八年级上学期数学期末测试卷3

合集下载

江西省南昌市2023-2024学年八年级上学期期末数学试题(含解析)

江西省南昌市2023-2024学年八年级上学期期末数学试题(含解析)

南昌市2023—2024学年度上学期八年级数学学科期末质量评估卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列运算正确的是()A .B .C .D .2.当时,下列二次根式没有意义的是( )ABCD3.某种芯片每个探针单元的面积为,0.00000164用科学记数法可表示为()A .B .C .D .4.如图的数轴上,点A ,C 对应的实数分别为1,3,线段于点A ,且AB 长为1个单位长度,若以点C 为圆心,BC 长为半径的弧交数轴于0和1之间的点P ,则点P 表示的实数为( )A.B C D .5.我国是最早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对《蒋铭祖算经》内的勾股定理作出了详细注释,并给出了另外一个证明,下面四幅图中,不能证明勾股定理的是( )6.小刚在化简时,整式M 看不清楚了,通过查看答案,发现得到的化简结果是,则整式M 是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)7.因式分解:__________.5210x x x⋅=()2346624m n m n -=()326a a -=-440y y ÷=2x =20.00000164cm 61.6410-⨯51.6410-⨯716.410-⨯50.16410-⨯AB AC ⊥3-2-132221a a b M --1a b -1a b+a b +a b -1a b-222ax ay axy ++=8.__________.9.已知实数m 满足,则代数式的值为__________.10.如图,在中,,,,线段BC 的垂直平分线交AC 、BC 于点P 和点Q ,则PA 的长度为__________.11.“孔子周游列国”是流传很广的故事.有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院,设学生步行的速度为每小时x 里,则可列方程为__________.12.如图,在中,,,,动点D 从点A 出发,沿线段AB 以每秒2个单位的速度向B 运动,过点D 作交BC 所在的直线于点F ,连接AF ,CD .设点D 运动时间为t 秒.当是等腰三角形时,则__________秒.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:;(2)解方程:.14.如图是由边长为1个单位长度的小正方形组成的网格,的三个顶点都在格点上.(1)点A 的坐标为__________,点B 的坐标为__________;(2)图中线段BC 的长为__________;(3)的面积为__________;))2023202411+-=210m m --=322023m m -+ABC △90A ∠=︒5BC =3AB =Rt ABC △90ACB ∠=︒16AC =20AB =DF AB ⊥ABF △t =2022021( 3.14)(2)π--+-+-21111x x x +=--ABC △ABC △(4)点P 在y 轴上,且的面积等于的面积,则点P 的坐标为__________.15.先化简:,再从,2,3,4中任选一个数求值.16.如图,图1为的方格,每个小格的顶点叫儌格点,每个小正方形边长为1.(1)图1中正方形ABCD 的面积为__________,边长为__________;(2)①依照图1中的作法,在下面图2的方格中作一个正方形,同时满足下列两个要求:Ⅰ.所作的正方形的顶点,必须在方格的格点上;②请在图217.有一块矩形木板,木工师傅采用如图所示的方式,在木板上截出面积分別为和的两块正方形木板.(1)截出的两块正方形木板的边长分别为__________dm ,__________dm ;(2)求剩余木板的面积;(3)如果木工师傅想从剩余的木板中截出长为1.5dm 、宽为ldm 的矩形木条,最多能截出__________个这样的木条.四、(本大题共3小题,每小题8分,共24分)18.赣江市民公园视野开阔,阻挡物少,成为不少市民放风筝的最佳场所,某校八年级的王明和孙亮两位同学在学习了“勾股定理”之后,为了测得风筝的垂直高度CE ,他们进行了如下操作:①测得BD 的长度为8米;(注:)②根据手中剩余线的长度计算出风筝线BC 的长为17米;③牵线放风筝的王明身高1.6米;ABP △ABC △22141121x x x x -⎛⎫-÷ ⎪--+⎝⎭1x =44⨯218dm 232dm BD CE ⊥(1)求风筝的垂直高度CE :(2)若王明同学想让风筝沿CD 方向下降9米,则他应该往回收线多少米?19.习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1.5万元,用18万元购买甲种农机具的数量和用12万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过72.6万元,则甲种农机具最多能购买多少件?20.课本上,我们利用数形结合思想探索了整式乘法的法则和一些公式.类似地,我们可以探索一些其他的公式.【以形助数】借助一个棱长为a 的大正方体进行以下探索.(1)在其一角截去一个棱长为的小正方体,如图1所示,则得到的几何体的体积为__________.(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,因为,,,所以长方体①的体积为,类似地,长方体②的体积为__________,长方体③的体积为__________;(结果不需要化简)(3)将表示长方体①、②、③的体积的式子相加,并将得到的多项式分解因式,结果为__________.()b b a <BC a =AB a b =-CF b =()ab a b -(4)用不同的方法表示图1中几何体的体积,可以得到的等式为__________.【以数解形】(5)对于任意数a 、b ,运用整式乘法法则证明(4)中得到的等式成立.五、(本大题2小题,共18分)21.已知直线1为长方形ABCD 的对称轴,,,点E 为射线DC 上一个动点,把沿直线AE 折叠,点D 的对应点恰好落在对称轴1上.(1)如图,当点E 在边DC 上时,①填空:点到边AB 的距离是__________;(直接写出结果)②求DE 的长.(2)当点E 在边DC 的延长线上时,(友情提醒:可在备用图上画图分析)①填空:点到边CD 的距离是__________;(直接写出结果)②填空:此时DE 的长为__________.(直接写出结果)22.材料阅读:在分式中,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:,这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:,这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:.类似地,假分式也可以化为“带分式”,即整式与真分式的和的形式,例如:.请根据上述材料,解答下列问题:(1)填空:①分式是__________分式(填“真”或“假”);②把下列假分式化成一个整式与一个真分式的和(差)的形式:__________.5AD =8AB =ADE △D 'D 'D '11x x -+22x x +11x +221x x -832223333⨯+==221(2)11222x x x x x x x x +-+-==-+++()2222(2)244(2)2(2)44222222x x x x x x x x x x x x x x x x +-+--++-++====-++++++22x +2353x x x -+=-(2)把分式化成一个整式与一个真分式的和(差)的形式,并求x 取何整数时,这个分式的值为整数.六、(本大题12分)23.定义:连接三角形的一个顶点和其对边上一点,若所得线段能将该三角形分割成一个等腰三角形和一个直角三角形,则称该线段为原三角形的“妙分线”.(1)如图1,在中,,,D 为垂足,AD 为的“妙分线”.若,则CD 长为__________;(2)如图2,在中,,,D 是CB 延长线上一点,E 为AB 上一点,,连接CE 并延长交AD 于点F ,BH 平分,分别交CF ,AC 于点G ,H ,连接AG .求证:AG 是的“妙分线”;(3)如图3,在中,,AC 为的“妙分线”,直接写出CD 的长.数学学科期末质量评估卷答案一、选择题(本大题共6小题,每小题3分,共18分)1.【解答】解:A .,该选项计算错误,故该选项不符合题意;B .,该选项计算错误,故该选项不符合题意;C .,该选项计算正确,故该选项符合题意;D .,该选项计算错误,故该选项不符合题意;故选:C .2.【解答】解:当,故选项A 、B 、C 不符合题意;没有意义,选项D 符合题意.故选:D .3.【解答】解:,故选:A .22133x x x +--ABC △AB =AD BC ⊥ABC △1BD =ABC △90ABC ∠=︒AB BC =BE BD =ABC ∠AFC △ABC △5AB AC ==BC =BCD △527x x x ⋅=()2346824m nm n -=()326aa -=-441y y ÷=2x ==0=1=32310x -=-=-<60.00000164 1.6410-=⨯4.【解答】解:由题意可得,,,则那么点P 表示的实数为A .5.【解答】D6.【解答】解:化简时,整式M 看不清楚了,通过查看答案,发现得到的化简结果是,,.故选:B .二、填空题(本大题共6小题,每小题3分,共18分)7.【解答】解:,故答案为:.8.【解答】解:原式..9.【解答】解:原式,,,即;,,.10.【解答】解:如图,连接PB ,在中,由勾股定理得,,线段BC 的垂直平分线交AC 、BC 于点P 和点Q ,,设,则,在中,由勾股定理得,,,解得,即.11.【解答】解:设学生步行的速度为每小时x 里,则牛车的速度是每小时1.5x 里,学生早出发1小时,孔子和学生们同时到达书院,,故答案为:.12.【解答】解:在中,,,,90BAC ∠=︒1AB =312AC =-=CB ==3 2221a a b M --1a b -22121221()()()()()()a a a b a a b M a b a b a b a b a b a b a b a b a b+--∴=-=-==--+-+-+-+M a b ∴=+()2222222()ax ay axy a x y xy a x y ++=++=+2()a x y +)))20232023111(21)11⎡⎤=+--=-⋅-=-⎣⎦⋅1()222023m m =-+210m m --= 221m m ∴-=-()222023(1)2023m m m m -+=-+3222023(1)20232023m m m m m m ∴-+=-+=-+21m m -= 322023120232024m m ∴-+=+=Rt ABC △4AC === PC PB ∴=PA x =4PC PB x ==-Rt APB △222PA AB PB +=2223(4)x x ∴+=-78x =78PA = 303011.5x x ∴=+303011.5x x=+Rt ABC △90ACB ∠=︒16AC =20AB =由勾股定理得:,当时,,,;当时,,则,,即,解得:,由勾股定理得:,;当时,,,,由勾股定理得:,,,,,,,综上所述,是等腰三角形时,t 的值为5或或4,故答案为:5或或4.三、解答题(本大题共5小题,每小题6分,共30分)13.【解答】解:(1).【解答】解:(2),,.检验:当时,,,是原方程的解.14.【解答】解:(1)点A 的坐标为,点B 的坐标为;故答案为:,;(2);(3);故答案为:5.5;(4)设,的面积等于的面积,,解得:或,点P 的坐标为或.故答案为:或.15.【解答】解:,,2,取时,原式(或取,原式).16.【解答】解:(1,面积为:,故答案为:10;12BC ===FA FB =DF AB ⊥11201022AD AB ∴==⨯=1025t ∴=÷=20AF AB ==90ACB ∠=︒224BF BC ==1122AB DF BF AC ∴⋅=⋅1120241622DF ⨯⨯=⨯⨯965DF =285AD ===2814255t ∴=÷=20BF AB ==20BF = 12BC =8CF BF BC ∴=-=AF ===BF BA = FD AB ⊥AC BF ⊥16DF AC ∴==8AD ∴===824t ∴=÷=ABF △145145202202111( 3.14)(2)1144π--+-+-=-++=211(1)x x x -+=-+2211x x x -+=--2x =-2x =-210x -≠10x -≠2x ∴=-(3,4)(0,2)(3,4)(0,2)BC ==11143231413 5.5222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△(0,)P m ABP △ABC △1|2|3 5.52m ∴-⨯=173m =53-∴170,3⎛⎫ ⎪⎝⎭50,3⎛⎫- ⎪⎝⎭170,3⎛⎫ ⎪⎝⎭50,3⎛⎫- ⎪⎝⎭222142(1)111211(2)(2)2x x x x x x x x x x x ----⎛⎫-÷=⋅= ⎪--+-+-+⎝⎭1x ≠ ∴3x =312325-==+4x =411422-==+=210=(2)①如图所示的正方形即为所作;②如图2中,正方形EFGH 是所画的面积为8的格点正方形,以点E 为圆心、EF 为半径画弧,交数轴于点P ,则点P.17.【解答】解:(1,故答案为:;(2)根据题意得:矩形的长为,宽为,剩余木料的面积;(3)根据题意得:从剩余的木料的长为,宽为,,能截出块这样的木条.故答案为:2.四、(本大题共3小题,每小题8分,共24分)18.【解答】解:(1)在中,由勾股定理得,,所以,(负值舍去),所以,(米),答:风筝的高度CE 为16.6米;(2)由题意得,米,,(米),(米),他应该往回收线7米.==+=∴(()218326dm =--=-=3 1.5<⨯ 1>∴212⨯=Rt CDB △22222178225CD BC BD =-=-=15CD =15 1.616.6CE CD DE =+=+=9CM =6DM ∴=10BM ∴===17107BC BM ∴-=-=∴19.【解答】解:(1)设乙种农机具一件需x 万元,则甲种农机具一件需万元,根据题意得:,解得:,经检验:是方程的解且符合题意.答:甲种农机具一件需4.5万元,乙种农机具一件需3万元.(2)设甲种农机具最多能购买a 件,则:,解得:,因为a 为正整数,所以甲种农机具最多能购买8件.20.【解答】解:(1)由题意可得:.故答案为:.(2)由题意可得:,,故答案为:,.(3)由题意可得:,故答案为:.(4)根据几何体体积的不同表示方法可得:,故答案为:.(5)右边.右边=左边,对于任意数a 、b ,成立.五、(本大题2小题,共18分)21.【解答】解:设直线l 交CD 于点M ,交AB 于点N ,(1)①如图1,点E 在边DC 上,则点在线段MN 上,四边形ABCD 是矩形,,,,,直线l 是矩形ABCD 的对称轴,,,,,,,由折叠得,,,( 1.5)x +18121.5x x=+3x =3x = 4.53(20)72.6a a +-≤8.4a ≤33a b -33a b -2()b a b -2()a a b -2()b a b -2()a a b -()2222()()()()b a b a a b ab a b a b a ab b -+-+-=-++()22()a b a ab b -++()3322()a b a b a ab b -=-++()3322()a b a b a ab b -=-++ ()2232222333()a b a ab b aa b ab a b abb a b =-++=++---=-∴∴()3322()a b a b a ab b -=-++D ' 5AD =8AB =90D DAB ∴∠=∠=︒8DC AB == l AB ∴⊥l DC ⊥142DM CM DC ===142AN BN AB ===90DMN ANM ∴∠=∠=︒MN AB ⊥D E DE '=5A D AD '==3D N ∴'===点到边AB的距离是3,故答案为:3.②,,,,,,,,解得,的长为.(2)①如图2,点E在边DC的延长线上,则点线段MN的延长线上,,,,,,点到边CD的距离是8,故答案为:8.②,,,,,,解得,故答案为:10.22.【解答】解:(1)①分式中,分子的次数小于分母的次数,分式是真分式;②,故答案为:①真;②;(2),若这个分式的值为整数,则或或或,或或或.六、(本大题12分)23.【解答】(1)解:,,,,,为的“妙分线”,是等腰直角三角形,,故答案为:2;(2)证明:,,,,,,,,是直角三角形,∴D'//DC ABAD AB⊥MN AB⊥5MN AD∴==532D M∴'=-=222EM D M D E+'='4EM DE=-222(4)2DE DE∴-+=52DE=DE∴52D'90AND∠'=︒4AN=5AD'=3D N∴'===538D M∴'=+=∴D'90D ME∠'=︒222EM D M D E∴+'='4EM DE=-8D M'=D E DE'=222(4)8DE DE∴-+=10DE=22x+∴22x+ 235(3)55333x x x xxx x x-+-+==+---53xx+-222133513(3)5(3)2253333x x x x x x x xxx x x x+--+--+-+===++----31x-=31x-=-32x-=32x-=-4x∴=2x=5x=1x=AD BC⊥90ADB ADC∴∠=∠=︒AB=1BD=2AD∴===ADABC△ADC∴△2CD AD∴==90ABC∠=︒90ABD ABC∴∠=∠=︒AB BC=BE BD=(SAS)ABD CBE∴≌△△BAD BCE∴∠=∠CEB AEF∠=∠90AFE CBE∴∠=∠=︒AFG∴△平分,,,,,,是等腰三角形,是的“妙分线”;(3)解:如图3中,过点A 作于点H .有两种情形:①当时,或当时,AC 为或的“妙分线”,,,,,,,,,,设,,,解得:.BH ABC ∠ABG CBG ∴∠=∠AB BC = BG BG =(SAS)ABG CBG ∴≌△△AG CG ∴=AGC ∴△AG ∴AFC △AH BC ⊥CD BD ⊥CD AC '⊥BCD △BCD '△BC = 5AB AC == AH BC ⊥BH CH ∴==AH ∴===1122ABC S BC AH AB CD =⋅⋅=⋅⋅ △11522CD ∴⨯=⨯3CD ∴=4AD ∴==1127(54)3222BCD S BD CD ∴=⋅⋅=⨯+⨯=△CD x '=DD y '=22222235(4)x y x y ⎧=+∴⎨+=+⎩15494x y ⎧=⎪⎪⎨⎪=⎪⎩。

山东省聊城市东昌府区2023-2024学年八年级上学期期末数学试题(含答案)

山东省聊城市东昌府区2023-2024学年八年级上学期期末数学试题(含答案)

2023-2024学年第一学期期末学业水平检测八年级数学试题说明:1,全卷共6页,考试时间为120分钟,满分120分.2.答卷前,考生必须将自己的姓名、准考证号、学校按要求填写在答卷密封线左边的空格内.3.答题可用黑色或蓝色字迹的钢笔或签字笔按要求答在答卷上,但不能用铅笔或红笔.4.答案写在试题上无效.5.一律不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12个小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.下列代数式中,不是分式的是( )A.B .C .D .3.若点与点关于轴对称,则的值为()A .3B .7C .11D .154.下列式子从左到右的变形一定正确的是( )A .B .C .D .5.某学校为了了解学生的读书情况,抽查了部分同学在一周内的阅读时间,并进行了统计,结果如表:()1x y m -2a b-3x x +a b a b+-()3,4A m -()2,6B n +y m n -11a a b b +=+a ac b bc =133ab ab =33a a b b=时间12345人数12201053则这些学生阅读时间的众数和中位数分别是()A .20,20B .2,2C .20,10D .2.5,26.下列命题中,是假命题的是()A .在同一平面内垂直于同一条直线的两条直线平行B .如果两个角互余,那么它们的余角也互余C .如果两个有理数的和为负数,那么它们的积也为负数D .如果两个角不相等,那么这两个角不是对顶角7.如图,交于点,添加以下四个条件中的一个,其中不能使的条件是( )第7题图A .B .C .D .8.若,则的值是( )A .B .C .D .9.如图,将矩形沿对角线折叠,点的对应点为点与交于点.若,则的度数为( )第9题图A .B .C .D .10.如图,,且于于.若,则的长为( )/h,AC BD ,O BO DO =A ABO CDO △≌△BAC DCA ∠=∠AB CD=AB CD ∥AO CO =32a b b -=a a b+4375-2757ABCD BD C ,E BE AD F 55CDB ∠=︒AFB ∠70︒60︒65︒40︒AB CD ⊥,AB CD CE AD =⊥,E BF AD ⊥F 7,4,3CE BF EF ===AD第10题图A .7B .8C .5D .411.如图,已知,下列说法:①;②是的中线;③;④与面积相等.其中正确的是:( )第11题图A .1个B .2个C .3个D .4个12.如图,为任意三角形,以为圆心,任意长为半径做弧,交于点,交于点,分别以点和点为圆心,以大于的长为半径作弧,两弧交于点,做射线,交于点,分别以点和为圆心,大于长为半径作弧,两弧相交于两点,作直线交于点,连接.下列结论正确的是( )第12题图A .B .C .D .第Ⅱ卷(非选择题 共84分)AOB COD △≌△ABO CBO ∠=∠OB ABC △AB CD ∥COD △BOC △ABC △B AB F BC G F G 12FG H BH AC D B D 12BD ,M N MN AB E DE 12DE BC =DE AE =AED ABC ∠=∠AD CD=二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13.当______时,分式的值为零.14.在直角坐标系中,直线是经过点,且平行于轴的直线,点与点,关于直线成轴对称,则______.15.如图,在中,点是边上的一点,连接垂直平分,垂足为,交于点,若,则______.第15题图16.若关于的方程无解.则______.17.如图,已知:射线,点在射线上,点在射线上,均为直角三角形,若,将各边边长分别扩大2倍得到,将各边边长分别扩大2倍得到……则的面积为______.第17题图三、解答题(本题共8小题,共69分.解答应写出必要的文字说明、推理过程或演算步骤)18.(8分)如图,在平面直角坐标系中,已知,x =2293x x x--l ()1,0y ()2,P n (),3Q m -l 2m n -=ABC △D BC ,AD CE AD F AB E 32,50ACB B ∠=︒∠=︒BED ∠=x 222x m x x =+--m =OM ON 、123A A A ⋅⋅⋅、、、OM 123B B B ⋅⋅⋅、、、ON 112223334A B B A B B A B B ⋅⋅⋅△、△、△、12121,2B B A B ==112A B B △223A B B △223A B B △334A B B △202021A B B △()()()4,2,2,0,1,4A B C --(1)在平面直角坐标系中画出,则的面积是______.(2)画出关于轴对称的,其中点的对应点分别为点(3)已知点为轴上一点,若的面积为3,求出点的横坐标.19.(7分)先化简,再从0,1,2,3中选择一个恰当的的值代入求值.20.(8分)甲、乙两名运动员参加某体育项目训练,为了便于研究,把最近6次训练成绩绘制成折线统计图.(1)要评价两名运动员的平均水平,你选择什么统计量?求这个统计量.(2)请根据折线图分别求出甲运动员的中位数是______,乙运动员的众数是______.(3)计算甲、乙两个运动员成绩的方差,并判断哪位运动员的成绩更稳定?21.(7分)八年级学生去距学校60千米的纪念馆参观,师生乘大巴车前往,某老师因有事情,推迟了20分钟出发,自驾汽车以大巴车速度的1.5倍前往,结果同时到达,求老师自驾汽车的速度是多少?22.(8分)如图所示,在中,平分交于点交于点是的中点.ABC △ABC △ABC △y A B C '''△,,A B C A B C '''、、P x ABP △P 2222112212x x x x x x x x x ---÷++++-x ABC △CD ACB ∠AB ,D DE AC ∥AB ,D F CD第22题图(1)试说明:平分.(2)若,那么的周长是多少?23.(9分)已知:如图,线段和射线交于点.第23题图(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线上作一点,使;②做的垂直平分线交的延长线于点,交于点,连接.(2)在(1)所作的图形中,若求的度数.24.(10分)如图,点在一条直线上,均为等边三角形,连接和,分别交于点交于点,连接,第24题图(1)试说明;(2)试判断的形状?并说明理由?25.(12分)如图:在中,,点是斜边的中点,.EF CED ∠13DB BC +=BDE △AB BM B BM C AC AB =AB DE BC E AC F BF 50A ∠=︒BFC ∠,,A B C ,ABD BCE △△AE CD AE ,CD BD ,,M P CD BE Q ,PQ BM AE CD =BPQ △ABC △90,BAC AB AC ∠=︒=D BC DE DF ⊥第25题图(1)试判断与的大小关系?并说明理由.(2)与全等吗?为什么?(3)若,求四边形的面积.2023—2024学年第一学期期末学业水平检测八年级数学试题参考答案一、选择题(本大题共12个小题,共36分,在每小题给出的四个选项中,只有一个选项符合题意)1.C 2.В 3.A 4.C 5.B 6.C 7.B 8.D 9.A 10.B 11.С 12.C二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13. 14.6 15.48° 16.2 17.三、解答题(本题共8小题,共69分.解答应写出必要的文字说明、推理过程或演算步骤)18.(8分)(1)如图所示的面积是9.(2)如图所示(3)设点的横坐标为,ADE ∠CDF ∠ADE △CDF △6cm AB =AEDF 3-382ABC △ABC △A B C '''△P x或点的横坐标为5或.19.(7分)为了使分式有意义,当时,原式20.(8分)解:(1)选择平均数,甲运动员:分乙运动员:分(2)甲运动员的中位数是7分,乙运动员的众数是8分.(3)因为,所以甲运动员的成绩更稳定.21.(7分)解:设大巴车的平均速度为千米/时,则老师自驾小车的平均速度为千米/时,根据题意列方程为:.解得经检验是分式方程的解,并且符合题意.1232ABC S x =⨯-=△23x -=23x -=±5x =1-P ∴1-2222112212x x x x x x x x x ---÷++++-()()()()21121(1)12x x x x x x x x x +---=÷+++-()()()()21112(1)12x x x x x x x x x +-+-=⋅++--x x=+2x=0,1,2x ≠3x =26x ==96767776+++++=458781076+++++=222(97)2(67)16S -+⨯-==甲22222(47)(57)2(87)(107)46S -+-+⨯-+-==乙22S S <乙甲x 1.5x 6060201.560x x =+60x =60x =所以,老师自驾汽车的速度是90千米/时.22.(8分)解:(1)平分,.又,,,为等腰三角形.是的中点,平分.(2)由(1)可知的周长:,所以的周长为13.23.(9分)(1)(2)垂直平分,.,,是的一个外角,.24.(10分)解:(1)为等边三角形,,.在和中,,,,,.1.590x =CD ACB ∠ACD BCD ∴∠=∠DE AC ∥ACD CDE ∴∠=∠BCD CDE ∴∠=∠DEC ∴△F CD EF ∴CED ∠DE EC=BDE △DB BE DE++DB BE CE=++DB BC=+13=BDE △DE AB AF BF ∴=50A ∠=︒ 50ABF ∴∠=︒BFC ∴∠ABF △5050100BFC ∴∠=︒+︒=︒,ABD BCE △△,,BC BE BD AB CBE EBD ABD EBD ∴==∠+∠=∠+∠CBD ABE ∴∠=∠CBD △EBA △BC BE =CBD ABE ∠=∠BD AB =CBD EBA ∴△≌△AE CD ∴=(2)为等边三角形,理由:,.由(1)可知.在和中,,,,,为等边三角形.25.(12分)解:(1),理由:,点是斜边的中点,,.又,,.(2)与全等.理由:,.又点是中点,,.在和中,,,,.(3),,BPQ △60CBE ABD ∠=∠=︒ 60EBP ∴∠=︒BCQ BEP ∠=∠CBQ △EBP △,BCQ BEP CB BE ∠=∠=CBQ PBE ∠=∠CBQ EBP ∴△≌△BQ BP ∴=BPQ ∴△ADE CDF ∠=∠90,BAC AB AC ∠=︒= D BC AD DC ∴⊥90CDF ADF ∴∠+∠=︒DE DF ⊥ 90ADE ADF ∴∠+∠=︒ADE CDF ∴∠=∠ADE △CDF △,90AB AC BAC =∠=︒ 45C ∴∠=︒ D BC 45CAD BAD ∴∠=∠=︒C EAD DAC ∴∠=∠=∠AD CD ∴=ADE △CDF △ADE CDF ∴∠=∠AD CD =C DAE ∠=∠ADE CDF ∴△≌△ADE CDF △≌△ADE CDF S S ∴=△△ADF DFCAEDF S S S ∴=+△△四边形11所以四边形的面积为.ADCS =△29cm =AEDF 29cm。

哈尔滨市第一0七中学校2023-2024学年八年级上学期期末考试数学试卷(含答案)

哈尔滨市第一0七中学校2023-2024学年八年级上学期期末考试数学试卷(含答案)

2023—2024学年度上学期期末测试八年级数学学科测试题一、选择题(每题3分,共30分)1. 下列各式中,属于分式的有()个A. 4B. 3C. 2D. 12. 下列计算结果正确是()A. B. C. D.3. 下列出版社的商标图案中,是轴对称图形的为()A. B. C. D.4. 下列二次根式中,属于最简二次根式的是()A. B. C. D.5. 下列计算正确的是()A. B. C. D.6. 等腰三角形的顶角是,则此等腰三角形的底角度数为()A. B. C. 或 D.7. 如果把分式中的x和y的值同时扩大为原来的3倍,那么分式的值()A. 扩大为原来的3倍B. 缩小为原来的C. 不变D. 无法判断8. 某校八年级学生去距离学校的游览区游览,一部分学生乘慢车先行,出发后,另一部分学生乘快车前往,结果他们同时到达.已知快车的速度是慢车速度的倍,求慢车的速度,设慢车的速度是,所列方程正确的是( )A. B. C. D.9. 下列说法正确的是()A. 等腰三角形的角平分线、中线、高线互相重合;B. 三角形三边垂直平分线交点到三边的距离相等;C. 有一个角是的等腰三角形是等边三角形;D. 如果两个三角形全等,那么它们必是关于某条直线成轴对称的图形.10. 如图,点C为线段上一动点(不与A、E重合),在同侧分别作等边和等边,与交于点O,与交于点P,与交于点Q,连接,以下四个结论①;②;③平分;④,下面的结论正确的有()个A. 1B. 2C. 3D. 4二、填空题(每题3分,共30分)11. 将用科学记数法表示为__________.12. 分解因式:______.13. 要使分式有意义,则的取值范围是__.14. 如图,在三角形纸片中,,点是边上的动点,将三角形纸片沿对折,使点落在点处,当时,的度数为___________.15. 如图,等腰三角形的底边长为4,面积是20,腰的垂直平分线分别交、边于E、F点.若D为边的中点,点M为线段上一动点,则周长的最小值是___________.16. 若是一个关于x的完全平方式,那么k的值是__________.17. 若,,则______.18. 在边长为的等边三角形中,于点,点在直线上,且,则的长为_____.19 如果,那么________________.20. 如图,在等腰三角形中,,为上一点,为延长线上一点,连接,且,,的平分线交于点,若,,则__________.三、解答题(21-22每题7分:23-24每题8分:25-27每题10分,共60分)21. 计算:(1);(2).22. 先化简,再求值:,其中23. 如图,在平面直角坐标系中,已知的三个顶点坐标分别是(1)将向上平移4个单位,再向右平移1个单位,得到,请画出,并写出的坐标;(2)请画出关于y轴对称的,并写出的坐标.24. 已知:为等边三角形,点D,E分别在上,且,连接交于点F,在延长线上取点G,使得,连接.(1)如图1,求证:为等边三角形;(2)如图2,当点D为的中点时,在不添加任何辅助线的情况下,请直接写出图2中四条线段,使每一条线段的长度都等于线段的长度的2倍.25. 某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进A、B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款和用400元购进B款的文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元购买文化衫,最多可购买多少件A款文化衫?26. 教科书中这样写道:“形如的式子称为完全平方式“,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等问题.例如:分解因式:.解:原式再如:求代数式的最小值.解:,可知当时,有最小值,最小值是.根据阅读材料,用配方法解决下列问题:(1)分解因式:________.(直接写出结果)(2)当x为何值时,多项式有最大值?并求出这个最大值.(3)利用配方法,尝试求出等式中a,b值.27. 已知,如图1所示,为等边三角形,D是边上一点,,且,连接、.(1)求证:;(2)如图2,延长交于点F,连接,求证:平分;(3)如图3,在(2)的条件下,过点E作于H,若,,求的长.2023—2024学年度上学期期末测试八年级数学学科测试题一、选择题(每题3分,共30分)【1题答案】C【2题答案】B【3题答案】A【4题答案】A【5题答案】C【6题答案】B【7题答案】A【8题答案】B【9题答案】C【10题答案】D二、填空题(每题3分,共30分)【11题答案】【12题答案】【14题答案】或【15题答案】12【16题答案】【17题答案】【18题答案】或【19题答案】【20题答案】三、解答题(21-22每题7分:23-24每题8分:25-27每题10分,共60分)【21题答案】(1)(2)【22题答案】,【23题答案】(1)见解析;;(2)见解析;(1)见解析(2)【25题答案】(1)A款文化衫每件元,B款文化衫每件元;(2)最多可购买280件A款文化衫【26题答案】(1)(2)当时,多项式有最大值,最大值是7;(3),.【27题答案】(1)见解析(2)见解析(3)。

2023-2024学年湖北省荆州市监利市八年级上学期期末数学试卷及参考答案

2023-2024学年湖北省荆州市监利市八年级上学期期末数学试卷及参考答案

监利市2023-2024学年度上学期期末考试八年级数学试题本卷满分120分,考试时间120分钟,共三大题,24个小题. 一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.数学中有许多精美的曲线,以下是“笛卡尔叶形线”“阿基米德螺线”“三叶玫瑰线”和“星形线”.其中一定不.是.轴对称图形的是() A . B . C . D .2.在下列运算中,正确的是() A .236a a a ⋅=B .22(3)6a a =C .()325aa =D .32a a a ÷=3.如图,DAC BAC ∠=∠,再添加下列条件,仍不能判定ABC ADC △≌△的是()A .DC BC =B .AB AD =C .D B ∠=∠D .DCA BCA ∠=∠4.下列各式与aa b−相等的是() A .22()a a b −B .22()a ab a b −−C .33aa b− D .aa b−+ 5.一个三角形的两边长为3和8,且第三边长为奇数,则第三边长为() A .7B .9C .5或7D .7或96.将下列多项式分解因式,结果中不含因式1x −的是() A .21x −B .(2)(2)x x x −+−C .221x x −+D .221x x ++7.边长分别为a 和2a 的两个正方形按如下图的样式摆放并连线,则图中阴影部分的面积为()A .23aB .274a C .22aD .232a 8.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km ,一部分学生乘慢车先行,出发1h 后,另一部分学生乘快车前往,结果他们同时到达目的地.已知快车速度是慢车速度的1.5倍,如果设慢车的速度为km/h x ,那么可列方程为()A .12012011.5x x −= B .12012011.5x x −=+ C .12012011.5x x −= D .12012011.5x x−=+9.等腰Rt ABC △中,90BAC ∠=︒,D 是AC 的中点,EC BD ⊥于E ,交BA 的延长线于F ,若12BF =,则FBC △的面积为()A .40B .46C .48D .5010.如图,在ABC △中,9AB =,13AC =,点M 是BC 的中点,AD 是BAC ∠的平分线,//MF AD ,则CF 的长为()A .12B .11C .10D .9二、填一填,看看谁仔细(本大题共6小题,每小题3分,共18分)11.分式11x x +−的值为0,则x 的值为______.12.一个多边形的内角和是外角和的2倍,这个多边形的边数为______. 13.若3m n +=,则222426m mn n ++−的值为______.14.如图,在ABC △中,74B ∠=︒,边AC 的垂直平分线交BC 于点D ,交AC 于点E ,若AB BD BC +=,则BAC ∠的度数为______.15.若27193m n =,则23n m −的值是______.16.如图,在ABC △中,AB AC =.点D 为ABC △外一点,AE BD ⊥于E .BDC BAC ∠=∠,3DE =,2CD =,则BE 的长为______.三、解一解,试试谁更棒(本大题共8小题,满分72分) 17.(本题满分8分)计算:(1)()()21a a −+ (2)()()22224ab a b −÷−18.(本题满分8分)分解因式:(1)329a ab −(2)2(2)8x y xy +−19.(本题满分6分)如图AE BD =,AC DF =,BC EF =,求证:A D ∠=∠.20.(本题满分10分)(1)先化简,再求值:524223m m m m −⎛⎫+−⨯⎪−−⎝⎭,其中4m =. (2)若分式方程15102x mx x−=−−无解,求m 的值. 21.(本题满分8分)如图是68⨯的小正方形构成的网格,每个小正方形的边长为1,ABC △的三个顶点A ,B ,C 均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,不写画法,保留作图痕迹,画图过程用虚线表示,画图结果用实线表示.(1)在图1中取格点S ,使得BSC CAB ≌△△(S 不与A 重合);. (2)在图2中AB 上取一点K ,使CK 是ABC △的高; (3)在图3中AC 上取一点G ,使得AGB ABC ∠=∠.22.(本题满分10分)如图1,ABC △中,AB AC =,点D 在AB 上,且AD CD BC ==.(1)求A ∠的大小;(2)如图2,DE AC ⊥于E ,DF BC ⊥于F ,连接EF 交CD 于点H . ①求证:CD 垂直平分EF ;②请求出线段AE ,DB ,BF 之间存在的数量关系并说明理由.23.(本题满分10分)某商店用1000元人民币购进某种水果销售,过了一周时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元. (1)该商店第一次购进这种水果多少千克?(2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优恵销售.若两次购进的这种水果全部售完,利润不低于950元,则每千克这种水果的标价至少是多少元?24.(本题满分12分)平面直角坐标系中,点B 在x 轴正半轴,点C 在y 轴正半轴,ABC △是等腰直角三角形,CA CB =,90ACB ∠=︒,AB 交y 轴负半轴于点D .(1)如图1,点C 的坐标是(0,4),点B 的坐标是(8,0),求点A 的坐标;(2)如图2,AE AB ⊥交x 轴的负半轴于点E ,连接CE ,CF CE ⊥交AB 于F . ①求证:CE CF =; ②求证:点D 是AF 的中点; ③求证:1=2ACD BCE S S △△.2023-2024学年度上学期八年级数学期末考试参考答案一、选一选,比比谁细心11.=-1x 12. 6 13. 1214.69° 15. 1 16. 5三、解一解,试试谁更棒17.(1)22a a −−(2)-3b18.(1)(3)(3)a a b a b +−(2)2(2)x y − 19.证明:∵AE =BD ,∴AE +BE =DB +BE ,即AB =DE , 在△ABC 和△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A =∠D . 20.(1)原式化简得:2(m +3) 当m =4时,原式=2×(4+3)=14 (2)m =-821.解:(1)如图1中,点S 即为所求;(2)如图2中,线段CK 即为所求; (3)如图,点G 即为所求.22.(1)解:设∠A =x , ∵AD =CD ,∴∠ACD =∠A =x ,∵CD =BC ,∴∠CBD =∠CDB =∠ACD +∠A =2x ; ∵AC =AB ,∴∠ACB =∠B =2x ,则∠DCB =x , ∵x +2x +2x =180°, ∴x =36°,即∠A =36°;(2)①证明:由(1)得:∠ACD =∠A =x ,∠DCB =x , ∴∠ACD =∠DCB ,∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=90°,∵CD=CD,∴△DEC≌△DFC(AAS),∴DE=DF,CE=CF,∴CD垂直平分EF;②解:三条线段AE,DB,BF之间的数量关系为:AE=DB+BF,理由如下:在CA上截取CG=CB,连接DG,如图2所示:由①已得:DE=DF,CE=CF,且CG=CB,∴CG﹣CE=CB﹣CF,即GE=BF,∵DE⊥AC,DF⊥BC,∴∠DEG=∠DFB=90°,∴△DEG≌△DFB(SAS),∴DG=DB,∠DGE=∠B,由(1)得:∠B=2x,∠A=x,∴∠DGE=2∠A,∵∠DGE=∠A+∠GDA,∴∠A=∠GDA,∴AG=DG,∴AE=AG+GE=DG+BF=DB+BF.23.解:(1)设该商店第一次购进水果x千克,则第二次购进这种水果2x千克.由题意,得1000240022x x+=,解得x=100.经检验,x=100是所列方程的解且符合题意.答:该商店第一次购进水果100千克.(2)设每千克这种水果的标价是y元,则(100+100×2﹣20)•y+20×0.5 y≥1000+2400+950,解得y≥15.答:每千克这种水果的标价至少是15元.24.(1)解:如图1中,过点A作AH⊥y轴于点H.∵点C的坐标是(0,4),点B的坐标是(8,0),∴OC=4,OB=8,∵∠AHC=∠COB=∠ACB=90°,∴∠ACH+∠BCO=90°,∠BCO+∠CBO=90°,∴∠ACH=∠CBO,在△AHC 和△COB 中,AHC COB ACH CBO CA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AHC ≌△COB (AAS ), ∴AH =OC =4,CH =OB =8, ∴OH =CH ﹣CO =8﹣4=4, ∴A (﹣4,﹣4);(2)证明:①如图2中,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBF =45°, ∵AE ⊥AB ,∴∠EAC =∠CAB =∠CBF =45°,∴CE ⊥CF ,∴∠ECF =∠ACB =90°,∴∠ECA =∠FCB , 在△ECA 和△FCB 中,ECA FCB CA BCEAC FBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ECA ≌△FCB (ASA ),∴CE =CF ;②如图2中,过点F 作FN ⊥CD 于点N ,过点A 作AM ⊥CD 于点M . ∵∠ECF =∠EOC =∠CNF =90°,∴∠ECO +∠FCN =90°,∠FCN +∠CFN =90°, ∴∠ECO =∠CFN , 在△EOC 和△CNF 中,EOC CNF ECO CFN CE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△CNF (AAS ), ∴OC =FN ,同法可证,△BOC ≌△CMA (AAS ),∴OC =AM , 在△FND 和△AMD 中,90FDN ADM FND AMD FN AM ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴△FND ≌△AMD ,∴DF =AD ;③设OE =a ,OB =b ,OC =c , ∵△EOC ≌△CNF ,△BOC ≌△CMA , ∴CN =OE =a ,CM =OB =b ,OC =AM =c , ∴MN =b ﹣a ,∵△FND ≌△AMD ,∴DN =DM =12(b ﹣a ), ∴CD =DN +CN =12(a +b ), ∵S △ACD=12•CD •AM =12•=12(a +b )•AM =14(a +b )•c ,S △BCE=12•EB •CO =12(a +b )•OC =12(a +b )•c ,∴S △ACD=12S △ECB .。

辽宁省沈阳市铁西区2023-2024学年八年级上学期期末数学试题(含解析)

辽宁省沈阳市铁西区2023-2024学年八年级上学期期末数学试题(含解析)

A .正数B .负数C .有理数2.如图,直线,则的度数为(A .B 3.若直线(是常数,A .B 4.下列计算正确的是(,45,20AB CD ABE D ∠=∠=︒︒∥E ∠20︒y kx =k 2-35︒45︒A.B.7.《九章算术》是中国古代重要的数学著作,其中盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会A .该函数的最大值为7C .当时,对应的函数值第二部分二、填空题(本题共5小题,每小题14.同一地点从高空中自由下落的物体,物体的高度有关. 若物体从离地面为间为(单位:),且1x =t s t三、解答题(本题共过程)16.(1)计算:(2)解二元一次方程组:18.用二元一次方程组解应用题:根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨乙地降价5元. 已知销售单价调整前甲地比乙地少整前甲、乙两地该商品的销售单价.19.如图,在四边形中,(1)试说明:(2)若,平分252+ABCD AD E ECD ∠=∠60E ∠=︒CE(1)在“摄影”测试中,七位评委给小涵打出的分数如下:(2)求的值;(3)学校决定根据总评成绩择优选拔12名小记者,试分析小涵能否入选,并说明理由.21.如图1,已知向以的速度匀速运动到点. 图2是点化的关系图象.n ,,ABD CBD AB AD CB =V V ≌1cm/s B(1)__________;(2)求的值.22.要制作200个两种规格的顶部无盖木盒,体无盖木盒,种规格是长、宽、高各为有200张规格为的木板材,对该种木板材有甲、割、拼接等板材损耗忽略不计.(1)设制作种木盒个,则制作种木盒__________个;若使用甲种方式切割的木板材则使用乙种方式切割的木板材__________张;(2)若200张木板材恰好能做成200个两种规格的无盖木盒,请分别求出数和使用甲、乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元. 根据市场调研,种木盒的销售单价定为元,种木盒的销售单价定为元,在(2)的条件下,请直接写出这批木盒的销售利润(用含的式子表BD =a ,A B B 20cm,20cm,10cm 40cm 40cm ⨯A x B ,A B ,A B A a B 120a ⎛⎫- ⎪w a(2)如图2,在等腰直角三角形点在直线下方,把【问题应用】若,求【问题迁移】D BC 42,32BC BD ==7.D【分析】直接利用每人出九钱,会多出答案.,四边形是正方形,,,∴90DGH ∠=︒ ABCD 6AD AB ∴==90A ∠=45ADB ABD ∴∠=∠=︒45GHD GDN ∴∠=∠=︒17.【分析】本题主要考查了平行线的性质,三角形的内角和,解题的关键是掌握两直线平行,内错角相等,三角形的内角和为180度;根据三角形的内角和,得出,,再根据平行线的性质得出,最后根据即可求解.【详解】解:∵,∴,∵,∴,∵,∴,∴.18.调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元【分析】本题主要考查了二元一次方程组的实际应用,设调整前甲地该商品的销售单价x 元,乙地该商品的销售单价为y 元,根据“甲地上涨,乙地降价5元. 已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元”列出方程组求解即可.【详解】解:设调整前甲地该商品的销售单价x 元,乙地该商品的销售单价为y 元,,解得:,答:调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元.19.(1)见解析(2)【分析】本题考查了平行线的判定与性质,角平分线,三角形内角和定理.熟练掌握平行线的判定与性质,角平分线,三角形内角和定理是解题的关键.(1)由,可得,则,,进而结论得证;(2)由平分,可得,则,根据,计算求解即可.15CED ∠=︒60ACB ∠=︒45DEF ∠=︒60CEF ACB ∠=∠=︒CED CEF DEF ∠=∠-∠30,90∠=︒∠=︒A B 60ACB ∠=︒EF BC ∥60CEF ACB ∠=∠=︒90,45EDF F ∠=︒∠=︒45DEF ∠=︒15CED CEF DEF ∠=∠-∠=︒10%()10110%15x y x y +=⎧⎨++=-⎩4050x y =⎧⎨=⎩=60B ∠︒AD BC ∥B EAD ∠=∠EAD D ∠=∠AE CD ∥CE BCD ∠BCE ECD ∠=∠60ECD BCE E ∠=∠=︒∠=180B BCE E ∠=︒∠-∠-22.(1),(2)故制作种木盒乙种方式切割的木板材(3)()200x -A 50850w a =+【点睛】本题主要考查了等边三角形的性质,全等三角形的判定和性质,勾股定理,折叠的性质,熟练掌握相关性质定理,正确画出辅助线,构造直角三角形是解题的关键.。

四川成都2023-2024学年八年级上学期期末数学试题(原卷版)

四川成都2023-2024学年八年级上学期期末数学试题(原卷版)

2023—2024学年度(上)期末考试八年级数学试题注意事项:1.全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2.在作答前,考生务必将自己的姓名、班级写在答题卡上,并检查条形码信息.考试结束,监考人员将答题卡收回.3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色签字笔书写,字体工整、笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 9的算术平方根是( )A. 3±B.C. 3D. 3−2. 在平面直角坐标系中,点()3,2A 关于原点对称的点的坐标是( )A. ()3,2B. ()3,2−C. ()3,2−D. ()3,2−− 3. 下列计算正确的是( )A.B. −C. D. 2÷=4. 下列各组数为勾股数的是( ) A. 61213,, B. 51213,, C. 81516,,D. 347,, 5. 为响应“双减”政策,进一步落实“立德树人、五育并举”的思想主张,深圳某学校积极推进学生综合素质评价改革,小芳在本学期德、智、体、美、劳的评价得分如图所示,其各项的得分分别为9,8,10,8,7,则该同学这五项评价得分的众数,中位数,平均数分别为( )A. 8,8,8B. 7,8,7.8C. 8,8,8.7D. 8,8,8.46. 《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问:几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问:多久后甲、乙相逢?设甲出发x 日,乙出发y 日后甲、乙相逢,则所列方程组正确的是( ) A. 211175x y x y −= += B. 211175x y x y += += C. 211157x y x y −= += D. 211157x y x y += += 7. 已知点()11,y −,()23,y 在一次函数31y x =−的图象上,则1y ,2y 的大小关系是( ) A. 12y y <B. 12y y =C. 12y y >D. 不能确定 8. 关于一次函数122y x =+,下列结论正确的是( ) A 图象不经过第二象限B. 图象与x 轴的交点是()0,2C. 将一次函数122y x =+图象向上平移1个单位长度后,所得图象的函数表达式为132y x =+ D. 点()11,x y 和()22,x y 在一次函数122y x =+的图象上,若12x x <,则12y y > 第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.比较大小: ______4−.10. 若3x >=________. 11. 在某次赛制为“12进4”且当场公布分数的舞蹈比赛中,小华所在的队伍当第10支队伍分数公布后仍排名第二而欢呼,请问她们判定自己已进入下一轮比赛的依据与________(从平均数、众数、中位数、方差中选择)有关..的12. 已知一次函数4(0)y kx k =+≠和3y x b =−+的图象交于点()3,2A −,则关于x ,y 的二元一次方程组43y kx y x b =+ =−+ 的解是________. 13. 如图,在ABC 中,按以下步骤作图:①以点C 为圆心,任意长为半径作弧,分别交AC ,BC 于点D 和E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;③作射线CF 交AB 于点H ;④过点H 作GH BC ∥交AC 于点G ,若40BCH ∠=°,则CGH ∠的度数是________.三、解答题(本大题共6个小题,共48分,解答过程写在答题卡上)14. (10|2|(2024)π−−+;(2)计算:22)1)−+−−;15. 解方程组(1)解方程组32725x y x y −= +=; (2)解方程组222312y x x y −= +=. 16. 如图,DE AC ⊥,AGF ABC ∠=∠,35BFG ∠=°,145EDB ∠=°.(1)试判断BF 与AC 的位置关系,并说明理由;(2)若GF GB =,求A ∠的度数.17. 漏刻是中国古代的一种计时工具.中国最早的漏刻出现在夏朝时期,在宋朝时期,中国漏刻的发展达到了巅峰,其精确度和稳定性得到了极大的提高.漏刻的工作原理是利用均匀水流导致的水位变化来显示时间.水从上面漏壶源源不断地补充给下面的漏壶,再均匀地流入最下方的箭壶,使得壶中有刻度的小棍匀速升高,从而取得比较精确的时刻.某学习小组复制了一个漏刻模型,研究中发现小棍露出的部分y (厘米)是时间x (分钟)的一次函数,且当时间0x =分钟时,2y =厘米.表中是小明记录的部分数据,其中有一个y 的值记录错误. x (分钟) …… 10 20 30 40y (厘米) …… 2.6 3.2 3.6 4.4(1)你认为y 的值记录错误的数据是________;(2)利用正确的数据确定函数表达式;(3)当小棍露出部分为8厘米时,对应时间为多少?18. 如图,在平面直角坐标系中,直线36y x =+与x 轴,y 轴分别交于点A ,C ,经过点C 的直线与x 轴交于点B ,45CBO ∠=°.(1)求直线BC 的解析式;(2)点G 是线段BC 上一动点,若直线AG 把ABC 的面积分成1:2的两部分,请求点G 的坐标; (3)已知D 为AC 的中点,点P 是x 轴上一点,当BDP △是等腰三角形时,求出点P 的坐标.的B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19. 若一次函数37y x =−的图象过点m n (,),则32n m +=-_________. 20. 有一块直角三角形纸片,两直角边分别为:6cm AC =,8cm BC =,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,CD =______cm .21. 剪纸是各种民俗活动重要组成部分,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,其中点E 坐标是()2,3−,现将图形进行变换,第一次关于y 轴对称,第二次关于x 轴对称,第三次关于y 轴对称,第四次关于x 轴对称,以此类推……,则经过第2023次变换后点E 的对应点的坐标为________22. 若关于x ,y 的方程组452x y ax by −= +=和398x y bx ay += += 的解相同,则a b +=________. 23. 如图,在ABC 中,90BAC ∠=°,AB AC =,D 为ABC 外一点,连接AD ,BD ,CD ,发现4=AD ,2CD =且=45ADC ∠°,则BD =______.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24. 随着新能源电动车的逐渐普及,人们在购车时经常会面临一个问题:应该选择传统燃油车还是新能源电动车呢?某校的项目式学习小组开展了《选电动车还是燃油车呢?》的研究,发现用车费用包含购车费用和耗能费用,其中A 型电动车每百公里耗电15度电,每度电0.6元,B 型燃油车每百公里耗油8L,每升的油8块钱.(1)根据提供信息,填写下列表格:购车费用(万元) 每公里耗能费用(元)A 型电动车13.5 ________B 型燃油车8 ________(2)分别求出A 型电动车1y (万元),B 型燃油车用车费用2y (万元)与行驶公里数x (万公里)之间的函数关系式;在同一坐标系中画出1y ,2y 的草图并给出你的选择结论;(3)小明爸爸计划购买一辆A 型电动车进行网约车工作,相关法律规定网约车限制经营年限为8年或行驶公里数不超过60万公里.于是项目组同学继续调查:网约车每年平均行程10万公里,A 型电动车每年还需要保险费5000元,每1万公里保养费120元.请你帮小明爸爸计算购买A 型电动车进行网约车工作共需投入多少费用.25. 【基础模型】如图,等腰直角三角形ABC 中90ACB ∠=°,CB CA =,直线ED 经过点C ,过点A 作AD ED ⊥于点D ,过点B 作BE ED ⊥于点E ,易证明BEC CDA △△≌,我们将这个模型称为“K 形图”.【模型应用】(1)如图1所示,已知()0,3B ,()2,0C ,连接BC ,以BC 为直角边,点C 为直角顶点作等腰直角三角形ABC ,点A 在第一象限,则点A 的坐标为________;的【模型构建】(2)如图2,在平面直角坐标系中,直线24y x =+与x 轴,y 轴分别交于点A ,B ,BC AB ⊥交x 轴于点C .①请求出直线BC ②P 为x 轴上一点,连接BP ,若45ABP ∠=°,求P 坐标. 26. 在Rt ABC △中,90ACB ∠=°,点D 为边AB 上的动点,连接CD ,将ACD 沿直线CD 翻折,得到对应的A CD ′△,CA ′与AB 所在的直线交于点E .(1)如图1,当A D AD ′⊥时,求证:CE CB =; (2)若30A ∠=°,2BC =. ①如图2,当E 与B 重合时,求AD 的长; ②连接A B ′,当A BD ′ 是以BD 为直角边的直角三角形时,求AD 的长.。

上海市金山区2023-2024学年八年级上学期期末联考数学试题(原卷版)

上海市金山区2023-2024学年八年级上学期期末联考数学试题(原卷版)

2023学年第一学期八年级期末诊断评估数学试卷考生注意:1.本场考试时间90分钟.试卷共4页,满分100分,答题纸共两页.2.作答前,在答题纸指定位置填写班级,姓名,准考证号.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位,在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、选择题(本大题共6题,每题3分,共18分,每题只有一个正确选项)1.下列二次根式中,是最简二次根式的是()A.; B.; C.; D..2.若关于x 的一元二次方程220x x c ++=无实数根,则c 的取值范围是()A.1c > B.1c ≥ C.1c < D.1c ≤3.下列函数一定是反比例函数的是()A.k y x = B.2x y = C.2y x = D.2y x =4.下列命题的逆命题是假命题的是()A.如果0ab =,那么0a b ==;B.如果0a ≥a =;C.对顶角相等;D.同位角相等,两直线平行.5.如图,在ABC 中,90BAC ∠= ,30C ∠= ,AD BC ⊥,BE 平分ABC ∠交AD 于点E ,EF AC ∥交BC 于点F ,下列结论不成立...的是()A.ABD DAC∠=∠ B.C BAD ∠=∠ C.2AC AD = D.2AD DF =6.如图,函数()0k y k x=≠和2y x =的部分图像与直线()0y a a =>分别交于A 、B 两点,如果ABO 的面积是2.5,则k 的值为()A.3B.3-C.32 D.32-二、填空题(本大题共12题,每题2分,共24分)7.=______.8.函数12024y x =-的定义域是____.9.已知函数()f x =(9)f =____.10.如果关于x 的一元二次方程2230x x k -+=有一个根是1,则k =____.11.在实数范围内因式分解:222x x --=____.12.已知正比例函数()3y k x =-的函数值y 随x 的增大而增大,则k 的取值范围为__.13.已知直角坐标平面内两点()6,4A 和()2,1B ,则线段AB 的长为____.14.平面内,到点A 的距离等于2的点的轨迹是____.15.某工厂七月份产值是100万元,计划九月份的产值要达到144万元,如果每月的产值的增长率相同,则增长率为___________.16.如图,在ABC 中,点F 是高AD 、BE 的交点,且BF AC =,则ABC ∠=____度.17.如图,在ABC ∆中,90ACB ︒∠=,点D 是边AB 的中点,B ACE ∠=∠,4DE =,CE =,则AB 的长为____.18.如图,在ABC 中,AB AC =,AD BC ⊥,垂足为点D ,点E 为AC 的中点,连接DE 、BE 交AD 于点F ,若45BFD ∠=︒,则EF AB=____.三、简答题(本大题共4题,共32分)19.(1)计算:(220.(1)用配方法解方程:22470x x +-=(2)解方程:()()323x x x -=-21.如图,在ABC 中,AB =,6BC =,AC =DE 垂直平分AC ,分别交边BC 、AC 于点D 、E ,连结AD .(1)求C ∠的度数;(2)求AD 的长.22.小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.从山脚出发后小明所走路程s (米)和所用时间t (分钟)之间的函数关系如图所示,请根据图中信息填空.(1)小明中途休息用了分钟;(2)小明休息后爬山的平均速度是米/分钟;(3)小明休息前所走的路程s 与时间t 之间的函数关系式是(无需写出定义域).四、解答题:(本大题共3题,共26分)23.如图,ABC ∠和ACD ∠的平分线交于点E ,过E 作EG BA ⊥交BA 的延长线于点G ,EF AC ⊥交AC 于点F .(1)求证:EG EF =;(2)连接AE ,求证:AEG AEF ∠=∠.24.如图,直线()0y mx m =>的图像与双曲线()0n y n x=>交于A 、B 两点,且点A 的坐标为()2,4,过A 作AC y ⊥轴,垂足为点C .(1)求m 和n 的值;(2)连接BC ,直接写出点B 的坐标,并求出ABC 的面积;(3)如果在双曲线()0n y n x =>上有一点D ,点D 在第一象限且满足14ADC ABC S S ∆∆=,求点D 的坐标.25.如图,在ABC ∆中,90BAC︒∠=,AB AC ==,AH BC ⊥,垂足为H .点D 为边BC 上一点(不与B 、C 重合),连接AD 作=2ADE BAD ∠∠,射线DE 交射线AC 于E .设=BD x ,CDE S y ∆=.(1)求证:AD DE=;(2)当点E在线段AC上时,求y关于x的函数解析式并写出定义域;(3)当12DAH BAH∠=∠时,请直接写出y的值.。

福建厦门双十中学2023-2024学年上学期八年级期末考试数学试卷(原卷版+答案解析)

福建厦门双十中学2023-2024学年上学期八年级期末考试数学试卷(原卷版+答案解析)

厦门市双十中学2023-2024学年八年级(上)数学期末测试一.选择题(本题共10小题,每小题4分,共40分.)1.2023年全国民航工作会议介绍了2023年民航业发展目标:民航业将按照安全第一、市场主导、保障先行的原则,在做好运行保障能力评估的基础上,把握好行业恢复发展的节奏.下列航空图标,其文字上方的图案是轴对称图形的是()A.春秋航空B.东方航空C.厦门航空D.海南航空2.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是( )A B.三角形具有稳定性C.三角形两边之差小于第三边D.直角三角形的性质3.当1x=−时,下列分式中有意义的是()A.11xx−+B.211xx−+C.31 1x+D.120242024xx−+4.一个六边形的内角和是外角和的()倍.A.2B.3C.4D.6 5.已知图中的两个三角形全等,则α∠等于()A.72°B.60°C.58°D.50°6.下列各式计算正确的是( ) A .3223a a a ÷=B .326a a a =C .632()a a −=D .222()a b a b +=+7.对于问题:如图1,已知AOB ∠,只用直尺和圆规判断AOB ∠是否为直角?小意同学的方法如图2:在OA 、OB 上分别取C 、D ,以点C 为圆心,CD 长为半径画弧,交OB 的反向延长线于点E ,若测量得OE OD =,则90AOB ∠=°.则小意同学判断的依据是( )A .等角对等边B .线段中垂线上的点到线段两段距离相等C .垂线段最短D .等腰三角形“三线合一”8.如果多项式21x +加上一个单项式后,能够直接用完全平方公式进行因式分解,则添加的单项式不可以是( ) A .2x −B .2xC .414x −D .414x9.如图,在平面直角坐标系中,点A 的坐标为(3,2),AOB ∆为等腰直角三角形,90AOB ∠=°,则点B 的坐标为( )A .(2,3)B .(2,3)−C .(3,2)−D .( 1.5,3)−10.为提高市民的环保意识,某市发出“节能减排,绿色出行”的倡导,某企业抓住机遇投资20万元购买并投放一批A 型“共享单车”,因为单车需求量增加,计划继续投放B 型单车,B 型单车的投放数量与A 型单车的投放数量相同,投资总费用减少20%,购买B 型单车的单价比购买A 型单车的单价少50元,则A 型单车每辆车的价格是多少元?设A 型单车每辆车的价格为x 元,根据题意,列方程正确的是( )A .200000200000(120%)50x x −=− B .200000200000(120%)50x x +=− C .200000200000(120%)50x x −=+D .200000200000(120%)50x x +=+ 二.填空题(本题共6小题,第11题每空2分,其余每小题4分,共32分) 11.计算:(1)233x x = ;(2)422(3)x x x −÷= ; (3)23(2)x −= ;(4)202320241(2)()2−= .分解因式:(1)216m −= ;(2)244x x −+= . 12.已知2ab =−,3a b +=,则32232a b a b ab ++的值是 .13.华为60Mate 搭载了最新一代处理器麒麟9100,这款芯片采用了最先进的7nm 制造工艺,已知70.000000007nm m =,将0.000000007用科学记数法表示为: . 14.已知等腰三角形的两边长分别为3和7,则第三边的长是 .15.如图,Rt ABC ∆中,90C ∠=°,60B ∠=°,以顶点B 为圆心、适当长为半径作弧,在BC 、BA 上分别截取BE 、BD ;然后分别以D 、E 为圆心、以大于12DE 的长为半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G .若 2.4BG =,P 为AB 上一动点,则GP 的最小值为 .16.在平面直角坐标系xOy 中,ABC ∆是以BC 为底边的等腰三角形,(1,)A a ,(,3)B b ,(,3)C b t +,其中24t <<.则b 的范围是 .三.解答题(本大题有9小题,共78分)17.(本题满分7分)计算:012)3π−++18.(本题满分7分)先化简,再求值:22211(1)2a a a a −÷++−,选择一个合适的整数作为a 的值代入求值.19.(本题满分7分)如图,ABC ∆中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且//BE CF .求证:DE DF =.20.(本题满分7分)如图,在ABC ∆中. (1)尺规作图:作线段AC 的垂直平分线交BC 于点D ,连接AD .(保留作图痕迹) (2)在(1)的条件下,若32C ∠=°,AB BD =,求B ∠的度数.21.(本题满分7分)对于m n +,11m n+,22m n +等代数式,如果交换m 和n 的位置,式子的值不变,我们把这样的式子叫做完美对称式.若关于x ,y 的分式y mxx y−是完美对称式,则: (1)m = ; (2)若完美对称式y mx x y −,满足:5y mxx y−=,且3xy =,x y >,求x y −的值.22.(本题满分9分)观察下列等式: ①22411262−=+,②22521362−=+,③22631462−=+,④22741562−=+,… (1)请按以上规律写出第⑥个等式: ;(2)猜想并写出第n 个等式: ;并证明猜想的正确性. (3)利用上述规律,求下列算式的结果:222222224135236331009736666−−−−−−−−+++…+.23.(本题满分10分)甲、乙两辆汽车同时分别从A 、B 两城沿同一条高速公路驶向C 城.已知A 、C 两城的距离为450千米,B 、C 两城的距离为400千米.(1)若甲车比乙车的速度快12千米/时,结果两辆车同时到达C 城.求两车的速度. (2)设乙车的速度x 千米/时,甲车的速度()x a +千米/时,0a >,若10x a =,则哪一辆车先到达C 城,并说明理由.24.(本题满分12分)如图,在平面直角坐标系中,已知(,)A a b,且a、b满足b=−1(1)求A点的坐标;(2)如图1,已知点(1,0)F,点A、D关于x轴对称,连接AD交x轴于E,OG OD⊥交AF 的延长线于G,判断OG和OA的数量关系,并说明理由;(3)如图2,若点(1,0)C,连AC、FC,试确定ACO FCOF、(0,3)∠+∠的值是否发生变化?若不变,说明理由;若变化,请求出变化范围.25.(本题满分12分)如图1,ABC∆是等边三角形,D、E分别是BC、AC上的点,AD、BE相交于点F,AE CD=.(1)求BFD∠的度数;(2)如图2,当30AGB∠=,连接AG、BG,∠<时,延长CF至G,使得120DAC①求证:CG平分AGB∠;②若BE CG⊥,6CF=,求CG的长度.第8页第9页。

浙教版-学年度上学期八年级数学期末综合练习试题3(含解析)

浙教版-学年度上学期八年级数学期末综合练习试题3(含解析)

2018-2019浙教版八年级上数学期末综合练习试题3姓名:__________班级:__________考号:__________题号一二三总分得分一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.∠A=∠B B. AO=BO C. AB=CD D. AC=BD2.若Rt△ABC中,∠C=90°且c=13,a=12,则b=()A.11 B.8 C.5 D.33.把点A(﹣2,1)向上平移2个单位,再向右平移3个单位后得到B,点B的坐标是()A.(﹣5,3)B.(1,3) C.(1,﹣3) D.(﹣5,﹣1)4.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80° B.70° C.85° D.75°5.如图,△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于点D、E,则△ABC的周长()cmA、 6B、 7C、 8D、96.已知直线a∥b,将一块含30°的直角三角尺按如图方式放置(∠ABC=60°),其中A,C两点分别落在直线a,b上,若∠1=20°,则∠2的度数为()A. 20° B. 30° C. 40° D. 50°7.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.8.已知不等式≤<,其解集在数轴上表示正确的是()A. B.C. D.9.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118° B.119° C.120° D.121°10.如图,在△ABC中,AB=AC,点D,E分别在边BC 和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CAD B.∠ADE=∠AED C.∠CDE=∠BAD D.∠AED=2∠ECD二、填空题(本大题共6小题,每小题3分,共18分)11.如图,象棋盘上,若“将”位于点(1,-1),“车”位于点(-3,-1),则“马”位于点____________.12.在直角三角形中,一个锐角是另一个锐角的4倍,则较小锐角的度数分别为_____度.13.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.14.已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2017的值为.15.某次数学测试,共有20道选择题,评分标准:每题答对得5分,答错倒扣2分,不答得0分,某同学有两题未答,要使得分在60分以上,则该同学至少要答对________题.16.Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.三、解答题(本大题共8小题,共52分)17.某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30 40 3800第二次40 30 3200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.18.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.19.如图,李伯伯承包了一块四边形的土地ABCD,他让小亮帮他测量一下这块地的面积.先量得AC的长为120米,BC的长为60米,BD的长为240米.当要测量AD的长度时,小亮说:“不用量了,我已经测得BA恰好平分∠CAB,公路AC和BC是互相垂直的,有了这些条件,就能求出这块土地的面积了.”小亮说得对吗?你会计算这块土地的面积吗?20.某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。

2023-2024学年北师大版八年级上学期期末测试数学试卷(含答案)

2023-2024学年北师大版八年级上学期期末测试数学试卷(含答案)

八年级上学期期末综合测评卷时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.在下列四个实数中,最大的实数是( )A.-2B.2C.12D.02.寒冷的冬天里我们在利用空调制热调控室内温度的过程中,空调的每小时用电量随开机设置温度的高低而变化,这个问题中自变量是( )A.每小时用电量B.室内温度C.设置温度D.用电时间3.甲、乙两名学生在相同条件下各射靶10次,两人命中环数的平均数均为7,经过计算知,s 2甲=3,s 2乙=1.2,则射靶技术较稳定的是( )A.乙B.甲C.甲、乙一样稳定D.不能确定4.若点A (-3,m )与B (n ,-2)关于y 轴对称,则m+n 的值是( )A.1B.2C.5D.-15.在满足下列条件的△ABC 中,不是直角三角形的是( )A.AB ∶AC ∶BC=1∶2∶3B.BC 2-AB 2=AC 2C.∠A ∶∠B ∶∠C=3∶4∶5D.∠A-∠B=∠C 6.已知a ,b 满足方程组2a +b =6,a +2b =3,则a+b 的值为( )A.1B.-1C.-3D.37.已知图形A 在y 轴的右侧,如果将图形A 上的所有点的横坐标都乘-1,纵坐标不变得到图形B ,则( )A.两个图形关于x 轴对称B.两个图形关于y 轴对称C.两个图形重合D.两个图形不关于任何一条直线对称8.如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个格点三角形中不是直角三角形的是( )A. B.C. D.9.如图,点D在AC上,点F,G分别在AC,BC的延长线上,CE平分∠ACB分别交BD,AB于点O,E,且∠EOD+∠OBF=180°,∠F=∠G.则图中与∠ECB一定相等的角有( )A.6个B.5个C.4个D.3个10.如图(1),在平面直角坐标系中,长方形ABCD在第一象限,且AB∥y轴.直线y=-x 沿x轴正方向平移,如果被长方形ABCD截得的线段EF的长度l与平移的距离a 之间的函数图象如图(2)所示,那么长方形ABCD的面积为( ) 图(1) 图(2)A.10B.12C.15D.18二、填空题(共5小题,每小题3分,共15分)11.“三角形三个内角中最多只能有一个直角”,这个命题是 命题.(填“真”或“假”)12.小明八年级上学期数学期中成绩是110分,期末成绩是115分,若这学期的总评成绩根据如图所示的权重计算,则小明该学期的数学总评成绩为 分.13.已知方程组2x -y +3=0,ax -y +c =0的解为x =-1,y =1,则一次函数y=2x+3与y=ax+c 的图象的交点坐标是 .14.如图,AB ∥CD ,AE ⊥CE 于点E ,∠1=125°,则∠C= .(第14题) (第15题)15.如图所示,ABCD 是长方形地面,长AB=16 m,宽AD=9 m,中间竖有一堵砖墙,墙高MN=1 m .一只蚂蚁从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要爬 m 的路程.三、解答题(共8小题,共75分)16.(共2小题,每小题4分,共8分)计算:(1)8+182-16.(2)316+(22-3)2-2×12.17.(8分)数学课上,同学们用代入消元法解二元一次方程组2x -y=5, ①8x-3y=20, ②下面是两位同学的解答思路,请你认真阅读并完成相应的任务.小彬:由①,得y= , ③将③代入②,得……小颖:由①,得2x= , ③将③代入②,得……任务:(1)按照小彬的思路,第一步要用含x的代数式表示y,得到方程③,即y= ;第二步将③代入②,可消去未知数y.(2)按照小颖的思路,第一步要用含y的代数式表示2x,得到方程③,即2x= ;第二步将“2x”看作整体,将③代入②,可消去未知数x.(3)请从下面A,B两题中任选一题作答.我选择 题.A.按照小彬的思路求此方程组的解.B.按照小颖的思路求此方程组的解.18.(8分)如图,MN∥BC,BD⊥DC,∠1=∠2=60°.(1)求证:AB∥DE.(2)若DC是∠NDE的平分线,求证:BD是∠ABC的平分线.19.(9分)小王剪了两张直角三角形纸片,进行了如下操作.操作一:如图(1),将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6 cm,BC=8 cm,可求得△ACD的周长为 ;(2)如果∠CAD∶∠BAD=4∶7,可求得∠B为 °.操作二:如图(2),小王拿出另一张直角三角形纸片,将Rt△ABC沿直线AD折叠,使直角边AC落在斜边AB上,且与AE重合,若AC=9 cm,BC=12 cm,请求出CD的长. 图(1) 图(2)20.(9分)践行文化自信,让中华文化走向世界.某市甲、乙两校的学生人数基本相同,为了解这两所学校学生的中华文化知识水平,在同一次知识竞赛中,从两校各随机抽取了30名学生的竞赛成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分(如图).甲校:93 82 76 77 76 89 89 89 8394 84 76 69 83 92 87 88 8984 92 87 89 79 54 88 98 9087 68 76乙校:85 61 79 91 84 92 92 84 6390 89 71 92 87 92 73 76 9284 57 87 89 88 94 83 85 8094 72 90(1)请根据乙校的数据补全条形统计图.(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格:平均数中位数众数甲校83.6 乙校83.28692(3)请判断哪所学校学生的中华文化知识水平更高一些,并根据(2)中的数据说明理由.(4)为进一步提高两所学校学生的中华文化知识水平,请你提出一条合理化建议.21.(10分)某工厂承接了一批纸箱加工任务,用如图(1)所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)若该厂购进正方形纸板1 000张,长方形纸板2 000张.问竖式、横式纸盒各加工多少个,恰好能将购进的纸板全部用完.(2)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<n<136,且一个竖式纸箱成本300元,一个横式纸箱成本200元,试求在这一天加工两种纸箱时,a的所有可能值中,成本最低花费多少元. 图(1) 图(2)22.(11分)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1 min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”“猫”距起点的距离y(m)与时间x(min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是 m/min;(2)求AB所在直线的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.23.(12分)如图,在平面直角坐标系中,一次函数y=k1x+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数y=k2x的图象的交点为C(3,4).(1)求正比例函数与一次函数的表达式.(2)求△OBC的面积.(3)在y轴上是否存在一点P,使△POC为等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.八年级上学期期末综合测评卷12345678910B CAA CDBCBC11.真12.11313.(-1,1)14.35°15.951.B2.C ∵空调的每小时用电量随开机设置温度的高低而变化,∴自变量是设置温度.3.A4.A ∵点A (-3,m )与B (n ,-2)关于y 轴对称,∴n=3,m=-2∴m+n=-2+3=1.5.C A 选项中,设AB=k ,则AC=2k ,BC=3k ,∵AB 2+AC 2=k 2+2k 2=3k 2=BC 2,∴△ABC 是直角三角形;B 选项中,∵BC 2-AB 2=AC 2,∴AB 2+AC 2=BC 2,∴△ABC 是直角三角形;C 选项中,∵∠A ∶∠B ∶∠C=3∶4∶5,∴∠C=53+4+5×180°=75°≠90°,∴△ABC 不是直角三角形;D 选项中,∵∠A-∠B=∠C ,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC 是直角三角形.6.D 2a +b =6,①a +2b =3,②①+②得3a+3b=9,∴a+b=3.7.B ∵将图形A 上的所有点的横坐标都乘-1,纵坐标不变,∴横坐标变为相反数,纵坐标不变,∴得到的图形B 与A 关于y 轴对称.8.C 设网格中每个小正方形的边长都是1.逐项分析如下.选项分析判断A各边长为2,4,25,22+42=(25)2是直角三角形B各边长为2,22,10,(2)2+(22)2=(10)2是直角三角形C各边长为5,10,17,(5)2+(10)2≠(17)2不是直角三角形D各边长为5,2 5,5,(5)2+(2 5)2=52是直角三角形9.B ∵∠EOD=∠BOC ,∠EOD+∠OBF=180°,∴∠BOC+∠OBF=180°,∴EC ∥BF ,∴∠ECD=∠F ,∠ECB=∠CBF.∵CE 平分∠ACB ,∴∠ECD=∠ECB.∵∠F=∠G ,∴∠G=∠ECB ,∴DG ∥CE ,∴∠CDG=∠DCE ,∴∠CDG=∠G=∠F=∠DCE=∠CBF=∠ECB.10.C (特殊值法)由图象和题意可知,当直线y=-x 沿x 轴平移的距离为1时,沿y 轴平移的距离也为1,即直线y=-x+1经过点A ,且与x 轴,y 轴分别交于点(1,0),(0,1),假设点A 的坐标为(12,12).同理,当直线y=-x 沿x 轴平移的距离为4时,直线为y=-x+4,经过点B (12,72),所以AB=72-12=3.同理,当直线y=-x 沿x 轴平移的距离为6时,直线为y=-x+6,经过点D (112,12),所以AD=112-12=5.所以长方形ABCD 的面积=AB×AD=3×5=15.11.真 因为三角形内角和为180°,所以三角形三个内角中最多只能有一个直角,所以命题“三角形三个内角中最多只能有一个直角”为真命题.12.113 根据题意得110×40%+115×60%=44+69=113(分),则小明该学期的数学总评成绩为113分.13.(-1,1) ∵方程组2x -y +3=0,ax -y +c =0的解为x =-1,y =1,∴一次函数y=2x+3与y=ax+c 的图象的交点坐标是(-1,1).14.35° 如图,过点E 作EF ∥AB ,∴∠BAE=∠AEF.∵AB ∥CD ,∴EF ∥CD ,∴∠C=∠CEF.∵AE ⊥CE ,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°-125°=55°,∴∠C=90°-55°=35°.15.9 5如图所示,将图展开,新图形长度增加了2个MN 的长度,即新图形中AB 的长度增加2米,∴AB=16+2=18(米).连接AC ,∵四边形ABCD 是长方形,AB=18米,AD=9米,在Rt △ABC 中,由勾股定理得AC=AB 2+BC 2=182+92=9 5(米),∴蚂蚁从A 点爬到C 点,它至少要爬9 5米的路程.16.(1)原式=82+182-4(2分)=2+3-4=1.(4分)(2)原式=62+8-4 6+3-2 6(2分)=11-1162.(4分)17.(1)2x-5(2分)(2)5+y (4分)(3)解法一:A 由①,得y=2x-5, ③把③代入②,得8x-3(2x-5)=20,解得x=2.5,把x=2.5代入③,得y=0.故原方程组的解为x =2.5,y =0.(8分)解法二:B由①,得2x=5+y , ③把③代入②,得4(5+y )-3y=20,解得y=0,把y=0代入③,得2x=5,解得x=2.5.故原方程组的解为x =2.5,y =0.(8分)18.(1)证明:∵MN ∥BC ,∴∠ABC=∠1=60°.又∠1=∠2,∴∠ABC=∠2,∴AB ∥DE. (3分)(2)证明:∵DC 是∠NDE 的平分线,∴∠EDC=∠NDC.∵BD ⊥DC ,∴∠BDE+∠EDC=90°,∠ADB+∠NDC=90°,∴∠BDE=∠ADB.∵MN ∥BC ,∴∠DBC=∠ADB ,∴∠BDE=∠DBC.∵AB ∥DE ,∴∠ABD=∠BDE ,∴∠ABD=∠DBC ,∴BD 是∠ABC 的平分线.(8分)19.操作一:(1)14 cm(2分)(2)35(4分)操作二:由折叠知,AE=AC=9 cm,DE ⊥AB ,设CD=DE=x cm,则BD=(12-x )cm .在Rt △ABC 中,AB 2=AC 2+BC 2=81+144=225,∴AB=15 cm,∴BE=15-9=6(cm).(6分)又在Rt △BDE 中,BD 2=DE 2+BE 2,∴(12-x )2=x 2+36,解得x=92,即CD=92 cm .(9分)20.(1)由题意可得乙校竞赛成绩在70~79分的有5人,在60~69分的有2人,补全条形统计图,如图.(2分)(2)87 89(4分)解法提示:甲校数据按照从小到大排列是54,68,69,76,76,76,76,77,79,82,83,83,84,84,87,87,87,88,88,89,89,89,89,89,90,92,92,9 3,94,98,∴这组数据的中位数m=87+872=87,众数n=89.(3)甲校学生的中华文化知识水平更高一些.理由:甲校成绩的平均数高于乙校,说明总成绩甲校高于乙校,甲校成绩的中位数高于乙校,说明甲校一半以上的学生成绩较好.(7分) (4)为进一步提高两所学校学生的中华文化知识水平,建议在课后多开展中华文化知识活动.(9分)21.(1)设加工竖式纸盒x个,加工横式纸盒y个,根据题意得x+2y=1000,4x+3y=2000,解得x=200,y=400.答:加工竖式纸盒200个,加工横式纸盒400个,恰好能将购进的纸板全部用完.(4分) (2)设加工竖式纸盒m个,加工横式纸盒n个,根据题意得m+2n=50,4m+3n=a,∴n=40-a5.(6分)∵n,a为正整数,∴a为5的倍数.又∵120<a<136,∴满足条件的a为125,130,135.(8分)当a=125时,n=15,m=20,成本费为300×20+200×15=9 000(元);当a=130时,n=14,m=22,成本费为300×22+200×14=9 400(元);当a=135时,n=13,m=24,成本费为300×24+200×13=9 800(元).∵9 000<9 400<9 800,∴a的所有可能值中,成本最低花费9 000元.(10分)22.(1)1(2分)解法提示:由题图可知,“鼠”的平均速度为30÷6=5(m/min),“猫”的平均速度为30÷(6-1)=6(m/min),故“猫”的平均速度与“鼠”的平均速度的差是6-5=1(m/min).(2)设AB所在直线的函数表达式为y=kx+b(k≠0),将A(7,30),B(10,18)代入得30=7k+b,18=10k+b,解得k=-4, b=58,故AB所在直线的函数表达式为y=-4x+58.(6分) (3)在y=-4x+58中,令y=0,则-4x+58=0,解得x=14.5.14.5-1=13.5(min).故“猫”从起点出发到返回至起点所用的时间为13.5 min.(11分) 23.(1)∵正比例函数y=k2x的图象经过点C(3,4),∴4=3k2,解得k2=43,∴正比例函数的表达式为y=43x.(2分)∵一次函数y=k1x+b的图象经过点A(-3,0),C(3,4),∴-3k1+b=0,3k1+b=4,解得k1=23,b=2.∴一次函数的表达式为y=23x+2.(4分)(2)在y=23x+2中,令x=0,则y=2,∴B(0,2),∴S△OBC=12×2×3=3.(7分) (3)假设存在满足条件的点P,设P(0,m).∵C(3,4),∴OP=|m|,OC=5,CP=(0-3)2+(m-4)2=9+(m-4)2.(8分)①当OP=OC时,|m|=5,∴m=±5,∴P(0,5)或P(0,-5).②当CP=CO时,9+(m-4)2=5,解得m=8或m=0(舍去),∴P(0,8).③当CP=PO 时,|m|=9+(m -4)2,∴m=258,∴P (0,258).综上,存在满足条件的点P ,且点P 的坐标为(0,5),(0,-5),(0,8)或(0,258).(12分)。

2020年八年级第一学期期末考试数学试卷(三)

2020年八年级第一学期期末考试数学试卷(三)

2020年八年级第一学期期末考试数学试卷(三)一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,恰有项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列各式中,属于分式的是()A.x﹣1 B.C.D.(x+y)2.若代数式在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≥2 D.x≤23.下列计算,正确的是()A.a2﹣a=a B.a2•a3=a6C.a9÷a3=a3D.(a3)2=a64.在△ABC中,∠ACB=90°,CD是斜边AB上的高,∠A=30°,以下说法错误的是()A.AD=2CD B.AC=2CD C.AD=3BD D.AB=2BC5.下列计算正确的是()A.+=2B.﹣=2C.•=1 D.•=3﹣26.已知如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则以下作法不正确的是()A.取AB中点H,连接PHB.作∠APB的平分线PH交AB于点HC.过点P作PH⊥AB于点H且AH=BHD.过点P作PH⊥AB,垂足为H7.若3n+3n+3n=,则n=()A.﹣3 B.﹣2 C.﹣1 D.08.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为()A.1 B.2 C.4 D.无数9.一组不为零的数a,b,c,d,满足,则以下等式不一定成立的是()A.=B.=C.=D.=10.关于等腰三角形,以下说法正确的是()A.有一个角为40°的等腰三角形一定是锐角三角形B.等腰三角形两边上的中线一定相等C.两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D.等腰三角形两底角的平分线的交点到三边距离相等二、填空题(本大题共8小题,每小题2分,共16分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.点A(11,12)与点B(﹣11,12)关于对称.(填“x轴”或y轴”)12.分解因式:12m2﹣3n2=.13.如图,在△ABC中,PH是AC的垂直平分线,AH=3,△ABP的周长为11,则△ABC的周长为.14.一个正方形的边长增加2cm,它的面积就增加24cm2,这个正方形的边长是cm.15.如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)16.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为.17.已知x=a时,多项式x2+6x+k2的值为﹣9,则x=﹣a时,该多项式的值为.18.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x)4=a+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4=.三、解答题(本大题共8小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算或求值(1)计算:(2a+3b)(2a﹣b);(2)计算:(2x+y﹣1)2;(3)当a=2,b=﹣8,c=5时,求代数式的值;(4)先化简,再求值:(m+2),其中m=.20.解方程:.21.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).22.小江利用计算器计算15×15,25×25,…,95×95,有如下发现:15×15=225=1×2×100+25,25×25=625=2×3×100+2535×35=1225=3×4×100+25,小江观察后猜测:如果用字母a代表一个正整数,则有如下规律:(a×10+5)2=a(a+1)×100+25.但这样的猜测是需要证明之后才能保证它的正确性.请给出证明.23.证明:如果两个三角形有两条边和其中一边上的中线分别相等,那么这两个三角形全等.24.某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)25.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC的外心时,只作出两边BC,AC的垂直平分线得到交点O,就认定点O是△ABC的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF,连接DE,EF,DF,得到△DEF.若点O为△ABC的外心,求证:点O也是△DEF的外心.26.已知x+=k,k为正实数.(1)当k=3时,求x2的值;(2)当k=时,求x﹣的值;(3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下!2020年八年级第一学期期末考试数学试卷(三)参考答案与试题解析一.选择题(共10小题)1.下列各式中,属于分式的是()A.x﹣1 B.C.D.(x+y)【分析】利用分式的定义判断即可.【解答】解:是分式,故选:B.2.若代数式在实数范围内有意义,则x的取值范围是()A.x<2 B.x>2 C.x≥2 D.x≤2【分析】二次根式的被开方数是非负数.【解答】解:依题意得x﹣2≥0,解得x≥2.故选:C.3.下列计算,正确的是()A.a2﹣a=a B.a2•a3=a6C.a9÷a3=a3D.(a3)2=a6【分析】根据合并同类项、同底数幂的乘除法以及幂的乘方进行计算即可.【解答】解:A、a2﹣a,不能合并,故A错误;B、a2•a3=a5,故B错误;C、a9÷a3=a6,故C错误;D、(a3)2=a6,故D正确;故选:D.4.在△ABC中,∠ACB=90°,CD是斜边AB上的高,∠A=30°,以下说法错误的是()A.AD=2CD B.AC=2CD C.AD=3BD D.AB=2BC【分析】根据在直角三角形中,30°角所对的直角边等于斜边的一半判断即可.【解答】解:∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=30°,∴AC=2CD,B正确,不符合题意;A错误符合题意;∵∠ACB=90°,∠A=30°,∴AB=2BC,D正确,不符合题意;∵∠ACB=90°,CD是斜边AB上的高,∠A=30°,∴∠BCD=30°,∴BC=2BD,∴AB=4AD,∴AD=3BD,C正确,不符合题意;故选:A.5.下列计算正确的是()A.+=2B.﹣=2C.•=1 D.•=3﹣2【分析】利用二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;利用完全平方公式对D进行判断.【解答】解:A、+==,所以A选项错误;B、﹣==1,所以B选项错误;C、•==1,所以C选项正确;D、•==,所以D选项错误.故选:C.6.已知如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则以下作法不正确的是()A.取AB中点H,连接PHB.作∠APB的平分线PH交AB于点HC.过点P作PH⊥AB于点H且AH=BHD.过点P作PH⊥AB,垂足为H【分析】利用判断三角形全等的方法判断即可得出结论.【解答】解:A、取AB中点H,连接PH,得AH=BH,依据“SSS”证△APH≌△BPH可得;B.作∠APB的平分线PH交AB于点H知∠APH=∠BPH,依据“SAS”证△APH≌△BPH可得;C.过点P作PH⊥AB于点H或作AH=BH,当不能一次作图达到两个目的,此作法错误;D.过点P作PH⊥AB,垂足为H知∠AHP=∠BHP=90°,利用“HL”可证Rt△APH≌Rt △BPH可得;故选:C.7.若3n+3n+3n=,则n=()A.﹣3 B.﹣2 C.﹣1 D.0【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.【解答】解:∵3n+3n+3n=,∴3n+1=3﹣2,则n+1=﹣2,解得:n=﹣3.故选:A.8.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为()A.1 B.2 C.4 D.无数【分析】直接利用轴对称图形的性质画出对称轴即可.【解答】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.9.一组不为零的数a,b,c,d,满足,则以下等式不一定成立的是()A.=B.=C.=D.=【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可.【解答】解:∵一组不为零的数a,b,c,d,满足,∴,,即,,但不能得出,故选:C.10.关于等腰三角形,以下说法正确的是()A.有一个角为40°的等腰三角形一定是锐角三角形B.等腰三角形两边上的中线一定相等C.两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D.等腰三角形两底角的平分线的交点到三边距离相等【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【解答】解:A:如果40°的角是底角,则顶角等于100°,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、若两个等腰三角形的腰相等,腰上的高也相等.则这两个等腰三角形不一定全等,故此选项错误;D、等腰三角形两底角的平分线的交点到三边距离相等,故此选项正确;二.填空题(共8小题)11.点A(11,12)与点B(﹣11,12)关于y轴对称.(填“x轴”或y轴”)【分析】利用平面内两点关于y轴对称时:纵坐标不变,横坐标互为相反数,关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:∵点A(11,12)与点B(﹣11,12),横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(﹣11,12)关于y轴对称.故答案为:y轴.12.分解因式:12m2﹣3n2=3(2m+n)(2m﹣n).【分析】首先提取公因式3,再利用平方差公式进行分解即可.【解答】解:原式=3(4m2﹣n2)=3(2m+n)(2m﹣n),故答案为:3(2m+n)(2m﹣n).13.如图,在△ABC中,PH是AC的垂直平分线,AH=3,△ABP的周长为11,则△ABC的周长为17 .【分析】根据线段垂直平分线的性质得到PA=PC,AC=2AH=6,根据三角形的周长公式计算,得到答案.【解答】解:∵PH是AC的垂直平分线,∴PA=PC,AC=2AH=6,∵△ABP的周长为11,∴AB+BP+PA=AB+BP+BC=AB+BC=11,∴△ABC的周长=AB+BC+AC=17,故答案为:17.14.一个正方形的边长增加2cm,它的面积就增加24cm2,这个正方形的边长是 5 cm.【分析】本题是平方差公式的应用,设这个正方形的边长为a,根据正方形面积公式有(a+2)2﹣a2=24,先用平方差公式化简,再求解.【解答】解:设这个正方形的边长为a,依题意有(a+2)2﹣a2=24,(a+2)2﹣a2=(a+2+a)(a+2﹣a)=4a+4=24,解得a=5.15.如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】解法一:取点G、F,构建等腰直角三角形,由正切的值可作判断,或直接根据∠BAC=45°,∠EAD<∠FAG=45°,来作判断;解法二:作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:解法一:在AD上取一点G,在网格上取点F,构建△AFG为等腰直角三角形,∵tan∠BAC==1,tan∠EAD<1,∴∠BAC>∠EAD;解法二:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.16.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做零件的个数为8 .【分析】设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为;根据甲做60个所用的时间与乙做40个所用的时间相等,列方程求解.【解答】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=8,经检验:x=8是原分式方程的解,且符合题意,答:乙每小时做8个.故答案是:8.17.已知x=a时,多项式x2+6x+k2的值为﹣9,则x=﹣a时,该多项式的值为27 .【分析】把x=a代入多项式,得到的式子进行移项整理,得(a+3)2=﹣k2,根据平方的非负性把a和k求出,再代入求多项式的值.【解答】解:将x=a代入x2+6x+k2=﹣9,得:a2+6a+k2=﹣9移项得:a2+6a+9=﹣k2∴(a+3)2=﹣k2∵(a+3)2≥0,﹣k2≤0∴a+3=0,即a=﹣3,k=0∴x=﹣a时,x2+6x+k2=32+6×3=27故答案为:2718.教材上“阅读与思考”曾介绍“杨辉三角”(如图),利用“杨辉三角”展开(1﹣2x)4=a+a1x+a2x2+a3x3+a4x4,那么a1+a2+a3+a4=0 .【分析】令x=0求出a0的值,再令x=1即可求出所求式子的值.【解答】解:令x=0,得:a0=1,令x=1,得:a0+a1+a2+a3+a4=1,则a1+a2+a3+a4=0,故答案为:0.三.解答题(共8小题)19.计算或求值(1)计算:(2a+3b)(2a﹣b);(2)计算:(2x+y﹣1)2;(3)当a=2,b=﹣8,c=5时,求代数式的值;(4)先化简,再求值:(m+2),其中m=.【分析】(1)利用多项项乘多项式展开,然后合并即可;(2)利用完全平方公式计算;(3)先计算出b2﹣4ac,然后计算代数式的值;(4)先把括号内通分,再把分子分母因式分解后约分得到原式=﹣2m﹣6,然后把m的值代入计算即可.【解答】解:(1)原式=4a2﹣2ab+6ab﹣3b2=4a2+4ab﹣3b2;(2)原式=(2x+y)2﹣2(2x+y)﹣1=4x2+4xy+y2﹣4x﹣2y﹣1;(3)b2﹣4ac=(﹣8)2﹣4×2×5=24,==;(4)原式=•[﹣]=﹣•=﹣2(m+3)=﹣2m﹣6,当m=﹣时,原式=﹣2×(﹣)﹣6=﹣5.20.解方程:.【分析】本题的最简公分母是3(x+1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.【解答】解:方程两边都乘3(x+1),得:3x﹣2x=3(x+1),解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.21.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.(要求:写作法,用尺规作图,保留作图痕迹).【分析】根据题目要求画出线段a、h,再画△ABC,使AB=a,△ABC的高为h;首先画一条直线,再画垂线,然后截取高,再画腰即可.【解答】解:作图:①画射线AE,在射线上截取AB=a,②作AB的垂直平分线,垂足为O,再截取CO=h,③再连接AC、CB,△ABC即为所求.22.小江利用计算器计算15×15,25×25,…,95×95,有如下发现:15×15=225=1×2×100+25,25×25=625=2×3×100+2535×35=1225=3×4×100+25,小江观察后猜测:如果用字母a代表一个正整数,则有如下规律:(a×10+5)2=a(a+1)×100+25.但这样的猜测是需要证明之后才能保证它的正确性.请给出证明.【分析】根据完全平方公式将左边展开,再将前两项分解因式即可得证.【解答】解:左边=(10a+5)2=100a2+100a+25=a(a+1)×100+25=右边,∴(a×10+5)2=a(a+1)×100+25.23.证明:如果两个三角形有两条边和其中一边上的中线分别相等,那么这两个三角形全等.【分析】求出BM=EN,根据SSS证△ABM≌△DEN,推出∠B=∠E,根据SAS证△ABC≌△DEF即可.【解答】已知:△ABC和△DEF中,AB=DE,BC=EF,AM是△ABC的中线,DN是△DEF的中线,AM =DN,求证:△ABC≌△DEF.证明:∵BC=EF,AM是△ABC的中线,DN是△DEF的中线,∴BM=EN,在△ABM和△DEN中,∵,∴△ABM≌△DEN(SSS),∴∠B=∠E,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS).24.某列车平均提速vkm/h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶50km,提速前列车的平均速度为多少?(用含v的式子表示)【分析】设提速前列车的平均速度为xkm/h,则依题意可得等量关系:提速前行驶150千米所用的时间=提速后行驶(150+50)千米所用的时间,根据等量关系列出方程即可.【解答】解:设提速前列车的平均速度为xkm/h,则依题意列方程得=,解得:x=3v,经检验,x=3v是原分式方程的解,答:提速前列车的平均速度为3vkm/h.25.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC的外心时,只作出两边BC,AC的垂直平分线得到交点O,就认定点O是△ABC的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF,连接DE,EF,DF,得到△DEF.若点O为△ABC的外心,求证:点O也是△DEF的外心.【分析】(1)连接OA、OB、OC,如图①,根据线段垂直平分线的性质得到OB=OC,OC =OA,则OA=OB=OC,从而根据三角形的外心的定义判断点O是△ABC的外心;(2)连接OA、OD、OC、OF,如图②,利用等边三角形的性质得到OA=OC,∠AOC=2∠B =120°,再计算出∠OAD=∠OCF=∠OAD=30°,接着证明△AOD≌△COF得到OD=OC,同理可得OD=OE,所以OD=OE=OF,然后根据三角形外心的定义得到点O是△DEF的外心.【解答】(1)解:定点O是△ABC的外心有道理.理由如下:连接OA、OB、OC,如图①,∵BC,AC的垂直平分线得到交点O,∴OB=OC,OC=OA,∴OA=OB=OC,∴点O是△ABC的外心;(2)证明:连接OA、OD、OC、OF,如图②,∵点O为等边△ABC的外心,∴OA=OC,∠AOC=2∠B=120°,∴∠OAD=∠OCF=30°,∴∠OAD=30°,在△AOD和△COF中,∴△AOD≌△COF(SAS),∴OD=OC,同理可得OD=OE,∴OD=OE=OF,∴点O是△DEF的外心.26.已知x+=k,k为正实数.(1)当k=3时,求x2的值;(2)当k=时,求x﹣的值;(3)小安设计一个填空题并给出答案,但被老师打了两个“×”小安没看懂老师为什么指出两个错误?如果你看懂了,请向小安解释一下!【分析】(1)根据x2=(x+)2﹣4代入可得结果;(2)先根据x+=,计算x2=(x+)2﹣4的值,再将x﹣平方后计算;(3)先解方程x+=,无实数解.【解答】解:(1)当k=3时,x+=3,x2=(x+)2﹣4=32﹣4=5;(2)当k=时,x+=,x2=(x+)2﹣4=﹣4=6,∴x﹣=±=±=±=±;(3)∵x+=,两边同时平方得:x2﹣x+2=0,而△=()2﹣4×1×2=﹣2<0,∴此方程x+=无实数根,∴x+不能等于,∴的值也不对,而当x+=时,x2=(x+)2﹣4=2;∴老师指出了两个错误.。

八年级数学上学期期末测试卷3

八年级数学上学期期末测试卷3

八年级上学期期末测试卷班级_______ 姓名________ 成绩________一、填空题(3分³8=24分) 1.若多项式ax 2-b1可分解为(3x +51)(3x -51),则a =__________,b =__________.2.若多项式-9x 2+2x +a 是完全平方式,则a =__________. 3.当x __________ 时,分式x121+有意义.4.a ,b ,c 为△ABC 的三边,且分式acbc ab cbaabc---++222无意义,则△ABC为____三角形.5.已知:yx 11- =3,则yxy x y xy x ---+2232=__________.6.如图(1),AB =AC ,∠BAC =120°,D 是BC 的中点,DE ⊥AB 垂足为E ,若AD =3 cm ,则AB =__________ cm ,AE =__________ cm .7.在角,等边三角形、直角三角形,正方形这四个图形中有__________个轴对称图形,其中对称轴最多的是__________,有__________条对称轴.8.两根木棒的长分别是8 cm ,10 cm ,要选择第三根木棒将它们钉成一个三角形,那么第三根木棒长x 的范围是________ ,如果以5 cm 为等腰三角形的一边,另一边为10 cm ,则它的周长应为__________.二、选择题(3分³8=24分)9.到△ABC 的三个顶点距离相等的点是△ABC 的 A .三条中线的交点 B .三条角平分线的交点 C .三条高的交点 D .三条边的垂直平分线的交点10.如图(2),△ABC 中,AB =AC ,A =50°,P 是△ABC 内一点,且∠PBC =∠PCA ,则∠BPC 的度数等于A .100°B .115°C .130°D .140°图(2) 图(3) 图(4)11.如图(3)所示,在△ABC 中,AB =AC ,A =36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线且相交于点F ,则图中的等腰三角形有A .6个B .7个C .8个D .9个12.如图(4),CE 平分∠ACB ,CD =CA ,C H ⊥ AD 于H ,则∠ECA 与∠H CA 的关系是 A .相等 B .和等于90° C .和等于45° D .和等于60° 13.下列分式中是最简分式的是A .112-+x xB .1122-+-x x xC .xy y x 3322-- D .12-+x xx14.下列多项式中,不含(x -1)因式的是A .x 3-x 2+1-xB .x +y -xy -x 2C .x 2-2x -y 2+xD .(x 2+3x )-(2x +2)15.在同一段路程里,上坡时的速度为a ,下坡时的速度为b ,则上、下坡的平均速度为A .2b a + B .b a ab + C .abb a 2+ D .ba ab +216.关于x 的方程ab x bx a -=++2(a ≠b )的解为A .x =a -bB .x =a +bC .x =2abD .x =b -a三、解答题(共52分) 17.(6分)当a =25,b =-21时,求代数式(a -b +ba ab -4)²(a +b -ba ab +4)的值.18.(6分)已知:如图(5),AB =4,BC =12,CD =13,DA =3,AB ⊥A D .求证:BC ⊥B D .图(5)19.(6分)已知钝角△AB C .求作:BC 边上的高AD 和△A ′B ′C ′,使△A ′B ′C ′与△ABC 关于AD 所在直线对称.图(6)20.(6分)先化简,再求值:252(23--+÷--x x x x ),其中x =32.21.(7分)a 为何值时,关于x 的方程234222+=-+-x xax x 会产生增根?22.(7分)已知△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交BC 的延长线于F .求证:∠BAF =∠ACF .图(7)23.(7分)AB 两地相距80千米,一辆公共汽车从A 地出发开往B 地,2小时后又从A 地同方向开出一辆小汽车,小汽车的速度是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B 地,求两种汽车的速度.24.(7分)观察下列等式: 9-1=8 16-4=12 25-9=16 36-16=20 ………………这些等式反映出自然数间的某种规律,设n 表示自然数,用关于n 的等式表示出来.参考答案一、1.9 25 2.-91 3.≠-21且x ≠0 4.等边5.53 (∵yx 11-=3,∴x -y =-3xy ,xyxy xy xy xyy x xy y x yxy x y y x 23362)(3)(22232--+-=--+-=---+5353=--=xyxy )6. 6 1.5 7.3 正方形 4 8.2 cm<x <18 cm 25 cm二、9.D 10.B 11.C 12.B 13.A 14.C 15.D 16.D 三、17.解:原式=))(()()(4)(4)(2222b a b a b a b a b a abb a ba abb a +--+=+-+⋅-+-=a 2-b 2当a =25,b =21时,原式=(25)2-(-21)2=45-41=118.证明:∵AB ⊥AD ,∴∠BAD =90° 在Rt △ABD 中,BD 2=AB 2+AD 2=42+32=25 在△BCD 中∵BC 2+BD 2=122+25=169=132=CD 2 ∴∠DBC =90°∴BC ⊥BD . 19.图略 作法(1)过点A 作BC 的垂线交BC 的延长线于D ,则AD 为BC 边上的高 (2)分别作点B ,点C ,点A 关于AD 所在直线的对称点B ′、C ′与A ′ (3)连结A ′B ′,A ′C ′,B ′C ′,△A ′B ′C ′就是所要画图形 20.解:原式=23--x x ÷(242--x x-25-x )=23--x x ³)3)(3(2-+-x x x =-31+x当x =32时,原式=-1133321-=+.21.解:原方程可化为2(x +2)+ax =3(x -2) (a -1)x =-10 此方程的增根x =±2当x =2时,(a -1)³2=-10,a =-4当x =-2时,(a -1)³(-2)=-10,a =6. 因此当a =-4或a =6时,关于x 的方程234222+=-+-x xax x 会产生增根.22.证明:∵AD 是∠BAC 的平分线, ∴∠1=∠2∵FE 是AD 的垂直平分线 ∴F A =FD ,∠F AD =∠FDA∵∠BAF =∠F AD +∠1,∠ACF =∠FDA +∠2∴∠BAF =∠ACF .23.解:设公共汽车的速度是x 千米/小时,则小汽车的速度为3x 千米/小时 根据题意得32238080+=-xx解之得x =20检验知x =20是方程的根,3x =3³20=60答:公共汽车的速度是20千米/小时,小汽车的速度为60千米/小时. 24.(n +2)2-n 2=4(n +1).。

江苏省南京市秦淮区2023-2024学年八年级上学期期末数学试卷(含答案)

江苏省南京市秦淮区2023-2024学年八年级上学期期末数学试卷(含答案)

2023-2024学年江苏省南京市秦淮区八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列手机应用的图标是轴对称图形的是( )A.B.C.D.2.(2分)将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A.1,2,3B.2,3,4C.4,5,6D.5,12,13 3.(2分)点A(2,﹣1)关于x轴对称的点B的坐标为( )A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)4.(2分)如图,EC⊥BD,垂足为C,A是EC上一点,且AC=CD,AB=DE.若AC=3.5,BD=9,则AE的长为( )A.2B.2.5C.3D.5.55.(2分)如图,一次函数的图象与y=kx+b的图象相交于点P(﹣2,n),则关于x,y的方程组的解是( )A.B.C.D.6.(2分)如图,用7个棱长为1的正方体搭成一个几何体,沿着该几何体的表面从点M 到点N的所有路径中,最短路径的长是( )A.5B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卷相应位置上)7.(2分)= .8.(2分)在实数,,,3.1415,中,无理数有 个.9.(2分)比较大小: ﹣1(填“>”“<”或“=”).10.(2分)如图,∠1=∠2,要使△ABC≌△ADC,还需添加条件: .(填写一个你认为正确的即可)11.(2分)已知P1(x1,y1),P2(x2,y2)是一次函数y=﹣2x+1图象上的两点,若x1>x2,则y1 y2.(填“>”“<”或“=”)12.(2分)在等腰三角形ABC中,∠A=2∠B,则∠C的度数为 .13.(2分)已知一次函数y=x﹣m+3(m为常数)的图象与y轴的交点在x轴的上方,则m 的取值范围为 .14.(2分)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E 为AC的中点,连接DE,则△CDE的周长为 .15.(2分)在课本上的“数学活动折纸与证明”中,我们曾经两次折叠正方形纸片(如图).若正方形纸片的边长为2cm,则EA'的长为 cm.16.(2分)如图,一次函数的图象与x轴交于点A.将该函数图象绕点A逆时针旋转45°,则得到的新图象的函数表达式为 .三、解答题(本大题共10小题,共68分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:(1);(2).18.(6分)求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣6419.(6分)已知:如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:(1)△ABD≌△ACE;(2)∠ADE=∠AED.20.(7分)一次函数y=kx+b(k,b为常数)的图象经过点(2,﹣2),(0,2).(1)求该函数的表达式;(2)画出该函数的图象;(3)不等式kx+b<0的解集为 .21.(8分)如图,在△ABC中,∠C=90°,AC=8,AB的垂直平分线MN交AC于点D,连接BD.(1)若∠A=25°,求∠DBC的度数;(2)若BC=4,求BD的长.22.(6分)已知一次函数y=mx+2m﹣2(m为常数,m≠0).(1)若该函数的图象经过原点,求m的值;(2)当0<m<1时,该函数图象经过第 象限.23.(6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,1),B(5,2),C(2,2).将点A,C分别向下平移3个单位长度得到点A′,C′.(1)点A′,C′的坐标分别为 , ;(2)求证:点A′,C′,B在一条直线上.24.(6分)如图,已知线段a,b,c.求作△ABC,使AB=a,BC=b,且分别满足下列条件:(1)AB上的中线为c.(2)AB上的高为c.(说明:①尺规作图,保留作图痕迹;②可以有必要的作图说明;③每小题作出满足条件的一个三角形即可.)25.(9分)甲、乙两家快递公司都要将货物从A地派送至B地.甲公司运输车要先在A地的集货中心拣货,然后直接发往B地.乙公司运输车从A地出发后,先到达位于A、B 两地之间的C地休息,再以原速驶往B地.两车离B地的距离s(km)与乙公司运输车所用时间t(h)的关系如图所示.已知两车均沿同一道路匀速行驶,且同时到达B地.(1)A地与B地之间的距离为 km.(2)求线段MN对应的函数表达式.(3)已知C地距离A地160km,当t为何值时,甲、乙两公司运输车相距80km?26.(8分)回顾旧知(1)如图①,已知点A,B和直线l,如何在直线l上确定一点P,使PA+PB最小?将下面解决问题的思路补充完整.解决问题的思路可以构造全等三角形,将两条线段集中到一个三角形中!据此,在l上任取一点P',作点A关于l的对称点A',AA'与直线l相交于点C.连接P'A',易知△AP'C≌ ,从而有P'A=P'A'.这样,在△A'P'B中,根据“ ”可知A'B与l的交点P即为所求.解决问题(2)如图②,在Rt△ABC中,∠ACB=90°,AB=8,E,F为AB上的两个动点,且AE =BF,求CE+CF的最小值.变式研究(3)如图③,在△ABC中,∠ABC=60°,AC=5,BC=4,点D,E分别为AB,AC 上的动点,且AD=CE,请直接写出CD+BE的最小值.2023-2024学年江苏省南京市秦淮区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列手机应用的图标是轴对称图形的是( )A.B.C.D.【解答】解:A,B,D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;C选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:C.2.(2分)将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )A.1,2,3B.2,3,4C.4,5,6D.5,12,13【解答】解:A、12+22=5≠32,故不能组成直角三角形,不符合题意;B、22+32=13≠42,故不能组成直角三角形,不符合题意;C、42+52=41≠62,故不能组成直角三角形,不符合题意;D、52+122=169=132,故能组成直角三角形,符合题意.故选:D.3.(2分)点A(2,﹣1)关于x轴对称的点B的坐标为( )A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)【解答】解:点A(2,﹣1)关于x轴对称的点B的坐标为:(2,1).故选:A.4.(2分)如图,EC⊥BD,垂足为C,A是EC上一点,且AC=CD,AB=DE.若AC=3.5,BD=9,则AE的长为( )A.2B.2.5C.3D.5.5【解答】解:∵EC⊥BD,∴∠ACB=∠DCE=90°,在Rt△ABC和Rt△DEC中,,∴Rt△ABC≌Rt△DEC(HL),∴CB=CE,AC=CD=3.5,∵BD=CB+CD=9,∴CB=5.5,∴CE=5.5,∴AE=CE﹣AC=5.5﹣3.5=2,故选:A.5.(2分)如图,一次函数的图象与y=kx+b的图象相交于点P(﹣2,n),则关于x,y的方程组的解是( )A.B.C.D.【解答】解:把点P(﹣2,n)代入得,n=×(﹣2)+=3,∴P(﹣2,3),∵一次函数的图象与y=kx+b的图象相交于点P(﹣2,3),∴关于x,y的方程组的解是,故选:B.6.(2分)如图,用7个棱长为1的正方体搭成一个几何体,沿着该几何体的表面从点M 到点N的所有路径中,最短路径的长是( )A.5B.C.D.【解答】解:将第一层小正方形的顶面和正面,以及第二层小正方形的顶面和正面展开,如图,连接MN,则MN==5,故选:A.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卷相应位置上)7.(2分)= 5 .【解答】解:=5,故答案为:5.8.(2分)在实数,,,3.1415,中,无理数有 2 个.【解答】解:=3,在实数,,,3.1415,中,无理数有,,共2个.故答案为:2.9.(2分)比较大小: > ﹣1(填“>”“<”或“=”).【解答】解:∵≈1.414,≈2.236,∴﹣1≈2.236﹣1=1.236,∴>﹣1,故答案为:>.10.(2分)如图,∠1=∠2,要使△ABC≌△ADC,还需添加条件: AB=AC .(填写一个你认为正确的即可)【解答】解:由已知可得,∠1=∠2,AC=AC,∴若添加条件AB=AC,则△ABC≌△ADC(SAS);若添加条件∠ACB=∠ACD,则△ABC≌△ADC(ASA);若添加条件∠ABC=∠ADC,则△ABC≌△ADC(AAS);故答案为:AB=AC.11.(2分)已知P1(x1,y1),P2(x2,y2)是一次函数y=﹣2x+1图象上的两点,若x1>x2,则y1 < y2.(填“>”“<”或“=”)【解答】解:∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.12.(2分)在等腰三角形ABC中,∠A=2∠B,则∠C的度数为 45°或72° .【解答】解:设∠B=x°,则∠A=2x°,当∠A是顶角时,∠A+2∠B=180°,即:4x=180,解得:x=45,此时∠C=∠B=45°;当∠A是底角时,2∠A+∠B=180°,即5x=180,解得:x=36°,此时∠C=2∠B=72°,故答案为:45°或72°.13.(2分)已知一次函数y=x﹣m+3(m为常数)的图象与y轴的交点在x轴的上方,则m 的取值范围为 m<3 .【解答】解:∵一次函数y=x﹣m+3(m为常数)的图象与y轴的交点在x轴的上方,∴﹣m+3>0,解得m<3.故答案为:m<3.14.(2分)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E 为AC的中点,连接DE,则△CDE的周长为 14 .【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故答案为14.15.(2分)在课本上的“数学活动折纸与证明”中,我们曾经两次折叠正方形纸片(如图).若正方形纸片的边长为2cm,则EA'的长为 2﹣ cm.【解答】解:由折叠的性质可得:AE=DE=1,AB=A'B=2,BF=CF=1,EF=AB=2,∴A'F==,∴A'E=2﹣,故答案为:2﹣.16.(2分)如图,一次函数的图象与x轴交于点A.将该函数图象绕点A逆时针旋转45°,则得到的新图象的函数表达式为 y=3x+12 .【解答】解:∵一次函数的图象与x轴交于点A.∴A(﹣4,0),设一次函数的图象与y轴交于点B.则B(0,2),设旋转45°后的直线为L,过点B作BD⊥L,垂足为点D,过点D作DN⊥y轴,DM⊥x轴,△ABD为等腰直角三角形,∴AD=BD,在△AMD和△BND中,,∴△AMD≌△BND(AAS),∴DM=DN,∵2+NB=4﹣NB,∴NB=1,∴D(﹣3,3),设直线L的解析式为y=kx+b,代入点A(﹣4,0),D(﹣3,3)得:,解得,∴直线L的解析式为:y=3x+12.故答案为:y=3x+12.三、解答题(本大题共10小题,共68分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:(1);(2).【解答】解:(1)=3+2﹣3=2.(2)=﹣﹣(2﹣)=﹣﹣2+=﹣2.18.(6分)求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣64【解答】解:(1)3x2﹣12=0,3x2=12,x2=4,x=±2;∴x1=2,x2=﹣2.(2)(x﹣1)3=﹣64,x﹣1=﹣4,x=﹣3.19.(6分)已知:如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:(1)△ABD≌△ACE;(2)∠ADE=∠AED.【解答】证明:(1)∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE,∴∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(ASA);(2)由(1)知△ABD≌△ACE,∴AD=AE,∴∠ADE=∠AED.20.(7分)一次函数y=kx+b(k,b为常数)的图象经过点(2,﹣2),(0,2).(1)求该函数的表达式;(2)画出该函数的图象;(3)不等式kx+b<0的解集为 x>1 .【解答】解:(1)把(2,﹣2),(0,2)分别代入y=kx+b得,解得,∴一次函数解析式为y=﹣2x+2;(2)如图,(3)观察函数图象,不等式kx+b<0的解集为x>1.故答案为:x>1.21.(8分)如图,在△ABC中,∠C=90°,AC=8,AB的垂直平分线MN交AC于点D,连接BD.(1)若∠A=25°,求∠DBC的度数;(2)若BC=4,求BD的长.【解答】解:(1)∵MN垂直平分AB,∴DA=DB,∴∠DBA=∠A=25°,∵∠C=90°,∴∠ABC=90°﹣25°=65°,∴∠DBC=∠ABC﹣∠DBA=65°﹣25°=40°;(2)设BD=x,则DA=x,∴CD=8﹣x,由勾股定理得:BD2=CD2+BC2,∴x2=(8﹣x)2+42,∴x=5,∴BD=5.22.(6分)已知一次函数y=mx+2m﹣2(m为常数,m≠0).(1)若该函数的图象经过原点,求m的值;(2)当0<m<1时,该函数图象经过第 一、三、四 象限.【解答】解:(1)∵该函数的图象经过原点,∴m≠0且2m﹣2=0,解得m=1;(2)∵0<m<1,∴0<2m<2,∴2m﹣2<0,∴该函数图象经过第一、三、四象限.故答案为:一、三、四.23.(6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,1),B(5,2),C(2,2).将点A,C分别向下平移3个单位长度得到点A′,C′.(1)点A′,C′的坐标分别为 (1,﹣2) , (2,﹣1) ;(2)求证:点A′,C′,B在一条直线上.【解答】(1)解:∵A(1,1),C(2,2),将点A,C分别向下平移3个单位长度得到点A′,C′.∴A′(1,﹣2),C′(2,﹣1);故答案为:(1,﹣2),(2,﹣1);(2)证明:设直线A′C′的解析式为y=kx+b,∴,解得,∴直线A′C′的解析式为y=x﹣3,当x=5时,y=5﹣3=2,∴点A′,C′,B在一条直线上.24.(6分)如图,已知线段a,b,c.求作△ABC,使AB=a,BC=b,且分别满足下列条件:(1)AB上的中线为c.(2)AB上的高为c.(说明:①尺规作图,保留作图痕迹;②可以有必要的作图说明;③每小题作出满足条件的一个三角形即可.)【解答】解:(1)如图1中,△ABC即为所求;(2)如图2中,△ABC即为所求.25.(9分)甲、乙两家快递公司都要将货物从A地派送至B地.甲公司运输车要先在A地的集货中心拣货,然后直接发往B地.乙公司运输车从A地出发后,先到达位于A、B 两地之间的C地休息,再以原速驶往B地.两车离B地的距离s(km)与乙公司运输车所用时间t(h)的关系如图所示.已知两车均沿同一道路匀速行驶,且同时到达B地.(1)A地与B地之间的距离为 360 km.(2)求线段MN对应的函数表达式.(3)已知C地距离A地160km,当t为何值时,甲、乙两公司运输车相距80km?【解答】解:(1)由图象可知,A地与B地之间的距离为360km,故答案为:360.(2)设线段MN对应的函数表达式为s=k1t+b1(k1、b1为常数,且k1≠0),∵当t=2时,s=360;当t=8时,s=0,∴,解得,∴线段MN对应的函数表达式为s=﹣60t+480(2≤t≤8).(3)由(2)可知,甲公司运输车s与t的函数关系式为s=.∵C地距离A地160km,∴C地距离B地为360﹣160=200(km).∵乙公司运输车的速度为=80(km/h),∴乙公司运输车从C地驶往B地用时=(h),∴当t=8﹣=时,乙公司运输车从C地出发驶往B地.设当0≤t<2时,乙公司运输车s与t的函数关系式为s=k2t+b2(k2、b2为常数,且k2≠0),∵当t=0时,s=360;当t=2时,s=200,∴,解得,∴s=﹣80t+360(0≤t<2);设当≤t≤8时,乙公司运输车s与t的函数关系式为s=k3t+b3(k3、b3为常数,且k3≠0),∵当t=时,s=200;当t=8时,s=0,∴,解得,∴s=﹣80t+640(≤t≤8);综上,当0≤t≤8时,乙公司运输车s与t的函数关系式为s=.①当0≤t<2时,|﹣80t+360﹣360|=80,经整理,得80t=80,解得t=1;②当2≤t<时,|﹣60t+480﹣200|=80,经整理,得280﹣60t=80或60t﹣280=80,解得t=或6(不符合题意,舍去);③当≤t≤8时,|﹣60t+480﹣(﹣80t+640)|=80,经整理,得20t﹣160=80或160﹣20t=80,解得t=12(不符合题意,舍去)或4;综上,当t=1、或4时,甲、乙两公司运输车相距80km.26.(8分)回顾旧知(1)如图①,已知点A,B和直线l,如何在直线l上确定一点P,使PA+PB最小?将下面解决问题的思路补充完整.解决问题的思路可以构造全等三角形,将两条线段集中到一个三角形中!据此,在l上任取一点P',作点A关于l的对称点A',AA'与直线l相交于点C.连接P'A',易知△AP'C≌ △A′P'C ,从而有P'A=P'A'.这样,在△A'P'B中,根据“ 两点之间,线段最短 ”可知A'B与l的交点P即为所求.解决问题(2)如图②,在Rt△ABC中,∠ACB=90°,AB=8,E,F为AB上的两个动点,且AE =BF,求CE+CF的最小值.变式研究(3)如图③,在△ABC中,∠ABC=60°,AC=5,BC=4,点D,E分别为AB,AC 上的动点,且AD=CE,请直接写出CD+BE的最小值.【解答】解:(1)在l上任取一点P',作点A关于l的对称点A',AA'与直线l相交于点C.连接P'A',∴AC=A′C,∠ACP′=∠A′CP′,∵CP′=∠CP′,∴△AP'C≌△A′P'C(SAS),∴P'A=P'A'.在△A'P'B中,根据“两点之间,线段最短”可知A'B与l的交点P即为所求.故答案为:△A′P'C,两点之间,线段最短;(2)过点E作ED∥CF,使ED=CF,连接DF,CD,设CD交AB于O,∴四边形CEDF是平行四边形,∴OC=OD,OE=OF,∵AE=BF,∴AO=BO=AB=4,∵∠ACB=90°,AB=8,∴OC=OD=AB=4,∴CD=8,∵CE+CF=CE+ED≥CD,∴CE+CF的最小值为CD,即CE+CF的最小值为8;(3)如图,过点C作CK∥AB,使CK=AC=5,过点B作BG⊥KC,交KC的延长线于点G,连接BK,则∠KCE=∠CAD,在△CKE和△ACD中,,∴△CKE≌△ACD(SAS),∴EK=CD,∴CD+BE=EK+BE≥BK,∴CD+BE的最小值为BK,∵CK∥AB,BG⊥CK,∴BG⊥AB,∠BGK=90°,∴∠ABG=90°,∴∠CBG=∠ABG﹣∠ABC=90°﹣60°=30°,∴CG=BC=×4=2,在Rt△BGC中,由勾股定理得:BG===2,KG=CK+CG=5+2=7,在Rt△BGK中,由勾股定理得:BK===,∴CD+BE的最小值为.。

四川省成都市武侯区2023-2024学年八年级上学期期末数学试题(解析版)

四川省成都市武侯区2023-2024学年八年级上学期期末数学试题(解析版)

2023-2024学年四川省成都市武侯区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分)1. 若正比例函数的图象经过点,则k 的值为( )A. B. C. 2 D. 3【答案】A【解析】【分析】本题主要考查了正比例函数图象上的点,将点的坐标代入函数关系式,即可求出答案.【详解】因为正比例函数的图象经过点,所以,解得.故选:A .2. 下列四个数中,最小的数是( )A. ﹣πB. ﹣2C.D. 【答案】D【解析】【分析】本题主要考查了实数的大小比较,先确定各数的值,再比较得出答案.,,可知,所以故选:D .3. 在某校八年级举办的数学“讲题比赛”中,有9名选手进入决赛,他们的成绩各不相同,其中一名选手想知道自己能否进入前5名,除了知道自己的成绩外,他还需要了解这9名选手成绩的( )A. 平均数B. 中位数C. 方差D. 极差【答案】B【解析】【分析】本题考查了统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟知这些概念的解题的关键.9名选手的中位数是第5名的成绩,想要知道自己的成绩是否能进入前5名,只需知道自己的成绩和全部成绩的中位数即可解答.【详解】解:由于总共有9个人,且他们的决赛成绩各不相同,第5名的成绩是中位数,要判断是否进入y kx =(3,2)2332y kx =(3,2)32k =23k =3=-4=-234π-<-<-<-前5名,故应知道9名学生成绩的中位数.故选:B .4. 在平面直角坐标系中,画出一次函数的图象,其中正确的是( )A. B.C. D.【答案】C【解析】【分析】本题主要考查了一次函数的性质,解题的关键是熟练掌握一次函数的性质,一次函数,当直线经过一、三象限,当直线经过二、四象限,当直线与y 轴正半轴有交点,直线与y 轴负半轴有交点.根据一次函数的性质进行判断即可.【详解】解:∵中,,∴函数图象经过一、三、四象限,且与x 轴的交点坐标为,与y 轴的交点为.故选:C .5. 若点P 在第二象限内,且到x 轴的距离为6,到y 轴的距离为2,那么点P 的坐标是( )A. B. C. D. 【答案】B【解析】【分析】此题考查了坐标系中点坐标特点,点到对坐标轴的距离,正确掌握点到x 轴的距离是点纵坐标的绝对值,到y 轴的距离是点横坐标的绝对值是解题的关键.【详解】∵点P 在第二象限内,∴点P 的横坐标为负数,纵坐标为正数,∵点P 到x 轴的距离为6,到y 轴的距离为2,xOy 1y x =-()0y kx b k =+≠0k >0k <0b >0b <1y x =-10k =>10b =-<()1,0()0,1-()2,6()2,6-()6,2--()6,2-∴点P 纵坐标为6,横坐标为,∴点P 的坐标是,故选:B .6. 下列说法是真命题的是( )A. 若,则点一定在第一象限内B. 作线段C. 三角形的一个外角等于和它不相邻的两个内角的和D. 立方根等于本身的数是0和1【答案】C【解析】【分析】此题考查真命题:正确的命题是真命题,正确掌握象限内坐标特点,命题的定义,三角形外角性质,立方根的性质是解题的关键,据此依次判断即可.【详解】A.若,则或,故点在第一象限或第三象限,故不符合题意;B.作线段是作图,没有做出判断,不是命题,故不符合题意;C.三角形的一个外角等于和它不相邻的两个内角的和,正确,是真命题,故符合题意;D.立方根等于本身的数是0和,不是真命题,故不符合题意;故选:C .7. 如图,在数轴上,点O 是原点,点A 表示的数是2,在数轴上方以为边作长方形,以点C 为圆心,的长为半径画弧,在原点右侧交该数轴于点P ,则点P 表示的数是( )A. 1B. C. D. 【答案】D【解析】【分析】此题考查勾股定理,根据长方形的性质得到,由此,利用勾股定理求出长度即可.【详解】连接,2-()2,6-0mn >(),H m n AB CD=0mn >0,0m n >>0,0m n <<(),H m n AB CD =1±OA 1OABC AB =,CB 321,2OC AB BC OA ====2CP =OP CP∵长方形,,∴,∴,∴,∴点P故选:D .8. 我国明代《算法统宗》书中有这样一题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托(一托按照5尺计算).”大意是:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺?设竿长x 尺,绳索长y 尺,根据题意可列方程组为( )A. B. C. D. 【答案】A【解析】【分析】设竿长x 尺,绳索长y 尺,根据第一次用绳索去量竿,绳索比竿长5尺,第二次将绳索对折去量竿,就比竿短5尺,则可得方程组.【详解】解:由题意可得:,故选:A .【点睛】本题考查了二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题要注意前后两次绳和杆的数量关系.二、填空题(本大题共5个小题,每小题4分,共20分)9. 比较大小:.(选填“>”、“=”、“<”)【答案】>【解析】OABC 1,2AB OA ==1,2OC AB BC OA ====2CP =OP ===552x y y x +=⎧⎪⎨-=⎪⎩525x y x y +=⎧⎨-=⎩552x y y x =+⎧⎪⎨-=⎪⎩552x y x y+=⎧⎨-=⎩552x y y x +=⎧⎪⎨-=⎪⎩【分析】将两数分别平方进行比较即可【详解】解:,,∵12>11,∴.故答案为:>.【点睛】本题考查了实数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.两个正无理数比较,被开方数大的比被开方数小的大;一个有理数与一个开方开不尽的数比较,常通过比较它们的平方(或立方)的大小来比较或都化成带根号的数比较被开方数的大小.10. 点关于原点的对称点的坐标是 _____.【答案】【解析】【分析】此题考查关于原点对称的点的坐标特征:横纵坐标都互为相反数,熟记此特点是解题的关键.【详解】点关于原点的对称点的坐标是,故答案为:11. 如图,已知,,则的度数为 _____.【答案】【解析】【分析】由,可得,再由两直线平行,同旁内角互补,即可求出的度数,本题考查了平行线的性质和判定,解题的关键是:熟练掌握相关定理.【详解】,(内错角相等,两直线平行),(两直线平行,同旁内角互补),,,故答案为:.(212=211=()53A -,()53-,()5,3A -()53-,()53-,12∠=∠72A ∠=︒ADC ∠108︒12∠=∠AB CD ∥ADC ∠12∠=∠ AB CD ∴∥180A ADC ∴∠+∠=︒72A ∠=︒ 180********ADC A ∴∠=︒-∠=︒-︒=︒108︒12. 若直线与的交点的坐标为,则方程的解为 _____.【答案】【解析】【分析】本题考查的知识点是一次函数与一元一次方程,一次函数的图象和性质,解题的关键是熟练的掌握一次函数与一元一次方程,一次函数的图象和性质,由交点坐标就是该方程的解可得答案.【详解】关于x 的方程的解,即直线与的交点横坐标,所以方程的解为,故答案为.13. 如图,一架秋千静止时,踏板离地的垂直高度DE =0.5m ,将它往前推送1.5m (水平距离BC =1.5m )时,秋千的踏板离地的垂直高度BF =1m ,秋千的绳索始终拉直,则绳索AD 的长是 _____m .【答案】2.5【解析】【分析】设绳索AD 的长为x m ,则AB =AD =x m ,AC =AD -CD =(x -0.5)m ,再由勾股定理得出方程,解方程即可.【详解】解:∵BF ⊥EF ,AE ⊥EF ,BC ⊥AE ,由平行线间距离处处相等可得:CE =BF =1m ,∴CD =CE -DE =1-0.5=0.5(m ),而设绳索AD 的长为x m , 则AB =AD =x m ,AC =AD -CD =(x -0.5)m ,在Rt △ABC 中,由勾股定理得:AC 2+BC 2=AB 2,即(x -0.5)2+1.52=x 2, 解得:x =2.5(m ),即绳索AD 的长是2.5m ,故答案为:2.5.5y ax =+2y x b =+()2,352ax x b +=+2x =52ax x b +=+5y ax =+2y x b =+2x =2x =90,CEF EFB FBC BCE ACB ∴∠=∠=∠=∠=∠=︒,,BC EF CE BF ∴ 1.5,BC =【点睛】本题主要考查了勾股定理的应用,正确理解题意,由勾股定理得出方程是解题的关键.三、解答题(本大题共5个小题,共48分)14. (1)计算:(2)解方程组:.【答案】(1)10;(2)【解析】【分析】本题主要考查了二次根式混合运算,解二元一次方程组,解题的关键是熟练掌握运算法则,准确计算.(1)根据二次根式混合运算法则进行计算即可;(2)用加减消元法解二元一次方程组即可.【详解】解:(1);(2)把①代入②得:,整理得:,得:,解得:,得:,解得:,6723x yx y x y-=⎧⎪⎨+-+=⎪⎩①②82xy=⎧⎨=⎩==122=-10=6723x yx y x y-=⎧⎪⎨+-+=⎪⎩①②272x y++=10x y+=③①+③216x=8x=③-①24y=2y=∴方程组的解为:.15. 如图,在平面直角坐标系中,已知点P 的坐标为,点P 关于y 轴的对称点为,现将先向右平移1个单位长度,再向下平移3个单位长度,得到点.(1)请在图中画出点,,连接,,,则点的坐标为 ,点的坐标为 ;(2)试判断的形状,并说明理由.【答案】(1)图见解析;;(2)是等腰直角三角形;理由见解析【解析】【分析】本题主要考查了轴对称作图,平移作图,勾股定理及其逆定理,解题的关键是数形结合,熟练掌握平移和轴对称的性质.(1)根据轴对称的性质和平移特点作出点,,然后再连接,,,写出点,的坐标即可;(2)根据勾股定理和逆定理进行解答即可.【小问1详解】解:如图,点,即为所求作的点,,.82x y =⎧⎨=⎩xOy ()12-,1P 1P 2P 1P 2P 12PP 1OP2OP 1P 2P 12POP △()1,2()2,1-12POP △1P 2P 12PP 1OP2OP 1P 2P 1P 2P ()11,2P ()22,1P -故答案为:;.【小问2详解】解:是等腰直角三角形,理由如下:∵,,又∵,∴是等腰直角三角形.16. 在杭州第十九届亚运会射击比赛中,中国射击队以16金9银4铜排在射击金牌榜和奖牌榜首位,并刷新三项世界纪录.某射击队要从甲、乙两名射击运动员中挑选一人参加一项比赛,在最近的10次射击选拔赛中,他们的成绩(单位:环)如下.甲运动员10次射击成绩如图:乙运动员10次射击成绩如表:成绩/环678910出现次数12223分析上述数据,得到下表:平均数众数方差甲运动员10次射击成绩a ()1,2()2,1-12POP△12OP OP ===12PP ==2221212OP OP PP +=12POP △8.40.84乙运动员10次射击成绩b c 根据以上信息,回答下列问题:(1)填空: , , ;(2)若从甲、乙两名运动员中选取一名参加比赛,你认为选择谁更合适?请说明理由.【答案】(1)9;;10(2)选择甲更合适;理由见解析【解析】【分析】本题主要考查了平均数、众数的定义,解题的关键是熟练掌握定义.(1)根据平均数、众数的定义进行求解即可;(2)根据平均数、众数和方差进行解答即可.【小问1详解】解:平均数为:,甲运动员10次射击成绩出现次数最多的是9环,乙运动员10次射击成绩出现次数最多的是10环,∴甲运动员的射击成绩的众数是,乙运动员的射击成绩的众数是.故答案为:9;;10.【小问2详解】解:从甲、乙两名运动员中选取一名参加比赛,选择甲更合适;因为甲、乙运动员射击成绩的平均数相同,但甲成绩的方差比乙成绩的方差较小,甲的成绩比较稳定,所以选择甲更合适.17. 如图,直线l :交x 轴于点,将直线l 向下平移4个单位长度,得到的直线分别交x 轴,y 轴于点B ,C .(1)求a 的值及B ,C 两点的坐标;(2)点M 为线段上一点,连接并延长,交直线l 于点N ,若是等腰三角形,求点M 的坐标. 1.84=a b =c =8.467282921038.410b +⨯+⨯+⨯+⨯==9a =10c =8.43y ax =+()6,0A AB CM AMN【答案】(1), (2)点M 的坐标为或或【解析】【分析】(1)将点代入,求出a 的值得到直线l 的解析式,及平移后的直线解析式,再求出与坐标轴交点即可;(2)分三种情况讨论:若时,时,时,分别求出点M 的坐标.【小问1详解】将点代入,得,∴,∴直线l 的解析式为,将直线l 向下平移4个单位长度,得到的直线为,当时,;当时,,∴;【小问2详解】当时,则,∵∴,∴,∴,∵,∴,12a =-()()2,0,0,1B C --()2,0)2,03,04⎛⎫- ⎪⎝⎭()6,0A 3y ax =+MN AN =AM AN =AM MN =()6,0A 3y ax =+630a +=12a =-132y x =-+1134122y x x =-+-=--0x =1y =-0y =2x =-()()2,0,0,1B C --MN AN =AMN MAN ∠=∠AN BC∥MAN MBC ∠=∠MBC BM С∠=∠BC СМ=CO BM ⊥2ОМОВ==∴;当时,则,∵,∴,∵,∴,∴,∵,∴∴,∴;当时,则,∵,∴,,∴,∴,∴,即,∴,∴综上,点M 的坐标为或或.【点睛】本题考查了待定系数法求一次函数的解析式,直线与坐标轴的交点,等腰三角形的性质,平行线()2,0M AM AN =AMN ANM ∠=∠AN BC ∥ANM ВCM ∠=∠AMN BMC ∠=∠ВCM BM С∠=∠BC BM =()()2,0,0,1B C --BC ==2OM =-)2,0M -AM MN =MAN ANM ∠=∠AN BC ∥MAN МВС∠=∠MC ВMNA ∠=∠MBC MC В∠=∠CM BM =222CM OM OC =+()22221OM OM -=+34OM =3,04M ⎛⎫- ⎪⎝⎭()2,0)2,03,04⎛⎫- ⎪⎝⎭的性质,勾股定理的应用等,分类讨论是解题的关键.18. 在四边形中,,,点E 是边上一点,连接,将沿直线翻折得到,射线交边于点G .(1)如图1,求证:;(2)当时.(i )如图2,若四边形面积为24,且当点G 与D 重合时,,求的长;(ⅱ)在边上取一点H ,连接,使得,若的面积是的面积的2倍,求的长.【答案】(1)见解析(2)(i );(ⅱ)【解析】【分析】(1)根据折叠得出,根据平行线性质得出,证明,根据等腰三角形的判定得出;(2)(i )根据四边形的面积为24得出,求出,设,则,,根据勾股定理得出,即,求出即可得出答案.(ⅱ)证明,得出,根据面积是的面积的2倍,,,得出,设,则,分两种情况:当点H 在点E 的左侧时,当点H 在点E 的右侧时,画出图形,求出结果即可.【小问1详解】证明:根据折叠可知,,∵,∴,∴,的的的ABCD AD BC ∥90B Ð=°BC AE ABE AE AFE △EF AD AG EG =4AB =ABCD BC FG =AD BC AH AH AG =AFG AEH △BE 203AD =BE =AEG AEB ∠=∠GAE AEB ∠=∠GAE AEG ∠=∠AG EG =ABCD 2ABCD AD BC S AB +=⨯四边形12AD BC +=AD x =12BC x =-12FG BC x ==-222AD AF FG =+()222412x x =+-203x =()Rt Rt HL ABH AFG ≌BH FG =AFG AEH △12AFG S FG AF =⋅ 12AHE S HE AB =⋅ 2FG HE =HE a =2FG a =AEG AEB ∠=∠AD BC ∥GAE AEB ∠=∠GAE AEG ∠=∠∴;【小问2详解】解:(i )∵,∴,∵,∴,即,∴,设,则,∴,根据折叠可知,,,∴,在中,根据勾股定理得:,即,解得:,∴.(ⅱ)根据题意得:,,,由(1)得:,∵,∴,在和中,∴,∴,∵的面积是的面积的2倍,,,∴,设,则,AG EG =90B Ð=°AB BC ⊥AD BC ∥2ABCD AD BC S AB +=⨯四边形4242AD BC +⨯=12AD BC +=AD x =12BC x =-12FG BC x ==-4AF AB ==90AFE B ∠=∠=︒1809090AFD =︒-︒=︒∠Rt AGF △222AD AF FG =+()222412x x =+-203x =203AD =AF AB =AB BC ⊥AF EG ⊥AG EG =AH AG =AH EG =Rt ABH △Rt AFG △AB AF AH AG =⎧⎨=⎩()Rt Rt HL ABH AFG ≌BH FG =AFG AEH △12AFG S FG AF =⋅ 12AHE S HE AB =⋅ 2FG HE =HE a =2FG a =当点H 在点E 的左侧时,如图所示:∴,∴,根据折叠可知,,∴,∵,∴,解得:∴当点H 在点E 的右侧时,如图所示:∴,∴,根据折叠可知,,∴,∵,∴,2BH FG a ==3BE BH HE a =+=3BE EF a ==5AG EG EF FG a ==+=222AG AF FG =+()()222542a a =+a =3BE a ==2BH FG a ==BE BH EH a =-=BE EF a ==3AG EG EF FG a ==+=222AG AF FG =+()()222342a a =+解得:,负值舍去,∴综上分析可知,当的面积是的面积的2倍时,【点睛】本题主要考查了等腰三角形的判定和性质,勾股定理,三角形全等的判定和性质,平行线的性质,折叠的性质,解题的关键是熟练掌握相关的判定和性质,注意分类讨论.一、填空题(本大题共5个小题,每小题4分,共20分)19. 若,则代数式的值的平方根为 _____.【答案】【解析】【分析】利用完全平方公式分解,代入x 的值计算得到的值,再根据平方根定义求出答案.【详解】∵∴,∴代数式的值的平方根为,故答案为.20. 如图,在平面直角坐标系中,点M ,N 在直线上,过点M ,N 分别向x 轴,y 轴作垂线,交两坐标轴于点A ,B ,C ,D ,若,,则k 的值为 _____.【答案】【解析】【分析】本题主要考查了求一次函数解析,解题的关键是熟练掌握一次函数性质,设点M 的坐标为,a =BE a ==AFG AEH△BE =3x =269x x -+()22693x x x -+=-269x x -+3x =+()22693x x x -+=-()2233=+=269x x -+xOy y kx b =+1AB = 1.5CD =1.5-(),M M x y则点N 的坐标为,把M ,N 的坐标代替直线,求出k 的值即可.【详解】解:设点M 的坐标为,则点N 的坐标为,∵点M ,N 在直线上,∴,得:,故答案为:.21. 已知关于x ,y 的方程组的解中的x ,y 的值分别为等腰直角三角形的一条直角边和斜边的长,则_____.【答案】【解析】【分析】本题考查勾股定理、解二元一次方程组等知识,解题关键是理解题意,灵活运用所学知识解决问题.求出方程组的解,利用勾股定理构建方程即可解决问题.【详解】解:由,解得 ,∵,∴n 为直角边长,为斜边长,由题意:,解得:(舍去)故答案为:.22. 如图,在中,,平分交边于点D ,.在边上取一点E ,连接,将线段平移后得到线段,连接,则线段的长的最小值是 _____.()1, 1.5M M x y +-y kx b =+(),M M x y ()1, 1.5M M x y +-y kx b =+()1 1.5M M M M kx b y k x b y +=⎧⎪⎨++=-⎪⎩①②②-① 1.5k =-1.5-2321x y n y x +=+⎧⎨-=⎩n =11+2321x y n y x +=+⎧⎨-=⎩1x n y n =⎧⎨=+⎩1n n <+1n +()2221n n n +=+1n =+1-1+ABC AB =60ABC BD ∠=︒,ABC ∠AC 23AD CD =BC DE DE BF AF AF【答案】【解析】【分析】如图,过点D 作于点M ,于点N ,过点A 作于点G ,过点F 作于点T ,连接,求出的值,可得结论.【详解】如图,过点D 作于点M ,于点N ,过点A 作于点G ,过点F 作于点T ,连接,∵平分,,,∴,∴,∵,∴,∵∴,∵,,∴,485DM BC ⊥DN AB ⊥AG BC ⊥FT BC ⊥,FG EF AG FT ,DM BC ⊥DN AB ⊥AG BC ⊥FT BC ⊥,FG EF BD ABC ∠DM BC ⊥DN AB ⊥DM DN =1212ABD BCD AB DN S AD S CD BC DM ⋅⋅==⋅⋅ 23AD CD =23=AB BC AB =BC =AG BC ⊥60ABG ∠=︒30BAG ∠=︒∴,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵∴的最小值为,故答案为【点睛】本题考查平移性质,角平分线的性质定理,勾股定理,直角三角形30度角的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,利用垂线段最短解决最值问题.23. 在平面直角坐标系中,给出如下定义:对于以为底边的等腰及外一点C ,若,直线中,其中一条经过点O ,另一条与的腰垂直,则称点C 是的“关联点”.如图,已知点,,,则点就是的“关联点”.若点是的“关联点”,则线段的长是 _____.12BG AB ==6AG ==111222ABC S BC AG AB DN BC DM =⋅=⋅+⋅ 185DM DN ===,DE BF DE BF =∥DEB EBF ∠=∠BE EB =()SAS BED EBF ≌,DM BE FT BE ⊥⊥185FT DM ==1848655AF AG GF AG FT ≤+≤+=+=AF 485485xOy AB AOB AOB 1OA =CA CB ,AOB AOB ()10A '-,B '()11C '-,C 'A OB ''△()03E ,POQ △PQ【解析】【分析】此题考查了勾股定理,过点Q 作轴于点A ,利用勾股定理求出,利用面积法求出的长,勾股定理求出,得到,再根据勾股定理求出线段的长.【详解】如图,过点Q 作轴于点A ,∵是的“关联点”, ,,∴,∴∵,∴,∴,∴,∴..二、解答题(本大题共3个小题,共30分)24. 某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需购买行李票,且行李费y (元)是行李质量x (千克)的一次函数,现已知李明带了60千克的行李费,交了行李费5元;张华QA y ⊥QE AQ AO AP PQ QA y ⊥()03E ,POQ △1OP OQ ==EQ OQ ⊥90OQE ∠=︒QE ===1122OQE S QE OQ OE AQ =⋅=⋅ QE OQ AQ OE ⋅===13OA ===14133AP AO OP =+=+=PQ ===带了90千克的行李,交了行李费10元.(1)写出y 与x 之间的函数表达式.(2)旅客最多可免费携带多少千克的行李?【答案】(1)行李费y (元)关于行李质量x (千克)的一次函数关系式为;y=x -5;(2)旅客最多可免费携带30千克的行李.【解析】【分析】(1)首先设行李费y (元)关于行李质量x (千克)的一次函数关系式为y =kx +b .根据李明带了60千克的行李费,交了行李费5元;张华带了90千克的行李,交了行李费10元,代入联立成方程组,解得k 、b 的值.(2)根据(1)中的函数表达式,要想让旅客免费携带行李,即满足y ≤0,求得x 的最大值.【详解】(1)设行李费y (元)关于行李质量x (千克)的一次函数关系式为y =kx +b由题意得,解得k =,b =-5∴该一次函数关系式为y =x -5(2)∵x -5≤0,解得:x ≤30∴旅客最多可免费携带30千克的行李.【点睛】考点:一次函数的应用.25. 如图,在平面直角坐标系中,直线l :与x 轴交于点A ,点B 在x 轴的负半轴上,且.(1)求直线l 的函数表达式;(2)点P 是直线l 上一点,连接,将线段绕点B 顺时针旋转得到.16560{1090k b k b =+=+161616xOy y x m =-+122OB OA ==BP BP 90︒BQ(ⅰ)当点Q 落在y 轴上时,连接,求点P 的坐标及四边形的面积;(ⅱ)作直线,,两条直线在第一象限内相交于点C ,记四边形的面积为,的面积为,若,求点Q 的坐标.【答案】(1) (2)(i )点P 的坐标为,四边形的面积是18;(ii )【解析】【分析】(1)根据,得到点A 的坐标,代入直线解析式即可得到直线l 的函数表达式;(2)(i )设,过P 作轴于点D ,证明,根据全等三角形的性质可得P 、Q 的坐标,即可求解;(ii )设,过C 作轴于点F ,过P 作轴于点D ,过点Q 作轴于点E ,证明,根据全等三角形的性质可得Q 的坐标,可得,则,可得,利用待定系数法求出直线的解析式,则,再利用待定系数法求出直线的解析式,联立解析式得出,由此得到点Q 的坐标.【小问1详解】解:∵,∴,∴,将点代入,得,∴,∴直线l 函数表达式;【小问2详解】(ⅰ)设,过P 作轴于点D ,的AQ APBQ BP AQ APBQ 1S ABC 2S 2113S S =4y x =-+()2,2APBQ 424,55⎛⎫-- ⎪⎝⎭122OB OA ==(),4P p p -+PD x ⊥()AAS PDB BOQ ≌(),4P n n -+CF x ⊥PD x ⊥QE x ⊥()AAS PDB BEQ ≌118S =26S =2CF =AQ ()6,2C BC 145n =122OB OA ==4OA =()()2,04,0B A -,()4,0A y x m =-+40m -+=4m =4y x =-+(),4P p p -+PD x ⊥∵,∴B 点的坐标为,∴,∵,∴,,∴,∵,∴,∴,,∴,∴点P 的坐标为,点Q 的坐标为,∴;(ⅱ)设,过C 作轴于点F ,过P 作轴于点D ,过点Q 作轴于点E ,同理得,∴,,122OB OA ==()2,0-2,6OB AB ==90BOQ PDB QBP ∠=∠=∠=︒90BQO QBO ∠+∠=︒90PBD QBO ∠+∠=︒BQO PBD ∠=∠PB BQ =()AAS PDB BOQ ≌24PD BO p ===-+2OQ DB p ==+2p =()2,2()0,4-ЅАРВAQB APBQ S S =+ 四边形1162+641822=⨯⨯⨯⨯=(),4P n n -+CF x ⊥PD x ⊥QE x ⊥()AAS PDB BEQ ≌4PD BE n ==-+2EQ DB n ==+∴,∴,∴,∴,∴,设直线的解析式为,∴,解得,∴直线的解析式为,∴,设直线的解析式为,∴,解得,∴直线的解析式为,联立,得,∴,∴,∴点Q 的坐标为242OE OB BE n n =-=+-=-()2,2Q n n -+--()()111·4222S AB n AB n =-++⋅+()()1164621822n n =⨯-++⨯+=21116632S S CF ==⨯⋅=2CF =AQ y kx a =+()4022k a n k a n +=⎧⎨-++=--⎩14k a =⎧⎨=-⎩AQ 4y x =-()6,2C BC y sx t =+6220s t s t +=⎧⎨-+=⎩1412s t ⎧=⎪⎪⎨⎪=⎪⎩BC 1142y x =+41142y x y x =-+⎧⎪⎨=+⎪⎩14565x y ⎧=⎪⎪⎨⎪=⎪⎩146,55P ⎛⎫ ⎪⎝⎭145n =424,55⎛⎫-- ⎪⎝⎭【点睛】本题属于一次函数综合题,考查了全等三角形的判定和性质,待定系数法求函数的解析式等知识,解题的关键是正确作辅助线构造全等三角形解决问题.26. 【阅读理解】定义:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.该定理可以通过以下方法进行证明.已知:如图1,在中,点,分别是边,的中点,连接.求证:,.证明:建立如图2所示的平面直角坐标系,其中点与原点重合,点在轴正半轴上,则点.设,,点,分别是,的中点,点的坐标为①,点的坐标为②.点和点的③坐标相同,轴.即.又由点和的坐标可得的长为④..请完善以上证明过程,并按照番号顺序将相应内容填写在下列横线上:① ;② ;③ ;④ .【联系拓展】如图3,在中,,是线段上的动点(点不与,重合),将射线绕点顺时针旋转得到射线,过作于点,点是线段的中点,连接.(1)若,,的长;(2)请探究线段与之间满足的数量关系.111A B C △1D 1E 11A B 11A C 11D E 1111D E B C ∥111112D E B C =xOy 1B O 1C x 1()0,0B 1(,)A m n 1(,0)C c 1D 1E 11A B 11A C ∴1D 1E 1D 1E 11D E x ∴∥1111D E B C ∥1D 1E 11D E ∴111111122D E OC B C ==ABC B C α∠=∠=D BC D B C DA D αDE A AE DE ⊥E F CD EF DE AB ∥BD CF =AC =DE EF BD【答案】[阅读理解] ①;②;③纵;④;[联系拓展](1)见解析;(2)【解析】【分析】本题考查了几何图形的变换,三角形全等的判定和性质,三角形的中位线,中点坐标公式,关键是构造三角形的中位线.[阅读理解]点,分别是,的中点,根据中点坐标公式可求中点坐标,完成填空.[联系拓展](1)连结,是等边三角形,证明,,三点共线,是的中位线,可求的长是的一半.(2)在射线上截取,连结,.是的中位线,,再证,,可得与的关系.【详解】解:[阅读理解]①是的中点,,,.②,,是中点,.③点和点的纵坐标相同.④.的(,22m n (,)22+m c n 2c 12EF BD =1D 1E 11A B 11A C AF ADF △A E F DE ABF △DEAC DE EM DE =CM AM EF CDM V 12EF CM =ABD ACM ≌BD CM =EF BD 1D 11A B 1(,)A m n 1()0,0B 1(,)22m n D 1(,)A m n 1(,0)C c 1E 11A C 1(,)22m c n E +1D 1E 11222m c m c D E +=-=故答案为:①;②;③纵;④.[联系拓展](1)是的中点,,,,,.,,,,,,,是等边三角形,,,,,,三点在同一直线上,为的中点.为的中点,是的中位线,.,,(2)在射线上截取,连结,.(,)22m n (,)22+m c n 2c F CD BD CF =BD DF CF ∴==B C ∠=∠ AB AC ∴=(SAS)ABD ACF ∴ ≌AD AF∴=DE AB ∴∥B EDF ∴∠=∠BAD ADE ∠=∠B ADE α∠=∠= B EDF BAD ADE ∴∠=∠=∠=∠BD AD ∴=BD AD AF DF CF ∴====ADF ∴ EDF ADE ∠=∠ DE AF ∴⊥DE AE ⊥ A ∴E F E AF D BF DE ∴ABF △12DE AB ∴=12DE AC ∴=AC = DE ∴=DE EM DE =CM AM,分别是,的中点,是的中位线,,,,,.,,,,,,.,.E F DM DC EF ∴CDM V 12EF CM ∴=AE DE ⊥ DE EM =AD AM ∴=ADM AMD α∴∠=∠=1802DAM α∴∠=︒-1802BAC α∠=︒- DAM BAC ∠=∠BAD CAM ∴∠=∠AB AC = AD AM =(SAS)ABD ACM ∴△≌△BD CM ∴=12EF BD ∴=。

广东省中山市2023-2024八年级上学期期末考试数学试卷

广东省中山市2023-2024八年级上学期期末考试数学试卷

中山市2023—2024学年上学期期末水平测试八年级数学参考答案及评分建议一、选择题(每小题3分)1.C ;2.D ;3.B ;4.A ;5.C ;6.B ;7.D ;8.A ;9.B ;10.C.二、填空题(每小题4分)11.2-≠x ;12.360;13.3ab (b -2);14.8;15.4.5.三、解答题(一)(共4个小题,每小题6分,满分24分)16.解:原式=22494a a a--+…………………4分=9a -…………………6分17.解:原式)()=3m n n m n m nm n m+-+-´+(…………………3分=3m n -…………………4分把6m n -=代入,…………………5分原式=2.…………………6分18.证明:∵AB =CD ,∴AB+BC =CD+BC ,∴AC =BD ,…………………2分在△ACE 和△DBF 中,⎪⎩⎪⎨⎧=∠=∠=DBAC D A DFAE ,∴△ACE ≌△DBF (SAS ),…………………5分∴∠E =∠F .…………………6分19.解:(1)(图略),如图,△A 1B 1C 1为所作;…………………3分(2)A 2(﹣2,﹣2),B 2(﹣3,1),C 2(﹣1,﹣1).…………………6分四、解答题(二)(共3个小题,每小题8分,满分24分)20.解:(1)如图,AD 即为所求;…………………3分(2)证明:∵Rt △ABC 中,∠BAC =90°,∠B =30°,∴BC =2AC ,∠C =60°,…………………5分∵AD ⊥BC∴∠CAD =90°-∠C =30°,…………………6分∴在Rt △ACD 中,AC =2CD ,∴BC =4CD ,…………………7分∴BD =3CD .…………………8分21.解:设“创新号”赛车的平均速度为x m /s .…………………1分根据题意列方程得:,2501.050x x -=+…………………4分解得:x =2.4…………………5分经检验:x =2.4是原分式方程的解.…………………6分2.4+0.1=2.5m /s …………………7分答:“创新号”的平均速度为2.4m /s ,“梦想号”赛车的平均速度为2.5m /s .………8分22.(1)解:原式22()()ac bc a b =-+-…………………1分()()()c a b a b a b =-++-…………………2分()()a b c a b =-++…………………3分(2)∵222a ab c ac bc -+-+22(2)()a ac c ab bc =-+--…………………4分2()()a cb ac =---()()a c a cb =---…………………5分∴()()0a c a cb ---=∵bc a+>∴0a cb --¹…………………6分∴0a c -=∴a c=…………………7分∴△ABC 是等腰三角形.…………………8分五、解答题(三)(共2个小题,第23题10分,第24题12分,满分22分)23.解:(1)∵点P ,Q 移动的速度相同,∴CQ=PB ,…………………1分∵AB=AC ,∴AP+AQ=AB -PB+AC+CQ=2AB .…………………3分(2)如图,过点P 作PF ∥AC 交BC 于点F ,…………………4分∵PF ∥AC ,∴∠PFB =∠ACB ,∠DPF =∠DQC ,又∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠PFB ,∴BP =PF ,由(1)得BP =CQ ,∴PF =QC ,…………………5分在△PFD 和△QCD 中,⎪⎩⎪⎨⎧=∠=∠∠=∠QC PF DQC DPF QDC PDF ,∴△PFD ≌△QCD (AAS ),…………………6分∴DP =DQ…………………7分(3)解:ED 为定值5,理由如下:如图,过点P 作PF ∥AC 交BC 于点F ,由(2)得,PB =PF∴△PBF 为等腰三角形,∵PE ⊥BC ,∴BE =EF ,…………………8分由(2)得△PFD ≌△QCD ,∴FD =CD ,…………………9分∴11111()10522222ED EF FD BF BF CF =+=+=+==⨯=,∴ED 为定值5.…………………10分24.(1)解:点P 不是等边△ABC 的勃罗卡点,理由如下:∵AP=BP ,∴∠PBA=∠BAP=25°,∴∠PAC =60°-∠BAP =35°,…………………1分∵等边△ABC 是等边三角形,∴∠ACB =60°,AC=BC ,又∵PA=PB ,∴PC 是AB 的中垂线,∴CP 平分∠ACB ,∴∠PCB =30°,…………………2分∴∠PAC ≠∠PCB ≠∠PBA ,依据定义,点P 不是等边△ABC 的勃罗卡点…………………3分(2)解:∵P 为等边三角形ABC 的勃罗卡点,∴∠PAC =∠PCB =∠PBA =α,∴∠PAB =60°﹣α,∴∠PAB +∠ABP +∠APB =180°,60°﹣α+α+∠APB =180°,∴∠APB =120°,…………………4分同理可得∠APC =∠BPC =120°,在△BPA 和△APC 中,⎪⎩⎪⎨⎧=∠=∠∠=∠ACAB CAP ABP APCAPB ,∴△BPA ≌△APC (AAS ),…………………5分∴PA =PB =PC ,∴∠ABP =∠ACP ,…………………6分∴α=60°﹣α,∴α=30°;…………………7分(3)证明:∵P 、P '关于AB 对称,∴AB 为PP '的中垂线,∴BP '=BP ,∴△BP 'P 是等腰三角形,∵BO ⊥P 'P ,由(2)易知∠PBO=30°∴∠P 'BO=∠PBO =30°,∴∠PBP '=60°,∴△BP 'P 是等边三角形,同理可得△APP '为等边三角形…………………8分在△BPP '内部作∠BPN =30°交BO 于点N .连接P 'N ,∵BO 是PP '的中垂线,∴P 'N=PN∴∠NP 'P=∠NPP '=60°-∠BPN =30°,又∠PBP '=60°,∴∠NBP=12∠PBP'=30°,∴∠NP'P=∠NPB=∠NBP'=30°,∴点N为△BP'P的勃罗卡点,且∠ONP=60°,…………………10分在△APP'内部作∠APM=30°交AD于M,同理可证M为△APP'的勃罗卡点,∠PMO=60°,…………………11分∴∠MPN=30°+30°=60°,∴∠PNO=∠PMO=∠MPN=60°,∴△MNP是等边三角形.…………………12分注意:以上解答题只提供一种解法,其它解法请参照酌情给分.。

福建省厦门市集美区2023-2024学年八年级上学期期末数学试卷(含答案)

福建省厦门市集美区2023-2024学年八年级上学期期末数学试卷(含答案)

2023-2024学年福建省厦门市集美区八年级(上)期末数学试卷一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算a3•a2=a m,则m的值为( )A.5B.6C.8D.92.下列长度的三条线段能组成三角形的是( )A.5,5,5B.5,5,10C.5,6,12D.3,4,73.如图,△ABC和△DEF关于直线l对称,点A的对称点是( )A.点C B.点F C.点E D.点D4.点P(2,3)关于x轴的对称的点的坐标是( )A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)5.下列分式的值与相等的是( )A.B.C.D.6.如图,AC,BD是四边形ABCD的对角线,BD=DC,∠ABD=∠DCB,点E在BC上,连接DE,若△ABD 与△DEC全等,下列线段长度等于AB+BE的是( )A.BC B.BE C.BD D.AC7.若对于两个多项式的乘积:(m+n)(p+q),能用完全平方公式进行简捷运算,则满足的条件可以是( )A.m=﹣p,n=q B.m=p,n=﹣q C.m=p,n=q D.m=p,n=2q8.如图,B,C是∠MAN的边AM,AN上的点,连接BC,∠BCN的平分线交AM于点E,若∠MAN=40°,∠AEC=α,下列角中大小为2α+80°的是( )A.∠CEM B.∠ACE C.∠BCN D.∠ABC9.如图,某小区规划在边长为x m的正方形场地上,修建两条宽度相等的甬道,其余部分种草,若该场地种草部分的面积为(x2﹣6x+9)m2,则甬道的宽度是( )A.3 m B.6 m C.9 m D.15 m10.在Rt△ABC中,∠BAC=90°,AD是△ABC的高,将△ABC沿AD折叠,点C的对应点为E,当BE<CE 时,△ABC满足的条件是( )A.30°<∠B<45°B.30°<∠B<90°C.45°<∠C<90°D.30°<∠C<60°二、填空题(本大题有6小题,共26分)11.计算:(1)20240= ;(2)3﹣1= ;(3)9mn2÷3n= .12.分式有意义,则x的值可以是 .(写出一个符合题意的x的值即可)13.五边形的外角和为 .14.如图,AD是△ABC的角平分线,DE⊥AC于点E,若DE=1,AB=2,则△ABD的面积为 .15.几何学起源于土地测量,据史料记载,古希腊数学家泰勒斯发明了一种用帽子测量河流宽度的方法,具体操作步骤如下:①如图,人垂直站立在河岸边上,视线与河岸边保持垂直;②调整帽子,使视线通过帽檐正好落在对面的河岸边上;③人保持姿势,转过一个角度,这时视线通过帽檐落在了自己所在岸的某一点上;④测量该点与人站立位置的距离就是河流的宽度.请用你学过的一个数学定理解释通过以上步骤能测得河流宽度的道理: .16.城建局计划在市民公园的人工湖上修建一个湖心亭,并铺设四条木栈道分别连接湖边的A,B,C,D四个木栈道入口,供市民散步,欣赏湖上风景.如图是人工湖的平面示意图,湖上有M,N,P,Q四个位置可用于建设湖心亭.为测算建设成本,工作人员利用测量工具测得∠BAD=60°,∠BCD=120°,AB=AD =a,BC=b,CD=c.要使铺设木栈道所需要的材料最少,湖心亭应选择建在点 ,(填“M”,“N”,“P”,“Q”);此时需要铺设的木栈道总长度为 .(用含a,b,c的式子表示)三、解答题(本大题有8小题,共84分)17.(1)计算:2a(a﹣3b);(2)计算:(x﹣2y)(x+2y);(3)分解因式:2m2﹣4mn+2n2.18.如图,点B,F,C,E在同一条直线上,BF=EC,∠A=∠D,DE∥AB.证明:AB=DE.19.先化简,再求值:(1﹣)÷,其中x=2.20.现有甲,乙两种机器人都被用来搬运某体育馆室内装潢材料,甲型机器人比乙型机器人每小时少搬运30千克,甲型机器人搬运300千克所用的时间与乙型机器人搬运400千克所用的时间相同,两种机器人每小时分别搬运多少装潢材料?21.如图,在△ABC中,∠ABC=30°,∠ACB=45°,BC=6,点C和点D关于直线AB对称.(1)求作点D;(要求:尺规作图,保留作图痕迹,不写过程)(2)连接BD,过点C作CE∥BD交BA的延长线于点E,求AE的长度.22.下列各组的两个整式具有共同特征,我们将具有这种特征的两个整式称为“孪生整式”.观察下列各组孪生整式:①(x+1)(x+3),3(x+1)(x+);②(x+3)(x﹣5),﹣15(x+)(x﹣);③6(x﹣)(x﹣),(x﹣2)(x﹣3);④(2x+12)(x+4),48(x+)(x+);⑤(﹣3x+6)(x﹣5),﹣30(x﹣)(x﹣);⋯⋯根据你观察到的规律,解决下列问题:(1)写出(x+4)(x﹣7)的孪生整式;(2)探究整式[(2m+n)x﹣2](x﹣n)与3mx2+(2m﹣9n)x+2m+3是否可能为一组孪生整式.23.某市环保部门计划在某东西向的高速公路边上建设P和Q两个垃圾焚烧发电厂,处理A市产生的可燃物垃圾并发电供A市使用.垃圾焚烧过程中会产生灰渣、粉尘、二噁英等有害物质,对环境产生污染,因此垃圾焚烧处理厂的选址要求距离城市超过20km.根据研究,垃圾焚烧发电厂对城市的污染程度H=,其中d(单位:km)表示垃圾焚烧发电厂到城市的距离,k为污染比例系数,不同垃圾焚烧发电厂对城市的污染程度不同,H的值越大,污染程度越大.已知P,Q垃圾焚烧发电厂对城市的污染比例系数分别为1和4,A市到高速公路的距离为mkm.(1)如图,若A市恰好在P垃圾焚烧发电厂的北偏东60°方向,Q垃圾焚烧发电厂到A市的距离比P垃圾焚烧发电厂到A市距离的一半多30km,求Q垃圾焚烧发电厂到A市的距离;(用含m的式子表示)(2)在(1)的条件下,判断哪个垃圾焚烧发电厂对A市的污染程度更大,并说明理由.24.数学兴趣小组用两把直尺和两个大小相同含45°的三角尺进行数学探究活动:如图1所示,直尺l1水平摆放,将三角尺ABC的斜边BC固定在直尺l1上,直尺l2靠在边AC上,三角尺DEF的直角顶点D在直尺l1上滑动,顶点E始终落在直尺l2上,探究点F的运动规律.(1)如图2,当D是BC中点时,连接CF,求证:CF=AE;(2)点D在直尺l1上滑动,点F的位置也会随之变化,记F1,F2是其中任意两个位置.探究直线F1F2与AB的位置关系;11。

辽宁省大连市甘井子区2023-2024学年八年级上学期期末数学试题

辽宁省大连市甘井子区2023-2024学年八年级上学期期末数学试题

辽宁省大连市甘井子区2023-2024学年八年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .角的平分线上的点到角的两边的距离相等B .角的内部到角的两边的距离相等的点在角的平分线上C .三角形三条角平分线的交点到三条边的距离相等D .以上均不正确5.解分式方程233x x =-时,将方程两边都乘同一个整式,得到一个一元一次方程,这个整式是()A .x B .6.如图,在ABC 和DEF只添加一个条件不能判定ABC DEF ≌△△的是().A .AE DB =B .C F∠=∠C .BC EF=D .ABC DEF ∠=∠7.把图中的五角星图案,绕着它的中心O 旋转,旋转后的五角星能与自身重合,则旋转角的度数可以是()A .36︒B .60︒C .72︒D .108︒8.如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABC 的周长为19cm ,则ABD △的周长是()A .13cmB .16cmC .19cmD .21cm9.用图1中的正方形和长方形纸片可拼成图2所示的正方形,此拼图过程可以说明一个多项式的因式分解,正确的是()A .2221(1)a a a -+=-B .2221(1)a a a ++=+C .22(11)2a a a +=++D .()()2111a a a -=+-10.如图,在ABC 中,2C ABC A ∠=∠=∠,BD 是AC 边上的高,则DBA ∠的度数是()A.18︒B.36︒C.54︒D.72︒二、填空题14.如图,有一块长为8m a,宽为4m a的长方形土地,规划部门计划在中间长方形部分修建一个喷泉广场,将其余部分都留出宽为15.如图,点B 在直线l 上,AB l ⊥于点边作等边ACD ,连接BD ,则BD 的最小值为三、解答题16.计算(1)()3252xy x -⋅(2)因式分解:22363ax axy ay ++17.如图,已知AC ⊥CB 于C ,DB ⊥求证:∠ABD=∠ACD .18.在数学课上,老师给出这样一个问题:化简法如下:(1)在直线EF上任取一点B,画线段(2)以点B为圆心,适当长为半径画弧,交(3)分别以点M,N为圆心,大于(4)以点A为圆心,AB长为半径画弧,交射线△≌△,可得到(1)利用MBC NBC三角形全等的判定依据;.(2)求证AD EF20.观察算式,解答下列问题:⨯==⨯⨯第1个式子:131722112⨯==⨯第2个式子:232762123⨯==,第3个式子:33371221(1)观察算式规律,补全第3个式子(2)写出第n个式子,并利用所学知识证明你的结论;(3)利用发现的规律,直接写出第(1)点C横坐标为;(直接用含m的式子表示)(2)过点O作OC的垂线l,在垂线l上取一点(),x y.请先按要求在图中画出图形,再求22.大连市新中考体育考试,新增专项技能三选一项目考试(足,篮,排)项目为:运球绕杆往返.为更好地提高学生篮球专项技能,某校为学生制定了训练计划如下:要求每名学生先进行活动一,活动二的训练,再进行活动三.活动一:篮球单手运球往返跑动.活动二:篮球双手交替运球往返跑动.两项活动规则如下:如图1,从起跑线处开始运球,到达折返线中篮球掉下时,必须捡起并回到掉球处继续运球跑.小红在活动一中速度是在活动二中速度的1.4(1)假设小红参加两项活动球均未掉落,求小红在两项活动中的用时相差多少秒?x的式子表示)(2)若小红在活动一中球未掉落,在进行活动二时,由于双手交替运球不熟练,球掉落,返回到掉球处浪费了4秒,结果进行两项活动共用时23.【初步感知】(1)在数学活动课上,李老师给出如下问题:如图1,将等腰三角形纸片ABC 与等腰三角形纸片ABD 按图示位置摆放,其中AB BC =,AD BD =.求证:ABC ADB Ð=Ð,请你完成证明.【深入探究】(2)如图2,ABC 中,AB BC =,点M 在底边AC 上,BMN ABC α∠=∠=,BM MN =,点N 在点A 的右侧,连接AN .求证:AN BC ∥.小明和小红分别给出如下思路:①小明同学从轴对称变化的角度做了研究:以AM 为对称轴,利用轴对称构造一个与ANM 全等的三角形,通过研究角的大小关系解决了问题.②小红同学从旋转变化的角度做了研究:以点M 为旋转中心,利用旋转构造一个与ANM 全等的三角形,也通过研究角的大小关系解决了问题.请你选择一名同学的思路,写出证明过程.【学以致用】为了帮助学生更好地感悟类比推理思想,李老师将图2进行修改并提出下面问题,请你解答.(3)如图3,在(2)的条件下,将“点N 在点A 的右侧”改为“点N 在点A 的左侧”,其他条件不变,点E 在线段AB 上,且满足2BMC AME ∠=∠,当60α=︒,CM m =,BN n =时,求AE 的长.(用含m n ,的式子表示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(上)数学期末检测试题卷
说明:1、允许使用计算器,考试时间为90分钟。

2、试题满份为100分,附加题的分数计入总分,但总分不超过100分。

一、选择题:(每小题4个选项中,有且只有一个是正确的,请把正确选项的编码填
10元、6元、4元,那么这5位同学平均每人捐款( ) A 、4元 B 、5元 C 、6元 D 、8元 2、2-=x y 的图象大致是( )
A B C D
3、下列四个数中是无理数的是( )
A 、4
B 、0
C 、
3
2 D 、5
3
4、在平面直角坐标系中,将△ABC 向右平移3个单位得到△A ’B ’C ’,则三个顶点A 、B 、C 到对应三点A ’、B ’、C ’的坐标变化为( )
A 、横坐标都加3
B 、纵坐标都加3
C 、横坐标都减3
D 、纵坐标都减3 5、如下图过矩形ABCD 的四个顶点作对角线AC 、BD 的平行线,分别交于
E 、
F 、
G 、
H 四点,则四边形EFGH 为( )
A 、梯形
B 、矩形
C 、菱形
D 、正方形
6、如上右图小方格都是边长为1的正方形,则四边形ABCD 的面积是( )
A 、4
B 、8
C 、10
D 、16
7、一个等腰梯形的两个内角都为100
A 、40°
B 、80°
C 、
90° D
、100°8以这两条主干线为轴建立直角坐标系,单位长度为万米。

最近一次台风的中心位置是(-1,0)
范围的半径是3影响的是( ) A 、(1.24,0) B 、(-6,0) C 、(3,0) D 、(0,3)
9、如图,已知BC 为等腰三角形纸片ABC 的底边,AD ⊥BC,AD=BC 。

将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则得到的四边形是( )
A 、只能是平行四边形
B 、只能为菱形
C 、只能为梯形
D 、可能是矩形
10、如图在所示的象棋盘上,建立适当的平面直角坐标系,使帅位于点 (-1,0)上、相位于点(1,0A 、(-3,3) B 、(0,3) C 、(-4,3) D 、(4,3)
二、填空题:(每小题3分,共30分) 11、-27的立方根是_______。

12、点P (3,-4)到x 轴的距离是13、大于3且小于5的整数是_________。

14、方程组
12
2=+=y x x y 的解为________________。

A
B
C D
B C D
16、一颗树现在高1米,每年长高0.1米,请根据这些信息设定两个变量并写出它们之间的函数关系式:___________________________________。

17、将一条2cm 长的斜线向下平移3cm 后,连接对应点得到的四边形的周长是
_____cm 。

18、如图,要使菱形ABCD 成为正方形,则需增加的条件是_______________(填上一个正确的条件即可)。

19、已知5、12、x 为一个直角三角形的三边长,请写出x 的一个值:______。

20、如上右图要在两幢楼房的房顶A 、B 间拉一根光缆线(按线段计算),则至少____米。

三、算一算(共8分) 21、化简与计算:(每小题4分) (1)()()1515-+ (2)3
13
12-
四、作图题(本题4分)
22、如图,将△ABC 绕其顶点C 按顺时针方向旋转,作出旋转180°后的图形(不写作图步骤,要线条清晰)。

五、解答题(共28分) 23、(6分)某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地可产成熟西瓜600个,在西瓜上市前该瓜农随机摘下10个成熟西瓜,称重如下(单位:千克):5.0,5.4,4.4,5.3,5.0,5.0,4.8,4.8,4.0,5.3。

(1)这10个西瓜质量的平均数、中位数和众数分别是多少?
(2)请你根据上述结果估计这亩地共可收获成熟西瓜约多少千克?
24、(6分)将△ABC 向右平移得到△DEF ,再以DE 为一边作△DEP ,使PD=BC ,PE=AC ,
问四边形PEFD 是平行四边形吗?为什么?
25、(8分)某电视台在黄金时段的120秒钟广告时间内,正好插播长度为15秒和30秒的两种广告。

15秒广告每播一次收费0.6万元,60秒广告每播一次收费1万元。

若电视台从中共得到收费4.4万元,问电视台插播两种广告的次数分别是多少?
26、(8分)如图,在平面直角坐标系中一次函数6
21+-
=x y 的图像分别交x 、y 轴
于点A 、B ,与一次函数x y =的图像交于第一象限内的点C 。

(1) 分别求出A 、B 、C 、的坐标。

(2) 求三角形OBC 的面积。

六、附加题:(本题5分,成绩计入总分,但满分不超过100分)
27、甲、乙、丙三位同学进行立定跳远比赛,每人轮流跳一次称为一轮,每轮按名次从高到低分别得3分、2分、1分(没有并列名次),他们一共进行了五轮比赛,结果甲共得14分。

乙第一轮得3分,且乙的总得分在三位同学中最低,则乙、丙的得分分别为多少?
A D
C B O
A C B
A
B C D
E
F P。

相关文档
最新文档