几种特殊的晶闸管..

合集下载

4象限晶闸管

4象限晶闸管

4象限晶闸管
四象限晶闸管是一种特殊的半导体器件,它可以在不同的电压和电流条件下控制和操作电流,常用于直流电源、交流电源等领域。

四象限晶闸管的特点是可以同时控制交流电的正反向电流,并且具有高精度、快速响应、高稳定性等优点。

它的工作原理是基于半导体PN结的伏安特性,通过控制PN结的电压和电流,可以控制电流的方向和大小,从而实现整流、逆变、斩波等功能。

四象限晶闸管的型号和规格因制造商和用途而异,但通常都具有一定的额定电压、额定电流、导通角等参数。

常见的型号有TO-220、TO-251、TO-252等,其中TO-220是最常见的封装形式之一。

在使用四象限晶闸管时,需要注意以下几点:
1.选用符合实际应用要求的型号和规格,并注意额定电压、额定电流等参数是否符合要求。

2.在使用过程中,要避免过载、短路、过热等情况,以免损坏晶闸管。

3.在控制电路中,要正确选择触发电路的参数,以保证晶闸管的正常工作。

4.在安装和调试过程中,要注意遵守相关的安全规定和操作规程,以确保人身安全和设备安全。

总之,四象限晶闸管是一种重要的半导体器件,具有广泛的应用前景和市场前景。

如果您需要了解更多关于四象限晶闸管的信息,建议咨询相关的专业人士或查阅相关文献。

全控型电力电子器件

全控型电力电子器件

GTO的关断机理: 在双晶体管等效模型中,利用门 极负电流分流IC1,并快速抽取 V2管发射结侧载流子,以实现快 速关断 GTO优点:电压、电流容量大,适用于大 功率场合,具有电导调制效应,其通流能 力很强;缺点:电流关断增益很小,关断 时门极负脉冲电流大,开关速度低,驱动 功率大,驱动电路复杂,开关频率低
2.电力晶体管(Giant Transistor—GTR)
GTR是一种耐高电压、大电流的双极结型晶体管,电流驱动型全控器件。
GTR关断原理: 开通时,Uce正偏,提供基极电流; 关断时,I b小于等于零。 开通和关断可由基极电流来控制,故称为全控型器件和电流型驱动器件。
GTR优点:耐压高,电流大,开关特性好,通流能力强,饱和压降低 缺点:开关速度低,为电流驱动,所需驱动功率电路复杂,存在二次击穿问题
4.绝缘栅极晶体管(IGBT)
复合型器件,将GTR双极型电流驱动器件和电力MOSFET 单极型电压驱动器件结合。综合了GTR和MOSFET的优点,因而具有良好的特性。
关断原理:IGBT是一种压控器件。其C-E间主电流的通断是由栅极和射极间的电压 uGE的高低决定的。 E极为公共端。 IGBT优点:开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低, 输入阻抗高,为电压驱动,驱动功率小;缺点:开关速度低于电力MOSFET,电压, 电流容量不及GTO
3.电力场效应管绝缘栅型中的MOS型 (Metal Oxide Semiconductor FET)
关断原理:以G-S间施加电压的高低来控制D-S间主电流的通断。源极S为公共端。 门极几乎不取用电流,属压控器件。uGS正电压超过开启电压时导通,负电压作 用可使其快速关断。 优点:开关频率最高;驱动电流小,易驱动;通态电阻具有正温度系数(有利于器件 并联均流);缺点:电压电流容量较小;通态压降较大,ID大则压降随之增大。

《电子技术基础》22.§6—1 晶闸管(结构、符号、特性、参数、型号)

《电子技术基础》22.§6—1 晶闸管(结构、符号、特性、参数、型号)

广东省机械技工学校文化理论课教案首页7.5.1-10-j-01 科目电子技术基础授课日期10高汽修3班:10中汽修8班:10中制冷1班:课时2课题第六章晶闸管及其应用电路§6—1 晶闸管一、晶闸管的结构符号二、晶闸管的工作特性三、晶闸管的参数四、晶闸管的型号班级10高汽修3班10中汽修8班10中制冷1班教学目的使学生懂得1.晶闸管的结构符号;2. 晶闸管的工作特性;3. 晶闸管的参数4. 晶闸管的型号识读选用教具挂图重点1. 晶闸管的结构符号;2. 晶闸管的工作特性;难点晶闸管的结构、工作特性教学回顾稳压电路说明审阅签名:年月日【组织教】1. 起立,师生互相问好,营造良好的课堂氛围2. 坐下,清点人数,指出和纠正存在问题 【导入新课】1. 教学回顾:稳压电路2. 切入新课:前面我们学习的二极管整流,现在,我们就来学习有关的知识。

【讲授新课】第六章 晶闸管及其应用电路 §6—1 晶闸管晶闸管是硅晶体闸流管的简称,原名为可控硅整流器,也叫可控硅(S ilicon C ontrolled R ectifier )其特点是:体积小、重量轻、无噪声、寿命长、 容量大(正向平均电流达千安、正向耐压达数千伏),使半导体从弱电进入强电领域。

晶闸管主要用于整流、逆变、调压、开关四个方面。

晶闸管可分下列种类:本书介绍单向晶闸管,也就是人们常说的普通晶闸管。

一、单向晶闸管的结构、符号单向晶闸管由四层半导体材料组成的,有三个PN 结,对外有三个电极:第一层P 型半导体引出的电极叫阳极A (anode ),第三层P 型半导体引出的电极叫控制极G (gate pole ),第四层N 型半导体引出的电极叫阴极K (kathode )。

晶闸管有螺旋型和平板型等几种。

单向晶闸管和二极管一样是一种单向导电的器件,关键是多了一个控制极G ,这就使它具有与二极管完全不同的工作特性。

晶闸管的文字符号为“V ”。

普通晶闸管外形、结构和符号见图6—1。

晶闸管

晶闸管
晶闸管
2012.12.10
• • • • • • • •
1.单向晶闸管 2.部分单向晶闸管主要参数 3.双向晶闸管 4.晶闸管触发电路 5.晶闸管应用型电路 6.可关断晶闸管 7.晶闸管模块 8.晶闸管的选用
• 晶闸管(Thyristor)是晶体闸流管的简称,又可 称做可控硅整流器,以前被简称为可控硅;1957 年美国通用电器公司开发出世界上第一款晶闸管 产品,并于1958年将其商业化;晶闸管有3个PN 结,四层半导体结构,它有三个极:阳极,阴极 和门极; 晶闸管具有硅整流器件的特性,能在高 电压、大电流条件下工作,且其工作过程可以控 制、被广泛应用于可控整流、交流调压、无触点 电子开关、逆变及变频等电子电路中。
TLC系列双向晶闸管主要特性参数
晶闸管触发电路
• 单结半导体管振荡电路及波形
单结半导体触发电路
• 有电压控制移相的 触发电路
互补振荡触发电路
氖灯触发晶闸管调压
双向二极管触发电路
晶闸管应用典型电路
单相桥式晶闸管 整流电路 三相桥式晶闸管整 流电路
直流无触点开关电路 交流无触点开关电路
• 单向晶闸管调压电路 双向晶闸管调光台灯电路
小功率可关断晶闸管关断 能力检查法
双向晶闸管测试方法
Thanks!!!
可关断晶闸管主要特性参数
• 开关控制电路
直流开关电路
晶闸管模块
晶闸管模块外形
一些晶闸管主要特性参数
晶闸管的选用
• 单向晶闸管的检测 • 量 晶闸管 导通特性测
• 单向晶闸管的检测 • 将万用表置于RX100或1K档,测量晶闸管任意两 脚间的正,反向电阻,若测得结果无穷大,则被 测得两脚为阳极至阴极,另外一脚为控制级,然 后用万用表负表笔接控制极,用正表笔分别碰接 另外两个电极测量电阻,电阻小的为阴极,电阻 大的为阳极。 双向晶闸管的检测 • 将万用表置于RX1档,测量双向晶闸管任意两脚 间的阻值,如果测出某脚和其他两脚之间的电阻 为无穷大。则该脚为T2极,确定T2极之后,可假 定其余两脚中某一脚为T1电极,另一脚为G极, 然后采用触发导通测试方法确定假定电极的正确 性。

几种特殊的晶闸管介绍

几种特殊的晶闸管介绍

几种特殊的晶闸管介绍1.门极双极型晶闸管(GTO)门极双极型晶闸管(Gate Turn-Off Thyristor,简称GTO)是晶闸管的一种特殊类型。

与常规晶闸管相比,GTO具有双向导通的能力,即它可以在正向和反向方向上都能够导通电流。

此外,GTO还具有一种特殊的控制功能,即在适当的条件下,可以通过施加一个反向偏置电压来关闭晶闸管。

这使得GTO可以实现更可靠且更精确的控制。

GTO的一个重要应用是在交流电动机驱动系统中。

由于GTO具有双向导通和可控关断功能,它可以在交流电源和电动机之间启动和停止电流。

此外,GTO还能够提供变频控制,使电动机能够在不同的速度和转矩下运行。

2.绝缘栅双极型晶闸管(IGBT)绝缘栅双极型晶闸管(Insulated Gate Bipolar Transistor,简称IGBT)是一种混合型的半导体器件。

它结合了MOSFET的高输入阻抗和GTO的双向导通能力。

与常规晶闸管相比,IGBT具有更低的功率损耗和更好的开关特性。

IGBT的一个重要应用是在变频驱动系统中。

由于它具有MOSFET的高性能和GTO的高电压和电流能力,IGBT可以同时提供快速开关速度和高电压承受能力。

这使得它成为电动机驱动、电源变换和逆变器等高性能应用的理想选择。

3.双极型晶闸管(BTS)双极型晶闸管(Bilateral Thyristor Switch,简称BTS)是一种双端可控的晶闸管。

与常规晶闸管相比,BTS具有双向导通能力,即能在正向和反向方向上都能够导通电流。

它还具有可控的导通和关断功能。

BTS的一个重要应用是在直流电源系统中。

由于它具有双向导通和可控关断功能,BTS可以用于直流电源的开关和控制,实现电流的快速切换和更精确的控制。

综上所述,门极双极型晶闸管(GTO)、绝缘栅双极型晶闸管(IGBT)和双极型晶闸管(BTS)是三种特殊的晶闸管类型。

它们分别具有双向导通能力、更精确的控制和更低的功耗等优点,适用于不同的应用领域,如交流电动机驱动、变频驱动和直流电源系统。

双向晶闸管的作用

双向晶闸管的作用

双向晶闸管的作用双向晶闸管(Bilateral Triode Thyristor,简称BTT)是一种特殊类型的晶闸管,它具有双向导通的特性,能够同时在正向和反向导通电流。

双向晶闸管在电子器件中起着重要的作用,它在电力控制、电流保护、电压变换等领域都有广泛的应用。

本文将对双向晶闸管的作用进行讨论。

双向晶闸管的主要作用之一是电力控制。

它能够实现对交流电的控制,通过控制晶闸管的触发角,可以改变电流的导通时间,从而调整负载电流的大小。

这使得双向晶闸管成为交流电调光、电子变压器、温度控制器等电力控制装置的关键元件。

例如,在交流调光系统中,双向晶闸管可以根据调光信号的强弱来控制灯光的明暗程度,实现灯光的调节。

双向晶闸管的电力控制作用使得我们可以方便地控制交流电的大小和形状,提高了电力系统的灵活性和效率。

双向晶闸管还有一个重要的作用是电流保护。

在电力系统中,电流的过大或过小都可能对设备和电路造成损害,甚至引发事故。

双向晶闸管可以通过监测电流的大小来实现过电流保护。

当电流超过设定值时,双向晶闸管会自动断开电路,以保护设备的安全运行。

例如,在电力系统中,如果电流突然增大,双向晶闸管可以快速反应并切断电路,避免过电流对设备和线路造成损坏。

双向晶闸管的电流保护作用可以有效地保护电力设备和电路的安全运行。

双向晶闸管还可以实现电压变换的作用。

在电力系统中,有时需要将交流电的电压从一个值变换到另一个值。

双向晶闸管可以通过控制导通的时间来实现电压的变换。

当双向晶闸管导通时,电压通过电源和负载,实现电压的变换。

例如,在交流变压器中,通过控制双向晶闸管的导通时间,可以实现输入电压和输出电压的变换。

双向晶闸管的电压变换作用使得我们可以方便地实现交流电压的变换,满足不同电器设备的需求。

除了以上的作用,双向晶闸管还可以用于电压调节、电流补偿、电压逆变等领域。

它的双向导通特性使得其在交流电路中具有独特的应用优势。

双向晶闸管广泛应用于家用电器、电力设备、电子仪器等领域,为我们的生活和工作提供了便利。

晶闸管

晶闸管

晶闸管一、可控硅的概念和结构?一种以硅单晶为基本材料的P1N1P2N2四层三端器件,创制于1957年,由于它特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称可控硅T。

又由于可控硅最初应用于可控整流方面所以又称为硅可控整流元件,简称为可控硅SCR。

在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称“死硅”)更为可贵的可控性。

它只有导通和关断两种状态。

可控硅能以毫安级电流控制大功率的机电设备,如果超过此频率,因元件开关损耗显著增加,允许通过的平均电流相降低,此时,标称电流应降级使用。

可控硅的优点很多,例如:以小功率控制大功率,功率放大倍数高达几十万倍;反应极快,在微秒级内开通、关断;无触点运行,无火花、无噪音;效率高,成本低等等。

可控硅的弱点:静态及动态的过载能力较差;容易受干扰而误导通。

可控硅从外形上分类主要有:螺栓形、平板形和平底形。

1、可控硅元件的结构:不管可控硅的外形如何,它们的管芯都是由P型硅和N型硅组成的四层P1N1P2N2结构。

见图1。

它有三个PN结(J1、J2、J3),从J1结构的P1层引出阳极A,从N2层引出阴级K,从P2层引出控制极G,所以它是一种四层三端的半导体器件。

2、工作原理可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示当阳极A加上正向电压时,BG1和BG2管均处于放大状态。

此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。

因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。

此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。

这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。

由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。

晶闸管的结构与工作原理

晶闸管的结构与工作原理

晶闸管的结构与工作原理晶闸管是一种电子元器件,其工作原理基于半导体材料中正负载流子的反复注入和浓缩。

晶闸管具有低损耗,高可靠性和耐受高电压和电流的特点,常用于电力电子设备和自动化控制系统中。

在本文中,我们将讨论晶闸管的结构和工作原理。

一、晶闸管的结构下面是晶闸管的主要结构:1. P型硅基板:晶片的底部是由P型硅基板组成的,其中注入了氧化物层(SiO2层)。

2. N型漂浮区:晶片的顶部是由N型漂浮区域组成的,其厚度通常约为几微米。

3. P型区:在N型区域下面,有一小块P型电极区,通常称为阳极。

在晶片上另一端同样有一块P型区,通常称为阴极。

4. 金属接触层:阳极和阴极上方均有金属接触层,以便在晶体中注入电流。

5. 控制极:在P型区和N型漂浮区中间的区域上有一个控制极,通常称为门极。

门极是一个金属电极,可以通过它来控制晶闸管的通电和断电状态。

晶闸管的主体是一个单结结构,由两个异种半导体材料组成,具有PN结的特征。

二、晶闸管的工作原理晶闸管的工作原理主要涉及PN结中存储的大量载流子的控制。

下面是晶闸管的工作原理:1. 断电状态:当晶闸管处于正常的断电状态时,P型区和N型区之间的PN结是不导电的。

此时在晶闸管两端施加的电压低于其绝缘强度,没有足够的电子跨越PN结进入N型区域,也没有足够的空穴跨越PN结进入P型区域。

2. 触发状态:通过控制极施加一个短的脉冲电压,可以注入到N型区的少量电子,这些电子在PN结中的重复撞击产生更多的电子,这些电子在N型区域和P型区域传播,直到引起晶闸管的完全导通。

在完全导通状态下,PN结两侧形成了大量的少数载流子,这些载流子可以像导体一样流动并在晶闸管中形成一个低阻通路。

3. 导通状态:在晶闸管的导通状态下,当控制极不再施加脉冲电压时,晶体仍继续处于导通状态,并且只有在PN结两端电流降为零时才能停止导通。

因此,在应用中可以通过控制电流的大小和时间来控制晶闸管的导通状态,从而实现所需的电路控制。

gto工作原理

gto工作原理

gto工作原理GTO(Gate Turn-Off Thyristor)是一种特殊类型的晶闸管,它具有可控性和可关断性能。

GTO主要应用于大功率、高频率的交流电力系统中,例如电力传输、电动机控制、电力变频调速等领域。

GTO的工作原理可以简单地分为导通状态和关断状态两种情况。

在导通状态下,当GTO的阳极加上正向电压,而控制电压加上一个脉冲触发信号时,GTO将开始导通。

此时,GTO的结构中的NPNP四层结构中的P层被激发,使得电流可以从阳极流向阴极,GTO处于导通状态。

而在关断状态下,当GTO的阳极加上反向电压或控制电压不再加上触发信号时,GTO将开始关断。

此时,GTO的结构中的P层被加强,使得电流无法从阳极流向阴极,GTO处于关断状态。

GTO的工作原理可以通过控制触发信号和正/反向电压来实现对其导通和关断状态的控制。

通过合理地控制触发信号的脉冲宽度和频率,可以实现对GTO的导通时间和导通电流的控制。

同时,通过合理地控制正/反向电压的大小和变化率,可以实现对GTO的关断时间和关断电压的控制。

这种可控性和可关断性是GTO相比于普通晶闸管的独特优势,使得其在高功率、高频率的交流电力系统中有着广泛的应用前景。

除了可控性和可关断性之外,GTO还具有低导通压降、高导通电流、快速关断速度等特点。

这些特点使得GTO在电力传输、电动机控制、电力变频调速等领域具有得天独厚的优势。

例如,在电力传输系统中,GTO可以实现对输电线路的高效控制,提高输电效率;在电动机控制系统中,GTO可以实现对电动机的精准调速,提高工作效率;在电力变频调速系统中,GTO可以实现对电力频率的精准调整,提高设备的稳定性。

总之,GTO作为一种特殊类型的晶闸管,具有可控性和可关断性能,其工作原理主要通过控制触发信号和正/反向电压来实现。

GTO具有低导通压降、高导通电流、快速关断速度等特点,广泛应用于电力传输、电动机控制、电力变频调速等领域,具有巨大的市场潜力和发展前景。

晶闸管主要产品类型分析 (一)

晶闸管主要产品类型分析 (一)

晶闸管主要产品类型分析 (一)晶闸管是一种高性能的电子器件,主要用于变频控制、电磁启动、直流调速、电能贮存等领域,因其高效、高稳定性、高可靠性等特点被广泛应用。

晶闸管主要产品类型有以下几种:1.单相晶闸管:单相晶闸管是一种晶闸管,通常由一个晶体管和一个控制电极组成。

单相晶闸管可以实现电源的单相变频控制,广泛应用于家庭电器、交通信号灯等领域。

2. 三相晶闸管:三相晶闸管是一种高性能电子器件,主要用于高功率变频控制系统。

三相晶闸管可实现三相电源的电压变换,有较高的性能和可靠性,被广泛应用于电力电子行业中。

3. GTO晶闸管:GTO晶闸管是一种先进的高功率晶闸管,具有高效、快速、可靠等特点。

GTO晶闸管能够实现高功率电源的变频调速、电流控制等功能,成为现代高科技领域的重要器件之一。

4. IGBT晶闸管:IGBT晶闸管是一种晶闸管,具有高效、快速、可靠等特点。

IGBT晶闸管可以实现电源的高效变频控制,被广泛应用于变频调速、电力传动、电动机控制等领域。

5. 反向导通晶闸管:反向导通晶闸管是一种高性能电子器件,主要用于变频控制、电动机控制、电力驱动等领域。

反向导通晶闸管由一个晶体管和一个反向两极管组成,具有高电流密度、高速度、高功率等特点。

6. 模块化晶闸管:模块化晶闸管是一种晶闸管模块,由多个晶闸管、二极管、散热器等组成,具有高效、快速、可靠等特点。

模块化晶闸管广泛应用于电力电子行业中,能够实现高功率电源的变频调速、电流控制等功能。

以上就是晶闸管的主要产品类型分析,不同类型的晶闸管有着不同的应用场景和优缺点,选用时需要根据具体的需求及领域来进行选择。

双向晶闸管的主要参数

双向晶闸管的主要参数

双向晶闸管的主要参数双向晶闸管(Bilateral SCR)是一种特殊的晶体管,具有双向导电特性。

它是一种具有控制启动能力的半导体开关,常用于交流电路中。

双向晶闸管具有多个主要参数,其中包括额定电压、额定电流、触发电流、触发电压、封装形式等。

额定电压是指双向晶闸管所能承受的最高电压。

在选择双向晶闸管时,应根据电路所需的电压范围来选择合适的额定电压。

如果电压超过了额定电压,双向晶闸管可能会被击穿而损坏。

额定电流是指双向晶闸管所能承受的最大电流。

在设计电路时,需要根据电路的负载要求选择合适的额定电流。

如果电流超过了额定电流,双向晶闸管可能会发生过载而失效。

触发电流是指使双向晶闸管进入导通状态所需的最小电流。

只有当电流超过了触发电流时,双向晶闸管才会开始导通。

触发电流的大小取决于双向晶闸管的内部结构和材料,不同型号的双向晶闸管具有不同的触发电流。

触发电压是指使双向晶闸管进入导通状态所需的最小电压。

只有当电压超过了触发电压时,双向晶闸管才会开始导通。

触发电压的大小也取决于双向晶闸管的内部结构和材料,不同型号的双向晶闸管具有不同的触发电压。

封装形式是指双向晶闸管的外观和尺寸。

双向晶闸管通常采用塑料封装或金属封装,不同封装形式适用于不同的应用场合。

常见的封装形式有TO-92、TO-220、TO-252等。

除了以上主要参数外,双向晶闸管还具有一些其他的参数,如耐压能力、导通压降、关断能力等。

耐压能力是指双向晶闸管能够承受的最大电压。

导通压降是指当双向晶闸管导通时,在其两个电极之间的电压降。

关断能力是指双向晶闸管在关断状态下所能承受的最大电流。

双向晶闸管是一种重要的半导体器件,具有双向导电特性。

通过控制触发电流和触发电压,可以实现对交流电的控制。

在选择双向晶闸管时,需要考虑其主要参数,如额定电压、额定电流、触发电流、触发电压和封装形式等。

这些参数的选择应根据具体的应用需求和电路要求进行合理搭配,以确保电路的稳定运行和安全可靠。

GTO和普通晶闸管同为PNPN结构,为什么GTO能够自关断,而普通晶闸管不能?

GTO和普通晶闸管同为PNPN结构,为什么GTO能够自关断,而普通晶闸管不能?

GTO和普通晶闸管同为PNPN结构,为什么GTO能够自关断,而普通晶闸管不能?
GTO(Gate Turn-Off thyristor)与普通晶闸管相比,在结构和工作原理上有一些重要的区别,这使得GTO能够自关断,而普通晶闸管不能。

以下是GTO和普通晶闸管之间的主要区别:
1.构造和设计:GTO具有特殊的设计和结构。

它包括额外的
增加极(加增极),这是与普通晶闸管最大的区别之一。

增加极在GTO的结构中起到了重要的作用,它可以实现对
GTO的关断控制。

2.增加极控制机制:GTO的增加极可以通过一个外部控制脉
冲(负电平)使其导通。

这个控制脉冲会改变GTO的极化
状态,从而将其导通。

当增加极导通时,GTO的主结
(PNPN结)上的正向电流开始增加,导致GTO导通。

3.关断机制:待关断时,GTO的门极上施加一个适当的正向
脉冲,这将使增加极处于截止状态,从而断开GTO的导通。

这是GTO的关键特性,使其能够实现自关断。

4.过零电流操作:在合适的应用条件下,当GTO的主结上的
电流降低到零时,GTO将自动进入关断状态。

这是因为在
主结电流过零的时刻,PNPN结的自我恢复能力使GTO能
够迅速关断。

总之,GTO与普通晶闸管相比,具有特殊的结构设计和增加极
控制机制。

增加极的引入使GTO能够自关断,而普通晶闸管没有这个功能。

这使得GTO在高功率应用和需要频繁关断的场合中更具优势。

晶闸管的结构与工作原理

晶闸管的结构与工作原理

晶闸管的结构与工作原理晶闸管(Thyristor),又称为双极型晶体管,是一种半导体器件,具有可控的开关特性。

它广泛应用于电力电子设备、变流器、电机驱动器等领域。

本文将详细介绍晶闸管的结构和工作原理。

一、晶闸管的结构晶闸管由四个半导体层组成,分别是P型半导体(阳极)、N型半导体、P型半导体(门极)和N型半导体。

整个结构组成了一个PNPN的结构,类似于一个双极型晶体管,但晶闸管比双极型晶体管多了一个所有电流都能通过的门极。

在晶闸管结构中,阳极和门极是两个主要的电极。

阳极承受电流,而门极用于控制晶闸管的导通和关断。

在正常工作状态下,阳极上的电压高于门极,晶闸管处于关断状态。

只有当门极施加一个合适的触发脉冲时,晶闸管才能实现导通,形成通路,电流开始流动。

晶闸管还具有反并联二极管,它被连接在晶闸管的两个半导体层之间。

它的作用是提供反向偏置,以避免晶闸管在关断状态下被击穿。

同时,反并联二极管还能够保护晶闸管免受反向电压的损害。

二、晶闸管的工作原理晶闸管的工作原理可以分为三个阶段:关断状态、触发状态和导通状态。

1. 关断状态:在关断状态时,门极的控制电压低于晶闸管的临界触发电压。

此时,PNPN结构的两个PN结正向偏置,形成一个高反向电压,导致整个结构处于关断状态。

晶闸管的主要特点是具有很高的绝缘能力,能够承受很高的反向电压。

2. 触发状态:当门极施加一个合适的触发脉冲时,晶闸管就会从关断状态切换到触发状态。

触发脉冲使得PN结发生反向电流扩散,导致PN结正向偏置被打破。

一旦PN结正向偏置被打破,PNPN结构中的第一个PN结就会形成一个电流驱动器,使得整个结构逐渐变得导电。

3. 导通状态:在晶闸管进入导通状态后,发生一种被称为“自持现象”的反馈作用。

即使移除控制电压,晶闸管也会保持导通状态,直到通过它的电流下降到一个非常低的水平。

此时,晶闸管具有很低的压降和很高的电流承受能力,使其能够在高功率电子设备中广泛应用。

几种特殊的晶闸管介绍

几种特殊的晶闸管介绍

几种特殊的晶闸管介绍晶闸管是一种电子器件,常用于控制交流电谷值以上的电流,也被称为可控硅或二极晶闸管。

在普通的直流控制电路中,晶闸管工作得很好,但在噪声和电磁干扰的严重环境下,最好使用一些特殊的晶闸管。

1. 反并连通晶闸管反并联通晶闸管(Reverse Parallel Thyristor,RPT)是一种特殊的晶闸管,由两个晶闸管反向并联而成。

这种晶闸管的引出端在正向电压下的电阻很低,同时在反向电压下则会被击穿,变成高阻态。

反并连通晶闸管广泛应用于交流电控制装置,可以通过其引出端对交流负载进行可控的加工和开关,具有很高的稳定性和可靠性。

此外,这种晶闸管还有较高的速度,使其能够对快速变化的电压响应。

2. 闸流触发二极管闸流触发二极管(Gated Current Triggered Diode,GCT)也被称为双读指挥者(Bidirectional Reading Conductor,BRC)。

它和其他晶闸管不同在于,它是一种由三个PN结组成的二极管结构。

这个结构允许该晶闸管能够双向导通,并且还允许它通过其控制端被“打开”或浪费让其导通。

闸流触发二极管能够在回路中起到保护电路的作用,并且承载着不同电源的电流量。

这种晶闸管无需连续电流触发即可控制,其独特的设计还使它能够在工作时具有很高的速度和控制精度,在很多交流电控制电路中得到了广泛的应用。

3. 光闸晶闸管光闸晶闸管是一种采用光耦合器来触发的晶闸管,它通过发射的光线信号从LED到光敏传感器中的光触发电路来控制电流的导通。

这样的方案使其能够在高噪声和高频率环境下运行,并有望克服由于电磁干扰引起的异常工作。

光闸晶闸管应用领域广泛,特别是在电力电路中。

它的响应速度很快,而且能够在非对称、多级、复合及混和触发方式中选择,进一步改善了适应性和广泛性。

以上三种晶闸管都是在特定情况下需要使用的,它们在电路中有丰富的应用。

在控制负载,对于电磁干扰抵抗,以及在高频率环境下工作时,这些晶闸管都表现出了其优异的特性。

几种特殊的晶闸管介绍

几种特殊的晶闸管介绍

特殊的晶闸管双向晶闸管TRIAC:TRIode AC semiconductor switch双向可控硅为什么称为“TRIAC”?三端:TRIode(取前三个字母)交流半导体开关:ACsemiconductor switch(取前两个字母)以上两组名词组合成“TRIAC”中文译意“三端双向可控硅开关”。

由此可见“TRIAC”是双向可控硅的统称。

双向:Bi-directional(取第一个字母)控制:Controlled(取第一个字母)整流器:Rectifier(取第一个字母)再由这三组英文名词的首个字母组合而成:“BCR”中文译意:双向可控硅。

以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM等等。

双向:Bi-directional(取第一个字母)三端:Triode(取第一个字母)由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philips公司,均以此来命名双向可控硅。

代表型号如:PHILIPS的BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、等等。

这些都是四象限/非绝缘型/双向可控硅;Philips公司的产品型号前缀为“BTA”字头的,通常是指三象限的双向可控硅。

而意法ST公司,则以“BT”字母为前缀来命名元件的型号并且在“BT”后加“A”或“B”来表示绝缘与非绝缘组合成:“BTA”、“BTB”系列的双向可控硅型号,如:三象限/绝缘型/双向可控硅:BTA06-600C、BTA12-600B、BTA16-600B、BTA41-600B等等;四象限/非绝缘/双向可控硅:BTB06-600C、BTB12-600B、BTB16-600B、BTB41-600B等等;ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。

电力电子半导体器件3(SCR)

电力电子半导体器件3(SCR)

(三)特征参数 ①伏安特征
②换向特征:
两个反并旳晶闸管导通、关断相互影响——换向问题。
换向能力是晶闸管旳一种特有参数,用换向电流临界下降率
来表达(di/dt)c,为可靠运营,要求双向晶闸管有很强旳换向 能力。原则将(di/dt)c分为0.2、0.5、1、2四个等级。 如:200A旳器件, 0.2级为(di/dt)c=200× 0.2%= 0.4A/us ③额定通态方均根电流:I T(RMS)
4.触发脉冲宽度与陡度 ①触发脉冲宽度应确保SCR阳极电流在脉冲消失前到达擎住电流。
——最小宽度。脉冲宽度与负载性质及主电路形式有关 如:单相整流,电阻性负载,宽度不小于10us
电感性负载,宽度不小于100us 三相全控桥式电路,单脉冲触发时,脉宽600—1200
双脉冲触发时,脉宽100左右。 ②前沿越陡,有利于开通,对并联、串联SCR同步触发越有利。
因为双向晶闸管工作在交流回路中,用方均根(有效值)来 表征额定电流。定义:在原则散热条件下,导通角不不大于1700, 允许流过器件旳最大交流正弦电流旳方均根值。
方均根电流与与一般SCR平均值电流之间换算关系:
国产双向晶闸管:KS系列
三、逆导晶闸管
前面旳SCR为逆阻型器件,反向高阻特征,正向可控导通。
2.正向电流越大,关断时间toff越长;外加反向电压越高,反 向电流越大,关断时间可缩短;结温越高,关断时间越长。
3.关断时,过早施加正向电压,会引起误导通。
三、参数
(一)电压参数
1.断态不反复峰值电压VDSM 门极开路,加在SCR阳极正向电压上升到正向伏安特征曲线
急剧弯曲处所相应旳电压值。不能反复,每次连续时间不不小 于10ms旳脉冲电压。(转折电压,不不小于VBO) 2.断态反复峰值电压VDRM

晶闸管的类型

晶闸管的类型

晶闸管的类型晶闸管是一种常见的电子元件,广泛应用于电力电子领域。

根据其结构和特性的不同,晶闸管可以分为多种类型,包括双向晶闸管、三层结构晶闸管、反并晶闸管和光控晶闸管等。

本文将分别介绍这些晶闸管的类型和特点。

一、双向晶闸管双向晶闸管是一种具有双向导电能力的晶闸管。

它可以实现正向和反向的控制,广泛用于交流电路的控制。

双向晶闸管具有低通态压降、高耐压能力和可控性强的特点,可以实现有效的电能控制和调节。

二、三层结构晶闸管三层结构晶闸管是一种具有三个P-N结的双向可控晶闸管。

它采用了特殊的结构设计,具有较高的电压和电流承受能力。

三层结构晶闸管的主要特点是可控性强、可靠性高和损耗小,广泛应用于高压大电流的场合,如电力系统中的变频调速、电力传输和电力控制等领域。

三、反并晶闸管反并晶闸管是一种具有反向导电能力的晶闸管。

它采用了特殊的结构和材料设计,可以实现反向的电流控制。

反并晶闸管具有低功耗、高可靠性和快速开关速度的特点,适用于高频开关电路和功率电子应用。

四、光控晶闸管光控晶闸管是一种通过光控制电流的晶闸管。

它利用光敏电阻或光电二极管作为输入电路,通过光信号控制晶闸管的导电能力。

光控晶闸管具有响应速度快、可靠性高和工作稳定的特点,广泛应用于光控开关、光控调光和光控电源等领域。

不同类型的晶闸管在电子领域有着不同的应用。

双向晶闸管常用于交流电路的控制,如交流调光、交流电机控制等。

三层结构晶闸管适用于高压大电流的场合,如电力系统中的变频调速和电力传输等。

反并晶闸管主要用于高频开关电路和功率电子应用,如电力逆变器和电力变换器。

光控晶闸管则广泛应用于光控开关、光控调光和光控电源等领域。

晶闸管是一种重要的电子元件,不同类型的晶闸管具有不同的特点和应用。

通过合理选择和应用晶闸管,可以实现对电能的有效控制和调节,推动电力电子技术的发展和应用。

晶闸管的类型及应用

晶闸管的类型及应用

晶闸管的类型及应用晶闸管(Thyristor)是一种半导体器件,是由四个层状结构的PNPN结构组成的,其中两个PN结为控制极,另外两个PN结为输出极。

常见的晶闸管有三个主要类型,分别为可控硅(SCR)、双向可控硅(Triac)和反向可控三极晶闸管(RCT)。

可控硅(SCR)是晶闸管的一种常见类型,它只允许电流在一个方向上流动。

当控制极施加一个正脉冲时,SCR被打开并允许电流通过,直到电流降至零或检测到负脉冲为止。

SCR具有非常高的电流承载能力和耐压能力,因此在高功率控制和电力系统应用中被广泛使用。

它们常用于电机调速、电压调节、充电电路等领域。

双向可控硅(Triac)是一种双向可控晶闸管,它可以在电流的正半周期和负半周期中都可以导通。

Triac可以用来控制交流电设备的功率,如调光器、热控器、电动工具等。

由于Triac具有双向导通性,它也可以用于交流电的改变相位控制。

反向可控三极晶闸管(RCT)是一种在一定的工作原理下使用的特殊晶闸管,它具有单向导通的特性。

在电流正半周期时,RCT工作状态与普通SCR相同,但在电流负半周期时,它会停止导通。

因此,RCT通常用于需要有选择地控制交流电流的电路,如液压泵控制、交流电弧焊机等。

晶闸管是半导体器件的一种,优点包括可靠性高、寿命长、易于控制,并且可承受高电流和高压。

因此,晶闸管在许多应用中都发挥了重要作用。

首先,晶闸管常用于交流电控制。

例如,通过对晶闸管的触发电压和触发角进行调整,可以精确地控制交流电的导通时间,从而实现交流电的调光、温度控制等功能。

其次,晶闸管广泛应用于电机控制。

通过晶闸管,可以实现电动机的调速和反转控制。

这在许多工业和家用设备中都有应用,如风扇、空调、洗衣机等。

此外,晶闸管还常用于直流变交流的逆变电路中。

逆变器将直流电转换为交流电,使得直流电源可以用于交流设备。

晶闸管的可控性和高电流承载能力使其成为逆变器的关键组件之一。

除此之外,晶闸管还有一些特殊应用。

常见晶闸管的原理与运用

常见晶闸管的原理与运用

(一)普通晶闸管普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。

普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。

当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G 所加电压是什么极性,晶闸管均处于阻断状态。

当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。

此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K 极之间压降约为1V。

普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K 之间仍保持正向电压,晶闸管将维持低阻导通状态。

只有把阳极A电压撤除或阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。

普通晶闸管一旦阻断,即使其阳极A与阴极K之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。

普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。

(二)双向晶闸管双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。

图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。

双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。

图8-8是其触发状态。

当门极G和主电极T2相对于主电极T1的电压为正(V T2>V T1、V G>V T1)或门极G和主电极T1相对于主电极T2的电压为负(V T1<V T2、V G<V T2)时,晶闸管的导通方向为T2→T1此时T2为阳极,T1为阴极。

双向晶闸管的原理及应用

双向晶闸管的原理及应用

双向晶闸管的原理及应用1. 双向晶闸管的基本原理双向晶闸管(Bidirectional Thyristor),也称为TRIAC,是一种特殊类型的晶闸管。

它可以在正向和反向的电压下都能控制电流的导通和截止,因此可以实现双向的电流控制。

双向晶闸管由两个PN结反并联的晶闸管组成,其中一个被称为主晶闸管(MT1和MT2),另一个被称为辅助晶闸管(G和A1)。

辅助晶闸管通过控制主晶闸管的电流来实现对双向晶闸管的控制。

双向晶闸管的主要特点如下: - 可以控制正向和反向的电流导通和截止。

- 控制电流的方式可以是触发角控制或零点电压触发控制。

- 具有双向导通特性,可以用于交流和直流电路。

- 具有较高的电流和电压承受能力。

- 控制精度高,响应速度快。

2. 双向晶闸管的应用领域双向晶闸管由于其特殊的双向导通特性,在许多领域得到广泛应用。

以下是双向晶闸管的几个主要应用领域:2.1 家用电器双向晶闸管被广泛应用于家用电器,如电磁炉、电热水器、电烤箱等。

在这些设备中,TRIAC被用作控制电源输入的交流电压,从而实现对设备的功率控制。

通过调整触发角,可以控制电磁炉的加热功率、电热水器的水温等。

2.2 照明控制双向晶闸管也被广泛应用于照明控制领域。

通过控制双向晶闸管的触发角,可以实现对照明设备的亮度控制。

例如,通过降低触发角来减小电流导通角度,可以实现灯光的调暗。

2.3 电动工具双向晶闸管在电动工具中也有重要应用。

它们可以实现对电动工具电机的高效控制。

通过调整触发角,可以控制电动工具的转速、扭矩等参数,从而满足不同工作需求。

2.4 电动汽车充电桩双向晶闸管在电动汽车充电桩中被用于交流电源的控制。

它们可以实现对充电桩输出电流的精确控制,确保电动汽车的充电过程安全可靠。

同时,双向晶闸管的双向导通特性可以实现电动汽车的回馈电网功能,将电能从汽车电池反馈到电网中,实现能量的回收利用。

3. 结论双向晶闸管作为一种特殊的晶闸管,具有双向导通特性和高精度的电流控制能力,被广泛应用于家用电器、照明控制、电动工具和电动汽车充电桩等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊的晶闸管双向晶闸管TRIAC:TRIode AC semiconductor switch双向可控硅为什么称为“TRIAC”?三端:TRIode(取前三个字母)交流半导体开关:ACsemiconductor switch(取前两个字母)以上两组名词组合成“TRIAC”中文译意“三端双向可控硅开关”。

由此可见“TRIAC”是双向可控硅的统称。

双向:Bi-directional(取第一个字母)控制:Controlled(取第一个字母)整流器:Rectifier(取第一个字母)再由这三组英文名词的首个字母组合而成:“BCR”中文译意:双向可控硅。

以“BCR”来命名双向可控硅的典型厂家如日本三菱,如:BCR1AM-12、BCR8KM、BCR08AM等等。

双向:Bi-directional(取第一个字母)三端:Triode(取第一个字母)由以上两组单词组合成“BT”,也是对双向可控硅产品的型号命名,典型的生产商如:意法ST公司、荷兰飞利浦-Philips公司,均以此来命名双向可控硅。

代表型号如:PHILIPS的BT131-600D、BT134-600E、BT136-600E、BT138-600E、BT139-600E、等等。

这些都是四象限/非绝缘型/双向可控硅;Philips公司的产品型号前缀为“BTA”字头的,通常是指三象限的双向可控硅。

而意法ST公司,则以“BT”字母为前缀来命名元件的型号并且在“BT”后加“A”或“B”来表示绝缘与非绝缘组合成:“BTA”、“BTB”系列的双向可控硅型号,如:三象限/绝缘型/双向可控硅:BTA06-600C、BTA12-600B、BTA16-600B、BTA41-600B等等;四象限/非绝缘/双向可控硅:BTB06-600C、BTB12-600B、BTB16-600B、BTB41-600B等等;ST公司所有产品型号的后缀字母(型号最后一个字母)带“W”的,均为“三象限双向可控硅”。

如“BW”、“CW”、“SW”、“TW”;代表型号如:BTB12-600BW、BTA26-700CW、BTA08-600SW、、、、等等。

至于型号后缀字母的触发电流,各个厂家的代表含义如下:PHILIPS公司:D=5mA,E=10mA,C=15mA,F=25mA,G=50mA,R=200uA或5mA,型号没有后缀字母之触发电流,通常为25-35mA;PHILIPS公司的触发电流代表字母没有统一的定义,以产品的封装不同而不同。

意法ST公司:TW=5mA,SW=10mA,CW=35mA,BW=50mA,C=25mA,B=50mA,H=15mA,T=15mA,注意:以上触发电流均有一个上下起始误差范围,产品PDF文件中均有详细说明一般分为最小值/典型值/最大值,而非“=”一个参数值从外表上看,双向晶闸管和普通晶闸管很相似,也有三个电极。

但是,它除了其中一个电极G仍叫做控制极外,另外两个电极通常却不再叫做阳极和阴极,而统称为主电极Tl和T2。

它的符号也和普通晶闸管不同,是把两个晶闸管反接在一起画成的,如图2所示。

它的型号,在我国一般用“3CTS”或“KS”表示;国外的资料也有用“TRIAC”来表示的。

从内部结构来看,双向晶闸管是一种N—P—N—P—N型五层结构的半导体器件,见图3(a)。

为了便于说明问题,我们不妨把图3(a)看成是由左右两部分组合而成的,如图3(b)。

这样一来,原来的双向晶闸管就被分解成两个P—N—P—N型结构的单向晶闸管了。

如果把左边从下往上看的p1—N1—P2—N2部分叫做正向的话,那么右边从下往上看的N3—P1—N1—P2部分就成为反向,它们之间正好是一正一反地并联在一起。

我们把这种联接叫做反向并联。

因此,从电路功能上可以把它等效成图3(c),也就是说,一个双向晶闸管在电路中的作用是和两只普通晶闸管反向并联起来等效的。

这也正是双向晶闸管为什么会有双向控制导通特性的根本原因。

双向晶闸管不象普通晶闸管那样,必须在阳极和阴极之间加上正向电压,管子才能导通。

对双向晶闸管来说,无所谓阳极和阴极。

它的任何一个主电极,对图3(b)中的两个晶闸管管子来讲,对一个管子是阳极,对另一个管子就是阴极,反过来也一样。

因此,双向晶闸管无论主电极加上的是正向或是反向电压,它都能被触发导通。

不仅如此,双向晶闸管还有一个重要的特点,这就是:不管触发信号的极性如何,也就是不管所加的触发信号电压UG对T1是正向还是反向,双向晶闸管都能被触发导通。

双向晶闸管的这个特点是普通晶闸管所没有的。

快速晶闸管fast switching thyristor可以在 400Hz以上频率工作的晶闸管。

视电流容量大小,其开通时间为4~8微秒,关断时间为10~60微秒。

主要用于较高频率的整流、斩波、逆变和变频电路。

快速晶闸管是一个PNPN四层三端器件,其符号与普通晶闸管(见逆阻晶闸管)一样,它不仅要有良好的静态特性,尤其要有良好的动态特性。

快速晶闸管的动态参数要求为开通速度和导通扩展速度快,反向恢复电荷少,关断时间短,通态电流临界上升率(dI/dt)及断态电压临界上升率 (dV/dt)高。

通态电流临界上升率是在规定条件下,器件从断态转入通态时,对晶闸管不产生有害影响的最大通态电流上升率;断态电压临界上升率是在规定条件下,器件从断态不致转向通态的最大断态电压上升率。

快速晶闸管在额定频率内其额定电流不随频率的增加而下降或下降很少。

而普通晶闸管在 400Hz以上时,因开关损耗随频率的提高而增大,并且在总损耗中所占比重也增加,所以,其额定电流随频率增加而急速下降。

工作原理快速晶闸管的结构和工作原理与普通晶闸管相同,但在设计与制造中采取了特殊措施以减少开关耗散功率。

通常采用增加门极-阴极周界长度、减薄基区厚度的办法,增加初始导通面积,提高dI/dt耐量和提高扩展速度;采用阴极短路点、非对称结构、掺金、铂或用电子、快中子辐照技术等办法降低少子寿命,提高dV/dt耐量,降低关断时间。

80年代,快速晶闸管已做到通态平均电流1000A,耐压2500V,关断时间30微秒。

一种对工作频率有明确标定的快速晶闸管则称为高频晶闸管(中国型号为KG)。

例如KG50(20kHz),表示该高频管的标称工作频率为20kHz,通态平均电流为50A(20kHz下正弦半波平均电流值)。

80年代中期,中国已能生产KG100(20kHz)和KG200(10kHz),耐压为1~1.2kV的高频晶闸管。

快速晶闸管采取的特殊措施,在一定程度上降低了静态特性(如升高了通态压降),故限制了它直接工作于更高频率的大功率电子设备。

为满足更高频率下工作对晶闸管提出的特殊要求,开发了门极辅助关断晶闸管、可关断晶闸管等。

晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G 和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。

晶闸管的工作条件:1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于关短状态。

2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。

3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。

4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

从晶闸管的内部分析工作过程:晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成两部分,构成一个PNP 型三极管和一个NPN型三极管的复合管图2当晶闸管承受正向阳极电压时,为使晶闸管导通,必须使承受反向电压的PN结J2失去阻挡作用。

图2中每个晶体管的集电极电流同时就是另一个晶体管的基极电流。

因此,两个互相复合的晶体管电路,当有足够的门机电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通,晶体管饱和导通。

设PNP管和NPN管的集电极电流相应为Ic1和Ic2;发射极电流相应为Ia和Ik;电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0,晶闸管的阳极电流等于两管的集电极电流和漏电流的总和:Ia=Ic1+Ic2+Ic0 或Ia=a1Ia+a2Ik+Ic0若门极电流为Ig,则晶闸管阴极电流为Ik=Ia+Ig从而可以得出晶闸管阳极电流为:I=(Ic0+Iga2)/(1-(a1+a2))(1—1)式硅PNP管和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。

当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(1—1)中,Ig=0,(a1+a2)很小,故晶闸管的阳极电流Ia≈Ic0 晶闸关处于正向阻断状态。

当晶闸管在正向阳极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高起点流放大系数a2,产生足够大的极电极电流Ic2流过PNP管的发射结,并提高了PNP管的电流放大系数a1,产生更大的极电极电流Ic1流经NPN管的发射结。

这样强烈的正反馈过程迅速进行。

从图3,当a1和a2随发射极电流增加而(a1+a2)≈1时,式(1—1)中的分母1-(a1+a2)≈0,因此提高了晶闸管的阳极电流Ia.这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定。

晶闸管已处于正向导通状态。

式(1—1)中,在晶闸管导通后,1-(a1+a2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通。

晶闸管在导通后,门极已失去作用。

在晶闸管导通后,如果不断的减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH以下时,由于a1和a1迅速下降,当1-(a1+a2)≈0时,晶闸管恢复阻断状态。

普通可控硅不能在较高的频率下工作。

因为器件的导通或关断需要一定时间,同时阳极电压上升速度太快时,会使元件误导通;阳极电流上升速度太快时,会烧毁元件。

人们在制造工艺和结构上采取了一些改进措施,做出了能适应于高频应用的可控硅,我们将它称为快速可控硅。

它具有以下几个特点。

一、关断时间(toff)短导通的可控硅,当切断正向电流时。

并不能马上“关断”,这时如立即加上正向电压,它还会继续导通。

从切断正向电流直到控制极恢复控制能力需要的时间,叫做关断时间。

用t0仟表示。

可控硅的关断过程,实际上是储存载流子的消失过程。

为了加速这种消失过程,制造快速可控硅时采用了掺金工艺,把金掺到硅中减少基区少数载流子的寿命。

硅中掺金量越多,t0仟越小,但掺金量过多会影响元件的其它性能。

二、导通速度快.能耐较高的电流上升率(dI/dt)控制极触发导通的可控硅。

总是在靠近控制极的阴极区域首先导通,然后逐渐向外扩展,直到整个面积导通。

大面积的可控硅需要50~100微秒以上才能全面积导通。

相关文档
最新文档