机械控制工程理论

合集下载

机械控制工程理论

机械控制工程理论

飞球升高,使阀门开的小些,蒸汽机会减速。

瓦特发明离心式调速器——蒸汽机的速度调节,被认为是自动控制技术走向大规模应用的一个标志性事件。

瓦特发明的蒸汽机离心式调速器,就属于一种负反馈控制器,随着蒸汽机转速发生变化而偏离给定值时,离心式调速器的平衡锤的位置也随之发生变化,带动蒸汽阀门开度改变,从而使推动蒸汽机旋转的蒸汽流量随之变化,使蒸汽机的转速达到了新的平衡,实现了转速的自动控制。

这属于一种根据偏差实现控制的闭环控制,它是过程控制的主要形式。

瓦特的这项发明开创了自动调节装置的应用和研究。

这项发明的成功表明自动化技术已具雏形。

但是这些发明都是在人们工作检验中产生的,没有形成理论的指导。

直到一百多年后,一些理论逐渐形成。

◆英国. . 发表“论调速器”( )论文(年)。

指出控制系统的品质可用微分方程来描述,系统的稳定性可用特征方程根的位置和形式来研究。

◆年劳斯(,~)和年瑞士数学教授赫尔维茨()先后找到了系统稳定性的代数判据,即系统特征方程根具有负实部的充分必要条件。

◆俄国. 博士论文“论运动稳定性的一般问题” (年).经典控制理论(世纪年代年代)美国著名的控制论创始人维纳(,~)系统地总结了前人的成果,年发表了“控制论或关于在动物和机器中控制和通讯的科学”著作,书中论述了控制理论的一般方法,推广了反馈的概念,为控制理论这门学科的产生奠定了基础,标志着控制论学科的诞生。

控制论一词,来自希腊语,愿意为掌舵术,包含了调节、操纵、管理、指挥、监督等多方面的涵义。

后来西方学者将它改为控制论是多门科学综合的产物也是许多科学家共同合作的结晶。

但是,控制论的诞生和发展是与美国数学诺伯特.维纳的名字联系在一起的。

维纳少年时是一位天才的神童,他岁上大学,学数学,但喜爱物理、无线电、生物和哲学,岁考进哈佛大学研究生院学动物学,后又去学哲学,岁时获得了哈佛大学的数理逻辑博士学位。

年刚刚毕业的维纳又去欧洲向罗素和希尔伯特这些数学大师们学习数学。

机械工程控制基础

机械工程控制基础

机械工程控制基础一、控制基础概述控制是指对一种现象或过程进行指定的调节或管理。

在机械工程中,控制是指通过对机械系统中的运动、力学等参数进行监测和调节,以满足特定的工作要求。

机械工程中的控制可以分为开环控制和闭环控制两种。

开环控制是指在控制过程中没有对系统输出进行反馈存储的控制方法,也就是说,输出信号与输入信号之间不存在反馈关系。

这种控制方法不适合对系统精度和稳定性要求较高的场合。

而闭环控制则是在系统输出信号与输入信号之间进行反馈控制,以提高系统的精度和稳定性,使系统能够更好地满足要求。

## 二、控制基础理论控制基础理论主要包括控制对象、控制流程、控制算法、控制器等方面。

其中控制对象是进行控制的主要对象,其性能决定了整个控制系统的性能。

控制流程是指对控制对象进行控制的具体过程。

控制算法是指根据控制流程,运用特定的算法对控制对象进行实时调节,以达到控制要求的方法。

另外,控制器是指控制系统的核心部件,其主要功能是对输入信号进行处理和调节,以使输出信号满足要求。

在机械工程中,常见的控制器有比例控制器、积分控制器和微分控制器等。

三、控制技术的应用控制技术在机械工程中的应用较为广泛,主要应用于机床、起重设备、自动化生产线、机器人等领域。

在机床中,常用的控制技术有数控技术和伺服控制技术。

在起重设备中,常用的控制技术有电控制技术和液压伺服控制技术。

在自动化生产线中,常用的控制技术有PLC控制技术和DCS控制技术。

而在机器人领域,控制技术则是重中之重,常用的技术有轨迹规划控制技术和变形控制技术等。

四、控制工程的发展趋势随着科学技术的不断发展,机械工程控制技术也取得了长足的进步。

现在,智能化、高精度、高速度和高可靠性已成为机械工程控制技术的主要发展方向。

同时,控制工程技术还应紧密地与信息技术、计算机技术、通信技术等相关领域结合,以推动控制工程技术的不断发展。

在未来,随着机器人技术的进一步发展,机器人控制技术也将更加成熟。

机械工程控制理论基础 实验报告 附小结与心得

机械工程控制理论基础 实验报告 附小结与心得

《机械控制理论基础》——实验报告班级:学号:姓名:目录实验内容实验一一阶环节的阶跃响应及时间参数的影响P3 实验二二阶环节的阶跃响应及时间参数的影响P9 实验三典型环节的频率特性实验P15 实验四机电控制系统的校正P20 实验心得…………………………………………P23实验一 一阶环节的阶跃响应及时间参数的影响● 实验目的通过实验加深理解如何将一个复杂的机电系统传递函数看做由一些典型环节组合而成,并且使用运算放大器来实现各典型环节,用模拟电路来替代机电系统,理解时间响应、阶跃响应函数的概念以及时间响应的组成,掌握时域分析基本方法 。

● 实验原理使用教学模拟机上的运算放大器,分别搭接一阶环节,改变时间常数T ,记录下两次不同时间常数T 的阶跃响应曲线,进行比较(可参考下图:典型一阶系统的单位阶跃响应曲线)。

典型一阶环节的传递函数:G (S )=K (1+1/TS ) 其中: RC T = 12/R R K =典型一阶环节的单位阶跃响应曲线:● 实验方法与步骤1)启动计算机,在桌面双击“Cybernation_A.exe ”图标运行软件,阅览使用指南。

2)检查USB 线是否连接好,电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。

检查无误后接通电源。

3)在实验项目下拉框中选中本次实验,点击按钮,参数设置要与实验系统参数一致,设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可继续进行实验。

● 实验内容1、选择一阶惯性环节进行实验操作由于一阶惯性环节更具有典型性,进行实验时效果更加明显。

惯性环节的传递函数及其模拟电路与实验曲线如图1-1: G (S )= - K/TS+1RC T = 12/R R K =2、(1)按照电子电路原理图,进行电路搭建,并进行调试,得到默认实验曲线图1-2图1-2(2)设定参数:方波响应曲线(K=1 ;T=0.1s )、(K=2;T=1s ),R1=100k Ω 3、改变系统参数T 、K (至少二次),观察系统时间响应曲线的变化。

机械控制工程基础

机械控制工程基础

第一章绪论知识结构图知识结构图第一节机械工程控制论的研究对象与任务一、系统及广义系统系统是由相互联系、相互作用的若干部分构成且具有一定运动规律的一个有机整体。

一个较大系统之内可能包括若干个较小的子系统。

不仅系统的各部分之间存在非常紧密的联系,而且,系统与外界之间也存在一定的联系。

系统与外界之间的联系如图1.1.1所示,其中,输入:外界对系统的作用,它包括给定的输入和干扰;输出:系统对外界的作用。

图1.1.1系统及其与外界的联系系统可大可小,可繁可简,甚至可“实”可“虚”,完全由研究的需要而定,通常将它们统称为广义系统。

二、机械工程控制论的研究对象机械工程控制论实质上是研究机械工程技术中广义系统的动力学问题。

具体地说,它研究的是机械工程广义系统在一定的外界条件(即输入或激励、干扰)作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性(即由系统的结构与参数所决定的特性)所决定的整个动态历程;研究这一系统及其输入、输出三者之间的动态关系。

三、机械工程控制论的研究任务从系统、输入、输出三者之间的关系出发,根据已知条件与求解问题的不同,机械工程控制论的任务可以分为以下五种:(1)已知系统和输入,求系统的输出,即系统分析问题;(2)已知系统和系统的理想输出,设计输入,即最优控制问题;(3)已知输入和理想输出时,设计系统,即最优设计问题;(4)输出已知,确定系统,以识别输入或输入中的有关信息,此即滤波与预测问题;(5)已知系统的输入和输出,求系统的结构与参数,即系统辨识问题。

第二节系统及其模型一、系统的特性系统具有如下特性:(1)系统的性能不仅与系统的元素有关,而且还与系统的结构有关;(2)系统的内容比组成系统各元素的内容要丰富得多;(3)系统往往具有表现出在时域、频域或空域等域内的动态特性。

二、机械系统以实现一定的机械运动、输出一定的机械能,以及承受一定的机械载荷为目的的系统,称为机械系统。

对于机械系统,其输入和输出分别称为“激励”和“响应”。

机械控制工程理论基础课程教学大纲

机械控制工程理论基础课程教学大纲

“机械控制工程理论基础”课程教学大纲英文名称:Elements of Mechanical Control Theory课程编号:MACH3435学时:56(理论学时:40 实验学时:16 课外学时:20)学分:3适用对象:机械类、动力类本科生先修课程:高等数学,理论力学,电工电子技术使用教材及参考书:[1] 董霞、陈康宁、李天石.机械控制理论基础.西安交通大学出版社,2005.ISBN 7-5605-2041-3.[2] 董景新等.控制工程基础(第二版).清华大学出版社,2003.ISBN: 9787302063872[3] [美] Katsuhiko Ogata著,卢伯英、于海勋译.现代控制工程(第三版).电子工业出版社,2000.ISBN 7-5053-5395-0/TN.1247.一、课程性质和目的性质:专业基础目的:1.培养学生从动态和系统的角度建立机械系统数学模型的能力;2.培养学生对机械控制系统进行动态分析的能力;3.培养学生对机械控制系统的设计能力和综合能力;4.培养学生使用计算机仿真能力;5.培养学生系统分析能力和综合能力。

二、课程内容简介机械控制理论是研究“控制论”在“机械工程”中应用的科学,本课程主要介绍机械控制工程的基本概念、机电系统数学模型的建立、机电控制系统的时域分析和频域分析、机电控制系统的稳定性分析和机电控制系统的设计和校正。

通过课程教学和实验,培养学生对机电控制系统进行动态分析的能力和综合能力。

三、教学基本要求1.了解机电系统的数学模型并掌握基本的建模方法;2.掌握机电控制系统时域分析方法;3. 掌握机电控制系统的频域分析方法;4. 掌握机电控制系统稳定性分析方法;5. 初步掌握机械控制系统设计和校正方法。

四、教学内容及安排第一章:绪论1.理解“机械工程控制”的基本含义,本课程的特点,以及学习本课程的目的与任务;2.初步建立系统、反馈、控制、闭环系统等的基本概念。

机械控制工程基础第一章 绪论

机械控制工程基础第一章 绪论

3.4
速度(斜坡)函数、加速度(抛物线)函数
x(t) = A ·2 / 2 t F(s)=A/s3
x(t) = At F(s)=A/s2
这两种信号在随动系统分析中最常见。
5. 脉冲函数
, t 0 (t ) 0, t 0

(t )dt 1
L(s)=1 6. 正弦函数 x(t) = Asinwt L(s) = Aw /( s2 + w2 )
三、微分定理
若 L [ f (t) ] = F (s) 当初始条件 f( 0) = 0 当初始条件 f(0) =f ’(0)=f"(0)=…= 0
则 L [d f(t) / dt] = sF(s) L [dnf (t) / dtn ] = snF(s)
例.d3x0(t/) / dt + 2d2x0(t) / dt + 3dx0(t) / dt + x0(t) = 2dxi(t)/dt + xi(t)
六、初值定理
若 则 L [ f (t) ] = F (s)
f (0) lim f (t ) lim s F (s)
t 0 s
条件: lim f (t ) 存在 t0 应用:确定元件或系统的初始值。
§ 3
拉氏反变换
若 F(s) = F1(s) + F2(s) + F3(s) + … 当 Fi(s) 比较简单,可通过查表求得。
α2 、 … 、 αn可由方法1求得, α11 、 α12 、 α13 可由下式求得
A( s ) ] |s p B(s) d ( s p1 ) F ( s ) 12 [ ] |s p ds 2 1 d ( s p1 ) F ( s ) 13 [ ] |s p 2 2! ds

机械工程控制基础4_机械工程控制论的研究任务

机械工程控制基础4_机械工程控制论的研究任务

机械工程控制基础4_机械工程控制论的研究任务
1.控制系统设计:机械工程控制论需要研究和设计机械系统的控制系统,包括选取合适的传感器和执行器,建立数学模型,确定控制策略等。

这需要综合考虑机械系统的结构、性能要求以及工作环境等因素,以实现
系统的稳定、高效运行。

2.控制系统分析:机械工程控制论要研究和分析机械系统中的控制系统,包括控制系统的稳定性、鲁棒性、响应速度等性能指标的分析。

通过
分析控制系统的性能,可以对系统进行改进和优化,提高系统的工作效果。

3.控制系统优化:机械工程控制论要研究和优化机械系统中的控制系统,包括控制参数的优化、控制算法的改进等。

通过优化控制系统,可以
提高系统的控制性能、节约能源、减少成本等。

4.控制器硬件设计:机械工程控制论还需要研究和设计控制系统中的
硬件部分,包括控制器的选型、硬件电路设计等。

这需要充分考虑控制系
统的要求,选择合适的硬件设备,并进行电路设计和调试,以实现控制系
统的功能。

5.控制系统应用:机械工程控制论还需要研究控制系统在实际机械工
程中的应用。

这包括研究控制系统在不同机械系统中的适用性、可行性等,并针对具体的应用场景进行改进和优化。

综上所述,机械工程控制论的研究任务主要包括控制系统设计、控制
系统分析、控制系统优化、控制器硬件设计以及控制系统的应用研究。


过这些任务的研究,可以为机械工程的控制部分提供理论基础和技术支持,提高机械系统的控制性能和效率。

机械工程控制基础简答题

机械工程控制基础简答题

机械工程控制基础简答题1、简述机械控制工程论的研究对象和研究任务。

【P2】答:工程控制论实质上是研究工程技术中广义系统的动力学问题。

研究对象:广义系统研究任务:动力学问题2、什么是时间响应?时间响应由哪几部分组成?【P83】答:(1)系统在输入信号的作用下,其输出随时间的变化过程称为时间响应;(2)时间响应由瞬态响应和稳态响应两个部分组成。

3、任意列写物种典型环节的传递函数。

【P39-P45】答:(1)比例环节:G(s)=K;(2)惯性环节:G(s)=;(3)微分环节:G(s)=Ts;(4)积分环节:G(s)=;(5)振荡环节:G(s)=。

4、什么是最小相位系统?有何特点?与非最小相位系统的区别是什么?【P152】答:(1)在复平面【s】右半部分没有极点和零点的传递函数称为最小相位传递函数,具有最小相位传递函数的系统称为最小相位系统;(2)特点:①稳定系统中最小相位系统的相位变化范围最小;②在复平面【s】右半部分没有极点和零点;(3)区别:最小相位系统在复平面【s】右半部分没有极点和零点,非最小相位系统在复平面【s】右半部分有极点或零点;稳定系统中非最小相位系统的相位变化比最小相位系统的相位变化范围大。

5、对控制系统的基本要求是什么?【P15】答:①系统的稳定性②响应的快速性③响应的准确性(也可这样回答:对控制系统的基本要求一般归纳为稳定性、快速性和准确性。

)6、什么是传递函数的零点、极点和增益?【P38】答:系统传递函数G(s)是以复变数s作为自变量的函数,经因式分解写成一般形式G(s)(K为常数)上式中,当s=(j=1,2…,m)时,均有G(s)=0,故称,, …为G(s)的零点;当s=,G(s)的分母为均为0,即使G(s)取极值,故称为G(s)的极点。

K为系统增益。

7、什么是系统的频率特性?【P126】答:线性定常系统对谐波输入的稳态响应称为频率特性。

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。

机械工程控制理论大作业:2015

机械工程控制理论大作业:2015

机械工程控制理论课程作业 201542.121中国石油大学机电工程学院研15级一.计算题(应用MATLAB 求解)1. •系统由下列两个子系统并联而成,试确定该系统的整体状态方程模型、传递函数模型,并确总系统的零、极点。

如取采样周期T=Qls,确定该系统所对应的Z 传递函数和离散状态方程,并 判别系统的稳定性。

子系统2:系统的传递函数模型为G (5)=—S + 3解:分别求出两个子系统的传递函数和状态空间方程再并联,就可以求出整体模型。

MATLAB 语句: A=[・2 -5;1 0];C=U 2]; 0=0;sys=parallel(sysl,sys2) 结果为:%建立整体系统传递函数ssl=ss(ABC,D); %建立子系统1的状态空间模型 sysl=tf(ssl);%建立子系统1的传递函数 sys2=tf(3,[l 3]);%建立子系统2的传递函数 子系统h 系统状态空间模型的参数A =-2 -5",B =T,c=_ 1 0 __0_Transfer function: 4 事2 + 11 s + 21 s'3 + 5 3*2 + 11 s + L5 %建立整体系统的状态空间模型x2x3x3ulyiC oirt xnuous —t xrae mo de 1 •%求系统的极点 ans -3. 0000-1.0000 + 2. OOOOi -1.0000 - 2. OOOOi%求系统的零点ans-1.3750 + 1-83291 -1.3750 - 1-83291Transfer function:0.3584 z*2 - 0.6143 z + 0. 2723 z'3 - 2-514 z'2 + 2. 133 z - 0.6065ssd=c2d(ss,Ol) %建立T=O ・1时•系统的z 传递函数ss=ss(sy£)Xi X1-5x2-2- 75x3-1. S75xl x2 ul4 0Xix2x3yi0.6S750. 6563po lc(sys) zerofsys) sd=c2d(sys,O.l/2oh")%建立T=O ・1时,系统的Z 传递函数Sampling tim*:Discrete-tine model.连续系统的稳定性判断准则是系统全部极点均有负实部,从极点的结果看出,所有结果均有负 实部,所以该系统是稳泄的。

《机械工程控制论》科目考试大纲

《机械工程控制论》科目考试大纲

《机械工程控制论》科目考试大纲一、考查目标要求考生全面系统地掌握现代控制理论的基本概念及基本原理,并且能够将控制理论的基本原理应用于机械系统,解决机械工程中的控制理论与实际技术问题,考查考生的较强分析问题与解决问题的能力。

二、考试形式与试卷结构(一)试卷满分及考试时间满分为100分,考试时间为3小时。

(二)答题方式答题方式为闭卷、笔试。

(三)试卷内容结构1)状态空间描述(10%),2)状态空间表达式的求解(10%),3)线性控制系统的能控性和能观测性(20%),4)控制系统的稳定性(20%),5)状态反馈、极点配置和状态观测器设计(40%)。

(四)试卷题型结构填空题(10分),选择题(20分),简答题(10分),计算题(60分)三、考查内容及要求1)状态空间的基本概念a:状态变量、状态空间、状态方程、输出方程、动态方程;b:系统矩阵、输入矩阵、输出矩阵;c:状态方程;2)动态方程的建立a:由微分方程建立动态方程;b:由传递函数建立动态方程,可控标准型,可观标准型;3)动态方程的线性变换a:将系统矩阵化为对角标准型;4)线性定常连续系统状态方程的解a:求矩阵指数;b:矩阵指数的性质;c:齐次状态方程的解;d:非齐次状态方程的解;5)传递函数矩阵及其实现a:由动态方程求传递函数矩阵;6)线性系统的能控性和能观测性a:能控性与能观测性的定理及推论;b:能控性判据的应用;c:能观测性判据的应用;d:传递函数与能控性和能观测性的关系;e:将系统按照能控性、能观性进行结构分解;7)线性系统的状态反馈与状态观测器a:线性反馈控制系统的基本结构及其特性;b:通过状态反馈对系统进行极点配置;c:系统镇定问题;d:设计系统的状态观测器;8)系统稳定性分析a:李雅普诺夫稳定的定义、一致稳定、渐进稳定、大范围渐进稳定的定义;b:用李雅普诺夫第一法和第二法判断系统稳定性;c:用克拉索夫斯基法(雅克比矩阵法)分析系统的稳定性。

机械工程控制基础知识点整合

机械工程控制基础知识点整合

第一章绪论1、控制论的中心思想、三要素和研究对象。

中心思想:通过信息的传递、加工处理和反馈来进行控制。

三要素:信息、反馈与控制。

研究对象:研究控制系统及其输入、输出三者之间的动态关系。

2、反馈、偏差及反馈控制原理。

反馈:系统的输出信号部分或全部地返回到输入端并共同作用于系统的过程称为反馈。

偏差:输出信号与反馈信号之差。

反馈控制原理:检测偏差,并纠正偏差的原理。

3、反馈控制系统的基本组成。

控制部分:给定环节、比较环节、放大运算环节、执行环节、反馈(测量)环节被控对象基本变量:被控制量、给定量(希望值)、控制量、扰动量(干扰)4、控制系统的分类1)按反馈的情况分类a、开环控制系统:当系统的输出量对系统没有控制作用,即系统没有反馈回路时,该系统称开环控制系统。

特点:结构简单,不存在稳定性问题,抗干扰性能差,控制精度低。

b、闭环控制系统:当系统的输出量对系统有控制作用时,即系统存在反馈回路时,该系统称闭环控制系统。

特点:抗干扰性能强,控制精度高,存在稳定性问题,设计和构建较困难,成本高。

2)按输出的变化规律分类自动调节系统随动系统程序控制系统3)其他分类线性控制系统连续控制系统非线性控制系统离散控制系统5、对控制系统的基本要求1)系统的稳定性:首要条件是指动态过程的振荡倾向和系统能够恢复平衡状态的能力。

2)系统响应的快速性是指当系统输出量与给定的输出量之间产生偏差时,消除这种偏差的能力。

3)系统响应的准确性(静态精度)是指在调整过程结束后输出量与给定的输入量之间的偏差大小。

第二章系统的数学模型1、系统的数学模型:描述系统、输入、输出三者之间动态关系的数学表达式。

时域的数学模型:微分方程;时域描述输入、输出之间的关系。

→单位脉冲响应函数复数域的数学模型:传递函数;复数域描述输入、输出之间的关系。

频域的数学模型:频率特性;频域描述输入、输出之间的关系。

2、线性系统与非线性系统线性系统:可以用线性方程描述的系统。

机械工程中的现代控制理论与方法研究

机械工程中的现代控制理论与方法研究

机械工程中的现代控制理论与方法研究引言:机械工程作为现代工程领域的重要分支之一,研究的对象是机械系统的设计、制造和运行等方面。

而现代控制理论与方法在机械工程中扮演了至关重要的角色。

本文将探讨现代控制理论与方法在机械工程中的应用研究,以及其对机械工程领域的影响。

一、现代控制理论的发展历程现代控制理论的发展可追溯至20世纪初,从最早的经验控制到后来的经典控制理论,再到今天的现代控制理论,每一次的发展都推动了机械工程的进步。

经典控制理论主要面向线性系统,而现代控制理论则能更好地应对非线性系统的控制问题。

随着计算机技术的快速发展,现代控制理论也得到了更广泛的应用,并演变出了许多高级控制方法。

二、模糊控制理论在机械工程中的应用研究模糊控制理论是现代控制理论中的重要分支,其应用涵盖了各个领域,包括机械工程。

模糊控制理论克服了传统控制理论中需要准确的系统数学模型的限制,使得对复杂系统的控制更加灵活和容易。

在机械工程中,模糊控制理论被广泛应用于机器人控制、汽车自动驾驶、智能制造等领域,为机械系统的运行提供了更高的精度和稳定性。

三、神经网络控制方法在机械工程中的研究进展神经网络控制方法是现代控制理论中的又一重要分支,它模仿了人脑神经网络的结构和功能,可以对非线性系统进行建模和控制。

机械工程中的一些复杂系统往往具有非线性特性,传统控制方法难以解决这些问题。

而神经网络控制方法的出现填补了这一空白,被广泛应用于机械系统的运动控制、质量控制和先进制造等方面,极大地提高了机械工程系统的性能和效率。

四、智能控制方法在机械工程中的发展趋势随着人工智能领域的快速发展,智能控制方法在机械工程中的应用也日益增多。

智能控制方法采用了多种智能技术,如模糊逻辑、神经网络和遗传算法等,使得机械系统能够具备学习、预测和优化等能力。

这为机械工程领域带来了更多的创新和发展机会,同时也对机械工程师的技能提出了更高的要求。

结论:现代控制理论与方法在机械工程中的应用研究为机械系统的设计、制造和运行等方面提供了重要支持。

机械工程控制理论第五章ppt

机械工程控制理论第五章ppt
15:30:39
【注】因为相角具有多值性,所以相角φ的取值应该小心。 复数辐角的主值范围为[0,2π],而反正切函数的主值范围 为[-π/2,+π/2],因此在用计算器或计算机按上式计算出的 结果(主值范围)要根据实际情况加以修正。修正的原则是 :(1)看复数点所在的象限;(2)保证辐角的连续性。 本题当ω从0∞变化时,频响函数的辐角在从0变化到-π。 因此,计算结果在0~-π范围内连续取值。(不在复数主 值范围内取值是为了反映系统的滞后特性。)
【 注 】 相 角 φ(10) 的 计 算 结 果 已 经 由 33.6901º = 0.5880 rad修正到-180º+ 33.6901º= -146.3099º = -2.5536 rad。否则最后的结果将是错误的。
15:30:39
5-1 频率特性
所以稳态响应为
yss ( t ) 4.0791sin(2t 0.2054)
15:30:39
5-1 频率特性
ym1 | GB ( j ) | 2 xm1 100 4 (100 22 )2 (10 2)2
3
4.0791
1 ( ) 2
10 2 arctan 11.5346 0.2054 rad 2 100 2
15:30:39
5-1 频率特性
x(t) yss(t) 4 yss(t)
2 6
6
什么情 0 况下稳 态输出 -2 波形与 输入波 -4 形一样?
-6 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
输入信号x(t)=4sin2t+2cos(20t−π/4)
5 t(s)
修正后的稳态响应 yss (t ) 4.0791sin(2t 0.2054) 0.5547cos(20t 3.3390) 修正前的稳态响应 yss (t ) 4.0791sin(2t 0.2054) 0.5547cos(20t 0.1974)

机械工程控制基础 答案

机械工程控制基础 答案

1.1 工程控制理论的研究对象和任务是什么?答:机械工程控制论的研究对象及任务:工程控制论实质是研究工程技术中广义系统的动力学问题。

具体说,它研究的是工程技术中的广义系统在一定的外界条件作用下,从系统的一定初始条件出发,所经历的由其内部的固有特性所决定的整个动态历程;研究这一系统及其输入、输出三者之间的关系。

1.2 组成典型闭环控制系统的主要环节有哪些?它们各起到什么作用?答:典型闭环控制系统的主要环节:给定环节、测量环节、比较环节、放大及运算环节、执行环节。

作用:给定环节:给出与系统输出量希望值相对应的系统输入量。

测量环节:测量系统输出量的实际值,并把输出量的量纲转化与输入量相同。

比较环节:比较系统的输入量和反馈信号,并给出两者之间的偏差。

放大环节:对微弱的偏差信号进行放大和变换,使之具有足够的幅值和功率,以适应执行元件动作的要求。

执行环节:根据放大后的偏差信号产生控制、动作,操作系统的输出量,使之按照输入量的变化规律而变化。

1.3 自动控制系统按照输出变化规律如何分类?按照反馈规律分为哪几类答:按输出变化规律分类:自动调节环节、随动系统、程序控制系统。

按反馈情况分类:开环系统、闭环系统、半闭环系统。

1.4 什么是反馈控制?日常生活种有许多闭环和开环系统,请举例说明。

答:反馈控制是将系统的输出信号通过一定的检测元件变送返回到系统的输入端,并和系统的输入信号进行比较的过程。

举例:开环系统:洗衣机、电烤箱、交通红绿灯和简易数控机床。

闭环系统:数控机床的进给系统。

1.5 分析比较开环系统与闭环系统的特征、优缺点和应用场合的不同之处。

答:开环系统:信号单向传递;系统输出量对输入没有影响的系统。

特征:作用信号单向传递。

优点:简单、调整方便、成本低、不会震荡。

系统总能稳定工作。

缺点:开环控制系统精度不高,抗干扰能力差。

场合:在一些对控制精度要求不高、扰动作用不大的场合。

闭环系统:信号形成闭环回路;系统末端输出量对输入有影响的系统。

机械控制工程基础公式

机械控制工程基础公式

机械控制工程基础公式
机械控制工程涉及的基础公式有很多,涵盖了力学、动力学、控制理论等多个领域。

以下是一些常见的基础公式:
1. 速度公式,v = s/t.
其中,v表示速度,s表示位移,t表示时间。

2. 力的公式,F = ma.
其中,F表示力,m表示物体的质量,a表示加速度。

3. 动能公式,KE = 0.5 m v^2。

其中,KE表示动能,m表示物体的质量,v表示速度。

4. 动量公式,p = m v.
其中,p表示动量,m表示物体的质量,v表示速度。

5. 控制理论中的传递函数公式,G(s) = Y(s) / U(s)。

其中,G(s)表示系统的传递函数,Y(s)表示系统的输出,
U(s)表示系统的输入。

6. PID控制器的输出公式,u(t) = Kp e(t) + Ki ∫e(t)dt + Kd de(t)/dt.
其中,u(t)表示PID控制器的输出,Kp、Ki、Kd分别表示比例、积分和微分系数,e(t)表示误差,t表示时间。

以上只是机械控制工程中的一部分基础公式,实际涉及的公式还有很多,涉及到不同的子领域和具体的应用场景。

希望以上回答能够满足你的需求。

机械工程控制理论概要

机械工程控制理论概要

机械工程控制理论Mechanical Engineering Control Theory一、总学时:40学时(讲课40学时,实验0学时)学分:2学分二、教学目的机械工程控制理论是研究控制论在机械工程中应用的科学,即研究在这一工程领域中广义系统的动力学问题,包括系统本身的动态关系。

本课程内容丰富,理论性、系统性强。

研究生通过本课程的学习,能掌握经典控制理论的基本理论和复域、频域中的基本分析方法,熟悉有关的算法,能从事机械工程中自动控制系统的设计、研究和开发工作。

三、课程内容及学时分配第一章机械工程控制论的基本概念(4学时)1.1机械工程控制论的研究对象与任务1.2机械工程系统中的信息传递、反馈及反馈控制1.3控制系统的分类与基本要求第二章机械工程系统的数学模型(8学时)2.1系统的微分方程2.2传递函数2.3系统的传递函数方框图及其简化第三章系统的时间响应分析(6学时)3.1时间响应的概念3.2一阶系统的时间响应3.3二阶系统的时间响应3.4高阶系统的响应分析第四章系统的频率响应分析(6学时)4.1频率特性概述4.2频率特性的极坐标图(乃奎斯特图)4.3频率特性的对数坐标图(伯德图)4.4最小相位系统的概念4.5闭环频率特征和频率特性特征量第五章系统的稳定性(6学时)5.1系统的稳定性概念5.2劳斯稳定判据5.3乃奎斯特稳定判据5.4系统的相对稳定性第六章系统的性能分析与校正(6学时)6.1系统的时域和频域性能指标6.2串联校正6.3反愦及顺馈校正第七章系统辨识(4学时)7.1单位脉冲响应的估计7.2伯德图与乃奎斯特图的估计四、适用专业机械工程及自动化五、先修课程线性代数、复变函数、积分变换、微分方程、电路、电工学六、教材及主要参考书1、杨叔子、杨克冲等编著,机械工程控制基础,华中理工大学出版社,1993.42、孙亮、杨鹏主编,自动控制原理,北京工业大学出版社,2000 .93、王积伟、吴振顺,控制工程基础,2001 .8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

装置。

1788年,为了解决工业生产中蒸汽机的速度控制问题,瓦特在自己发明的蒸汽机上安装了一个飞球,并将它与蒸汽机的阀门连接在一起。

这样当蒸汽机的转速太快时,飞球升高,使阀门开的小些,蒸汽机会减速。

瓦特发明离心式调速器——蒸汽机的速度调节,被认为是自动控制技术走向大规模应用的一个标志性事件。

瓦特发明的蒸汽机离心式调速器,就属于一种负反馈控制器,随着蒸汽机转速发生变化而偏离给定值时,离心式调速器的平衡锤的位置也随之发生变化,带动蒸汽阀门开度改变,从而使推动蒸汽机旋转的蒸汽流量随之变化,使蒸汽机的转速达到了新的平衡,实现了转速的自动控制。

这属于一种根据偏差实现控制的闭环控制,它是过程控制的主要形式。

瓦特的这项发明开创了自动调节装置的应用和研究。

这项发明的成功表明自动化技术已具雏形。

但是这些发明都是在人们工作检验中产生的,没有形成理论的指导。

直到一百多年后,一些理论逐渐形成。

◆英国J. C. Maxwell发表“论调速器”(On Governors)论文(1868年)。

指出控制系统的品质可用微分方程来描述,系统的稳定性可用特征方程根的位置和形式来研究。

◆1872年劳斯(E.J.Routh,1831~1907)和1890年瑞士数学教授赫尔维茨
(Hurwitz)先后找到了系统稳定性的代数判据,即系统特征方程根具有负实部的充分必要条件。

◆俄国A.M. Lyapunov博士论文“论运动稳定性的一般问题” (1892年)
2.经典控制理论(20世纪40年代-60年代)
美国著名的控制论创始人维纳(N.Wiener,1894~1964)系统地总结了前人的成果,1948年发表了“控制论--或关于在动物和机器中控制和通讯的科学”著作,书中论述了控制理论的一般方法,推广了反馈的概念,为控制理论这门学科的产生奠定了基础,标志着控制论学科的诞生。

控制论一词Cybernetics,来自希腊语,愿意为掌舵术,包含了调节、操纵、管理、指挥、监督等多方面的涵义。

后来西方学者将它改为control theory 控制论是多门科学综合的产物也是许多科学家共同合作的结晶。

但是,控制论的诞生和发展是与美国数学诺伯特.维纳的名字联系在一起的。

维纳少年时是一位天才的神童,他11岁上大学,学数学,但喜爱物理、无线。

相关文档
最新文档