高中物理专题复习--动量及动量守恒定律
高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律
高中物理力学知识汇总:动量、冲量、动量定理、动量守恒定律【知识要点复习】1、动量是矢量,其方向与速度方向相同,大小等于物体质量和速度的乘积,即P=mv。
2、冲量也是矢量,它是力在时间上的积累。
冲量的方向和作用力的方向相同,大小等于作用力的大小和力作用时间的乘积。
在计算冲量时,不需要考虑被作用的物体是否运动,作用力是何种性质的力,也不要考虑作用力是否做功。
在应用公式I=Ft进行计算时,F应是恒力,对于变力,则要取力在时间上的平均值,若力是随时间线性变化的,则平均值为3、动量定理:动量定理是描述力的时间积累效果的,其表示式为I=ΔP=mv-mv0式中I表示物体受到所有作用力的冲量的矢量和,或等于合外力的冲量;ΔP是动量的增量,在力F作用这段时间内末动量和初动量的矢量差,方向与冲量的方向一致。
动量定理可以由牛顿运动定律与运动学公式推导出来,但它比牛顿运动定律适用范围更广泛,更容易解决一些问题。
4、动量守恒定律(1)内容:对于由多个相互作用的质点组成的系统,若系统不受外力或所受外力的矢量和在某力学过程中始终为零,则系统的总动量守恒,公式:(2)内力与外力:系统内各质点的相互作用力为内力,内力只能改变系统内个别质点的动量,与此同时其余部分的动量变化与它的变化等值反向,系统的总动量不会改变。
外力是系统外的物体对系统内质点的作用力,外力可以改变系统总的动量。
(3)动量守恒定律成立的条件a、不受外力b、所受合外力为零c、合外力不为零,但F内>>F外,例如爆炸、碰撞等。
d、合外力不为零,但在某一方向合外力为零,则这一方向动量守恒。
(4)应用动量守恒应注意的几个问题:a、所有系统中的质点,它们的速度应对同一参考系,应用动量守恒定律建立方程式时它们的速度应是同一时刻的。
b、无论机械运动、电磁运动以及微观粒子运动、只要满足条件,定律均适用。
(5)动量守恒定律的应用步骤。
第一,明确研究对象。
第二,明确所研究的物理过程,分析该过程中研究对象是否满足动量守恒的条件。
动量和动量定理复习
如图所示,一质量为M的长木块
B静止在光滑水平面上,一质量为 m的小滑块A以水平速度v0从长木板 的一端开始在长木板上滑动,滑块 A在木板B上滑动时,A与B之间存 在着相互作用的大小为f的滑动摩
A v0
f
fB
sB
Δs
A B
v
擦力。最终二者相对静止以共同速
sA
度一起滑行。
思考1:此过程中,M、m所受到的摩擦力方向如何? 此二力对 M、m的冲量有什么关系?
用动量定理求解
4.曲线运动中物体的动量变化:利用动量 定理求解
8.以速度υ0竖直上抛一个质量为m的物体, 不计阻力,物体在运动过程中(取竖直向上
为正)。
(1)动量增量△P随时间t变化的图线是图
中的哪一个?
△P
△P
△P
△P
0
t0
0
t
t0
t
A
B
C
D
(2)若纵轴表示动量的变化率,则动 量变化率随时间t的变化图线是图中的 哪一个?( )
木板的左端固定一个档板,档板上固定一个长度为L的轻 质弹簧,长木板与档板的总质量为M,在木板的右端有一 质量为m的铁块。现给铁块一个水平向左的初速度v0,铁
块向左滑行并与轻弹簧相碰,碰后返回恰好停在长木板 的右端。根据以上条件可以求出的物理量是
A. 铁块与轻弹簧相碰过程中所具有的最大弹性势能
B. 弹簧被压缩的最大长度
(1)推力F压缩弹簧时所做的功是多少?
(2)在A离开墙壁后的运动过程中弹簧所具
有的最大弹性势能是多少?
A
BF
解:力F 压缩弹簧所做的功就是弹簧第一次完全弹开时(即第一 次恢复原长时)B的动能。 WF = EKB= mBvB2max /2 = 9J。vBmax=3m/s,vA=0。
高中物理选必一第一章动量守恒定律(1动量2动量定理)
第一章动量守恒定律第1节动量知识点一、动量(1)定义:物体质量和速度的乘积,用字母p 表示,p =m v .(2)动量的矢量性:动量既有大小,又有方向,是矢量.动量的方向与速度的方向一致,运算遵循矢量运算法则.(3)单位:国际单位是千克·米每秒,符号是kg·m/s.(4)动量具有相对性:选取不同的参考系,同一物体的速度可能不同,物体的动量也就不同,即动量具有相对性.通常在不说明参考系的情况下,物体的动量是指相对地面的动量.知识点二、动量与速度、动能的区别和联系动量与速度动量与动能区别①动量在描述物体运动方面更进一步,更能体现运动物体的作用效果②速度描述物体运动的快慢和方向①动量是矢量,从运动物体的作用效果方面描述物体的状态②动能是标量,从能量的角度描述物体的状态联系①动量和速度都是描述物体运动状态的物理量,都是矢量,动量的方向与速度方向相同,且p =mv ②动量和动能都是描述物体运动状态的物理量,且p =2mE k 或E k =p 22m知识点三、动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差,即Δp =p ′-p(2)动量的变化量Δp 也是矢量,其方向与速度的改变量Δv 相同.(3)因为p =m v 是矢量,只要m 的大小、v 的大小和v 的方向三者中任何一个发生了变化,动量p 就发生变化.(4)动量变化量Δp 的计算①当物体做直线运动时,只需选定正方向,与正方向相同的动量取正,反之取负.若Δp 是正值,就说明Δp 的方向与所选正方向相同;若Δp 是负值,则说明Δp 的方向与所选正方向相反.②当初、末状态动量不在一条直线上时,可按平行四边形定则求Δp 的大小和方向.典例分析一、对动量和动量增量的理解例1关于动量变化,下列说法正确的是()A .做直线运动的物体速度增大时,动量的增量Δp 的方向与运动方向相同B .做直线运动的物体,速度减小时,动量增量Δp 的方向与运动方向相反C .物体的速度大小不变时,动量的增量Δp 为零D .物体做平抛运动时,动量的增量一定不为零二、动量变化量的计算例2羽毛球是速度最快的球类运动之一,林丹扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,林丹将球以342km/h的速度反向击回.设羽毛球质量为5g,试求:(1)林丹击球过程中羽毛球的动量变化量.(2)在林丹的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题一对动量及动量变化的理解例3关于动量的变化,下列说法正确的是()A.做直线运动的物体速度增大时,动量的增量Δp的方向与运动方向相同B.做直线运动的物体速度减小时,动量的增量Δp的方向与运动方向相反C.物体的速度大小不变时,动量的增量Δp为零D.物体做曲线运动时,动量的增量一定不为零专题二对动量及动量变化的计算例4羽毛球是速度较快的球类运动之一,运动员扣杀羽毛球的速度可达到342km/h,假设球飞来的速度为90km/h,运动员将球以342km/h的速度反向击回.设羽毛球的质量为5g,试求(1)运动员击球过程中羽毛球的动量变化量.(2)在运动员的这次扣杀中,羽毛球的速度变化、动能变化各是多少?专题三碰撞中的动量变化例5质量为0.1kg的小球从1.25m高处自由落下,与地面碰撞后反弹回0.8m高处.取竖直向下为正方向,且g =10m/s2.求:(1)小球与地面碰前瞬间的动量;(2)球与地面碰撞过程中动量的变化.第2节动量定理知识点一、冲量(1)概念:力与力的作用时间的乘积叫做力的冲量.(2)定义式:I=Ft.(3)物理意义:冲量是反映力的作用对时间的累积效应的物理量,力越大,作用时间越长,冲量就越大.(4)单位:在国际单位制中,冲量的单位是牛·秒,符号为N·s.知识点二、冲量的理解(1)冲量的绝对性.由于力和时间均与参考系无关,所以力的冲量也与参考系的选择无关.(2)冲量是矢量.冲量的运算服从平行四边形定则,合冲量等于各外力的冲量的矢量和,若整个过程中,不同阶段受力不同,则合冲量为各阶段冲量的矢量和.(3)冲量是过程量,它是力在一段时间内的积累,它取决于力和时间这两个因素.所以求冲量时一定要明确所求的是哪一个力在哪一段时间内的冲量.知识点三、冲量的计算(1)恒力的冲量:公式I=Ft适用于计算某个恒力的冲量,这时冲量的数值等于力与作用时间的乘积,冲量的方向与恒力方向一致.若力为同一方向均匀变化的力,该力的冲量可以用平均力计算,若力为一般变力则不能直接计算冲量.(2)变力的冲量①变力的冲量通常可利用动量定理I=Δp求解.②可用图象法计算如图所示变力冲量,若某一力方向恒定不变,那么在F-t图象中,图中阴影部分的面积就表示力在时间Δt=t2-t1内的冲量.知识点四、冲量与功(1)联系:冲量和功都是力作用过程的积累,是过程量.(2)区别:冲量是矢量,是力在时间上的积累,具有绝对性;功是标量,是力在位移上的积累,有相对性.知识点四、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量.这个关系叫做动量定理.2.表达式:I=Δp或Ft=m v′-m v.3.对动量定理的理解(1)动量定理反映了合外力的冲量是动量变化的原因.(2)动量定理的表达式是矢量式,它说明合外力的冲量跟物体动量变化量不仅大小相等,而且方向相同.(3)动量的变化率和动量的变化量由动量定理可得出F=p′-pt,它说明动量的变化率决定于物体所受的合外力.而由动量定理I=Δp可知动量的变化量取决于合外力的冲量,它不仅与物体的受力有关,还与力的作用时间有关.(4)动量定理具有普遍性,即不论物体的运动轨迹是直线还是曲线,不论作用力是恒力还是变力,不论几个力的作用时间是相同还是不同都适用.4.动量定理的应用(1)定性分析有关现象由F=Δpt可知:①Δp一定时,t越小,F越大;t越大,F越小.②Δp越大,而t越小,F越大.③Δp越小,而t越大,F越小.(2)应用动量定理解决问题的一般步骤①审题,确定研究对象:对谁、对哪一个过程.②对物体进行受力分析,分析力在过程中的冲量,或合力在过程中的冲量.③抓住过程的初、末状态,选定参考方向,对初、末状态的动量大小、方向进行描述.④根据动量定理,列出动量定理的数学表达式.⑤写清各物理量之间关系的补充表达式.⑥求解方程组,并分析作答.典例分析一、冲量的理解例1如图所示,质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力的冲量各是多大?二、平均冲量的计算例2如图所示,质量为m=1kg的小球由高h1=0.45m处自由下落,落到水平地面后,反弹的最大高度为h2=0.2m,从小球下落到反弹到最高点经历的时间为Δt=0.6s,g取10m/s2.求:小球撞击地面过程中,球对地面的平均压力F的大小.三、合力冲量的计算例3质量为1.0kg的小球从20m高处自由下落到软垫上,反弹后上升的最大高度为5.0m,小球与软垫接触时2)()间为1.0s,在接触时间内小球受到的合力的冲量大小为(空气阻力不计,g=10m/sA.10N·s B.20N·s C.30N·s D.40N·s四、冲量的综合应用例4用0.5kg的铁锤把钉子钉进木头里,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s,那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力是多大?(2)考虑铁锤受的重力,铁锤钉钉子的平均作用力又是多大?(g取10m/s2)(3)比较(1)和(2),讨论是否要计铁锤的重力。
2020年高考物理二轮专题复习附解答:动量定理与动量守恒定律(解析版)
动量定理与动量守恒定律一、选择题1.高空坠物极易对行人造成伤害。
若一个50 g 的鸡蛋从一居民楼的25层坠下,与地面的碰撞时间约为2 ms ,则该鸡蛋对地面产生的冲击力约为A .10 NB .102 NC .103 ND .104 N解析 根据自由落体运动和动量定理有2gh =v 2(h 为25层楼的高度,约70 m),Ft =mv ,代入数据解得F ≈1×103 N ,所以C 正确。
答案 C2.(多选)在光滑的水平面上,原来静止的物体在水平力F 的作用下,经过时间t 、通过位移L 后,动量变为p 、动能变为E k ,以下说法正确的是A .在力F 的作用下,这个物体若是经过时间3t ,其动量将等于3pB .在力F 的作用下,这个物体若是经过位移3L ,其动量将等于3pC .在力F 的作用下,这个物体若是经过时间3t ,其动能将等于3E kD .在力F 的作用下,这个物体若是经过位移3L ,其动能将等于3E k解析 根据p =mv ,E k =12mv 2 联立解得p =2mE k根据动能定理FL =12mv 2,位移变为原来的3倍,动能变为原来的3倍,根据p =2mE k ,动量变为原来的3倍,故B 错误,D 正确。
根据动量定理Ft =mv ,时间变为原来的3倍,动量变为原来的3倍,根据E k =p 22m,知动能变为原来的9倍,故A 正确,C 错误。
答案 AD3.(多选)质量为m 的物块甲以3 m/s 的速度在光滑水平面上运动,有一轻弹簧固定在其左侧,另一质量也为m 的物块乙以4 m/s 的速度与甲相向运动,如图所示,两物块通过弹簧相互作用(未超出弹簧弹性限度)并最终弹开,则A.在压缩弹簧的过程中,两物块组成的系统动量守恒B.当两物块相距最近时,甲物块的速度为零C.甲物块的速率可能为5 m/sD.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s解析在压缩弹簧的过程中,两物块组成的系统所受合外力为零,系统动量守恒,选项A正确;当两物块相距最近时,两物块速度相等,甲物块的速度不为零,选项B错误;若甲物块的速率为5 m/s,根据动量守恒定律可得此时乙物块的速率为6 m/s或4 m/s,两物块组成的系统机械能增大,违反了能量守恒定律,选项C错误;当甲物块的速率为1 m/s,方向向左时,选取向右为速度的正方向,根据动量守恒定律,m·4 m/s-m·3 m/s=mv-m·1 m/s,解得乙物块的速率v=2 m/s,选项D正确。
高中物理必备知识点:动量守恒定律及其应用总结
高中物理必备知识点:动量守恒定律及其应用总结第二课时动量守恒定律及其应用第一关:基本关与高考前景基础知识一、动量守恒定律知识解释(1)内容:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.(2)数学表达式①p=p′.也就是说,系统相互作用前的总动量P等于相互作用后的总动量P',如果有两个相互作用的物体,通常写为:m1v1+m2v2=m1v1'+m2v2'② δp=p′-p=0。
即系统总动量的增量为零.③δp1=-δp2.也就是说,相互作用系统中的物体被分成两部分,其中一部分动量的增量等于另一部分动量的增量,且方向相反(3)动量守恒定律成立的条件内力不会改变系统的总动量,而外力可以改变系统的总动量。
在以下三种情况下,可以使用动量守恒定律:①系统不受外力或所受外力的矢量和为零.② 系统上的外力远小于系统的内力。
例如,在碰撞或爆炸的瞬间,外力可以忽略③系统某一方向不受外力或所受外力的矢量和为零,或外力远小于内力,则该方向动量守恒(分动量守恒).灵活的学习和应用1.如图所示,a、b两物体的质量ma>mb,中间用一段细绳相连并在一被压缩的弹簧,放在平板小车c上后,a、b、c均处于静止状态.若地面光滑,则在细绳被剪断后,a、b从c上未滑离之前,a、b在c上向相反方向滑动过程中()a、如果a、B和C之间的摩擦力相同,由a和B组成的系统的动量守恒,由a、B和C组成的系统的动量也守恒b.若a、b与c之间的摩擦力大小不相同,则a、b组成的系统动量不守恒,a、b、c组成的系统动量也不守恒c、如果a、B和c之间的摩擦力不同,由a和B组成的系统的动量不守恒,但由a、B和c组成的系统的动量守恒d.以上说法均不对分析:当两个物体a和B形成一个系统时,弹簧力是内力,a、B和C之间的摩擦力是外力。
当a、B和C之间的摩擦力相反时,由a和B组成的系统的合力为零,动量守恒;当a、B和C之间的摩擦力不相等时,由a和B组成的系统上的组合外力不为零,对于由a、B和C组成的系统,动量不守恒,因为弹簧的弹性力以及a和B和C之间的摩擦力都是内力,无论a和B之间的摩擦力,B和C是否相等,由a、B和C组成的系统的合力为零,动量守恒,因此选项a和C是正确的,选项B和D是错误的答案:ac注:(1)动量守恒的条件是系统不受外力或组合外力为零。
高三复习高中物理重点知识习题 动量守恒定律 - (含答案)
第七章动量守恒定律考点一:动量、动量变化量与冲量、动量定理1. (多选)如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止开始自由下滑,不计空气阻力,在它们到达斜面底端的过程中()A.重力的冲量相同B.斜面弹力的冲量不同C.斜面弹力的冲量均为零D.合力的冲量不同答案BD2.(多选)质量为m的物块以初速度v0从光滑斜面底端向上滑行,到达最高位置后再沿斜面下滑到底端,则物块在此运动过程中()A.上滑过程与下滑过程中物块所受重力的冲量相同B.整个过程中物块所受弹力的冲量为零C.整个过程中物块合外力的冲量为零D.若规定沿斜面向下为正方向,则整个过程中物块合外力的冲量大小为2mv0 答案AD3.如图所示,质量为m的物体,在大小确定的水平外力F作用下,以速度v沿水平面匀速运动,当物体运动到A点时撤去外力F,物体由A点继续向前滑行的过程中经过B点,则物体由A点到B点的过程中,下列说法正确的是()A.v越大,摩擦力对物体的冲量越大,摩擦力做功越多B.v越大,摩擦力对物体的冲量越大,摩擦力做功与v的大小无关C.v越大,摩擦力对物体的冲量越小,摩擦力做功越少D.v越大,摩擦力对物体的冲量越小,摩擦力做功与v的大小无关答案D4. (多选)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是()A.子弹在每个水球中的速度变化相同B.子弹在每个水球中运动的时间不同C.每个水球对子弹的冲量不同D.子弹在每个水球中的动能变化相同答案BCD5. (多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。
F随时间t变化的图线如图所示,则() 答案ABA.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零6. (多选)一质点静止在光滑水平面上,现对其施加水平外力F,力F随时间按正弦规律变化,如图5所示,下列说法正确的是()A.第2 s 末,质点的动量为0B.第4 s 末,质点回到出发点C.在0~2 s 时间内,力F 的功率先增大后减小D.在1~3 s 时间内,力F 的冲量为0 答案 CD7.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示。
专题复习11:《动量、动量守恒定律》——学生版
专题复习:《动量、动量守恒定律》学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图所示,水平轻弹簧与物体A和B相连,放在光滑水平面上,处于静止状态,物体A的质量为m,物体B的质量为M,且M>m.现用大小相等的水平恒力F1、F2拉A 和B,从它们开始运动到弹簧第一次为最长的过程中()A.因F1=F2,所以A、B和弹簧组成的系统机械能守恒B.因F1=F2,所以A、B和弹簧组成的系统动量守恒C.由于F1、F2大小不变,所以m、M各自一直做匀加速运动D.弹簧第一次最长时,A和B的总动能最大2.如图所示,甲图表示在光滑水平台上,物体A以初速度v0滑到上表面粗糙的水平小车B上,B车与水平面间的摩擦不计,乙图为物体A与小车B的v-t图像,重力加速度为g,v0、v、t1为已知量,则下列物理量,不能求得的是()A.小车上表面最小长度B.物体A与小车B的质量之比C.物体A与小车B的上表面间的动摩擦因数D.小车B获得的动能3.如图所示,光滑水平面上静置一质量为M的木块,由一轻弹簧连在墙上,有一质量为m的子弹以速度v0水平射入木块并留在其中,当木块第一次回到原来位置的过程中,墙对弹簧的冲量大小为()A.0B.22m vM m+C.02MmvM m+D.2mv04.如图所示,一沙袋用无弹性轻细绳悬于O 点,开始时沙袋处于静止,此后弹丸以水平速度击中沙袋后均未穿出.第一粒弹丸的速度为v 1,打入沙袋后二者共同摆动的最大摆角为30°,当其第一次返回图示位置时,第二粒弹丸以水平速度v 2又击中沙袋,使沙袋向右摆动且最大摆角仍为30°,若弹丸质量是沙袋质量的130,不计空气阻力,则以下结论中正确的是()A .v 1:v 2=1:1B .v 1:v 2=31:32C .v 1:v 2=32:31D .v 1:v 2=31:635.如图所示,带有半圆形槽的物块P ,放在足够长的光滑水平地面上,一侧紧靠竖直墙壁。
高中物理动量守恒定律知识点总结
高中物理动量守恒定律知识点(一)一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲)注意:内力的冲量对系统动量是否守恒没有影响,但可改变系统内物体的动量。
内力的冲量是系统内物体间动量传递的原因,而外力的冲量是改变系统总动量的原因。
2、动量守恒定律的表达式m1v1+m2v2=m1v1/+m2v2/(规定正方向)△p1=—△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。
必须注意区别总动量守恒与某一方向动量守恒。
二、碰撞1、完全非弹性碰撞:获得共同速度,动能损失最多动量守恒。
2、弹性碰撞:动量守恒,碰撞前后动能相等。
特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度,vB=.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)3、一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
4、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv=MV(注意:几何关系)高中物理动量守恒定律知识点(二)冲量与动量(物体的受力与动量的变化)1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}高中物理学习方法要重视实验物理学是一门以实验为基础的科学,许多物理概念、物理规律都是从自然现象的实验中总结出来的。
2022年高考物理大一轮复习 第六章 动量及动量守恒定律第二讲动量守恒定律及其应用
B.m=v2+v2v1M D.m=vv22--vv01M
解析:规定航天器的速度方向为正方向,由动量守恒
v2-v0
定律可得
Mv0=(M-m)v2-mv1,解得
m= M,故 v2+v1
C 正确.
答案:C
对反冲运动的三点说明
作用 原理
反冲运动是系统内物体之间 的作用力和反作用力产生的 效果
动量 守恒
反冲运动中系统不受外力或 内力远大于外力,所以反冲 运动遵循动量守恒定律
3.爆炸问题
(1)动量守恒:由于爆炸是在极短的时间内完成的, 爆炸时物体间的相互作用力远远大于受到的外力,所以 在爆炸过程中,系统的总动量守恒.
(2)动能增加:在爆炸过程中,由于有其他形式的能 量(如化学能)转化为动能,所以爆炸后系统的总动能增 加.
(3)位移不变:爆炸的时间极短,因而作用过程中物 体运动的位移很小,一般可忽略不计,可以认为爆炸后 仍然从爆炸时的位置以新的动量开始运动.
究对象 受的内力和外力 量守恒的条件
解析:在 a 离开墙壁前、弹簧伸长的过程中,对 a
和 b 组成的系统,由于受到墙对 a 的弹力作用,
所以 a、b 组成的系统动量不守恒,选项 A 错误,B 正确;在 a 离开墙壁后,a、b 构成的系统所受的合外力 为零,因此动量守恒,故选项 C 正确,D 错误.
解析:选向右为正方向,则 A 的动量 pA=m·2v0= 2mv0.B 的动量 pB=-2mv0.碰前 A、B 的动量之和为零, 根据动量守恒,碰后 A、B 的动量之和也应为零,可知四 个选项中只有选项 D 符合题意.
答案:D
考点 3 反冲和爆炸
1.反冲运动的特点及遵循的规律 (1)特点:是物体之间的作用力与反作用力产生的效 果. (2)条件: ①系统不受外力或所受外力的矢量和为零; ②内力远大于外力;
高中物理总复习--动量定理含解析
⾼中物理总复习--动量定理含解析⾼中物理总复习--动量定理含解析⼀、⾼考物理精讲专题动量定理1.质量为m 的⼩球,从沙坑上⽅⾃由下落,经过时间t 1到达沙坑表⾯,⼜经过时间t 2停在沙坑⾥.求:⑴沙对⼩球的平均阻⼒F ;⑵⼩球在沙坑⾥下落过程所受的总冲量I .【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对⼩球⽤动量定理:重⼒作⽤时间为t 1+t 2,⽽阻⼒作⽤时间仅为t 2,以竖直向下为正⽅向,有: mg(t 1+t 2)-Ft 2=0, 解得:⽅向竖直向上⑵仍然在下落的全过程对⼩球⽤动量定理:在t 1时间内只有重⼒的冲量,在t 2时间内只有总冲量(已包括重⼒冲量在内),以竖直向下为正⽅向,有: mgt 1-I=0,∴I=mgt 1⽅向竖直向上考点:冲量定理点评:本题考查了利⽤冲量定理计算物体所受⼒的⽅法.2.如图所⽰,⾜够长的⽊板A 和物块C 置于同⼀光滑⽔平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B ⼀起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成⼀体,最终A 、B 、C 都静⽌,求:(i )C 与A 碰撞前的速度⼤⼩(ii )A 、C 碰撞过程中C 对A 到冲量的⼤⼩.【答案】(1)C 与A 碰撞前的速度⼤⼩是v 0;(2)A 、C 碰撞过程中C 对A 的冲量的⼤⼩是32mv 0.【解析】【分析】【详解】试题分析:①设C 与A 碰前速度⼤⼩为1v ,以A 碰前速度⽅向为正⽅向,对A 、B 、C 从碰前⾄最终都静⽌程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =.②设C 与A 碰后共同速度⼤⼩为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =-解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量⼤⼩为032mv .⽅向为负.考点:动量守恒定律【名师点睛】本题考查了求⽊板、⽊块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应⽤动量守恒定律即可正确解题;解题时要注意正⽅向的选择.3.⼀个质量为60千克的蹦床运动员从距离⽔平蹦床⽹⾯上3.2⽶的⾼处⾃由下落,触⽹后沿竖直⽅向蹦回到离⽔平⽹⾯5⽶⾼处.已知运动员与⽹接触的时候为1.2秒。
高考物理课程复习:动量和动量定理
品牌型号汽车以54 km/h的速度撞击固定屏障,若车辆前部发生200 mm变
形,安全气囊是否会弹出?如果该型号汽车质量为1.5 t,在某次交通事故中,
汽车以72 km/h的速度与一载重为30 t、等候放行的卡车发生追尾事故,据
测算,两车的碰撞时间为0.05 s,碰后一起向前运动了一段距离,汽车的安全
考点一
冲量和动量[自主探究]
1.动量、动能、动量变化量的比较
项目
定义
动量
动能
动量变化量
物体的质量和
物体由于运动而具
物体末动量与初动
速度的乘积
有的能量
量的矢量差
定义式
p=mv
1
Ek=2mv2
矢标性
矢量
标量
矢量
特点
状态量
状态量
过程量
关联方程
p2
1
Ek=2m ,Ek=2pv,p=
2E
2mE ,p= v
物块的动量大小为4 kg·
m/s,B正确;t=3 s时物块的动量大小为前3 s内图线
与时间轴所围成图形的“总面积”,S=2×2 N·
s-1×1 N·
s=3 N·
s,故t=3 s时物
块的动量大小为3 kg·
m/s,C错误;由于前4 s内图线与时间轴所围成图形的
“总面积”不为零,故冲量不为零,速度不为零,D错误。
t=
ℎ
C,由sin
=
1
gsin
2
θ·
t2,得物体下滑的时间
2ℎ
2
,所以
θ
越小,sin
θ 越小,t 越大,重力的冲量 I=mgt 就越大,故 I1<I2<I3,
专题06 动量守恒定律——高考物理复习核心考点归纳识记
高考一轮复习知识考点归纳 专题06 动量守恒定律【基本概念、规律】动量及动量守恒定律第1节 动量及动量定理第2节 动量守恒定律第3节 动量守恒定律的应用实验 验证动量守恒定律(1)定义:力与力作用时间的乘积.(2)公式:I=Ft ;公式适用范围:恒力冲量;(3)量性:矢量,方向与作用力方向一致;动量及动量定理冲量动量动量定理(1)定义:物体质量与速度的乘积;(2)表达式:p=mv ;(3)量性:矢量,方向与速度方向一致;(4)物理意义:反映物体运动状态(1)内容:物体合外力冲量等于物体动量变化量;(2)表达式:F ·Δt =Δp =p ′-p . (3)注意:动量定理表达式为矢量式【重要考点归纳】考点一 动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F 应理解为变力在作用时间内的平均值.2.动量定理的表达式F ·Δt =Δp 是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt 越短,力F 就越大,力的作用时间Δt 越长,力F 就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F 一定时,力的作用时间Δt 越长,动量变化量Δp 越大,力的作用时间Δt 越短,动量变化量Δp 越小4.应用动量定理解题的一般步骤 (1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段. (2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力. (3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二 动量守恒定律与碰撞 1.动量守恒定律的不同表达形式守恒条件:(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.动量守恒定律动量守恒定律动量守恒应用1.碰撞 物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点 在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.动量守恒定律的表达式:m 1v 1+m 2v 2=m 1v ′1+m 2v ′2或Δp 1=-Δp 2.1.爆炸3.反冲 人船模型(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(2)动能不增加,即E k1+E k2≥E′k1+E′k2或p212m1+p222m2≥p′212m1+p′222m2.(3)速度要合理.①碰前两物体同向,则v后>v前;碰后,原来在前的物体速度一定增大,且v′前≥v′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m1v21=12m1v′21+12m2v′22②由①②得v′1=m1-m2v1m1+m2v′2=2m1v1m1+m2结论:①当m1=m2时,v′1=0,v′2=v1,两球碰撞后交换了速度.②当m1>m2时,v′1>0,v′2>0,碰撞后两球都向前运动.③当m1<m2时,v′1<0,v′2>0,碰撞后质量小的球被反弹回来.(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三爆炸和反冲人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1=-m2v2得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v=ΔxΔt算出速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等。
高考物理专题复习:《动量》试卷及参考答案
高考物理专题复习:《动量》(附参考答案)一、考纲要求1.动量、冲量、动量定理及其应用 B2.动量守衡定律及其应用(包括反冲) B二、知识结构(一)重要的概念1.动量定义:把物体的质量和运动速度的乘积叫物体的动量公式:P=m·v 单位:千克米/秒理解:动量是矢量,方向与v相同,v指即时速度2.动量的变化定义:物体的末动量减初动量叫物体动量的变化公式:ΔP=P′-P=mv′-mv 单位:千克米/秒或牛顿·秒理解:动量的变化是矢量,方向与Δv相同即Δv矢量,“减”是末动量矢量减初动量矢量,即平行四边形3.冲量定义:把t和力的作用时间的乘积叫力的冲量公式:I=F·t 单位:牛顿·秒或千克米/秒理解:冲量是矢量、方向与F相同。
(二)基本规律1.动量定理语言表述:合外力对物体的冲量等于物体动量的变化公式:F合·t=ΔP=mv′-mv理解:F合是合外力而不是某个力,合外力是恒力时ΔP与F合同向且为冲量的方向,合外力的方向变化时冲量与ΔP同向。
2.动量守衡定律语言叙述:相互作用的物体,如果不受外力作用或者它们所受的外力之和为零,它们的总动量保持不变。
公式:两个物体相互作用时,m1v1+m2v2=m1v1′+m2v2′理解:系统所受外力的合力虽不为零,但比系统内力小得多,如碰撞过程中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计。
系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上的系统的总动量的分量保持不三、知识点、能力点提示1.动量、动量的变化、冲量都是矢量,正、负号表示跟规定的正方向相同或相反。
2.ΔP=P′-P,ΔP的方向可以跟初动量P相同;可以跟初动量P的方向相反,也可以跟初动量的方向成某一角度。
3.动量定理不仅适用于恒定的力,也适用于随时间变化的力,对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值。
4.求变力的冲量,不能直接用F·t求解,应该由动量定律根据动量的变化间接求解,也可以 F-t图像下的“面积”的计算方法求解。
高中物理 第十六章 动量守恒定律 第2节 动量和动量定理(含解析)
第2节动量和动量定理1.物体质量与速度的乘积叫动量,动量的方向与速度方向相同。
2.力与力的作用时间的乘积叫冲量,冲量的方向与力的方向相同。
3.物体在一个过程始末的动量变化量等于它在这个过程中所受合力的冲量,动量变化量的方向与合力的冲量方向相同。
一、动量及动量的变化1.动量(1)定义:物体的质量和速度的乘积。
(2)公式:p=mv。
(3)单位:千克·米/秒,符号:kg·m/s。
(4)矢量性:方向与速度的方向相同。
运算遵守平行四边形定则。
2.动量的变化量(1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式)。
(2)动量始终保持在一条直线上时的动量运算:选定一个正方向,动量、动量的变化量用带正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小)。
二、冲量1.定义:力与力的作用时间的乘积。
2.公式:I=F(t′-t)。
3.单位:牛·秒,符号是N·s。
4.矢量性:方向与力的方向相同。
5.物理意义:反映力的作用对时间的积累效应。
三、动量定理1.内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。
2.表达式:mv′-mv=F(t′-t)或p′-p=I。
1.自主思考——判一判(1)动量的方向与速度方向一定相同。
(√)(2)动量变化的方向与初动量的方向一定相同。
(×)(3)冲量是矢量,其方向与力的方向相同。
(√)(4)力越大,力对物体的冲量越大。
(×)(5)若物体在一段时间内,其动量发生了变化,则物体在这段时间内的合外力一定不为零。
(√)2.合作探究——议一议(1)怎样理解动量的矢量性?提示:动量是物体的质量与速度的乘积,而不是物体的质量与速率的乘积,动量的方向就是物体的速度方向,动量的运算要遵守矢量法则,同一条直线上的动量的运算首先要规定正方向,然后按照正负号法则运算。
(2)在地面上垫一块较厚的软垫(如枕头),手拿一枚鸡蛋轻轻的释放让它落到软垫上,鸡蛋会不会破?动手试一试,并用本节知识进行解释。
高三物理【动量定理 动量守恒定律】复习整合
[真题再练] 1.(2020·全国卷Ⅰ)行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬 间充满气体.若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作 用,下列说法正确的是( ) A.增加了司机单位面积的受力大小 B.减少了碰撞前后司机动量的变化量 C.将司机的动能全部转换成汽车的动能 D.延长了司机的受力时间并增大了司机的受力面积
B.0.27 N
C.0.022 N
D.0.027 N
解析:D 由题知,水滴质量为 m=0.5 g,重力加速度为 g=10 m/s2,屋檐高度为 h =4 m,设水滴刚落到石板上时速度为 v.水滴从屋檐开始下落到石板上,忽略空气阻力, 水滴的机械能守恒,有 mgh=12mv2.水滴从接触石板到速度为零的过程中,取向下为正方 向,对水滴由动量定理得(mg-F)t=0-mv,解得 F≈0.027 N,由牛顿第三定律可知,D 正确.
动量守恒定律解题的基本步骤 1.明确研究对象,确定系统的组成(系统包括哪几个物体)及研究的过程. 2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒). 3.规定正方向,确定初、末状态动量. 4.由动量守恒定律列出方程. 5.代入数据,求出结果,必要时讨论说明.
[精选模拟] 视角 1:动量守恒的判断 1.关于下列四幅图所反映的物理过程的说法正确的是( )
8 次这样推物块后,运动员退行速度的大小大于 5.0 m/s,反弹的物块不能再追上运动员.不
计冰面的摩擦力,该运动员的质量可能为( )
A.48 kg
B.53 kg
C.58 kg
D.63 kg
解析:BC 设运动员和物块的质量分别为 m、m0,规定运动员运动的方向为正方向, 运动员开始时静止,第一次将物块推出后,运动员和物块的速度大小分别为 v1、v0,则根 据动量守恒定律 0=mv1-m0v0,解得 v1=mm0v0,物块与弹性挡板撞击后,运动方向与运动 员同向,当运动员再次推出物块 mv1+m0v0=mv2-m0v0,解得 v2=3mm0v0,第 3 次推出后 mv2+m0v0=mv3-m0v0, 解得 v3=5mm0v0,依次类推,第 8 次推出后,运动员的速度 v8=15mm0 v0, 根据题意可知 v8=15mm0v0>5 m/s, 解得 m<60 kg,第 7 次运动员的速度一定小于 5 m/s, 则 v7=13mm0v0<5 m/s, 解得 m>52 kg,综上所述,运动员的质量满足 52 kg<m<60 kg,AD 错 误,BC 正确.
高中物理专题复习 动量及动量守恒定律
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。
在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。
⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。
在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理专题复习动量及动量守恒定律一、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A以速度v 1向质量为m 2的静止物体B 运动,B的左端连有轻弹簧。
在Ⅰ位置A 、B刚好接触,弹簧开始被压缩,A开始减速,B 开始加速;到Ⅱ位置A、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A、B 开始远离,弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。
全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。
⑴弹簧是完全弹性的。
Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证明A、B 的最终速度分别为:121121212112,v m m m v v m m m m v +='+-='。
⑵弹簧不是完全弹性的。
Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。
这种碰撞叫非弹性碰撞。
⑶弹簧完全没有弹性。
Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。
这种碰撞叫完全非弹性碰撞。
可以证明,A 、B 最终的共同速度为121121v m m m v v +='='。
在完全非弹性碰撞过程中,系统的动能损失最大,为:()()21212122121122121m m v m m v m m v m E k +='+-=∆。
例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。
质量为m 的小球以速度v 1向物块运/ /动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H 和物块的最终速度v。
解:系统水平方向动量守恒,全过程机械能也守恒。
在小球上升过程中,由水平方向系统动量守恒得:()v m M mv '+=1 由系统机械能守恒得:()mgH v m M mv +'+=2212121 解得()g m M Mv H +=221全过程系统水平动量守恒,机械能守恒,得12v m M m v += 本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。
2.子弹打木块类问题子弹打木块实际上是一种完全非弹性碰撞。
作为一个典型,它的特点是:子弹以水平速度射向原来静止的木块,并留在木块中跟木块共同运动。
下面从动量、能量和牛顿运动定律等多个角度来分析这一过程。
例2. 设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d 。
求木块对子弹的平均阻力的大小和该过程中木块前进的距离。
解: 子弹和木块最后共同运动,相当于完全非弹性碰撞。
从动量的角度看,子弹射入木块过程中系统动量守恒: ()v m M mv +=0从能量的角度看,该过程系统损失的动能全部转化为系统的内能。
设平均阻力大小为f ,设子弹、木块的位移大小分别为s1、s 2,如图所示,显然有s 1-s 2=d对子弹用动能定理:22012121mv mv s f -=⋅ ……① 对木块用动能定理:2221Mv s f =⋅ ……② ①、②相减得:()()2022022121v m M Mm v m M mv d f +=+-=⋅ ……③ 由上式不难求得平均阻力的大小:()d m M Mmv f +=220至于木块前进的距离s 2,可以由以上②、③相比得出:d m M m s +=2 3.反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用过程中系统的动能增大,有其它形式的能向动能转化。
可以把这类问题统称为反冲。
例3. 质量为m 的人站在质量为M 、长为L 的静止小船的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?解:先画出示意图。
人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。
从图中可以看出,人、船的位移大小之和等于L 。
设人、船位移大小分别为l1、l2,则:m v1=M v2,两边同乘时间t ,ml 1=Ml 2,而l 1+l 2=L ,∴L mM m l +=2 例4. 总质量为M 的火箭模型 从飞机上释放时的速度为v0,速度方向水平。
火箭向后以相对于地面的速率u 喷出质量为m 的燃气后,火箭本身的速度变为多大?解:火箭喷出燃气前后系统动量守恒。
喷出燃气后火箭剩余质量变为M-m ,以v 0方向为正方向,()mM mu Mv v v m M mu Mv -+=''-+-=00, 二、动量与能量1.动量与动能动量和能量都与物体的某一运动状态相对应,都与物体的质量和速度有关.但它们存在明显的不同:动量的大小与速度成正比mv p =;动能的大小与速度的平方成正比221mv E k =。
两者的关系:k mE p 22=。
动量是矢量而动能是标量。
物体的动量发生变化时,动能不一定变化;但物体的动能一旦发生变化,则动量必发生变化.2.动量定理与动能定理动量定理:物体动量的变化量等于物体所受合外力的冲量.I p =∆,冲量FS I =是力对时间的积累效应。
动能定理:物体动能的变化量等于外力对物体所做的功.W E k =∆,功FS W =是力对空间的积累效应.3.动量守恒定律与机械能守恒定律动量守恒定律与机械能守恒定律所研究的对象都是相互作用的物体系统,且研究的都是某一物理过程。
动量守恒定律的内容是:一个系统不受外力或者所受外力之和为0,这个系统的总动量保持不变;机械能守恒定律的内容是:在只有重力和弹簧弹力做功的情形下,系统机械能的总量保持不变。
运用动量守恒定律值得注意的两点是:(1)严格符合动量守恒条件的系统是难以找到的。
如:在空中爆炸或碰撞的物体受重力作用,在地面上碰撞的物体受摩擦力作用,但由于系统间相互作用的内力远大于外界对系统的作用,所以在作用前后的瞬间系统的动量可认为基本上是守恒的.(2)即使系统所受的外力不为0,但沿某个方向的合外力为0,则系统沿该方向的动量是守恒的.动量守恒定律的适应范围广,不但适应常见物体的碰撞、爆炸等现象,也适应天体碰撞、原子的裂变,动量守恒与机械能守恒相结合的综合的试题在高考中多次出现,是高考的热点内容. 例5. 如图所示,滑块A 、B 的质量分别为1m 与2m ,21m m <,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。
两滑块一起以恒定的速率v 0向右滑动.突然轻绳断开.当弹簧伸至本身的自然长度时,滑块A 的速度正好为0.求:(1)绳断开到第一次恢复自然长度的过程中弹簧释放的弹性势能Ep ;(2)在以后的运动过程中,滑块B 是否会有速度为0的时刻?试通过定量分析证明你的结论. 解:(1)当弹簧处压缩状态时,系统的机械能等于两滑块的动能和弹簧的弹性势能之和,当弹簧伸长到自然长度时,弹性势能为0,因这时滑块A 的速度为0,故系统的机械能等于滑块B 的动能.设这时滑块B 的速度为v,则有2221v m E =. 因系统所受外力为0,由动量守恒定律有:v m v m m 2021=+)(. 解得2202212)(m v m m E +=. 由于只有弹簧的弹力做功,系统的机械能守恒,所以有:E E v m m p =++2021)(21 解得2202112)(m v m m m E p +=. (2)假设在以后的运动中滑块B 可以出现速度为0的时刻,并设此时A 的速度为1v ,弹簧的弹性势能为p E ',由机械能守恒定律得:2202212112)('21m v m m E v m p +=+,根据动量守恒得11021v m v m m =+)(, 求出1v 代入上式得:2202211202212)('2)(m v m m E m v m m p +=++ 因为0'≥P E ,故得:2202211202212)(2)(m v m m m v m m +≤+ 。
即21m m ≥,这与已知条件中21m m <不符.可见在以后的运动中不可能出现滑块B 的速度为0的情况.例6.如图所示,坡道顶端距水平面高度为h ,质量为m 1的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B 恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩 擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:(1)物块A 在与挡板B碰撞前瞬间速度v 的大小;(2)弹簧最大压缩量为d 时的弹性势能Ep(设弹簧处于原长时弹性势能为零).解:(1)由机械能守恒定律,有:21112m gh m v =,解得v=gh 2 (2)A 、B 在碰撞过程中内力远大于外力,由动量守恒,有:112()m v m m v '=+ 碰后A 、B 一起压缩弹簧,当弹簧最大压缩量为d 时,A 、B 克服摩擦力所做的功12()W m m gd μ=+由能量守恒定律,有:212P 121()()2m m v E m m gd μ'+=++ 解得21P 1212()m E gh m m gd m m μ=-++ 例7.如图,半径为R 的光滑圆形轨道固定在竖直面内.小球A 、B 质量分别为m 、βm (β为待定系数).A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为14R ,碰撞 中无机械能损失.重力加速度为g .试求:(1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A、B 在轨道最低处第二次碰撞刚结束时各自的速度。
解:(1)由于碰撞后球沿圆弧的运动情况与质量无关,因此,A 、B两球应同时达到最大高度处,对A 、B 两球组成的系统,由机械能守恒定律得:44mgR mgR mgR β=+,解得β=3 (2)设A、B第一次碰撞后的速度分别为v 1、v 2,取方向水平向右为正,对A、B 两球组成的系统,有:22121122mgR mv mv β=+ ,122m gR mv mv β=+ 解得112v gR =-,方向水平向左;212v gR =,方向水平向右. 设第一次碰撞刚结束时轨道对B 球的支持力为N,方向竖直向上为正,则22v N mg m Rββ-=,B 球对轨道的压力 4.5N N mg '=-=-,方向竖直向下.(3)设A 、B 球第二次碰撞刚结束时的速度分别为V1、V 2,取方向水平向右为正,则1212mv mv mV mV ββ--=+, 22121122mgR mV mV β=+ 解得V 1=-gR 2,V 2=0.(另一组解V 1=-v1,V2=-v 2不合题意,舍去)三、应用动量守恒定律解题的几个注意点多个物体组成的系统在满足不受外力或所受合外力为零的条件下,利用动量守恒定律可以解决许多系统内物体间存在复杂的相互作用的问题。