. 成绩பைடு நூலகம்
平时成绩 (30%)
实验报告,考勤(20%) 实验考试(10%)
期末成绩(70%)
2
生物化学实验要求
2. 实验报告 题目(日期,温度) 摘要:目的,方法,结果,结论 原理:简单扼要 步骤:操作要点 结果:原始数据、计算过程、颜色变化等。 讨论:对结果归纳、概括、探讨
A标/ C标=KL, A测/ C测=KL
A标/ C标= A测/ C测
C测
A测 A标
C标
722型分光光度计的使用
(1) 接通电源,预热20min。
(2) 调节波长旋钮至所需波长。
(3) 比色杯依次放入检测室比色杯架内,空白液对准光路。
(4) 检查722型分光光度计的旋钮,使选择钮指向透光度 “T”,按“0”键,盖上检测室盖(光门打开),按“100”键, 重复数次,直至达到稳定。
周三2点前上交实验报告!
3
分光光度法(specrophotometry)
I0
入射光
透光度(T):I/I0
I
出射光
分光光度法(specrophotometry)
Lambert-Beer定律:
A=KCL
A: 吸光度(光密度、消光度) K:常数(消光系数) C: 浓度 L: 光通过溶液距离
A标=KC标L, A测=KC测L
3. 测定溶液浓度的吸光度值在0.1~0.8之间最符合光吸 收定律,线性好、读数误差较小。
8
实验结果
标准管,测定管分光光度值 (表格,写明样品名称) 计算公式,代入数据,结果
实验讨论
实验结论
由结果归纳总结的规律
思考题:使用分光光度计时,空白管的作用?
9
相关文档
最新文档