玻璃幕墙计算表
玻璃幕墙计算表
幕墙工程设计计算书玻璃幕墙结构设计计算基本参数: 幕墙计算处标高(米) 70设计层高Hsjcg(米): 2.9分格宽(米) B= 1.3分格高(米) H= 1.3抗震设防烈度7一、幕墙承受荷载计算:1. 风荷载标准值计算: 本幕墙设计按50年一遇风压计算 Wk: 作用在幕墙上的风荷载标准值(kN/m^2) Wo:东莞50年一遇十分钟平均最大风压(kN/m^2): 0.65根据现行<<建筑结构荷载规范>>GBJ9-87附图 (全国基本风压分布图)中数值采用2.25βz: 瞬时风压的阵风系数取:1.5μs: 风荷载体型系数:按C类区计算 μz: 计算高处风压高度变化系数:1.552μz=0.713(Z/10)^0.4= Wk=βz×μz×μs×W0 (5.2.2)= 3.745 kN/m^22. 风荷载设计值:W: 风荷载设计值: kN/m^2 rw: 风荷载作用效应的分项系数:1.4 按《玻璃幕墙工程技术规范》JGJ 102-96(5.1.6)条规定采用 W=rw×Wk= 5.243 kN/m^23. 玻璃幕墙构件重量荷载:GAk:玻璃幕墙构件(包括玻璃和铝框)的平均自重: 400 N/m^2Gk: 玻璃幕墙构件(包括玻璃和铝框)的重量:H: 玻璃幕墙分格高(m): 1.3B: 玻璃幕墙分格宽(m): 1.3Gk=400×B×H/1000 =0.676kN4. 地震作用: 垂直于玻璃幕墙平面的分布水平地震作用: qEAk: 垂直于玻璃幕墙平面的分布水平地震作用 (kN/m^2) βE: 动力放大系数: 可取5.0 按5.2.4条规定采用0.016αmax: 水平地震影响系数最大值: 按5.2.4条规定采用 Gk: 玻璃幕墙构件的重量(kN): 0.676B: 玻璃幕墙分格宽(m): 1.3H: 玻璃幕墙分格高(m): 1.3qEAK=3×αmax×GK/B/H (5.2.4)=0.16kN/m^2二、玻璃的选用与校核:[1]、玻璃规格BxH本工程选用玻璃种类为: 钢化玻璃1. 玻璃面积: B: 玻璃幕墙分格宽(m): 1.3H: 玻璃幕墙分格高(m): 1.3A: 玻璃板块面积(m^2): A=B×H= 1.692. 玻璃厚度选取: W: 风荷载设计值(kN/m^2): 5.243A: 玻璃板块面积(m^2): 1.69K3: 玻璃种类调整系数: 3试算: C=W×A×10/3/K3 =9.845T=2×(1+C)^0.5-2 = 4.586mm玻璃选取厚度为(mm): 83. 玻璃板块自重: GAk: 玻璃板块平均自重(不包括铝框): t: 玻璃板块厚度(mm): 8玻璃的体积密度为: 25.6(KN/M^3) 按5.2.1采用 GAk=25.6×t/10000.204kN/m^2 4. 垂直于玻璃平面的分布水平地震作用:0.016αmax: 水平地震影响系数最大值: qEAk: 垂直于玻璃平面的分布水平地震作用(kN/m^2) qEAk=3×αmax×Gak=0.009kN/m^2 rE: 地震作用分项系数: 1.3 qEA: 垂直于玻璃平面的分布水平地震作用设计值(kN/m^2) qEA=rE×qEAk=1.3×qEAK=0.011kN/m^25. 玻璃的强度计算: 校核依据: σ≤fg=84.000 q: 玻璃所受组合荷载: a: 玻璃短边边长(m): 1.3b: 玻璃长边边长(m): 1.3t: 玻璃厚度(mm): 8ψ: 玻璃板面跨中弯曲系数, 按边长比a/b查出(b为长边边长) 表5.4.1得: 0.065σw: 玻璃所受应力: 采用Sw+0.6SE组合: q=W+0.6×qEA = 5.249kN/m^2σw=6×ψ×q×a^2×1000/t^2 =53.994N/mm^253.994≤fg=84.000N/mm^2 玻璃的强度满足 6. 玻璃温度应力计算:58.8N/mm^2校核依据: σmax≤[σ]= (1)在年温差变化下, 玻璃边缘与边框间挤压在玻璃中产生的 挤压温度应力为: E: 玻璃的弹性模量:0.72×10^5N/mm^2α^t: 玻璃的线膨胀系数: 1.0×10^-5△T: 年温度变化差(℃): 80c: 玻璃边缘至边框距离, 取 5mm d: 施工偏差, 可取:3mm ,按5.4.3选用 b: 玻璃长边边长(m): 1.3在年温差变化下, 玻璃边缘与边框间挤压在玻璃中产生的 温度应力为: σt1=E(a^t×△T-(2c-d)/b/1000)=-330.092 N/mm^2计算值为负,挤压应力取为零.0.000N/mm^2< 58.8N/mm^2 玻璃边缘与边框间挤压温度应力可以满足要求 (2)玻璃中央与边缘温度差产生的温度应力:μ1: 阴影系数: 按《玻璃幕墙工程技术规范》 得1.000 μ2: 窗帘系数: 按《玻璃幕墙工程技术规范》 得1.100 μ3: 玻璃面积系数: 按《玻璃幕墙工程技术规范》 得1.086 μ4: 边缘温度系数: 按《玻璃幕墙工程技术规范》 得0.400 Tc: 玻璃中央部分温度: a: 玻璃线胀系数: 1.0×10^-5a0: 玻璃吸热率:0.142a1: 室外热传递系数, 取15W/m^2K t0: 室外设计温度-10.000℃ t1: 室内设计温度35.000℃ Tc=(a0×700+15×t0+8×t1)/(15+8)=(0.142×700+15×(-10.000)+8×35.000)/(15+8)=9.974℃Ts: 玻璃边缘部分温度: Ts=(15×t0+8×t1)/(15+8)=(15×(-10.000)+8×35.000)/(15+8)=5.652℃△t: 玻璃中央部分与边缘部分温度差: △t=Tc-Ts =4.322℃玻璃中央与边缘温度差产生的温度应力: σt2=0.74×E×a×μ1×μ2×μ3×μ4×(Tc-Ts)=0.74×0.72×10^5×1.0×10^-5×μ1×μ2×μ3×μ4×△t=1.100N/mm^2玻璃中央与边缘温度差产生的温度应力可以满足要求 7. 玻璃最大面积校核: Azd: 玻璃的允许最大面积(m^2) Wk:风荷载标准值(kN/m^2): 3.745t: 玻璃厚度(mm): 83α1: 玻璃种类调整系数: A: 计算校核处玻璃板块面积(m^2) 1.69Azd=0.3×α1×(t+t^2/4)/Wk (6.2.7-1)= 5.767m^2 A= 1.69 ≤Azd= 5.767m^2 可以满足使用要求三、幕墙杆件计算: 幕墙立柱按铰接多跨梁力学模型进行设计计算: 1. 选料: (1)风荷载设计值的线密度: qw: 风荷载设计值的线密度 rw: 风荷载作用效应的分项系数:1.4 Wk: 风荷载标准值(kN/m^2): 3.745B: 幕墙分格宽(m): 1.3qw=1.4×Wk×B = 6.815kN/m(2)立柱弯矩: Mw: 风荷载作用下立柱弯矩(kN·m)qw: 风荷载设计值的线密度(kN/m): 6.815Hsjcg: 立柱计算跨度(m) 2.9Mw=qw×Hsjcg^2/10 = 5.731kN·mqEA: 地震作用设计值:qEAK: 地震作用(kN/m^2): 0.16γE: 幕墙地震作用分项系数: 1.3 qEA=1.3×qEAk =0.208kN/m^2qE: 地震作用设计值的线密度: qE=qEA×B =0.27kN/mME: 地震作用下立柱弯矩(kN·m):ME=qE×Hsjcg^2/10 =0.227kN·mM: 幕墙立柱在风荷载和地震作用下产生弯矩(kN·m)采用Sw+0.6SE组合M=Mw+0.6×ME = 5.867kN·m(3)W: 立柱抗弯矩预选值(cm^3)W=M×10^3/1.05/84.2 =66.361cm^3 qWk: 风荷载标准值线密度(kN/m) qwk=Wk×B= 4.868kN/m qEk: 地震作用标准值线密度(kN/m) qEk=qEAk_M×B=0.208kN/m (4)I1,I2: 立柱惯性矩预选值(cm^4) I1=900×(qwk+0.6×qEk)×Hsjcg^3/384/0.7=407.71cm^4I2=3000×(qwk+0.6×qEk)×Hsjcg^4/384/0.7/20=197.059 cm^4 选定立柱惯性矩应大于(cm^4):407.712. 选用立柱型材的截面特性:[1].主梁一选用型材截面如图: 铝型材强度设计值(N/mm^2) 84.2铝型材弹性模量E (N/cm^2): 7000000X轴惯性矩(cm^4): Ix= 1230.632Y轴惯性矩(cm^4): Iy= 227.287X轴抵抗矩(cm^3 ): Wx1= 119.612X轴抵抗矩(cm^3 ): Wx2= 106.905型材截面积(cm^2): A= 23.908型材计算校核处壁厚(mm): t= 3.5型材截面面积矩(cm^3 ): Ss=78.296塑性发展系数: γ= 1.053. 幕墙立柱的强度计算: 校核依据: N/A+m/γW≤fa=84.200N/mm^2(拉弯构件) (5.5.3) B: 幕墙分格宽(m): 1.3GAk: 幕墙自重(N/m^2): 400幕墙自重线荷载: Gk=400×Wfg/1000=0.52kN/m NK: 立柱受力: Nk=Gk×Hsjcg= 1.508kNN: 立柱受力设计值: rG: 结构自重分项系数: 1.2N=1.2×Nk= 1.809kNσ: 立柱计算强度(N/mm^2)(立柱为拉弯构件) N: 立柱受力设计值(Kn): 1.809A: 立柱型材截面积(cm^2) 23.908M: 立柱弯矩(kN·m): 5.867Wx2: 立柱截面抗弯矩(cm^3): 106.905γ: 塑性发展系数:1.05σ=N×10/A+M×10^3/1.05/Wx2=53.023N/mm^253.023 ≤fa=84.200N/mm^2 立柱强度满足 4. 幕墙立柱的刚度计算: 校核依据: Umax≤[U]=20mm 且 Umax≤L/180 (5.5.5) Umax: 立柱最大挠度 Umax=3×(qWk+0.6×qEk)×Hsjcg^4×1000/384/0.7/Ix立柱最大挠度Umax为: 3.202 ≤20mm Du: 立柱挠度与立柱计算跨度比值: Hsjcg: 立柱计算跨度(m): 2.9Du=U/Hsjcg/1000= 0.001≤1/180 挠度满足要求 5. 立柱抗剪计算: 校核依据: τmax≤[τ]=80.200N/mm^2 (1)Qwk: 风荷载作用下剪力标准值(kN) Qwk=Wk×Hsjcg×B/2 =7.059kN (2)Qw: 风荷载作用下剪力设计值(kN) Qw=1.4×Qwk=9.882kN (3)QEk: 地震作用下剪力标准值(kN) QEk=qEAk×Hsjcg×B/2=0.301kN (4)QE: 地震作用下剪力设计值(kN) QE=1.3×QEk =0.391kN (5)Q: 立柱所受剪力: 采用Qw+0.6QE组合 Q=Qw+0.6×QE=10.116kN (6)立柱剪应力:τ: 立柱剪应力: Ss: 立柱型材截面面积矩(cm^3): 78.296Ix: 立柱型材截面惯性矩(cm^4): 1230.632t: 立柱壁厚(mm): 3.5τ=Q×Ss×100/Ix/t =18.388N/mm^218.388≤ 80.200N/mm^2立柱抗剪强度满足6. 选用横梁型材的截面特性: 选用型材截面:铝型材强度设计值(N/mm^2): 84.2铝型材弹性模量 E (N/cm^2): 7000000X轴惯性矩(cm^4 ): Ix= 58.29Y轴惯性矩(cm^4 ): Iy= 87.39X轴抵抗矩(cm^3): Wx1= 16.58X轴抵抗矩(cm^3): Wx2= 12.999Y轴抵抗矩(cm^3): Wy1= 21.395Y轴抵抗矩(cm^3): Wy2= 17.616型材截面积(cm^2): A= 10.11型材计算校核处壁厚(mm): t= 2.5型材截面面积矩(cm^3 ): Ss= 12.9941.05塑性发展系数: γ= 7. 幕墙横梁的强度计算: 校核依据: mx/γWx+my/γWy≤fa=84.200N/mm^2 (5.5.2) (1)横梁在自重作用下的弯矩(kN·m)B: 幕墙分格高(m): 1.3H: 幕墙分格高(m): 1.3GAk: 横梁自重(N/m^2): 400Gk: 横梁自重荷载线密度: Gk=300×H/1000 =0.52kN/mG: 横梁自重荷载设计值线密度(kN/m) G=1.2×Gk =0.624kN/mMx: 横梁在自重荷载作用下的弯矩(kN·m)Mx=G×B^2/8 =0.131kN·m(2)横梁在风荷载作用下的弯矩(kN·m)风荷载线密度:横梁承受三角形荷载作用 qwk=Wk X B = 4.868KN/m风荷载设计值的线密度: qw=1.4×qwk = 6.815kN/mMyw: 横梁在风荷载作用下的弯矩(kN·m)Myw=qw×B^2/12=0.959kN·m(3)地震作用下横梁弯矩qEAk: 横梁平面外地震荷载:3βE: 动力放大系数:αmax: 地震影响系数最大值:0.016Gk: 幕墙构件自重(N/m^2): 400qEAk=3×αmax×300/1000 =0.019kN/m^2qEx: 横梁地震荷载线密度: B: 幕墙分格宽(m) 1.3横梁承受三角形荷载作用 qex=qeak X B = 0.024KN/mqE: 横梁地震荷载设计值线密度:1.3γE: 地震作用分项系数: qE=1.3×qEx =0.031kN/mMyE: 地震作用下横梁弯矩: MyE=qE×B^2/12=0.004kN·m(4)横梁强度:σ: 横梁计算强度(N/mm^2): 采用SG+Sw+0.6SE组合 Wx1: X轴抵抗矩(cm^3): 16.58Wy2: y轴抵抗矩(cm^3): 17.6161.05γ: 塑性发展系数: σ=(Mx/Wx1+Myw/Wy2+0.6×MyE/Wy2)×10^3/1.05= 59.371N/mm^259.371≤fa=84.200N/mm^2 横梁正应力强度满足 8. 幕墙横梁的抗剪强度计算: 校核依据: τmax≤[τ]=80.200N/mm^2 (1)Qwk: 风荷载作用下横梁剪力标准值(kN) Wk: 风荷载标准值(kN/m^2): 3.745B: 幕墙分格宽(m) 1.3Qwk=Wk×B^2/4 = 1.582kN(2)Qw: 风荷载作用下横梁剪力设计值(kN) Qw=1.4×Qwk = 2.214kN(3)qEAk: 地震作用下横梁剪力标准值(kN) qEAk: 幕墙平面外地震作用(kN/m^2): 0.019QEk=qEak×B^2/4=0.008kN(4)qE: 地震作用下横梁剪力设计值(kN)1.3γE: 地震作用分项系数: QE=1.3×Qek=0.01kN(5)Q: 横梁所受剪力:采用Qw+0.6QE组合Q=Qw+0.6×QE = 2.22kN (6)τ: 横梁剪应力Ss: 横梁型材截面面积矩(cm^3): 12.994Iy: 横梁型材截面惯性矩(cm^4): 87.39t: 横梁壁厚(mm): 2.5τ=Q×Ss×100/Iy/t =13.203N/mm^213.203≤80.200N/mm^2横梁抗剪强度可以满足 9.幕墙横梁的刚度计算 校核依据: Umax≤[U]=20mm 且 Umax≤L/180 横梁承受三角形荷载作用 qwk=Wk × B = 4.868KN/mqex: 地震作用标准线密度(KN/m) qex=qeak × B =0.024KN/m 水平方向由风荷载和地震作用产生的弯曲: U1=(qwk+0.6×qex)×B^4×1000/0.7/Iy/120= 1.899mm 自重作用产生的弯曲: U2=5×GK×B^4×1000/384/0.7/Ix= 0.473mm 综合产生的弯曲为: U=(U1^2+U2^2)^0.5= 1.957mm<20mmDu=U/B/1000 = 0.001≤1/180 挠度可以满足要求四、连接件计算:1. 横梁与立柱间连结 竖向节点(角码与立柱) GAK:横梁自重(N/m^2): 400Gk: 横梁自重线荷载(N/m): Gk=GAK×H=520N/m 横梁自重线荷载设计值(N/m) G=1.2×Gk =624N/mN2: 自重荷载(N): N2=G×B/2 =405.6N N1:SG+0.6SE (N):N1=(1.4×Qwk+1.3×0.6×qex)×B/4=2221.024N N: 连接处组合荷载: 采用SG+Sw+0.6SE N=(N1^2+N2^2)^0.5 = 2257.755N Num2: 螺栓个数: D1 : 选用螺栓直径(mm):6D0:选用螺栓有效直径(mm): 5.06Nvbh: 螺栓的承载能力:Nvbh=3.14×D0^2×130/4 =2612.847N Num2=N/Nvbh= 0.864取螺栓个数: 3Ncbj: 连接部位铝角码壁抗承压能力计算: Lct1: 铝角码壁厚(mm): 2.5Ncbj=D1×Lct1×120×Num2 =5400N5400N ≥2257.755N 强度可以满足2. 立梃与主结构连接 Lct2: 连接处钢角码壁厚(mm) : 8D2: 连接螺栓直径(mm) 12D0: 连接螺栓直径(mm): 10.36采用SG+SW+0.6SE组合 N1wk: 连接处风荷载总值(N): N1wk=Wk×B×Hsjcg×1000 =14118.65N 连接处风荷载设计值(N) : N1w=1.4×N1wk =19766.11NN1Ek: 连接处地震作用(N): N1Ek=qEAk×B×Hsjcg×1000=603.2N N1E: 连接处地震作用设计值(N): N1E=1.3×N1Ek =784.16NN1: 连接处水平总力(N): N1=N1w+0.6×N1E =20236.61N N2: 连接处自重总值设计值(N): N2k=GAK×B×Hsjcg =1508NN2: 连接处自重总值设计值(N): N2=1.2×N2k =1809.6N N: 连接处总合力(N):N=(N1^2+N2^2)^0.5 = 20317.35NNvb: 螺栓的承载能力: Nv: 连接处剪切面数: 2 Nvb=2×3.14×D0^2×130/4=21905.97NNum1: 立梃与建筑物主结构连接的螺栓个数: Num1=N/Nvb = 0.927个 Num1:取螺栓数量(个) 4Ncbl: 立梃型材壁抗承压能力(N): D2: 连接螺栓直径(mm): 12Nv: 连接处剪切面数: 8t: 立梃壁厚(mm): 3.5Ncbl=D2×2×120×t×Num1 =40320N 40320≥ 20317.35N 强度可以满足Ncbg: 钢角码型材壁抗承压能力(N): Ncbg=D2×2×267×Lct2×Num1=165120N 165120 ≥ 20317.35N 强度可以满足五、幕墙预埋件总截面面积计算 本工程预埋件受拉力和剪力 V: 剪力设计值: V=N2 = 1809.6N N: 法向力设计值: N=N1 = 20236.61 NM_: 弯矩设计值(N·mm):z: 螺孔中心与锚板边缘距离(mm): 108M=V×e2 =195436.8N·mNum1: 锚筋根数: 4锚筋层数: 21αr: 锚筋层数影响系数: 关于混凝土:混凝土标号: 30混凝土强度设计值(N/mm^2) fc : 15按现行国家标准≤混凝土结构设计规范≥ GBJ10采用。
办公大厦玻璃幕墙上铝合金重量统筹法计算表
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
#NAME?
#NAME?
m
1.10
0.212
#NAME?
#NAME?
#NAME?
m
3.00
0.610
#NAME?
#NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
计算式结 果
单 位
壁厚 (mm)
幕墙【立 单重 铝合金型材 立柱MQ1055 柱MQ1055 (kg/m) 净重量(kg) (65*165) 】套芯 (kg)【P59 MQ1058 】 (kg)【 P59】
幕墙立柱 明框压板 MQ1154 (kg)【 P59】
幕墙立柱 扣板 MQ1155 (kg)【 P59】
#NAME?
m
2.50
3.260
#NAME?
#NAME?
2
3
幕墙【立柱MQ1055】套芯 MQ1058【实际变更为对接 幕墙 用,个别采用了顶天立地 铝合 钢板连接】 金立 柱 幕墙立柱明框压板MQ1154 【点状布置】
#NAME?
m
3.00
2.871
#NAME?
#NAME?
#NAME?
m
3.00
0.610
开启框 MQ964改为 160B19 (kg)【 P245】
开启扇 MQ966改为 160B20 (kg)【 P245】
开启扇玻 璃托条 XS17005 (kg)【 P239】
开启扇玻 璃U型附 框25*25 【上扇】 15020 (kg)【 P232】
玻璃幕墙计算书
远东新村幼儿园办公楼玻璃幕墙设计计算书一. 幕墙承受荷载计算1. 风荷载标准值计算W k=zzs W oW k : 作用在幕墙上的风荷载标准值kN/m2 z : 瞬时风压的阵风系数取 2.25 z : 风压高度变化系数取 1.14 s : 风荷载体型系数取 1.5W o : 基本风压, 当地取值为0.55kN/m2W k=2.25X1.14X1.5X0.55=2.12kN/m 22. 风荷载设计值W=w W k=1.4x2.12=2.9kN/m2W : 风荷载设计值w : 风荷载作用效应的分项系数值为1.43. 玻璃幕墙构件重力荷载标准值G K=G AK BH=0.4x1.047x1.65=1.73kNG K : 幕墙构件包括玻璃和铝框重力荷载标准值G AK : 幕墙构件包括玻璃和铝框的平均自重0.4kN/m2B : 幕墙分格宽1.047mH : 幕墙分格高1.65m 4A二BH=1.65x1.047=1.72m24 地震作用1 垂直于玻璃幕墙平面的水平地震作用q E=Emax G k/Aq E : 垂直于玻璃幕墙平面的水平地震作用kN/m2 E :动力放大系数取 3.0max : 水平地震影响系数最大值为0.04G k : 玻璃幕墙构件重量为0.74kNA : 玻璃幕墙构件的面积m2q E=3x0.04x0.74/1.72=0.18kN/m22平行于玻璃幕墙平面的集中水平地震作用:p E=Emax G kP E :平行于玻璃幕墙平面的集中水平地震作用kNE :动力放大系数取3.0max :水平地震影响系数最大值为0.04G k :玻璃幕墙构件重量为0.74kN/mP E=3x0.04x0.74=0.088kN二.玻璃的计算玻璃选用中空玻璃1. 计算玻璃在垂直于玻璃平面的风荷载作用下的最大应力w=6eWa2/t2w :风荷载作用下玻璃的最大应力N/mm2W :风荷载设计值为0.00135N/mm2a :玻璃短边边长1047mmt :玻璃厚度取10mme:弯曲系数0.0775w=6x0.0775X0.00189X10472/102=13N/mm2I2. 计算玻璃在垂直于玻璃平面的地震作用下的最大应力G AK =t/1000=25.67.2/1025=0.1798kN/m2G AK :玻璃自重I:玻璃重力体积密度kN/m3t:玻璃厚度q EA=EEmax G AKq EA :地震作用设计值E :地震作用分项系数1.3E :动力放大系数取3.0max :水平地震影响系数最大值为0.04q EA=1.3X3X0.040.1798=0.028kN/m22EA=6q EA a /t2EA : 地震作用下玻璃的最大应力N/mm2q EA : 地震作用设计值为0.000028N/mm2a : 玻璃短边边长1047mmt : 玻璃厚度10mm: 弯曲系数0.0775EA =6X0.0775X0.000028X10472/102=0.337N/mm23. 计算在温度影响下, 玻璃边缘与边框之间的挤压应力t1=ET-2c-d c/bt1 : 在温度影响下玻璃的挤压应力c : 玻璃边缘与边框间和空隙取5mmd c : 施工误差取3mmb : 玻璃的长边尺寸1650mmT : 玻璃幕墙年温度变化80 度: 玻璃的线膨胀系数0.00001E : 玻璃的弹性模量72000N/mm2 t1=72000X0.00001X80-25-3/1500=-278.4N/mm2 计算值为负, 挤压应力为零, 满足要求44 计算玻璃中央与边缘温度差产生的温差应力t2=0.74E1234T c-T s t2 : 温差应力: 玻璃的线膨胀系数0.00001E : 玻璃的弹性模量72000N/mm21 : 阴影系数取1.6 (邻边)2 : 窗帘系数取1.33 : 玻璃面积系数取1.044 : 嵌缝材料系数取0.38T c : 玻璃中央温度取50度T s : 玻璃边缘温度取35 度t1=0.74720000.000011.61.31.040.38 50-35=6.57N/mm2t=tt2=1.26.57=7.884N/mm2<19.5N/mm2 满足要求t : 温度作用分项系数1.25. 计算组合应力=w +0.6EA =20.1+0.60.264=20.2584N/mm22<f g =28N/mm 2 玻璃强度满足 !三. 横梁的设计计算2. 计算横梁由于风荷载作用产生的弯矩及变形q w =HW k =1.6X1.35=2.16kN/m q w : 风荷载线密度标准值 H : 幕墙分格高 W k : 幕墙承受风荷载标准值 M yw =q w B 2/8=2.16X1.1592/8=0.36kN.m M yw : 横梁由于风荷载作用产生的弯矩标准值 B : 幕墙分格宽 w =5q w B4/384/E/I y =5x2.16x1.159x4/384 /70000/658300=2.83mm w : 横梁由于风荷载作用产生的变形q w : 风荷载线密度标准值B : 幕墙分格宽E : 铝合金的弹性模量I y : 横梁绕竖向轴惯性矩3. 计算横梁由于重力荷载作用产生的弯矩及变形G b =HG bk =1.6X0.4=0.64kN/mG b : 横梁承受重力荷载线密度标准值H : 幕墙分格高G bk : 幕墙构件不包括立柱平均自重 0.4kN/m22 M xG =G b B2/8=0.64x1.652/8=0.11kN.mM xG : 横梁由于重力荷载作用产生的弯矩标准值B : 幕墙分格宽G =5G b B4/384/E/I y =5x0.64X1047x4/384/70000/658300=0.1871mmG : 横梁由于重力荷载作用产生的变形G b : 横梁承受重力荷载线密度标准值B : 幕墙分格宽1. 横梁基本参数横梁采用 120 型系列配套型材X 向惯性矩 :658300mm 4 Y 向惯性矩 :658300mm 4 面积:830mm 2 X 向截面抵抗矩 :18300mm 3 Y 向截面抵抗矩 :18300mm 3E : 铝合金的弹性模量I x : 横梁绕水平轴惯性矩4. 计算横梁由于地震作用产生的弯矩及变形q e=Emax G b=30.040.6=0.072kN/m q e : 地震作用线密度标准值E : 动力放大系数取3.0max : 水平地震影响系数最大值为0.04G b : 横梁承受重力荷载线密度标准值M ye=q e B2/8=0.0721.1592/8=0.0095kN.mM ye : 横梁由于地震作用产生的弯矩标准值B : 幕墙分格宽e=5q e B4/384/E/I y=50.07210254/384 /70000/658300=0.0225mme : 横梁由于地震作用产生的变形q e : 地震作用线密度标准值B : 幕墙分格宽E : 铝合金的弹性模量I y : 横梁绕竖向轴惯性矩5w : 风荷载作用效应的分项系数1.4M yw : 横梁由于风荷载作用产生的弯矩标准值 e : 地震作用效应的组合系数0.6 e : 地震作用效应的分项系数 1.3M ye : 横梁由于地震作用产生的弯矩标准值y=G=0.1871mm y : 横梁竖向最大挠度G : 横梁由于重力荷载作用产生的变形=ww+ee=11.165+0.60.0225=1.1785mmx: 横梁水平最大挠度5 荷载效应组合M x=G M xG=1.20.0788=0.09456kN.mM x : 横梁绕X 轴的弯矩设计值G : 重力荷载作用效应的分项系数1.2M xG : 横梁由于重力荷载作用产生的弯矩标准值M y=ww Myw+ee M ye=11.40.49+0.61.30.0095=0.6934kN.mM y : 横梁绕Y 轴的弯矩设计值w : 风荷载作用效应的组合系数1.0w : 风荷载作用效应的组合系数1.0 w : 横梁由于风荷载作用产生的变形 e : 地震作用效应的组合系数0.6 e : 横梁由于地震作用产生的变形6. 横梁强度和刚度的验算=M x//W x+M y//W y=658300/1.05/18300+658300/1.05/18300=68.52N/mm2: 横梁产生最大应力: 塑性发展系数取1.05M x : 横梁绕X 轴的弯矩设计值W x : 横梁绕X 轴的截面抵抗矩M y : 横梁绕Y 轴的弯矩设计值W y : 横梁绕Y 轴的截面抵抗矩<f a=84.2N/mm2横梁强度满足要求=x2+y20.5=1.1651.165+0.18710.18710.5=1.18mm : 横梁最大挠度x : 横梁水平最大挠度y : 横梁竖向最大挠度<B/180=5.69mm 且<20mm 横梁刚度满足要求四.立柱的设计计算1. 立柱基本参数立柱采用120 系列面积:1800mm2惯性矩:5850000mm4 截面抵抗矩:73000mm32. 计算立柱由于风荷载作用产生的弯矩及变形q w=BWk=1.159x1.35=1.56kN/m q w : 风荷载线密度标准值B : 幕墙分格宽W k : 幕墙承受风荷载标准值M w=q w L2/8=1.56x3.72/8=2.67kN.m M w : 立柱由于风荷载作用产生的弯矩标准值L : 立柱计算长度w=5q w L4/384/E/I=5x1.56x37006/384 /70000/5850000=0.93mm w : 立柱6 计算立柱由于地震作用产生的弯矩及变形q e=Emax G a=3x0.04x0.46=0.0552kN/mq e : 地震作用线密度标准值E : 动力放大系数取3.0max : 水平地震影响系数最大值为0.04由于风荷载作用产生的变形q w : 风荷载线密度标准值L : 立柱计算长度E : 铝合金的弹性模量I : 立柱惯性矩3. 计算立柱由于重力荷载作用产生的拉力G a=BG ak=1.159x0.4=0.46kN/mG a : 立柱承受重力荷载线密度标准值B : 幕墙分格宽G ak : 幕墙构件平均自重0.4kN/m2N G=G a L=0.46x3.7=1.7kNN G : 立柱由于重力荷载作用产生的拉力标准值L : 立柱计算长度G a : 立柱承受重力荷载线密度标准值M e=q e L2/8=0.0552x3.72/8=0.0945kN.mM e : 立柱由于地震作用产生的弯矩标准值L : 立柱计算长度e=5q e L4/384/E/I=5x0.0552x37004/384 /70000/5850000=0.33mme : 立柱由于地震作用产生的变形q e : 地震作用线密度标准值L : 立柱计算长度E : 铝合金的弹性模量I : 立柱惯性矩5. 荷载效应组合N=G N G=1.21.517=1.82kNN : 立柱拉力设计值G : 重力荷载作用效应的分项系数1.2N G : 立柱由于重力荷载作用产生的拉力标准值M= ww M w+ee M e=11.44.369+0.61.30.0842=6.182kN.mM : 立柱弯矩设计值w : 风荷载作用效应的组合系数1.0w : 风荷载作用效应的分项系数1.4M w : 立柱由于风荷载作用产生的弯矩标准值e : 地震作用效应的组合系数0.6e : 地震作用效应的分项系数1.3M e : 立柱由于地震作用产生的弯矩标准值=ww +ee=115.216+0.60.293=15.392mm: 立柱的最大挠度w : 风荷载作用效应的组合系数1.0w : 立柱由于风荷载作用产生的变形e : 地震作用效应的组合系数0.6e : 立柱由于地震作用产生的变形7: 立柱产生最大应力: 塑性发展系数取1.05N : 立柱拉力设计值A : 立柱的净截面面积M : 立柱弯矩设计值W : 立柱截面抵抗矩<f a=84.2N/mm2 立柱强度满足要求=15.392<L/180=20.56mm 且<20mm立柱刚度满足要求五. 结构硅酮密封胶的计算1. 计算胶缝的宽度1 风荷载作用下计算胶缝的宽度c s=W k a/2000/f1c s : 结构硅酮密封胶粘结宽度mmW k : 风荷载标准值为1.924kN/m2a : 玻璃的短边长度为1159mmf1 : 胶的短期强度允许值为0.14N/mm2c s=1.924X1159/2000/0.14=7.968mm2 玻璃自重作用下计算胶缝的宽度c s=q Gk ab/2000/a+b/f2c s : 结构硅酮密封胶粘结宽度mmq Gk : 玻璃单位面积重量为0.1798kN/m27 立柱强度和刚度的验算=N/A+M//W=1820/1800+5850000/1.05/73000=77.33N/mm2a,b : 玻璃的短边和长边长度分别为1600mm,1159mm f2 : 胶的长期强度允许值为0.007N/mm2c s=0.179X8900X1600/2000/1025+1500/0.007=7.82mm 取结构硅酮密封胶粘结宽度12mm3. 计算结构硅酮密封胶粘结厚度t s>s/2+0.5t s : 结构硅酮密封胶粘结厚度mm: 结构硅酮密封胶的变形承受能力取12.5%s : 幕墙玻璃的相对位移量取3mmt s>3/0.1252+0.1250.5=5.82mm结构硅酮密封胶粘结厚度取6mm曲阜远东装饰有限公司2007年7月14日。
明框玻璃幕墙结构计算
LOGO明框玻璃幕墙结构计算在此输入你的公司名称明框玻璃幕墙结构计算第一章、龙骨荷载计算一、计算说明取风荷载计算部分表3-1中明框玻璃幕墙风荷载进行计算,该处位于大面区,体型系数为,该部分玻璃幕墙承受的风荷载为W K= KNM2, W=KN/m2 明框玻璃幕墙水平分格为B=1200 mm竖向分格为H=1600 mm层高为m二、明框玻璃幕墙自重荷载计算1、玻璃面板自重荷载标准值计算G K:玻璃面板自重面荷载标准值玻璃采用TP6+12A+TP6 mrff钢化中空玻璃G AK= (6+6) X 10-3 X = KN/m2G G K:考虑龙骨和各种零部件后的幕墙面板自重面荷载标准值2G G K= KN/m22、玻璃面板自重荷载设计值计算「G:自重作用效应分项系数,取P G=按〈〈玻璃幕墙工程技术规范》JGJ102-2003第条规定G:考虑龙骨和各种零部件后的幕墙面板自重面荷载设计值2G G=r •GG K=X = KN/m三、明框玻璃幕墙承受的水平风荷载计算W:作用在幕墙上的风荷载标准值2W= KN/mW作用在幕墙上的风荷载设计值2W= KN/m四、明框玻璃幕墙承受的水平地震荷载计算1、幕墙玻璃面板承受的水平地震荷载标准值计算a max:水平地震影响系数最大值,取a max=查〈〈玻璃幕墙工程技术规范》JGJ102-2003表:动力放大系数,取6 E=按〈〈玻璃幕墙工程技术规范》JGJ102-2003第条规定q EK:作用在幕墙上的地震荷载标准值计算q EK= a max • 3 E -GG K= XX = KN/m22、幕墙玻璃面板承受的水平地震荷载设计值计算”:地震荷载作用效应分项系数,取r E=按〈〈玻璃幕墙工程技术规范》JGJ102-2003第条规定q E:作用在幕墙上的地震荷载设计值2q E=r E• q EK=x = KN/m五、荷载组合1、风荷载和水平地震作用组合标准值计算+ w:风荷载作用效应组合系数,取小W按〈〈玻璃幕墙工程技术规范》JGJ102-2003第条规定小E:地震荷载作用效应组合系数,取小E=按〈〈玻璃幕墙工程技术规范》JGJ102-2003第条规定Q K= Ip W • VK+ Ip E , q EK=x +x2=KN/m2、风荷载和水平地震作用组合设计值计算q=小w • W却E - q E=x +x=KN/m2第二章、玻璃面板计算一、计算说明玻璃面板选用TP6+12A+TP6 mmB的中空钢化玻璃。
玻璃幕墙热工计算
常熟--局幕墙热工性能计算书(一)本计算概况:气候分区:夏热冬冷地区工程所在城市:南京传热系数限值:≤2.80 (W/m2.K)遮阳系数限值(东、南、西向):≤0.45遮阳系数限值(北向):≤0.45(二)参考资料:《民用建筑节能设计标准(采暖居住建筑部分)》JGJ26-95《夏热冬冷地区居住建筑节能设计标准》JGJ134-2001《民用建筑热工设计规范》GB50176-93《公共建筑节能设计标准》GB50189-2005《公共建筑节能设计标准》DBJ 01-621-2005《居住建筑节能设计标准》DBJ 01-602-2004《建筑玻璃应用技术规程》JGJ 113-2003《建筑门窗玻璃幕墙热工计算规程》(JGJ/T151-2008)《建筑门窗幕墙热工计算及分析系统(W-Energy 2010)》(三)计算基本条件:1.计算实际工程所用的建筑门窗和玻璃幕墙热工性能所采用的边界条件应符合相应的建筑设计或节能设计标准。
2.设计或评价建筑门窗、玻璃幕墙定型产品的热工参数时,所采用的环境边界条件应统一采用规定的计算条件。
3.以下计算条件可供参考:(1)各种情况下都应选用下列光谱:S(λ):标准太阳辐射光谱函数(ISO 9845-1);D(λ):标准光源(CIE D65,ISO 10526)光谱函数;R(λ):视见函数(ISO/CIE 10527)。
(2)冬季计算标准条件应为:室内环境温度 T in=20℃室外环境温度 T ou t=0℃内表面对流换热系数 h c,in=3.6 W/m2.K外表面对流换热系数 h c,out=20 W/m2.K太阳辐射照度 I s=300 W/m2(3)夏季计算标准条件应为:室内环境温度 T in=25℃室外环境温度 T ou t=30℃外表面对流换热系数 h c,in=2.5 W/m2.K外表面对流换热系数 h c,out=16 W/m2.K室外平均辐射温度 T rm=T out太阳辐射照度 I s=500 W/m2(4)计算传热系数应采用冬季计算标准条件,并取I s= 0 W/m2。
玻璃幕墙结构常用计算表格
315.9449182
联系杆的轴力(N) 联系杆的截面积(mm^2) 联系杆的应力(N/m^2) 一层索在竖直方向上的高度(mm)
一层索的长度(mm) 索在张拉控制应力值下的伸长长度(mm)
一层索的控制长度(mm) 索珩架挠度验算
线荷载标准值(N/m)
H LK
- H0
=
E ? A? L2 24
0
f1
0
n
n
16
M2
#DIV/0!
M2 -1.5223E+11
σ2
#DIV/0!
σ2 -32496.6923
f2
#DIV/0!
f2
-29806.6561
σ
#DIV/0!
σ
-32496.6923
f
#DIV/0!
f
-29806.6561
L/f
#DIV/0!
L/f -0.85886857
L0
7249.782388
0 17.5
12756.13443 1
71.125 80
469747572.8 14.19138662
372815534 33
12.875 56.34330118
由拉索荷载产生的最大弯矩(N-m)(奇数跨) 由拉索荷载产生的最大弯矩(N-m)(偶数跨) 由拉索荷载产生的最大应力(N/m^2)(奇数跨) 由拉索荷载产生的最大应力(N/m^3)(偶数跨)
由拉索荷载产生的挠度(mm)(奇数跨) 由拉索荷载产生的挠度(mm)(偶数跨) 梁承受的最大应力(N/m^3)(奇数跨) 梁承受的最大应力(N/m^4)(偶数跨)
HL
-
H0
=
E
夹胶玻璃幕墙计算
查表
可得
a/b= 0.373 时: 0.1140
θ= 5.0 时: 1 θ= 10.0 时: 0.96
外片 玻璃
作用 于内
内片 玻璃
6mq
a2
H1
1
t2 1
1
6*0.114 = *1.13*1
= 17.63 N/mm2
外片
玻璃
q
t3 2
q
t t H2
3
3
1
2
H
=
1.61*6^ 3/(8^3+
= 0.48 KN/m2
钢化 夹胶
*b(max
84 N/mm2 四边简
支
0.373
a/b= 0.33 时: 0.1180
a/b= 0.4 时: 0.1115
作用
于外
t3
q 1 q
H1 t3 t3
H
1
2
=
1.61*8^ 3/(8^3+
= 1.13 KN/m2
外片
玻璃
q a4
H1
1
Et
4 1
=
1.13*10 ^-
= 8.6
0.01223 0.01013 0.01170
0.96 0.92 0.940
1.5 1.772 1.019
基本加 速度:
1.0 1.4 1.52 KN/m2 1.20 0.55 KN/m2 0.66 KN/m2 5.0 0.08
0.5 1.3
第二章、面板及结构胶校核
0.10ห้องสมุดไป่ตู้g
面板 材面料板 计大算面 上面强板 边玻界璃 短边 查表
可得
8+
0.38 +
05-层间玻璃幕墙及铝板幕墙热阻计算
层间玻璃幕墙及铝板幕墙传热系数计算
一、传热系数计算:
工程所在地:杭州
工程所在地区气候分类夏热冬冷地区幕墙内表面换热阻R i:0.11m2K/W 幕墙冬季外表面换热阻R ew:0.04m2K/W 幕墙夏季外表面换热阻R es:0.05m2K/W 幕墙面材传热热阻R:0m2K/W 说明:由于面材为单层玻璃或是铝板,传热系数大,主要靠保温棉及墙体隔热,故本计算中不考虑面板热阻。
保温棉厚度:50mm
保温棉导热系数:0.045W/mK 保温棉传热热阻R resistance: 1.11m2K/W 空气层厚度:50mm
冬季空气层传热热阻R airw:0.18m2K/W 夏季空气层传热热阻R airs:0.15m2K/W 混凝土梁厚度:300mm
混凝土导热系数: 1.74W/mK 混凝土梁传热热阻R con:0.17m2K/W
冬季不透光玻璃幕墙传热热阻R w:
R w = R i + R + R resistance+ R airw + R ew + R con
=0.11+0+1.11+0.18+0.04+0.17 1.61m2K/W 冬季不透光玻璃幕墙传热系数K w=1/R w:0.62W/m2K
≤0.7W/m2K 夏季不透光玻璃幕墙传热热阻R s:
R s = R i + R + R resistance+ R airs+ R es + R con
=0.11+0+1.11+0.15+0.05+0.17 1.59m2K/W 夏季不透光玻璃幕墙传热系数K s=1/R s:0.63W/m2K
≤0.7W/m2K。
幕墙工程量计算稿
79
开启窗
80
玻璃栏杆1
81
玻璃栏杆2
82
全隐框玻璃幕墙3
83
铝合金格栅3
84
铝单板幕墙
工程量计算稿
规格尺寸(㎜) 6(low-E)+12A+6 6(low-E)+12A+5+1.14PVB+5
1350×3000mm 1500×3000mm
6(low-E)+12A+6
550mm高 3mm 25㎜ 25㎜ 25㎜
㎡ 4.5*24.3-1.35*3*2
米 24.3*(14+4)+5.4*2*14+5.4*9
米 24.3*16*2+5.4*2*16
樘2
㎡ 3.08*5.4*14+4.28*5.4*2+4.5*5.4
㎡
(6.09+6.43)*(76.5+0.74)+(2.08*14+3.32*2+4. 5)*2*0.2+24.3*(4.96+0.74)
(0.69*3+1.2)*32+0.6*0.95*24+(1.3+1)*(0.69*
㎡
3+7.2+0.56+0.61+0.15)+2.91*(7.2+0.56+0.61+ 0.15)+33.5*(1+0.7+1.8+3.01+1.8+0.6+1)+(1.2
第2页 共7 页 备注 横向装饰线条 横向装饰扣盖
大面
立柱损耗增加 标准层大面
横向装饰线条 横向装饰扣盖
2.1.1-玻璃幕墙荷载计算
第一章、荷载计算一、计算说明(本段为该幕墙的大概介绍),本章我们要计算的是该幕墙承受的最大荷载。
该处幕墙的最大计算标高为50 m。
层高为3.5 m。
二、玻璃幕墙的自重荷载计算1、玻璃幕墙自重荷载标准值计算G AK:玻璃面板自重面荷载标准值玻璃面板采用TP6+12A+TP6 mm厚的中空钢化玻璃G AK=(6+6)×10-3×25.6=0.31 KN/m2G GK:考虑龙骨和各种零部件等后的玻璃幕墙重力荷载标准值G GK=0.45 KN/m22、玻璃幕墙自重荷载设计值计算r G:永久荷载分项系数,取r G=1.2按《玻璃幕墙工程技术规范》JGJ102-2003第5.4.2条G G:考虑龙骨和各种零部件等后的玻璃幕墙重力荷载设计值G G=r G·G GK=1.2×0.45=0.54 KN/m2三、玻璃幕墙承受的水平风荷载计算1、水平风荷载标准值计算βgz:阵风系数,取βgz=2.098按《建筑结构荷载规范》GB50009-2001表7.5.1μS:风荷载体型系数,取μS=-1.2或+1.0按《建筑结构荷载规范》GB50009-2001第7.3.3条该体型系数分别为一个垂直于幕墙方向向外的荷载值和一个垂直于幕墙方向相里的荷载值,计算时,我们选择最不利的一种荷载进行组合,所以我们在计算时,选-1.2作为我们的计算风荷载体型系数。
μZ:风压高度变化系数,取μZ=0.74按《建筑结构荷载规范》GB50009-2001表7.2.1W0:作用在幕墙上的风荷载基本值 0.45 KN/m2按《建筑结构荷载规范》GB50009-2001附表D.4(按50年一遇)W K:作用在幕墙上的风荷载标准值W K=βgz·μS·μZ·W0=2.098×(-1.2)×0.74×0.45=-0.838 KN/m2(表示负风压)|W K|=0.924 KN/m2<1.0 KN/m2按《玻璃幕墙工程技术规范》JGJ102-2003第5.3.2条取W K=1.0 KN/m22、水平风荷载设计值计算r W:风荷载分项系数,取r W=1.4按《玻璃幕墙工程技术规范》JGJ102-2003第5.4.2条W:作用在幕墙上的风荷载设计值W=r W·W K=1.4×1.0=1.4 KN/m2四、玻璃幕墙承受的水平地震荷载计算1、玻璃幕墙承受的水平地震荷载标准值计算αmax:水平地震影响系数最大值,取αmax=0.16按《玻璃幕墙工程技术规范》JGJ102-2003第5.3.4条βE:动力放大系数,取βE=5.0按《玻璃幕墙工程技术规范》JGJ102-2003第5.3.4条q EK:作用在幕墙上的地震荷载标准值计算q EK=αmax·βE·G GK=0.16×5.0×0.45=0.36 KN/m22、玻璃幕墙承受的水平地震荷载设计值计算r E:地震作用分项系数,取r E=1.3按《玻璃幕墙工程技术规范》JGJ102-2003第5.4.2条q E:作用在幕墙上的地震荷载设计值q E=r E·q EK=1.3×0.36=0.468 KN/m2五、荷载组合1、风荷载和水平地震作用组合标准值计算ψW:风荷载的组合值系数,取ψW=1.0按《玻璃幕墙工程技术规范》JGJ102-2003第5.4.3条ψE:地震作用的组合值系数,取ψE=0.5按《玻璃幕墙工程技术规范》JGJ102-2003第5.4.3条q K=ψW·W K+ψE·q EK=1.0×1.0+0.5×0.36=1.18 KN/m22、风荷载和水平地震作用组合设计值计算q=ψW·W+ψE·q E=1.0×1.4+0.5×0.468=1.668 KN/m2六、荷载计算总结根据荷载规范的要求,本玻璃幕墙的荷载可分为如下几种情况,(见表格),我们上面计算的是幕墙所占面积最大部位的荷载值,表中其他值为其他部分的荷载值。
全玻璃幕墙结构胶及幕墙平面内变形计算
一、风荷载标准值w K :1.00KN/m 2玻璃宽度b:1325mm玻璃高度h:2550mm 玻璃短边长度a:1325mm玻璃长边长度b:2550mm 结构胶短期强度允许值f 1:0.14N/mm 2结构胶的粘结宽度C S :C S =w K a/(2000f 1)=1×1325/(2000×0.14) 4.7mmC S 最小值:4.7mmB 、设防烈度地震作用下粘结厚度计算1/6502550mmh/a ×311.8mm 结构胶的地震变位承受能力d :41%结构胶粘结厚度 =0.65×11.8/[0.41×(2+0.41)]^0.57.7mm二、玻璃的宽度b:1325mm 玻璃的高度h:2550mm全玻璃幕墙结构胶及幕墙平面内变形计算结构胶计算:(采用GE4400双组份结构胶)A 、在风荷载作用下,结构胶的粘结宽度:玻璃自重由横梁承担 =2550/650×3主体结构为框架结构,结构的层间位移值a :幕墙平面内变形性能计算:玻璃高度h :则有玻璃上下端的相对位移量m S:ddm)2(65.0d d m +=SS t1/650[D U]=h/a ×311.8mm 玻璃与左、右边框的平均间隙C 1:3mm 玻璃与上、下边框的平均间隙C 2:3mm2C 1(1+h/b×C 2/C 1)=2×3×(1+2550/1325×3/3)17.5mm 满足平面内变形要求则有玻璃与铝框的相对位移量[D U]: =2550/650×3主体结构为框架结构,结构的层间位移值a :。
幕墙工程量计算稿
3F 屋面 1F玻璃幕墙底部收口 大面 层间梁 包整柱、800×400
裙房南面、2-12轴
LM-02、LMDY-03\PMDY-12
工程量计算稿
工程名称:
第3页 分项工程名称 全隐框玻璃幕墙1 全隐框玻璃幕墙2 平开门3 平开门4 开启窗 全隐框玻璃幕墙3 铝合金百叶 玻璃栏杆2 铝单板幕墙 背栓式石材幕墙1 背栓式石材幕墙2 背栓式石材幕墙4 铝合金格栅3 铝合金格栅4 规格尺寸(㎜) 6(low-E)+12A+6 6(low-E)+12A+5+1.14PVB+5 1350×3000mm 1500×3000mm 6(low-E)+12A+6 550mm高 3mm 25㎜ 25㎜ 25㎜ 单位 ㎡ ㎡ 樘 樘 扇 ㎡ ㎡ 米 ㎡ ㎡ ㎡ ㎡ ㎡ ㎡ 面积计算稿 计算式 (17.28+6.08*2+7.02+32.94)*8.4+4.2*3.42*2+( 2.04*2+1.5)*4.2+0.6*4.2-1.5*3-1.35*3 1.2*(17.28+6.08*2+7.02+32.94)+1.2*0.95*38 1 1 62 0.95*4.8*24+15*0.95*14-0.95*0.6*51.2*0.95*38 0.95*0.6*5 86.33 (17.28+6.08*2+7.02+32.94)*(0.3+0.2)+20*(0. 62*2+1.28)+7.9*1.2 27.12*(0.56+7.2+0.56+0.61+0.15)+4.8*0.46+1 .055*(17.1+0.56+0.61+0.15)+15*0.56 (0.56*2+1.2)*40.51+18.9*(0.9+0.56)+58.97*( 1.2+0.56+0.56+0.61+0.15) 4.8*(0.56*2+0.4)*29+15*(0.56*2+0.4)*14 0.95*4.8*6 7.9*4.2+4.2*5.2 数量 629.09 126.60 1 1 62 262.77 2.85 86.33 94.58 276.01 303.20 530.78 27.36 55.02 备注
石材幕墙设计自动计算表格Excel
1355 1.05 3076.64 3076.64 110357.0 110357.0 477.629 238.8145 50mm 5mm
石材幕墙横梁计算
竖直方向面荷载Ggk(KN/m2)
1.00
竖直方向面荷载G (KN/m2)
1.20
水平方向面荷载Qk (KN/m2)
1.7582
水平方向面荷载Q(KN/m2)
混凝土强度 C15 C20 C25 C30 C35 C40 C45 C50 C55 C60 C65 C70 C75
混凝土轴心抗压 强度设计值
混凝土轴心抗拉强度设计值
7.2
0.91
9.6
1.1
11.9
1.27
14.3
1.43
16.7
1.57
19.1
1.71
21.1
1.8
23.1
1.89
25.3
1.96
锚板宽 沿剪力方向最外层锚筋中 心 钢线筋距层离数影响系数,二层 1锚.0筋,受三剪层承0.9载,力四系层数0.,85 >0.7时取0.7
B(mm) z(mm) αγ αν
平板预埋件计算
1 C40 15.0 20.0 10.0 12
4 4 12 180 180 120 0.85 0.70
1.光圆2.带肋 锚筋长度构造要
0.84
800 1355 150
7 4 50 4 130 1 0.5904 0.1335 1.25 5.134 0.308 2.660
横梁的计算长度B(mm) 塑性发展系数 X轴抵抗矩 Wx(mm3) Y轴抵抗矩 Wy(mm3) 中性轴惯性矩 Ix(mm4) 中性轴惯性矩 Iy(mm4) 横梁截面积A(mm2) 水平腹板截面面积mm2 角钢腹板长度(等边)b 所求点的截面厚度δ
玻璃幕墙计算书8+12+6玻璃
郑州金水万达中心项目1#、2#楼明框玻璃幕墙设计计算书(一)河南天地装饰工程有限公司2015.04目录1 计算引用的规范、标准及资料 (1)1.1 幕墙设计规范: (1)1.2 建筑设计规范: (1)1.3 铝材规范: (2)1.4 金属板及石材规范: (2)1.5 玻璃规范: (3)1.6 钢材规范: (3)1.7 胶类及密封材料规范: (3)1.8 五金件规范: (4)1.9 相关物理性能等级测试方法: (4)1.10 《建筑结构静力计算手册》(第二版) (5)1.11 土建图纸: (5)2 基本参数 (5)2.1 幕墙所在地区 (5)2.2 地面粗糙度分类等级 (5)2.3 抗震设防 (5)3 幕墙承受荷载计算 (6)3.1 风荷载标准值的计算方法 (6)3.2 计算支撑结构时的风荷载标准值 (8)3.3 计算面板材料时的风荷载标准值 (8)3.4 垂直于幕墙平面的分布水平地震作用标准值 (8)3.5 平行于幕墙平面的集中水平地震作用标准值 (8)3.6 作用效应组合 (8)4 幕墙立柱计算 (9)4.1 立柱型材选材计算 (9)4.2 确定材料的截面参数 (10)4.3 选用立柱型材的截面特性 (11)4.4 立柱的抗弯强度计算 (12)4.5 立柱的挠度计算 (12)4.6 立柱的抗剪计算 (13)5 幕墙横梁计算 (13)5.1 横梁型材选材计算 (14)5.2 确定材料的截面参数 (16)5.3 选用横梁型材的截面特性 (17)5.4 幕墙横梁的抗弯强度计算 (18)5.5 横梁的挠度计算 (18)5.6 横梁的抗剪计算 (19)6 玻璃板块的选用与校核 (20)6.1 玻璃板块荷载计算: (20)6.2 玻璃的强度计算: (21)6.3 玻璃最大挠度校核: (22)7 连接件计算 (23)7.1 横梁与角码间连接 (24)7.2 角码与立柱连接 (25)7.3 立柱与主结构连接 (26)8 幕墙埋件计算(化学锚栓) (28)8.1 荷载值计算 (28)8.2 锚栓群中承受拉力最大锚栓的拉力计算 (29)8.3 群锚受剪内力计算 (30)8.4 锚栓钢材破坏时的受拉承载力计算 (30)8.5 基材混凝土的受拉承载力计算 (30)8.6 锚栓钢材受剪破坏承载力计算 (32)8.7 基材混凝土受剪承载力计算 (32)8.8 拉剪复合受力情况下的混凝土承载力计算 (33)9 幕墙转接件强度计算 (34)9.1 受力分析 (34)9.2 转接件的强度计算 (34)10 幕墙焊缝计算 (34)10.1 受力分析 (35)10.2 焊缝特性参数计算 (35)10.3 焊缝校核计算 (35)11 明框玻璃幕墙伸缩及紧固计算 (36)11.1 立柱连接伸缩缝计算 (36)11.2 玻璃镶嵌槽紧固螺钉抗拉强度计算 (36)11.3 玻璃边缘到边框槽底间隙计算 (37)明框玻璃幕墙设计计算书1 计算引用的规范、标准及资料1.1 幕墙设计规范:《铝合金结构设计规范》GB50429-2007《玻璃幕墙工程技术规范》JGJ102-2003《建筑瓷板装饰工程技术规程》CECS101:98《建筑幕墙》GB/T21086-2007《金属与石材幕墙工程技术规范》JGJ133-2001《小单元建筑幕墙》JG/T216-20071.2 建筑设计规范:《地震震级的规定》GB/T17740-1999《钢结构设计规范》GB50017-2003《高层建筑混凝土结构技术规程》JGJ3-2010《高层民用建筑设计防火规范》GB50045-95(2005年版) 《高处作业吊蓝》GB19155-2003《工程抗震术语标准》JGJ/T97-2011《工程网络计划技术规程》JGJ/T121-99《混凝土结构后锚固技术规程》JGJ145-2013《混凝土结构加固设计规范》GB50367-2013《混凝土结构设计规范》GB50010-2010《混凝土用膨胀型、扩孔型建筑锚栓》JG160-2004《建筑材料放射性核素限量》GB6566-2010《建筑防火封堵应用技术规程》CECS154:2003《建筑钢结构焊接技术规程》JGJ81-2002《建筑工程抗震设防分类标准》GB50223-2008《建筑结构荷载规范》GB50009-2012《建筑结构可靠度设计统一标准》GB50068-2001《建筑抗震设计规范》GB50011-2010《建筑设计防火规范》GB50016-2006《建筑物防雷设计规范》GB50057-2010《冷弯薄壁型钢结构技术规范》GB50018-2002《民用建筑设计通则》GB50352-2005《擦窗机》GB19154-2003《钢结构焊接规范》GB50661-2011《钢结构工程施工规范》GB50755-2012《变形铝及铝合金化学成份》GB/T3190-2008 《建筑用隔热铝合金型材》JG175-2011《建筑用铝型材、铝板氟碳涂层》JG/T133-2000 《铝合金建筑型材第1部分基材》GB5237.1-2008 《铝合金建筑型材第2部分阳极氧化、着色型材》GB5237.2-2008 《铝合金建筑型材第3部分电泳涂漆型材》GB5237.3-2008 《铝合金建筑型材第4部分粉末喷涂型材》GB5237.4-2008 《铝合金建筑型材第5部分氟碳漆喷涂型材》GB5237.5-2008 《铝合金建筑型材第6部分隔热型材》GB5237.6-2012 《铝及铝合金彩色涂层板、带材》YS/T431-2009 《铝型材截面几何参数算法及计算机程序要求》YS/T437-2009 《有色电泳涂漆铝合金建筑型材》YS/T459-2003 《变形铝和铝合金牌号表示方法》GB/T16474-20111.4 金属板及石材规范:《干挂饰面石材及其金属挂件》JC830.1、2-2005 《建筑装饰用微晶玻璃》JC/T872-2000 《建筑幕墙用瓷板》JG/T217-2007 《建筑装饰用搪瓷钢板》JG/T234-2008 《微晶玻璃陶瓷复合砖》JC/T994-2006 《超薄天然石材复合板》JC/T1049-2007 《铝幕墙板板基》YS/T429.1-2000 《铝幕墙板第2部分:有机聚合物喷涂铝单板》YS/T429.2-2012 《建筑幕墙用铝塑复合板》GB/T17748-2008 《建筑幕墙用陶板》JG/T324-2011 《建筑装饰用石材蜂窝复合板》JG/T328-2011 《建筑幕墙用氟碳铝单板制品》JG331-2011《纤维增强水泥外墙装饰挂板》JC/T2085-2011 《建筑用泡沫铝板》JG/T359-2012 《金属装饰保温板》JG/T360-2012 《外墙保温用锚栓》JG/T366-2012 《聚碳酸酯(PC)中空板》JG/T116-2012 《聚碳酸酯(PC)实心板》JG/T347-2012 《铝塑复合板用铝带》YS/T432-2000 《天然板石》GB/T18600-2009 《天然大理石荒料》JC/T202-2011 《天然大理石建筑板材》GB/T19766-2005 《天然花岗石荒料》JC/T204-2011 《天然花岗石建筑板材》GB/T18601-2009 《天然石材统一编号》GB/T17670-2008 《天然饰面石材术语》GB/T13890-2008《镀膜玻璃第1部分:阳光控制镀膜玻璃》GB/T18915.1-2013 《镀膜玻璃第2部分:低辐射镀膜玻璃》GB/T18915.2-2013 《防弹玻璃》GB17840-1999《平板玻璃》GB11614-2009《建筑用安全玻璃第3部分:夹层玻璃》GB15763.3-2009 《建筑用安全玻璃第2部分:钢化玻璃》GB15763.2-2005 《建筑用安全玻璃防火玻璃》GB15763.1-2009 《半钢化玻璃》GB/T17841-2008 《热弯玻璃》JC/T915-2003《压花玻璃》JC/T511-2002《中空玻璃》GB/T11944-20121.6 钢材规范:《建筑结构用冷弯矩形钢管》JG/T178-2005《不锈钢棒》GB/T1220-2007 《不锈钢冷加工钢棒》GB/T4226-2009 《不锈钢冷轧钢板及钢带》GB/T3280-2007 《不锈钢热轧钢板及钢带》GB/T4237-2007 《不锈钢小直径无缝钢管》GB/T3090-2000 《彩色涂层钢板和钢带》GB/T12754-2006 《低合金钢焊条》GB/T5118-2012 《低合金高强度结构钢》GB/T1591-2008 《建筑幕墙用钢索压管接头》JG/T201-2007《耐候结构钢》GB/T4171-2008 《高碳铬不锈钢丝》YB/T096—1997 《合金结构钢》GB/T3077-1999 《金属覆盖层钢铁制品热镀锌层技术要求》GB/T13912-2002 《冷拔异形钢管》GB/T3094-2012 《碳钢焊条》GB/T5117-2012 《碳素结构钢》GB/T700-2006《碳素结构钢和低合金结构钢热轧薄钢板及钢带》GB/T912-2008《碳素结构钢和低合金结构钢热轧厚钢板及钢带》GB/T3274-2007 《优质碳素结构钢》GB/T699-19991.7 胶类及密封材料规范:《丙烯酸酯建筑密封膏》JC484-2006《幕墙玻璃接缝用密封胶》JC/T882-2001《彩色涂层钢板用建筑密封胶》JC/T884-2001《丁基橡胶防水密封胶粘带》JC/T942-2004《干挂石材幕墙用环氧胶粘剂》JC887-2001《工业用橡胶板》GB/T5574-2008 《混凝土建筑接缝用密封胶》JC/T881-2001《建筑窗用弹性密封剂》JC485-2007《建筑密封材料试验方法》GB/T13477.1~20-2002 《建筑用防霉密封胶》JC/T885-2001《建筑用硅酮结构密封胶》GB16776-2005《建筑用岩棉、矿渣棉绝热制品》GB/T19686-2005《建筑用硬质塑料隔热条》JG/T174-2005《建筑装饰用天然石材防护剂》JC/T973-2005《聚氨酯建筑密封胶》JC/T482-2003《聚硫建筑密封胶》JC/T483-2006《绝热用岩棉、矿棉及其制品》GB/T11835-2007《硫化橡胶或热塑性橡胶撕裂强度的测定》GB/T529-2008《石材用建筑密封胶》JC/T883-2001《橡胶袖珍硬度计压入硬度试验方法》GB/T531-1999《修补用天然橡胶胶粘剂》HG/T3318-2002《中空玻璃用弹性密封胶》JC/T486-2001《中空玻璃用丁基热熔密封胶》JC/T914-2003《建筑表面用有机硅防水剂》JC/T902-2002《钢结构防火涂料》GB14907-20021.8 五金件规范:《封闭型沉头抽芯铆钉》GB/T12616-2004《封闭型平圆头抽芯铆钉》GB/T12615-2004《紧固件螺栓和螺钉通孔》GB/T5277-1985《紧固件公差螺栓、螺钉、螺柱和螺母》GB/T3103.1-2002《紧固件机械性能不锈钢螺母》GB/T3098.15-2000 《紧固件机械性能不锈钢螺栓、螺钉、螺柱》GB/T3098.6-2000《紧固件机械性能抽芯铆钉》GB/T3098.19-2004 《紧固件机械性能螺母、粗牙螺纹》GB/T3098.2-2000《紧固件机械性能螺母、细牙螺纹》GB/T3098.4-2000《紧固件机械性能螺栓、螺钉和螺柱》GB/T3098.1-2010《紧固件机械性能自攻螺钉》GB/T3098.5-2000《紧固件术语盲铆钉》GB/T3099.2-2004《螺纹紧固件应力截面积和承载面积》GB/T16823.1-1997 《十字槽盘头螺钉》GB/T818-2000《铜合金铸件》GB/T13819-1992《锌合金压铸件》GB/T13821-2009《铝合金压铸件》GB/T15114-2009《铸件尺寸公差与机械加工余量》GB/T6414-1999《电动采光排烟窗》JG189-20061.9 相关物理性能等级测试方法:《玻璃幕墙工程质量检验标准》JGJ/T139-2001《玻璃幕墙光学性能》GB/T18091-2000《彩色涂层钢板和钢带试验方法》GB/T13448-2006《钢结构工程施工质量验收规范》GB50205-2001《混凝土结构工程施工质量验收规范》GB50204-2002(2011版)《建筑防水材料老化试验方法》GB/T18244-2000《建筑幕墙气密、水密、抗风压性能检测方法》GB/T15227-2007《建筑幕墙抗震性能振动台试验方法》GB/T18575-2001《建筑幕墙平面内变形性能检测方法》GB/T18250-2000《建筑装饰装修工程质量验收规范》GB50210-2001《金属材料室温拉伸试验方法》GB/T228-20021.10 《建筑结构静力计算手册》(第二版)1.11 土建图纸:2 基本参数2.1 幕墙所在地区郑州地区;2.2 地面粗糙度分类等级幕墙属于外围护构件,按《建筑结构荷载规范》(GB50009-2012)A类:指近海海面和海岛、海岸、湖岸及沙漠地区;B类:指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区;依照上面分类标准,本工程按C类地形考虑。
玻璃幕墙竖框的设计计算
玻璃幕墙竖框的设计计算幕墙中的危险部位位于120米,计算层间高L=3.3米,竖框承担的分格宽度为B=1.2m。
所选用竖框型材的截面特性如下:I x——对x轴方向的惯性矩=229.76cm4I y——对y轴方向的惯性矩=62.08cm4W x——对x轴方向的抵抗矩=33.66cm3W y——对y轴方向的抵抗矩=20.69cm3A0——截面面积=1089.59mm2力学模型简图如下:1)荷载计算a. 风荷载标准值的计算W k=βgZ·μs1·μz·W o=1.572×1.2×1.838×.45=1.56KN/m2b. y轴方向(垂直于幕墙表面)的地震作用为q Ey=βe·αmax·G/A式中:q Ey——作用于幕墙平面外水平分布地震作用(KN/m2);G ——幕墙构件的重量(KN);A ——幕墙构件的面积(m2);αmax——水平地震影响系数最大值,取.16;βe——动力放大系数,取5 。
其中,G=L×B×t×γ玻×1.1=3.3×1.2×11×25.6× 1.1/1000=1.227KN式中:L——计算层间高 m;B——分格宽度 m;t——玻璃厚度 mm;γ玻——玻璃的密度,取25.6 KN/m3A=L×B=3.3×1.2=3.96m2则 q Ey=βe·αmax·G/A=5×.16×1.227/3.96=.248KN/m2c. x轴方向(幕墙平面内)的地震作用为q Ex=βe·αmax·G/L=5×.16×1.227/3.3=.297KN/m2) 刚度计算:在矩形荷载作用下,竖框所受线荷载和作用组合值为q刚度=W k×B=1.56×1.2=1.872KN/m按单跨简支梁计算,竖框产生的挠度按下式计算:f=5q刚度·L4/384EI取[f]=L/180=3300/180=18.3mm由上式可知,竖框所需的最小惯性矩Ixmin为:I xmin=5q刚度L4/384E·[f]=5×1.872×3.34×108/384×70000×18.3=225.6583< I x=229.76 (cm4)3)强度计算强度荷载组合如下q=1.4×1×W k+1.3×0.5×q Ey=1.4×1×1.56+1.3×0.5×.248=2.345KN/m2竖框所受线荷载为q强度=q×B=2.345×1.2=2.814KN/m则按单跨简支梁计算,竖框所受最大弯矩为M=q强度·L2/8=2.814×3.32/8=3.831KN·m式中: M——竖框承受的最大弯矩,KN·m;L——计算层间高 m。
幕墙工程量计算表格
幕墙工程量计算表格通常包括以下内容:
1.序号:记录每一条计算结果的序号。
2.计算部位:记录需要计算的具体部位,如立柱、横梁、玻璃、石材等。
3.计算公式:记录计算该部位所需的公式或方法。
4.单位:记录计算结果的单位,如平方米、米、千克等。
5.工程量:记录该部位的实际计算数值。
6.备注:记录其他需要说明的事项,如材料类型、规格等。
平方米
30mm厚花岗岩
...
பைடு நூலகம்...
...
...
...
...
在实际应用中,可以根据具体工程情况和要求,适当调整表格的内容和格式,以满足实际需求。
以下是一个简单的幕墙工程量计算表格示例:
序号
计算部位
计算公式
单位
工程量
备注
1
立柱
(柱高+柱径)×柱径×π×数量
米
铝合金材质
2
横梁
(梁长+梁宽)×梁宽×π×数量
米
铝合金材质
3
玻璃
(玻璃长+玻璃宽+胶缝)×(玻璃宽+胶缝)×数量
平方米
5mm厚浮法玻璃
4
石材
(石材长+石材宽+胶缝)×(石材宽+胶缝)×数量
幕墙结构计算
幕墙结构计算1、横框计算2、竖框计算3、玻璃计算4、连接计算5、预埋件设计、计算6、焊缝计算一、幕墙横框的计算受力模型:横梁以立柱为支承,按立柱之间的距离作为梁的跨度,梁的支撑条件按简支考虑,其弯距见表5-31。
简支梁内力和挠度表表5-311受力状态:横梁是双向受弯构件,在水平方向由板传来风力、地震力;在竖直的方向由板和横梁自重产生竖向弯距,见图5-14。
横梁双向受弯1、强度M x/γW x+M y/γW y≤f a式中:Mx -- 横梁绕x轴(垂直于幕墙平面方向)的弯距设计值(KN·m);My——横梁截面绕y轴(幕墙平面内方向)幕墙平面内方向的弯距设计值(KN·m);Wx-横梁截面绕x轴(垂直于幕墙平面方向)的截面抵抗矩(mm3)Wy-横梁截面绕y轴(幕墙平面内方向)的截面抵抗矩(mm3)γ-塑性发展系数,可取为1.05;f a-铝型材受拉强度设计值(KN·m2)2M x=1/12q y×B2(B≤H时)M x=1/8q y×B2(B>H时)qy=(1.0×1.4×W k+0.6×1.3×q ey)×B组合系数分项系数W k=βZ·μS·μZ·W O式中:W k-作用在幕墙上的风荷载标准值(KN/m2);βZ-瞬时风压的阵风系数,取2.25;μS-风荷载体型系数,竖直幕墙外表面可按±1.5取用;μZ-风压高度变化系数;应按现行国家标准《建筑结构荷载规范》GBJ9采用。
W O-基本风压(KN/m2),按GBJ9附图中的数值采用;部分城3。
2.1.1-玻璃幕墙荷载计算
第一章、荷载计算一、计算说明(本段为该幕墙的大概介绍),本章我们要计算的是该幕墙承受的最大荷载。
该处幕墙的最大计算标高为50 m。
层高为3.5 m。
二、玻璃幕墙的自重荷载计算1、玻璃幕墙自重荷载标准值计算G AK:玻璃面板自重面荷载标准值玻璃面板采用TP6+12A+TP6 mm厚的中空钢化玻璃G AK=(6+6)×10-3×25.6=0.31 KN/m2G GK:考虑龙骨和各种零部件等后的玻璃幕墙重力荷载标准值G GK=0.45 KN/m22、玻璃幕墙自重荷载设计值计算r G:永久荷载分项系数,取r G=1.2按《玻璃幕墙工程技术规范》JGJ102-2003第5.4.2条G G:考虑龙骨和各种零部件等后的玻璃幕墙重力荷载设计值G G=r G·G GK=1.2×0.45=0.54 KN/m2三、玻璃幕墙承受的水平风荷载计算1、水平风荷载标准值计算βgz:阵风系数,取βgz=2.098按《建筑结构荷载规范》GB50009-2001表7.5.1μS:风荷载体型系数,取μS=-1.2或+1.0按《建筑结构荷载规范》GB50009-2001第7.3.3条该体型系数分别为一个垂直于幕墙方向向外的荷载值和一个垂直于幕墙方向相里的荷载值,计算时,我们选择最不利的一种荷载进行组合,所以我们在计算时,选-1.2作为我们的计算风荷载体型系数。
μZ:风压高度变化系数,取μZ=0.74按《建筑结构荷载规范》GB50009-2001表7.2.1W0:作用在幕墙上的风荷载基本值 0.45 KN/m2按《建筑结构荷载规范》GB50009-2001附表D.4(按50年一遇)W K:作用在幕墙上的风荷载标准值W K=βgz·μS·μZ·W0=2.098×(-1.2)×0.74×0.45=-0.838 KN/m2(表示负风压)|W K|=0.924 KN/m2<1.0 KN/m2按《玻璃幕墙工程技术规范》JGJ102-2003第5.3.2条取W K=1.0 KN/m22、水平风荷载设计值计算r W:风荷载分项系数,取r W=1.4按《玻璃幕墙工程技术规范》JGJ102-2003第5.4.2条W:作用在幕墙上的风荷载设计值W=r W·W K=1.4×1.0=1.4 KN/m2四、玻璃幕墙承受的水平地震荷载计算1、玻璃幕墙承受的水平地震荷载标准值计算αmax:水平地震影响系数最大值,取αmax=0.16按《玻璃幕墙工程技术规范》JGJ102-2003第5.3.4条βE:动力放大系数,取βE=5.0按《玻璃幕墙工程技术规范》JGJ102-2003第5.3.4条q EK:作用在幕墙上的地震荷载标准值计算q EK=αmax·βE·G GK=0.16×5.0×0.45=0.36 KN/m22、玻璃幕墙承受的水平地震荷载设计值计算r E:地震作用分项系数,取r E=1.3按《玻璃幕墙工程技术规范》JGJ102-2003第5.4.2条q E:作用在幕墙上的地震荷载设计值q E=r E·q EK=1.3×0.36=0.468 KN/m2五、荷载组合1、风荷载和水平地震作用组合标准值计算ψW:风荷载的组合值系数,取ψW=1.0按《玻璃幕墙工程技术规范》JGJ102-2003第5.4.3条ψE:地震作用的组合值系数,取ψE=0.5按《玻璃幕墙工程技术规范》JGJ102-2003第5.4.3条q K=ψW·W K+ψE·q EK=1.0×1.0+0.5×0.36=1.18 KN/m22、风荷载和水平地震作用组合设计值计算q=ψW·W+ψE·q E=1.0×1.4+0.5×0.468=1.668 KN/m2六、荷载计算总结根据荷载规范的要求,本玻璃幕墙的荷载可分为如下几种情况,(见表格),我们上面计算的是幕墙所占面积最大部位的荷载值,表中其他值为其他部分的荷载值。
各类框架式玻璃幕墙材料含量计算表(幕墙投标)
ZK
L
KJ-HMS-L140*75-ZK-004 SY01
126.60
5 150*75系列横明竖隐玻璃幕墙 KJ
ZK
L
KJ-HMS-L150*75-ZK-005 SY01
126.60
6 130*65系列竖明横隐玻璃幕墙 KJ
ZK
L
KJ-SMH-L130*65-ZK-001 SY01
126.60
7 130*75系列竖明横隐玻璃幕墙 KJ
KJ
ZK
L
KJ-YK-ZK-002
SY01
126.60
5
150*65系列全明框玻璃幕墙 (普通形式)
6
150*75系列全明框玻MK-L130*65-ZK-001
KJ
ZK
L
KJ-MK-L130*65-ZK-002
KJ
ZK
L
KJ-MK-L140*65-ZK-003
KJ
ZK
L
KJ-MK-L140*75-ZK-004
KJ
ZK
L
KJ-HMS-L120*65-ZK-001 SY01
881.33
2 120*75系列横明竖隐玻璃幕墙 KJ
ZK
L
KJ-HMS-L120*75-ZK-002 SY01
126.60
3 130*75系列横明竖隐玻璃幕墙 KJ
ZK
L
KJ-HMS-L130*75-ZK-003 SY01
126.60
4 140*75系列横明竖隐玻璃幕墙 KJ
ZK
L
KJ-SMH-L130*75-ZK-002 SY01
126.60
8 140*75系列竖明横隐玻璃幕墙 KJ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幕墙工程设计计算书玻璃幕墙结构设计计算基本参数: 幕墙计算处标高(米) 50设计层高Hsjcg(米): 3.7分格宽(米) B= 1.1分格高(米) H= 1.4抗震设防烈度7一、幕墙承受荷载计算:1. 风荷载标准值计算: 本幕墙设计按50年一遇风压计算 Wk: 作用在幕墙上的风荷载标准值(kN/m^2) Wo:天津50年一遇十分钟平均最大风压(kN/m^2): 0.5根据现行<<建筑结构荷载规范>>GBJ9-87附图 (全国基本风压分布图)中数值采用2.25βz: 瞬时风压的阵风系数取:1.5μs: 风荷载体型系数:按C类区计算 μz: 计算高处风压高度变化系数:1.357μz=0.713(Z/10)^0.4= Wk=βz×μz×μs×W0 (5.2.2)= 2.518 kN/m^22. 风荷载设计值:W: 风荷载设计值: kN/m^2 rw: 风荷载作用效应的分项系数:1.4 按《玻璃幕墙工程技术规范》JGJ 102-96(5.1.6)条规定采用 W=rw×Wk= 3.525 kN/m^23. 玻璃幕墙构件重量荷载:GAk:玻璃幕墙构件(包括玻璃和铝框)的平均自重: 400 N/m^2Gk: 玻璃幕墙构件(包括玻璃和铝框)的重量:H: 玻璃幕墙分格高(m): 1.4B: 玻璃幕墙分格宽(m): 1.1Gk=400×B×H/1000 =0.616kN4. 地震作用: 垂直于玻璃幕墙平面的分布水平地震作用: qEAk: 垂直于玻璃幕墙平面的分布水平地震作用 (kN/m^2) βE: 动力放大系数: 可取5.0 按5.2.4条规定采用0.08αmax: 水平地震影响系数最大值: 按5.2.4条规定采用 Gk: 玻璃幕墙构件的重量(kN): 0.616B: 玻璃幕墙分格宽(m): 1.1H: 玻璃幕墙分格高(m): 1.4qEAK=3×αmax×GK/B/H (5.2.4)=0.16kN/m^2二、玻璃的选用与校核:[1]、玻璃规格BxH本工程选用玻璃种类为: 钢化玻璃1. 玻璃面积: B: 玻璃幕墙分格宽(m): 1.1H: 玻璃幕墙分格高(m): 1.4A: 玻璃板块面积(m^2): A=B×H= 1.542. 玻璃厚度选取: W: 风荷载设计值(kN/m^2):3.525A: 玻璃板块面积(m^2): 1.54K3: 玻璃种类调整系数: 3试算: C=W×A×10/3/K3 = 6.031T=2×(1+C)^0.5-2 = 3.303mm玻璃选取厚度为(mm): 63. 玻璃板块自重: GAk: 玻璃板块平均自重(不包括铝框): t: 玻璃板块厚度(mm): 6玻璃的体积密度为: 25.6(KN/M^3) 按5.2.1采用 GAk=25.6×t/10000.153kN/m^2 4. 垂直于玻璃平面的分布水平地震作用:0.08αmax: 水平地震影响系数最大值: qEAk: 垂直于玻璃平面的分布水平地震作用(kN/m^2) qEAk=3×αmax×Gak=0.036kN/m^2 rE: 地震作用分项系数: 1.3 qEA: 垂直于玻璃平面的分布水平地震作用设计值(kN/m^2) qEA=rE×qEAk=1.3×qEAK=0.046kN/m^25. 玻璃的强度计算: 校核依据: σ≤fg=84.000 q: 玻璃所受组合荷载: a: 玻璃短边边长(m): 1.1b: 玻璃长边边长(m): 1.4t: 玻璃厚度(mm): 6ψ: 玻璃板面跨中弯曲系数, 按边长比a/b查出(b为长边边长) 表5.4.1得: 0.065σw: 玻璃所受应力: 采用Sw+0.6SE组合: q=W+0.6×qEA = 3.552kN/m^2σw=6×ψ×q×a^2×1000/t^2 =46.206N/mm^246.206≤fg=84.000N/mm^2 玻璃的强度满足 6. 玻璃温度应力计算:58.8N/mm^2校核依据: σmax≤[σ]= (1)在年温差变化下, 玻璃边缘与边框间挤压在玻璃中产生的 挤压温度应力为: E: 玻璃的弹性模量:0.72×10^5N/mm^2α^t: 玻璃的线膨胀系数: 1.0×10^-5△T: 年温度变化差(℃): 80c: 玻璃边缘至边框距离, 取 5mm d: 施工偏差, 可取:3mm ,按5.4.3选用 b: 玻璃长边边长(m): 1.4在年温差变化下, 玻璃边缘与边框间挤压在玻璃中产生的 温度应力为: σt1=E(a^t×△T-(2c-d)/b/1000)=-302.4 N/mm^2计算值为负,挤压应力取为零.0.000N/mm^2< 58.8N/mm^2 玻璃边缘与边框间挤压温度应力可以满足要求 (2)玻璃中央与边缘温度差产生的温度应力:μ1: 阴影系数: 按《玻璃幕墙工程技术规范》 得1.000 μ2: 窗帘系数: 按《玻璃幕墙工程技术规范》 得1.100 μ3: 玻璃面积系数: 按《玻璃幕墙工程技术规范》 得1.086 μ4: 边缘温度系数: 按《玻璃幕墙工程技术规范》 得0.400 Tc: 玻璃中央部分温度: a: 玻璃线胀系数: 1.0×10^-5a0: 玻璃吸热率:0.142a1: 室外热传递系数, 取15W/m^2K t0: 室外设计温度-10.000℃ t1: 室内设计温度35.000℃ Tc=(a0×700+15×t0+8×t1)/(15+8)=(0.142×700+15×(-10.000)+8×35.000)/(15+8)=9.974℃Ts: 玻璃边缘部分温度: Ts=(15×t0+8×t1)/(15+8)=(15×(-10.000)+8×35.000)/(15+8)=5.652℃△t: 玻璃中央部分与边缘部分温度差: △t=Tc-Ts =4.322℃玻璃中央与边缘温度差产生的温度应力: σt2=0.74×E×a×μ1×μ2×μ3×μ4×(Tc-Ts)=0.74×0.72×10^5×1.0×10^-5×μ1×μ2×μ3×μ4×△t=1.100N/mm^2玻璃中央与边缘温度差产生的温度应力可以满足要求 7. 玻璃最大面积校核: Azd: 玻璃的允许最大面积(m^2) Wk:风荷载标准值(kN/m^2): 2.518t: 玻璃厚度(mm): 63α1: 玻璃种类调整系数: A: 计算校核处玻璃板块面积(m^2) 1.54Azd=0.3×α1×(t+t^2/4)/Wk (6.2.7-1)= 5.361m^2 A= 1.54 ≤Azd= 5.361m^2 可以满足使用要求三、幕墙杆件计算: 幕墙立柱按铰接多跨梁力学模型进行设计计算: 1. 选料: (1)风荷载设计值的线密度: qw: 风荷载设计值的线密度 rw: 风荷载作用效应的分项系数:1.4 Wk: 风荷载标准值(kN/m^2): 2.518B: 幕墙分格宽(m): 1.1qw=1.4×Wk×B = 3.877kN/m(2)立柱弯矩: Mw: 风荷载作用下立柱弯矩(kN·m)qw: 风荷载设计值的线密度(kN/m): 3.877Hsjcg: 立柱计算跨度(m) 3.7Mw=qw×Hsjcg^2/10 = 5.307kN·mqEA: 地震作用设计值:qEAK: 地震作用(kN/m^2): 0.16γE: 幕墙地震作用分项系数: 1.3 qEA=1.3×qEAk =0.208kN/m^2qE: 地震作用设计值的线密度: qE=qEA×B =0.228kN/mME: 地震作用下立柱弯矩(kN·m):ME=qE×Hsjcg^2/10 =0.312kN·mM: 幕墙立柱在风荷载和地震作用下产生弯矩(kN·m)采用Sw+0.6SE组合M=Mw+0.6×ME = 5.494kN·m(3)W: 立柱抗弯矩预选值(cm^3)W=M×10^3/1.05/84.2 =62.142cm^3 qWk: 风荷载标准值线密度(kN/m) qwk=Wk×B= 2.769kN/m qEk: 地震作用标准值线密度(kN/m) qEk=qEAk_M×B=0.176kN/m (4)I1,I2: 立柱惯性矩预选值(cm^4) I1=900×(qwk+0.6×qEk)×Hsjcg^3/384/0.7=487.523cm^4I2=3000×(qwk+0.6×qEk)×Hsjcg^4/384/0.7/20=300.639 cm^4 选定立柱惯性矩应大于(cm^4):487.5232. 选用立柱型材的截面特性:[1].主梁一选用型材截面如图: 铝型材强度设计值(N/mm^2) 84.2铝型材弹性模量E (N/cm^2): 7000000X轴惯性矩(cm^4): Ix= 1230.632Y轴惯性矩(cm^4): Iy= 227.287X轴抵抗矩(cm^3 ): Wx1= 119.612X轴抵抗矩(cm^3 ): Wx2= 106.905型材截面积(cm^2): A= 23.908型材计算校核处壁厚(mm): t= 3.5型材截面面积矩(cm^3 ): Ss=78.296塑性发展系数: γ= 1.053. 幕墙立柱的强度计算: 校核依据: N/A+m/γW≤fa=84.200N/mm^2(拉弯构件) (5.5.3) B: 幕墙分格宽(m): 1.1GAk: 幕墙自重(N/m^2): 400幕墙自重线荷载: Gk=400×Wfg/1000=0.44kN/m NK: 立柱受力: Nk=Gk×Hsjcg= 1.628kNN: 立柱受力设计值: rG: 结构自重分项系数: 1.2N=1.2×Nk= 1.953kNσ: 立柱计算强度(N/mm^2)(立柱为拉弯构件) N: 立柱受力设计值(Kn): 1.953A: 立柱型材截面积(cm^2) 23.908M: 立柱弯矩(kN·m): 5.494Wx2: 立柱截面抗弯矩(cm^3): 106.905γ: 塑性发展系数:1.05σ=N×10/A+M×10^3/1.05/Wx2=49.761N/mm^249.761 ≤fa=84.200N/mm^2 立柱强度满足 4. 幕墙立柱的刚度计算: 校核依据: Umax≤[U]=20mm 且 Umax≤L/180 (5.5.5) Umax: 立柱最大挠度 Umax=3×(qWk+0.6×qEk)×Hsjcg^4×1000/384/0.7/Ix立柱最大挠度Umax为: 4.885 ≤20mm Du: 立柱挠度与立柱计算跨度比值: Hsjcg: 立柱计算跨度(m): 3.7Du=U/Hsjcg/1000= 0.001≤1/180 挠度满足要求 5. 立柱抗剪计算: 校核依据: τmax≤[τ]=80.200N/mm^2 (1)Qwk: 风荷载作用下剪力标准值(kN) Qwk=Wk×Hsjcg×B/2 = 5.124kN (2)Qw: 风荷载作用下剪力设计值(kN) Qw=1.4×Qwk=7.173kN (3)QEk: 地震作用下剪力标准值(kN) QEk=qEAk×Hsjcg×B/2=0.325kN (4)QE: 地震作用下剪力设计值(kN) QE=1.3×QEk =0.422kN (5)Q: 立柱所受剪力: 采用Qw+0.6QE组合 Q=Qw+0.6×QE=7.426kN (6)立柱剪应力:τ: 立柱剪应力: Ss: 立柱型材截面面积矩(cm^3): 78.296Ix: 立柱型材截面惯性矩(cm^4): 1230.632t: 立柱壁厚(mm): 3.5τ=Q×Ss×100/Ix/t =13.498N/mm^213.498≤ 80.200N/mm^2立柱抗剪强度满足6. 选用横梁型材的截面特性: 选用型材截面:铝型材强度设计值(N/mm^2): 84.2铝型材弹性模量 E (N/cm^2): 7000000X轴惯性矩(cm^4 ): Ix= 58.29Y轴惯性矩(cm^4 ): Iy= 87.39X轴抵抗矩(cm^3): Wx1= 16.58X轴抵抗矩(cm^3): Wx2= 12.999Y轴抵抗矩(cm^3): Wy1= 21.395Y轴抵抗矩(cm^3): Wy2= 17.616型材截面积(cm^2): A= 10.11型材计算校核处壁厚(mm): t= 2.5型材截面面积矩(cm^3 ): Ss= 12.9941.05塑性发展系数: γ= 7. 幕墙横梁的强度计算: 校核依据: mx/γWx+my/γWy≤fa=84.200N/mm^2 (5.5.2) (1)横梁在自重作用下的弯矩(kN·m)B: 幕墙分格高(m): 1.1H: 幕墙分格高(m): 1.4GAk: 横梁自重(N/m^2): 400Gk: 横梁自重荷载线密度: Gk=300×H/1000 =0.56kN/mG: 横梁自重荷载设计值线密度(kN/m) G=1.2×Gk =0.672kN/mMx: 横梁在自重荷载作用下的弯矩(kN·m)Mx=G×B^2/8 =0.101kN·m(2)横梁在风荷载作用下的弯矩(kN·m)风荷载线密度:横梁承受三角形荷载作用 qwk=Wk X B = 2.769KN/m风荷载设计值的线密度: qw=1.4×qwk = 3.876kN/mMyw: 横梁在风荷载作用下的弯矩(kN·m)Myw=qw×B^2/12=0.39kN·m(3)地震作用下横梁弯矩qEAk: 横梁平面外地震荷载:3βE: 动力放大系数:αmax: 地震影响系数最大值:0.08Gk: 幕墙构件自重(N/m^2): 400qEAk=3×αmax×300/1000 =0.096kN/m^2qEx: 横梁地震荷载线密度: B: 幕墙分格宽(m) 1.1横梁承受三角形荷载作用 qex=qeak X B = 0.105KN/mqE: 横梁地震荷载设计值线密度:1.3γE: 地震作用分项系数: qE=1.3×qEx =0.136kN/mMyE: 地震作用下横梁弯矩: MyE=qE×B^2/12=0.013kN·m(4)横梁强度:σ: 横梁计算强度(N/mm^2): 采用SG+Sw+0.6SE组合 Wx1: X轴抵抗矩(cm^3): 16.58Wy2: y轴抵抗矩(cm^3): 17.6161.05γ: 塑性发展系数: σ=(Mx/Wx1+Myw/Wy2+0.6×MyE/Wy2)×10^3/1.05= 26.886N/mm^226.886≤fa=84.200N/mm^2 横梁正应力强度满足 8. 幕墙横梁的抗剪强度计算: 校核依据: τmax≤[τ]=80.200N/mm^2 (1)Qwk: 风荷载作用下横梁剪力标准值(kN) Wk: 风荷载标准值(kN/m^2): 2.518B: 幕墙分格宽(m) 1.1Qwk=Wk×B^2/4 =0.761kN(2)Qw: 风荷载作用下横梁剪力设计值(kN) Qw=1.4×Qwk = 1.065kN(3)qEAk: 地震作用下横梁剪力标准值(kN) qEAk: 幕墙平面外地震作用(kN/m^2): 0.096QEk=qEak×B^2/4=0.029kN(4)qE: 地震作用下横梁剪力设计值(kN)1.3γE: 地震作用分项系数: QE=1.3×Qek=0.037kN(5)Q: 横梁所受剪力:采用Qw+0.6QE组合Q=Qw+0.6×QE = 1.087kN (6)τ: 横梁剪应力Ss: 横梁型材截面面积矩(cm^3): 12.994Iy: 横梁型材截面惯性矩(cm^4): 87.39t: 横梁壁厚(mm): 2.5τ=Q×Ss×100/Iy/t = 6.465N/mm^26.465≤80.200N/mm^2 横梁抗剪强度可以满足9.幕墙横梁的刚度计算 校核依据: Umax≤[U]=20mm 且 Umax≤L/180 横梁承受三角形荷载作用 qwk=Wk × B = 2.769KN/m qex: 地震作用标准线密度(KN/m) qex=qeak × B =0.105KN/m水平方向由风荷载和地震作用产生的弯曲: U1=(qwk+0.6×qex)×B^4×1000/0.7/Iy/120= 0.564mm 自重作用产生的弯曲: U2=5×GK×B^4×1000/384/0.7/Ix= 0.261mm 综合产生的弯曲为: U=(U1^2+U2^2)^0.5= 0.621mm<20mmDu=U/B/1000 = 0≤1/180 挠度可以满足要求四、连接件计算:1. 横梁与立柱间连结 竖向节点(角码与立柱) GAK:横梁自重(N/m^2): 400Gk: 横梁自重线荷载(N/m): Gk=GAK×H=560N/m 横梁自重线荷载设计值(N/m) G=1.2×Gk =672N/mN2: 自重荷载(N): N2=G×B/2 =369.6N N1:SG+0.6SE (N):N1=(1.4×Qwk+1.3×0.6×qex)×B/4=1088.587N N: 连接处组合荷载: 采用SG+Sw+0.6SE N=(N1^2+N2^2)^0.5 = 1149.619N Num2: 螺栓个数: D1 : 选用螺栓直径(mm):6D0:选用螺栓有效直径(mm): 5.06Nvbh: 螺栓的承载能力:Nvbh=3.14×D0^2×130/4 =2612.847N Num2=N/Nvbh= 0.439取螺栓个数: 3Ncbj: 连接部位铝角码壁抗承压能力计算: Lct1: 铝角码壁厚(mm): 2.5Ncbj=D1×Lct1×120×Num2 =5400N5400N ≥1149.619N 强度可以满足2. 立梃与主结构连接 Lct2: 连接处钢角码壁厚(mm) : 8D2: 连接螺栓直径(mm) 12D0: 连接螺栓直径(mm): 10.36采用SG+SW+0.6SE组合 N1wk: 连接处风荷载总值(N): N1wk=Wk×B×Hsjcg×1000 =10248.26N 连接处风荷载设计值(N) : N1w=1.4×N1wk =14347.56NN1Ek: 连接处地震作用(N): N1Ek=qEAk×B×Hsjcg×1000=651.2N N1E: 连接处地震作用设计值(N): N1E=1.3×N1Ek =846.56NN1: 连接处水平总力(N): N1=N1w+0.6×N1E =14855.5N N2: 连接处自重总值设计值(N): N2k=GAK×B×Hsjcg =1628NN2: 连接处自重总值设计值(N): N2=1.2×N2k =1953.6N N: 连接处总合力(N):N=(N1^2+N2^2)^0.5 = 14983.41NNvb: 螺栓的承载能力: Nv: 连接处剪切面数: 2 Nvb=2×3.14×D0^2×130/4=21905.97NNum1: 立梃与建筑物主结构连接的螺栓个数: Num1=N/Nvb = 0.683个 Num1:取螺栓数量(个) 4Ncbl: 立梃型材壁抗承压能力(N): D2: 连接螺栓直径(mm): 12Nv: 连接处剪切面数: 8t: 立梃壁厚(mm): 3.5Ncbl=D2×2×120×t×Num1 =40320N 40320≥ 14983.41N 强度可以满足Ncbg: 钢角码型材壁抗承压能力(N): Ncbg=D2×2×267×Lct2×Num1=165120N 165120 ≥ 14983.41N 强度可以满足五、幕墙预埋件总截面面积计算 本工程预埋件受拉力和剪力 V: 剪力设计值: V=N2 = 1953.6N N: 法向力设计值: N=N1 = 14855.5 NM_: 弯矩设计值(N·mm):z: 螺孔中心与锚板边缘距离(mm): 108M=V×e2 =210988.8N·mNum1: 锚筋根数: 4锚筋层数: 21αr: 锚筋层数影响系数: 关于混凝土:混凝土标号: 30混凝土强度设计值(N/mm^2) fc : 15按现行国家标准≤混凝土结构设计规范≥ GBJ10采用。