数字逻辑电路基础和计算机中的逻辑部件
数字逻辑电路基础知识整理

数字逻辑电路基础知识整理数字逻辑电路是电子数字系统中的基础组成部分,用于处理和操作数字信号。
它由基本的逻辑门和各种组合和顺序逻辑电路组成,可以实现各种功能,例如加法、减法、乘法、除法、逻辑运算等。
下面是数字逻辑电路的一些基础知识整理:1. 逻辑门:逻辑门是数字逻辑电路的基本组成单元,它根据输入信号的逻辑值进行逻辑运算,并生成输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
2. 真值表:真值表是描述逻辑门输出信号与输入信号之间关系的表格,它列出了逻辑门的所有输入和输出可能的组合,以及对应的逻辑值。
3. 逻辑函数:逻辑函数是描述逻辑门输入和输出信号之间关系的数学表达式,可以用来表示逻辑门的操作规则。
常见的逻辑函数有与函数、或函数、非函数、异或函数等。
4. 组合逻辑电路:组合逻辑电路由多个逻辑门组合而成,其输出信号仅取决于当前的输入信号。
通过适当的连接和布线,可以实现各种逻辑操作,如加法器、多路选择器、比较器等。
5. 顺序逻辑电路:顺序逻辑电路由组合逻辑电路和触发器组成,其输出信号不仅取决于当前的输入信号,还取决于之前的输入信号和系统状态。
顺序逻辑电路可用于存储和处理信息,并实现更复杂的功能,如计数器、移位寄存器、有限状态机等。
6. 编码器和解码器:编码器将多个输入信号转换成对应的二进制编码输出信号,解码器则将二进制编码输入信号转换成对应的输出信号。
编码器和解码器可用于信号编码和解码,数据传输和控制等应用。
7. 数字信号表示:数字信号可以用二进制表示,其中0和1分别表示低电平和高电平。
数字信号可以是一个比特(bit),表示一个二进制位;也可以是一个字(word),表示多个二进制位。
8. 布尔代数:布尔代数是逻辑电路设计的数学基础,它通过符号和运算规则描述了逻辑门的操作。
布尔代数包括与、或、非、异或等基本运算,以及与运算律、或运算律、分配律等运算规则。
总的来说,数字逻辑电路是由逻辑门和各种组合和顺序逻辑电路组成的,它可以实现各种基本逻辑运算和数字信号处理。
数字逻辑电路基础知识整理(属于个人笔记)

让信念坚持下去,梦想就能实现!! Cx5692855@
1
定正飞的收藏
编/译码器主要有 2/4、3/8 和 4/16 译码器 74X139、 74X138、74X154 等。 4:计数器 计数器主要有同步计数器 74 X161 和异步计数器 74X393 等。 5:寄存器 寄存器主要有串-并移位寄存器 74X164 和并-串寄存器 74X165 等。 6:触发器 触发器主要有 J-K 触发器、带三态的 D 触发器 74X374、不带三态的 D 触发器 74X74、 施密特触发器等。 7:锁存器 锁存器主要有 D 型锁存器 74X373、寻址锁存器 74X25 9 等。 8:缓冲驱动器 缓冲驱动器主要有带反向的缓冲驱动器 74X24 0 和不带反向的缓冲驱动器 74X244 等。 9:收发器 收发器主要有寄存器收发器 74X543、通用收发器 74X245、总线收发器等。 10:总线开关 < br />总线开关主要包括总线交换和通用总线器件等。 11:背板驱动器 背板驱动器主要包括 TTL 或 LVTTL 电平与 GTL/GTL+(GTLP)或 BTL 之间的电平转换 器件。 12:包含特殊功能的逻辑器件 A.总线保持功能(Bus hold) 由内部反馈电路保持输入端最后的确定状态,防止因输入端浮空的不确定而导致器 件振荡自激损坏;输入端无需外接上拉或下拉电阻,节省 PCB 空间,降低了器件成本开销 和功耗。ABT、LVT、ALVC、ALVCH、 ALVTH、LVC、GTL 系列器件有此功能。 命名特征为 附加了“H& rdquo;如:74ABTH16244。
定正飞的收藏
高级 CMOS 逻辑器件 与 TTL 电平兼容高级 CMOS 逻辑器件 高级高速 CMOS 与 TTL 电平兼容高级高速 CMOS 高级低压 CMOS 技术 高级超低压 CMOS 逻辑器件 高级超低功耗 CMOS 逻辑 高级超低压 CMOS 逻辑器件 低压高带宽总线开关技术 低压转换器总线开关技术 Crossbar 技术 具有下冲保护的 CBT 低压 Crossbar 技术 CMOS 逻辑器件 快速 CMOS 技术 发射接收逻辑器件(GTL+) 高速 CMOS 逻辑器件 与 TTL 电平兼容高速 CMOS 逻辑器件 其电路含 AC、ACT 及 FCT 系列 低压 CMOS 技术 低压 CMOS 技术 低压 CMOS 技术 内部集成电路 内部集成电路 残余连续终结低压逻辑器件
计算机中常用的逻辑部件

2.1 三种基本逻辑操作及Boole代数
基本概念
逻辑图是用规定的图形符号来表示逻辑函数运算关系的 网络图形。
H=XY+XY
H=X○+ Y
2.1 三种基本逻辑操作及Boole代数
基本概念
卡诺图是一种几何图形,用来简化逻辑函数表达式,并 将表达式化为最简形式的有用工具。
以3-8译码器为例
module decode(in, out); input [2:0] in; output [7:0] out;
assign out[0] = (!in[2]) && (!in [1]) && (!in[0]); assign out[1] = (!in[2]) && (!in [1]) && ( in[0]); assign out[2] = (!in[2]) && ( in [1]) && (!in[0]); assign out[3] = (!in[2]) && ( in [1]) && ( in[0]); assign out[4] = ( in[2]) && (!in [1]) && (!in[0]); assign out[5] = ( in[2]) && (!in [1]) && ( in[0]); assign out[6] = ( in[2]) && ( in [1]) && (!in[0]); assign out[7] = ( in[2]) && ( in [1]) && ( in[0]);
计算机逻辑运算和逻辑部件-精品文档

NO X1 X2 F M0 0 0 F0 M1 0 1 F1 M2 1 0 F2 M3 1 1 F3
X2 X1
0
1
0 M0 M1
1 M2 M3
三维卡诺图
输入为X1、X2、X3,输出为 F。 左下图为真值表,右下图为卡诺图。 卡诺图的左边上边书写自变量的可能取值, 规则是最小跳跃。中间则表明最小项。
1、真值表:
——由逻辑变量的所有可能取值的组合 及其对应的逻辑函数
值所构成的表格。
NO A B C F
例:设计三人表 M0 0 0 0 0
决逻辑电路。得
M1 0 M2 0
0 1
1 0
0 0
到真值表如右: M3 0 1 1 1
ABC为选票, F为选举结果。
M4 1 0 0 0 M5 1 0 1 1 M6 1 1 0 1
根据化简后的逻辑表达式 F=AB+BC+AC, 可以画出相应的三人表决逻辑电路如下:
A
AB
B
BC
F
AC C
由逻辑表达式进行化简需要较强的技巧, 不熟练者很难判断,而卡诺图则直观方便。
3、卡诺图:
——逻辑关系的一种图形表示形式。同 时也是化简逻辑表达式的一种非常有效 的方法。
卡诺图是一种直观的平面方块图。
每个逻辑表达式均可用一个逻辑电路实 现。如果能够用最简单的逻辑表达式描述一 个逻辑关系,就可以用最简单的电路实现之。 因此,化简逻辑表达式具有十分重要的意义。
下面以三人表决逻辑为例说明化简方法:
F ABCABCABCABC ABCABCABCABCABCABC (ABCABC)(ABCABC)(ABCABC) BC(AA)AC(BB)AB(CC) BCACAB
计算机组成原理02计算机的逻辑部件

算决定的。
(2)逻辑函数的表示方法
逻辑表达式——由逻辑变量和与、或、非三种运算符 所构成的表达式
真值表——将输入逻辑变量的各种可能取值和相应的 函数值排列在一起而组成的表格。
逻辑图——用规定的图形符号来表示逻辑函数运算关 系的网络图形。
运算法则: 0·0=0,0·1=0,1·0=0,1·1=1
2、逻辑代数中的三种基本运算——或运算
决定某一事件发生的所有条件中,只要有一个或一个以上的条 件具备,这一事件就会发生,这种因果关系称为或逻辑。
A +U
B
F
或逻辑真值表
A
B
F
0
0
0
0
1
1
A ≥1 F
B A
F B
F AB 或F A B
卡诺图——是一种几何图形,主要用来化简逻辑函数 表达式。
波形图——用电平的高、低变化动态表示逻辑变量值 变化的图形。
硬件描述语言——采用硬件描述语言来描述逻辑函数 并进行逻辑设计的方法。目前应用最为广泛的有 ABLE-HDL、VHDL等。
逻辑表达式
逻辑表达式的书写及省略规则:
(1)进行非运算可不加括号。例如,A、A B等 (2)与运算符一般可省略。例如,A • B可写成AB (3)在一个表达式中,如果既有与运算,又有或运算,则按先与后或 的规则省去括号。例如,(A • B)(C • D)可写成AB CD (4)由于与运算和或运算都满足结合律,因此,(A B) C或A (B C)
直观明了。输入变量取值一旦确定之后,即可在 真值表中查出相应的函数值。
把一个实际逻辑问题抽象成为数学问题时,使用 真值表是最方便的。
计算机逻辑部件

计算机逻辑部件
计算机逻辑部件是计算机中用于处理和执行逻辑运算的基本组件。
这些部件是构成计算机中央处理器(CPU)的重要组成部分,负责执行各种算术和逻辑操作。
常见的计算机逻辑部件包括:
逻辑门(Logic Gates):逻辑门是计算机中最基本的逻辑部件,用于执行逻辑运算,如与门、或门、非门等。
所有计算机的逻辑运算都是通过组合不同类型的逻辑门来实现的。
加法器(Adder):加法器用于执行二进制的加法运算,是计算机中常见的算术逻辑单元(ALU)的一部分。
算术逻辑单元(ALU):ALU是计算机中用于执行算术和逻辑运算的核心部件。
它可以执行加法、减法、逻辑与、逻辑或等操作。
寄存器(Register):寄存器是用于暂时存储数据的高速存储单元。
计算机的数据处理通常涉及将数据暂时存储在寄存器中,然后进行操作和传输。
随机存取存储器(RAM):RAM是用于临时存储数据和程序的主要内存。
它允许CPU快速读取和写入数据。
可编程逻辑器件(例如FPGA):这些器件允许用户根据需要配置和重新配置逻辑功能,从而实现特定的计算任务。
这些逻辑部件的组合和协调,使计算机能够进行复杂的计算和数据处理,从而实现各种应用和功能。
在现代计算机中,这些部件已经高度集成,并且存在于微处理器芯片中,使得计算机能够执行高效和多样化的任务。
数字逻辑电路

数字逻辑电路1. 概述数字逻辑电路是计算机科学和电子工程领域中的一种重要组成部分。
它是由逻辑门和触发器等基本组件组成的电路,用于处理和运算数字信号。
数字逻辑电路广泛应用于计算机、通信设备、数字仪表、自动控制系统等领域。
数字逻辑电路根据具体应用的需要,可以实现不同的功能,如加法器、多路选择器、译码器、寄存器等。
这些电路通过将逻辑门和触发器连接在一起,以实现特定的功能。
2. 逻辑门逻辑门是数字逻辑电路的基本组件,它根据输入的信号值产生相应的输出信号值。
常见的逻辑门有与门、或门、非门、异或门等。
•与门(AND Gate):当所有输入信号都为高电平时,输出为高电平;否则,输出为低电平。
•或门(OR Gate):当任意输入信号为高电平时,输出为高电平;否则,输出为低电平。
•非门(NOT Gate):当输入信号为高电平时,输出为低电平;否则,输出为高电平。
•异或门(XOR Gate):当输入信号的数量为奇数时,输出为高电平;否则,输出为低电平。
逻辑门可以通过不同的组合方式实现复杂的逻辑运算,如与非门(NAND Gate)和异或门(XOR Gate)等。
3. 触发器触发器是数字逻辑电路的另一种常见组件,它可以存储和处理电平变化。
触发器有很多种类,如RS触发器、JK触发器、D触发器等。
•RS触发器:RS触发器有两个输入信号(R和S)和两个输出信号(Q和Q’)。
当R=0、S=1时,Q=0、Q’=1;当R=1、S=0时,Q=1、Q’=0;当R=1、S=1时,根据之前的状态决定Q和Q’的值。
•JK触发器:JK触发器类似于RS触发器,但是它引入了一个时钟输入。
当J=1、K=0时,下降沿时,触发器的状态发生变化;当J=0、K=1时,上升沿时,触发器的状态发生变化;当J=1、K=1时,翻转触发器的状态。
•D触发器:D触发器只有一个输入信号D和两个输出信号(Q和Q’)。
当时钟信号为上升沿时,Q的值等于D的值;当时钟信号为下降沿时,Q的值保持不变。
数字逻辑与计算机组成原理

数字逻辑与计算机组成原理数字逻辑和计算机组成原理是计算机科学中非常重要的两个学科,它们涉及到计算机硬件的设计、逻辑电路的实现以及计算机的组成和工作原理。
数字逻辑主要关注数字信号的处理和逻辑运算,而计算机组成原理则着眼于计算机内部各个部件的组成和相互协作。
一、数字逻辑1.1 逻辑门逻辑门是数字逻辑中的最基本组成部分,它通过将输入信号按照逻辑运算规则进行处理,生成输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
这些逻辑门可以通过晶体管、集成电路等电子器件来实现。
1.2 组合逻辑电路组合逻辑电路由多个逻辑门组成,用于实现特定的逻辑功能。
在组合逻辑电路中,输入信号即时产生输出信号,不受过去输入组合的影响。
常见的组合逻辑电路有译码器、编码器、多路选择器等。
1.3 时序逻辑电路时序逻辑电路是基于组合逻辑电路的基础上加入了时钟信号的逻辑电路。
它不仅根据输入信号产生输出信号,还受到时钟信号的控制。
时序逻辑电路常用于存储器、寄存器、时序器等的设计。
二、计算机组成原理2.1 计算机的基本组成计算机由中央处理器(CPU)、存储器(内存)、输入设备、输出设备以及各种外部设备组成。
中央处理器是计算机的核心,负责进行各种运算和控制操作。
存储器用于存储程序和数据,可以分为主存储器和辅助存储器。
2.2 指令执行过程计算机的指令执行过程包括取指令、译码指令、执行指令和写回结果四个阶段。
取指令阶段从主存储器中读取指令,并将其送入指令寄存器。
译码指令阶段对指令进行译码,确定其操作类型和操作数。
执行指令阶段根据指令的操作类型进行相应的运算。
最后,在写回结果阶段将运算结果写入存储器或寄存器。
2.3 数据通路与控制器计算机的数据通路用于传输和处理数据,包括算术逻辑单元(ALU)、寄存器、数据总线等部件。
控制器负责控制数据通路和各个部件的工作,根据指令的要求生成控制信号。
三、数字逻辑与计算机组成原理的关系数字逻辑和计算机组成原理密切相关,二者相互依存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A为输出(运算结果), B、C、E、F为输入,• 、+、 / 分别代表与、或、非运算符;
运算符的优先级:非运算最高,与运算次之,或运算最低。 这一逻辑运算功能,显然可以用 与门、或门、非门来实现。
5. 逻辑功能的表示和等效电路
逻辑功能可以选用布尔代数式表示, 卡诺图表示, 真值表 表示,或者用线路逻辑图表示。 真值表 与门、 或门、 非门 的图形符号: A B X X=A•B X= A•B 0 0 0 A A A X X X 0 1 0 B B 1 0 0 非门 与门 与非门 1 1 1 A B 0 0 0 1 1 0 1 1 X 1 1 1 0
数据输出端 Vcc 16 Y0 15 Y1 14 Y2 13 Y3 12 Y4 11 Y5 10 Y6 9
139 为两个独立的二- 四译码器。
每个译码器在信号 G 的控制下,执行译码 或者不执行译码。 仅当控制信号G 为低电平时,译码器正 常译码,依据 A、B 的值,4 个输出信号中 的一个为低电平,其余 3 个为高电平。 否则就不执行译码, 4 个输出信号都为 高电平。例如: /1Y0 = /1G * /1A * /1B
2. 晶体三极管和反相器电路
在半导体的基体上,经过人工加工,可以生产出三极管, 它类似于 2 个背向相连接的二极管,有 3 个接线端,分别被称 为集电极、基极和发射极,其特性是:
电源
输入电平 = 0.7 V, 三级管导通, 使输出电平为 0 V ; 输入电平 = 0 V , 三级管截止 , 使输出电平 > 4 V ; 这已经构成了反相器线路, 完成逻辑取反功能。
一位加法器的逻辑线路图
Xn Yn Cn
. . .
.
..
. . . . . . .+Fn
+
Cn+1
2. 译码器和编码器
译码器电路,实现对 n 个输入变量译码,给出2n 个输出信号,每个输出信号对应 n 个输入变量的一个 最小项。是否需要译码,通常可以用一或几个控制信 号加以控制。译码器多用于处理从多个互斥信号中选 择其一的场合。 编码器电路,通常实现把 2n 个输入变量编码成 n 个输出信号的功能,可以处理 2n 个输入变量之间的优 先级关系,例如在有多个中断请求源信号到来时,可 以借助编码器电路给出优先级最高的中断请求源所对 应的优先级编码,实现这种功能的电路通常被称为优 先级编码器。
多位的 ALU 不仅要产生算术运算、逻辑运算的结果,还要 给出结果特征情况,例如算术运算是否产生了向更高位的进位, 结果是否为零,结果的符号为正还是为负,是否溢出等;对逻辑 运算通常只能检查结果是否为零,不存在进位和溢出等问题。 要 ALU 运算,就涉及选择参加运算的数据来源,要完成的 运算功能,结果的处置方案,特征位的保存等多方面的问题,要 有办法控制 ALU 的运行状态。
1. 2. 3. 4. 5. 6. 7. 8.
计算机中常用的逻辑器件
计算机中常用的逻辑器件,包括组合逻辑和时序逻辑电路 两大类别;也可以划分为专用功能和通用功能电路两大类别。
组合逻辑电路的输出状态只取决于当前输入信号的状态, 与过去的输入信号的状态无关,例如加法器,译码器,编码器, 数据选择器等电路; 时序逻辑电路的输出状态不仅和当前的输入信号的状态有 关,还与以前的输入信号的状态有关,即时序逻辑电路有记忆 功能,最基本的记忆电路是触发器,包括电平触发器和边沿触 发器,由基本触发器可以构成寄存器,计数器等部件; 从器件的集成度和功能区分,可把组合逻辑电路和时序逻 辑电路划分成低集成度的、只提供专用功能的器件,和高集成 度的、现场可编程的通用功能电路,例如通用阵列逻辑GAL, 复杂的可编程逻辑器件 CPLD,包括门阵列器件FPGA,都能 实现各种组合逻辑或时序逻辑电路功能,使用更方便和灵活。
8 GND
数据输出端
3. 数据选择器
数据选择器又称多路开关,它是以“与-或”门、 “与-或-非”门实现的电路,在选择信号的控制下,实 现从多个输入通路中选择某一个通路的数据作为输出。 在计算机中,按照需要从多个输入数据中选择其 一作为输出是最常遇到的需求之一。例如,从多个寄 存器中,选择指定的一个寄存器中的内容送到 ALU 的 一个输入端,选择多个数据中的一个写入指定的寄存 器,选择多个数据中的一个送往指示灯进行显示等。
一位加法器的设计过程
其设计过程可以通过如下3步完成: (1)写出加法器逻辑的真值表; (2)由真值表推导出对应的逻辑表达式; (3)对得到的逻辑表达式进行一定目的的化简或优化,以便选 用基本逻辑门电路实现加法器。
Xn 0 0 0 0 1 1 1 1 Yn Cn 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 Fn Cn+1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 1 1
与门
A B 0 0 0 1 1 0 1 1
X 1 1 1 0
X=A•B
A B
与非门
X
用于写出功能需求
7. 基本定理和常用公式,逻辑化简
A+0=A A•0=0 A+A=1 A•A=0
A+1=1
A+B=B+A
A•1=A
A+A=A
A•B=B•A
A•A=A
A=A
(A+B)+C=A+(B+C)
(A•B) •C=A•(B•C)
总线 /G1 A B /G2 C /G3
例如,当控制信号 /G1为低 电平, /G2 和 /G3为高电 平时,三态门的输入 A 被 送到总线上,另外两个三 态门的输出处于高阻态。
二. 计算机中常用的逻辑电路
专用功能电路 加法器和算术逻辑单元 译码器和编码器 数据选择器 触发器和寄存器、计数器 阵列逻辑电路 存储器芯片 RAM 和 ROM 通用阵列逻辑 GAL 复杂的可编程逻辑器件 CPLD: MACH器件 现场可编程门阵列 FPGA 器件
乘除法运算,也可以通过多次的循环迭代利用加法器完成。
加法器和算术逻辑单元
计算机不仅要完成对数值数据的算术运算功能,还要完成 对逻辑数据的逻辑运算功能,例如与运算,或运算等等。
在计算机中,通常会把对数值数据的算术运算功能和对逻 辑数据的逻辑运算功能,合并到一起用同一套电路实现,这种电 路就是算术逻辑单元,英文缩写是 ALU,用与、或、非门等电 路实现,其设计过程和逻辑表达式在数字电路教材中有详细说明, 这些内容是 “数字逻辑和数字集成电路” 的重点知识。
Y0 A B
Y1
Y2
Y3
Y4
Y5 Y6
SN74lS138
C G2A G2B G1
Y7
1 A
2 B 选择
3 C
4 G2A
5 G2B 允许
6 G1
7 Y7 输出
8 GND
允许 Vcc 16 2G 15 2A 14 选择 2B 13 2Y0 12 数据输出端 2Y1 11 2Y2 10 2Y3 9
3个输入信号A、B、C,8个译码输出 信号Y0~Y7。 仅当 3 个控制信号G1、G2A、G2B 的组合为 1 0 0 时,译码器正常译码, 依据 A、B、C 的值,8 个输出信号中的 一个为低电平,其余7个输出为高电平。
X=A+B
A X B
X=A+B
A
B X
或门
或非门
6. 真值表和逻辑表达式的对应关系
真值表、逻辑表达式、线路图是有对应对应关系的, 真值表 真值表→表达式→电路图 (用于做出产品)
A B 0 0 0 1 1 0 1 1 X 0 0 0 1
得出用到的基本门 及其连接关系 X = A •B
A B
X
1. 用与逻辑写出真值表中 每一横行中输出为 1 的 逻辑表达式; 2. 用或逻辑汇总真值表中 全部输出为 1 的逻辑。 3. 不必理睬那些输出为 0 的各行的内容,它们已 经隐含在通过 1、2 两 步写出的表达式中。 X= A * B + A * B + A * B
A•(B+C)=A•B+A•C
A+A•B=A
A+ B•C=(A+B) •(A+C)
A•(A+B)= A
A+A•B=A+B
A• B = A+B
A•(A+B)=A•B
A+B=A• B =A+B = A•B
例如:A•B+A•B+A•B = A•(B+B) +A•B=A+A•B
8. 三态门电路
三态门电路是一种最重要的总线接口电路,它保留 了图腾输出结构电路信号传输速度快、驱动能力强的特 性,又有集电极开路电路的输出可以“线与”的优点, 是构建计算机总线的理想电路。 “三态”是指电路可以输出正常的 “0” 或 “1”逻 辑电平,也可以处于高阻态,取决于输入和控制信号。 为高阻态时, “0” 和 “1”的输出极都截止,相当于与 所连接的线路断开,便于实现从多个数据输入中选择其 一。
4. 逻辑运算与数字逻辑电路
5. 逻辑功能的表示和等效电路 6. 真值表和逻辑表达式的对应关系 7. 逻辑运算的基本定理、常用公式和逻辑化简 8. 三态门电路
1.
晶体二极管及其单方向导电特性
通常情况下,可把一些物体划分成导体(双向导电)和 绝 缘体(不导电)两大类。在这两类物体的两端有电压存在时, 会出现有电流流过或无电流流过物体的两种不同情形。 人们也可以制作出另外一类物体,使其同时具备导体和绝 缘体两种特性,其特性取决于在物体两端所施加电压的方向, 当在一个方向上有正的电压(例如 0.7V)存在时,可以允许电 流流过(如图所示),此时该物体表现出导体的特性; 而在相反的方向上施加一定大小的电压时, + 该物体中不会产生电流,表现出绝缘体的 的特性,即该物体只能在单个方向上导电, 电流 i 这样的物体被称为半导体。制作出的器件 被称为二极管。