二年级奥数数阵图12
二年级奥数:巧妙填数数阵图练习题含答案
第二讲:数字游戏—填图与拆数【有话要说】填数是一种既有趣,又能锻炼头脑、发展智力的趣味活动。
它不仅可以提高你的运算能力,而且能促使你积极地去思考问题,解决问题。
填数这类题目的题型比较多,解答时除了口算要熟练外,更重要的是要会分析、推理。
有的题目答案不止一种,要多尝试,要尽量运用发散思维、求异思维,把各种可能的答案想出来。
【经典例题】例1:把1、3、5、7、9、11、13七个数填入右图中的七个圆圈内,使每条直线上三个数的和都等于21.思路导航:这道题可以这样想:1+3+5+7+9+11+13=49,21+21+21=63,63-49=14,由于计算三条直线上三个数时,中间圆圈里的数多算了两次,就多出了14,正好7+7=14,说明中间圆圈里应该填“7”,21-7=14,把另外六个数两个两个分组,使每组两个数的和都等于14; 1+13=3+11=5+9=14,也就是首尾配对。
例2:如图:在空格中填入不同的数,使每一横行、竖行、 斜行的三个数的和等于15.思路导航:因为每一横行、竖行、斜行三个数的和都等于15,我们可以先填一行中只有一个空格的数,如:4+(9)+2=15,竖行6+(7)+2=15,斜行6+(5)+4=15,根据填出的数再填只有一个空格的数。
6 42375645213解:例3:把1、2、3、4、5、6这六个数填入右图的圆内,使每个大圆的四个数的和都等于13。
思路导航:先确定图形中央的两个数分别填几,可以这样想,先求六个数的和与两个大圆上八个数的和:1+2+3+4+5+6=21,13+13=26,26-21=5,这个5就是中央两个圆的数的和,1+4=5,2+3=5,就是说中央两个小圆里可以填1和4,也可以填2和3,中央填1和4,13-5=8,左边填3和5,右边填2和6,中央填2和3行不行呢?剩下的数有1、4、5、6任意两个数的和都不是8,所以无法填出,因此,中央只能填1和4. 解:例4:由图中三个圆圈两两相交形成七个部分,分别填上1~7七个自然数,在一些部分中,自然数3、5、7三个数已填好,请填上其余各数,使每个圆圈中四个数的和都是15.思路导航:5462137524675381图中空着四个部分要填入四个数:1、2、4、6,可以看出中心部分属三个圆圈公共部分,关键要确定中心填哪个数,我们用拆数的方法来确定。
二年级奥数竞赛班第12讲数阵图之谜
在神奇的数学王国里,有一类非常有趣的数学问题,它有各式各样、花样繁多的几何阵列,变化万千、趣味无穷。
它就是数阵图。
到底什么是数阵图呢?
梧桐小讲堂
什么是数阵图?
数阵图就是将一些数按照一定要求排列而成的某种图形。
通常来说,是把从1开始(或者是从任一整数开始),把若干个连续的自然数适当的排列起来形成各种形式的几何阵列,使得几何阵列中的特定图形上的数之和都是一个固定的值,这就是数阵图。
(★★★)
把1,2,3,4,5,6,7这7个数分别填入圆圈中,使得每条直线上的3个数的和等于12。
数阵图之谜
(★★★)
将1,2,3,4,5,6,7这7个数分别填入圆圈中,使得每条直线上的3个数的和都等于10。
【拓展】(★★★★)
把1~7这七个数分别填入图中的各○内,使每条直线上三个○里数的和相等。
一共有多少种方法?
(★★★★)
把1~6填入○里,使每个圆圈上的四个数之和都相等6。
(★★★★★)
将1-6填入下图的六个○中,使三角形每条边上的三个数之和都等于10。
(★★★★★)
把10,20,30,40,50,60,70这7个数填在圆圈里,使每条直线上和每个圆周上的三个数的和都是120。
二年级奥数学练习试卷思维培训资料 巧填数阵图 教师
第十二讲巧填数阵图数学乐园晶晶和莹莹来到了雪精灵国,天空中到处飘着洁白剔透的雪花,就像下面图中的样子.一个雪精灵告诉她们:“你们只要能够把1~7这七个数填在雪花的七个花瓣上,使每三个位于同一直线上的花瓣上的数之和都相等,你们就能见到雪精灵国的女王了.”你能帮她们填一填吗?.【教学思路】在开课的时候,老师可通过故事引入,激发学生对填数游戏的兴趣.让学生初步感知什么是数阵.因为填数阵有一定的难度,所以在这里我们不需要马上让孩子完成这个题,可以放在最后来解决这个问题.小朋友们,你喜欢这样的填数字游戏吗?要想准确的填出图中的每一个数,可不是一件容易的事,这就要我们小朋友们认真去观察图,观察数字的排列规律,这样才能找到填图的方法.下面我们就一起来学习吧!基础篇使用数字0,1,2,3,4,5,6,7,8,9做加法.在每一道题中,同一个数字不能重复出现.数阵图是小学奥数中比较重要的一个知识点,现在我们把它放在一年级开始学习似乎有些过难.但这节课我们只是希望通过一些简单的填数字游戏,使学生初步感知到什么样的是数阵,让学生用自己喜欢的方法来巧填数字,培养他们的思维能力.在鼓励学生去研究方法的同时,教师引导学生去发现数阵的简单规律,以及填数阵的基本方法,通过找数阵中的关键数来找到解题的钥匙.在今后的不断学习中,能把这种方法灵活应用到实际中去.【教学思路】一般在解答这类填数问题时,把同一条边上出现两个数字的空格先填.之前我们已经有过这样的练习,学生有了一定的基础.这道题的答案不止一个,我们只要求学生能找到其中的一种就达到要求了.(1)右边两个圆的和应该是9,所以里可填(0,9)(2,7)(3,6).(2)告诉我们中间的数字是2,剩下两边上两个数字的和应该是9-2=7.0+7=1+6=3+4,所以剩下两边上两个数可以填(0,7),(1,6),(3,4)(3)7+6=13,15-13=2,所以第2条线中间填2.左边第一条线:15-7=8,0+8=3+5,数字不重复共两种填法.第三条线15-6=9,0+9=4+5,数字不重复共两种填法(4)6+4=10,13-10=3,所以第2条线最下是3,.左边第一条线:13-6=7,0+7=2+5,数字不重复共两种解法.第三条线:13-3=10,1+9=2+8,数字不重复共两种解法.拓展练习(1)填数,使横行、竖行的三个数相加都得11. (2)填数,使每条线上的三个数之和都得15.【答案】【答案】在每个方格中填入适当的数,使每一横行、竖行的和以及两斜行的三个数之和都是18.【教学思路】方法一:填数时,首先要看哪一行已经有了两个数,然后用18减去这两个数,就得出这一行的第三个数.填数的顺序如下:方法二:从斜行来考虑:要使表格中每行、每列和两条对角线上的三个数的和都为18,下面每个方框里应填什么数?【教学思路】首先我们要找到填这个表格的突破口,一般情况下我们先找每行、每列以及每条对角线上已知两个数的来先填.找到这个突破口,后面就容易多了.方法一:从竖行入手.方法二:分别从两条对角线入手.拓展练习在下列两图的空格中填上数,使横行和竖行或每条对角线上的三个数相加都等于15.【答案】【答案】把1,2,3,4,5,6六个数,分别填入○内,使每条线上3个数的和相等.【教学思路】比较三个已知数1,2,3,和1比2大1,3大2.还剩下三个数4,5,6要我们来填,5+6=11 6+4=10 5+4=9 ,要使每边和相等,5+6+1=6+4+2=5+4+3=12,答案如下:提高篇把3,4,5,6,7这五个数分别填入下面的空格里,使横行、竖行的三个数相加都得15.【教学思路】方法一:观察法.要使横行、竖行的三个数相加都得15,我们就要考虑中间填什么数.观察这五个数3,4,5,6,7,我们发现4和6,3和7可以组成10,它们分别再加上多出来的5都得15,所以中间这个数应该填5,上下,左右可以分别填4和6,3和7,如图:方法二:观察这些图,容易发现,中间方框中的数比较特殊,它既在横行上,又在竖列中,在数阵中这样的数称为“重叠数”.只要我们确定了中间的“重叠数”填几,别的空格就简单了.那么横行3个数的和加上竖列3个数之和就等于所要填入的5个数的和与重叠数的和.于是(3+4+5+6+7)+重叠数=15+15,重叠数=30-25=5,所以中间的这个数应该填5,在剩下的4个数3,4,6,7中,只有3+7=4+6=10,填法如图.建议:在这两种方法中,学生习惯用第一种方法来观察出答案,但是这种方法对于以后数字大的题就很难把握,因此老师在学生掌握了第一种方法的前提下,要介绍第二种解答数阵图的一般方法,不要求学生马上掌握,但是要让学生明确解答这样的题要从重叠数开始入手分析,以后练得多了就能融会贯通了.如果老师觉得这几个数太大学生不容易接受,还可以改成更小的数.拓展练习把2,3,4,5,6这五个数分别填入圆圈中,使每条线上三个数相加的和都等于1 2.【答案分析】中间○即为特殊的重叠数,因为它既是横线上的数,又是竖线上的数.中间的数填什么呢?横行加上竖行之和应为 12+12=24,而2+3+4+5+6=20,中间的要多加一次,所以应为4.把1,2,3,4,5,7分别填入○里,使每一个大椭圆上的四个数之和等于13.【教学思路】方法一:观察法,在这6个数中,有两个数是公共的,那么剩下的四个数两两相加应该相等,观察1,2,3,4,5,7中1是公共数,这时我们发现2+7和4+5都等于9,因此剩下的3也应该是公共数,2和7,4和5应该分别填在这两个圆的左边和右边.经检验每个大椭圆上的四个数这和等于13.方法二:每个椭圆里的四个数之和等于13,那么两个椭圆里的四个数之和就是13+13=26,另外这6个数相加的和是1+2+3+4+5+7=22,26和22之间相差的是什么呢?只有中间的这两个重叠数被多加了1次,这相差的4应该是两个重叠数的和,1+3=4,所以中间的这两个重叠数应该是1和3.剩下的数2+7=4+5=9.把1,2,3,4,5,6,7这七个数分别填入○里,使每条直线上的三个数相加的和都为12.【教学思路】方法一:观察法,在1,2,3,4,5,6,7这七个数中,除去中间的重叠数,剩下的六个数两两相加应该相等,经验算,当重叠数是4时,1+7=2+6=3+5=8,8+4=12,如图:方法二:因为图中共有3条直线,所以中心的重叠数重叠了2次,于是(1+2+3+4+5+6+7)+重叠数×2=12+12+12.重叠数=(36-28)÷2=8.那么中间的数应该填14剩下的6个数1,2,3,5,6,7,中,2个数的和等于12-4=8的有1+7=2+6=3+5,如图:拓展练习把1~9这九个数字填入下列圆圈内,使每条横线、竖线、斜线连接起来的三个圆圈内的数之和都等于15.把2,3,4,5,6,7,8这七个数分别填入圆圈中,使两个正方形中四个数之和相等19.【教学思路】先考虑求两个正方形公共的中间数.2+3+4+5+6+7+8+重叠数=19+19.重叠数=3,那么中间圆圈里面应该填3.剩下的数中2+6+8=4+5+7=19-3=16,所以每个正方形中,剩下的三个数应该填:2,6,8或4,5,7.具体填法如下:拓展:如果使两个正方形中四个数之和相等21,又应该怎样填?我会做一做把1,2,3,4,5,6,7这7个数分别填入右图中,使得每条直线上的3个数的和相等.【教学思路】这道题的答案不唯一.附加题(老师可根据自己的课堂进度灵活处理讲义内容,附加题仅供老师参考使用.)在空格内填上适当的数,使得图中每行、每列及两对角线上四个数的和都是64.【答案】【教学思路】如果有充足的时间,建议这题可放在例3的后面做一个加深,这道题也主要是利用加减法之间的关系来解答的.这个题我们要从已知三个加数的第二列入手开始填,先计算出这三个加数的和,再用64减去这三个加数的和就得到了这第四个加数.用图中已有的三个数填满其余的空格,每个数字必须使用三次.使得每行、每列和两条对角线上的三个数之和相等.【答案】【答案】把1~9这九个数字填入下列圆圈内,使每条横线、竖线、斜线连接起来的三个圆圈内的数之和都等于15.【答案】【教学思路】这道题可参考放在例6的后面,做一个拓展.在例6的基础上,我们只需要调动四条边上各数的位置就可以验证出结果.使用数字0,1,2,3,4,5,6,7,8, 9求和.而且同一个数在一幅图中不能重复出现.【答案】【答案】把1~11这十一个数分别填入图中的圆圈里,使每条直线上的三个数的和都等于18.【答案】练习十二1.在下面的○里填上适当的数,使每条线上的三个数之和都是12.【答案】2.把3~8这6个数,填在下图中使得每行、每列和两条对角线上的三个数的和都为18.【答案】3. 把1,2,3,4,5这五个数分别填入下面的○里,使横行、竖行的三个数相加都得10.【答案】4.把3,4,5,7,9,11,13这七个数分别填入○里,使每条直线上的三个数相加的和都为20.【答案】5. 将1,2,3,4,5,6这6个数分别填入下图中,使两个大圆上4个数的和都等于14.【答案】6.把数字1,2,3,5,6,7,9填在下面的○里,使每边上的和为15.【答案】小朋友,你在少年宫里走过“勇敢者的道路”吗?道路崎岖,充满艰难险阻.但是,它能培养小朋友的勇敢精神和不怕困难的毅力.这里有两幅图,也叫“勇敢者的道路”.图中的道路狭窄、曲折,不易通过,需要小朋友细心和有耐心.现在请小朋友用一枝铅笔,按照图中箭头的方向画出通行路线,而且线条不能碰到两边的“围墙”.小朋友,这可真不容易哦!。
小学奥数 数阵图(一) 精选练习例题 含答案解析(附知识点拨及考点)
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图87654321【答案】87654321【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1)c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行.若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。
二年级奥数数阵图之欧阳道创编
数阵图时间:2021.03.06 创作:欧阳道1.使用数字0,1,2,3,4,5,6,7,8,9做加法.在每一道题中,同一个数字不能重复出现。
(1)填数,使横行、竖行的三个数(2)填数,使每条线上的三个数相加都得11. 之和都得15.2.在每个方格中填入适当的数,使每一横行、竖行的和以及两斜行的三个数之和都是18.在空格中填入适当的数,使横行和竖行或每条对角线上的三个数相加都等于15。
3.把3,4,5,6,7这五个数分别填入下面的空格里,使横行、竖行的三个数之和都等于14。
拓展练习(1)把2,3,4,5,6这五个数分别填入圆圈中,使每条线上三个数相加的和都等于12。
(2)把1,2,3,4,5,6分别填入○里,使每一个大椭圆上的四个数之和等于13.例 4.把1,3,5,7,9,11,13这七个数分别填入○里,使每条直线上的三个数相加的和都为17。
简单数阵图例1、把1—5 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
例2、把1—7这七个数分别填入图中的各○内,使每条线段上三个○内数的和等于10。
例3、在下图圆圈内分别填入数字1~9,使两条直线上五个数的和相等,和是多少?例4、把1~6这六个数分别填在下图中三角形三条边的六个○内,使每条边上三个○内数的和等于9。
例5、将2—9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18。
例6、将1、2、3、4、5、6、7、8、9九个数字分别填入图中的小圆圈中,使三角形每边上四个数的和是17。
1、把2—6 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于13。
2、在图中填入2—9,使每边3个数的和等于15。
3、将数字1—9分别填在图中的○内使每条线上五个○内数的和等于27。
4、把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条线上三个数的和等于30。
二年级奥数数阵图
专题五简单数阵图一、辐射型数阵图从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和数和+中心数×重复次数=公共的和×线数数和:指所有要填的数字加起来的和中心数:指中间那数字,即重复计算那数字重复次数:中心数多算的次数,一般比线数少1公共的和:指每条直线上几个数的和线数:指算公共和的线条数例1、把1—5 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
例2、把1—7这七个数分别填入图中的各○内,使每条线段上三个○内数的和等于10。
例3、在下图圆圈内分别填入数字1~9,使两条直线上五个数的和相等,和是多少?二、封闭型数阵图多边形的每条边放同样多的数,使它们的和都等于一个不变的数。
突破关键:确定顶点上的数字,公共的和数和+重叠数的和=公共的和×边数数和、公共的和跟辐射型数阵图一样的意思重叠数的和:指数阵图顶角重复算的数全加起来的和边数:指封闭图形的边数例4、把1~6这六个数分别填在下图中三角形三条边的六个○内,使每条边上三个○内数的和等于9。
例5、将2—9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18。
例6、将1、2、3、4、5、6、7、8、9九个数字分别填入图中的小圆圈中,使三角形每边上四个数的和是17。
练习五1、把2—6 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于13。
2、在图中填入2—9,使每边3个数的和等于15。
3、将数字1—9分别填在图中的○内使每条线上五个○内数的和等于27。
4、把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条线上三个数的和等于30。
小学数学奥赛5-1-3-2 数阵图(二).学生版
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题 .一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图 【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________. 313233212223131211【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。
如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。
例题精讲知识点拨教学目标5-1-3-2.数阵图【例 3】如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【例 4】请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。
将左下图中每个圆圈中的数改为3个相邻圆圈所填数的平均值,便得到右下图。
如果左下图中已有一个数1,请填出左下图中的其它数,使得右下图中的数都是自然数。
二年级奥数:数阵图
二年级奥数:数阵图渣渣兔摆棋子,它想让每行每列的三个数相加都等于 15。
现在摆了 4 个,剩下的应该摆哪几个数呢?数阵图——把数按照一定的规律要求排起来方法:找准要求和填数的突破口庆祝渣渣兔的生日,微微老师给它做了一个蛋糕。
现在往蛋糕上插上数字蜡烛,希望每条线上的三个数相加和都等于 12。
你来帮帮我!辐射型数阵图关键点:重叠数如果所填的数是连续数,可以尝试重叠数为最大的、最小的、中间数其余的:大手拉小手请把 1、2、3、4、5、6、7 这七个数分别填入圆圈里,使每条直线上的三个数相加的和都是 12。
请把 1~9 这九个数字分别填入圆圈内,使每条横线、竖线、斜线上的三个数相加的和都是12。
请你把 1、2、3、5、7、9、11 这 7 个数分别填入圆圈里,使每条直线上的三个数相加的和都是 14。
辐射型数阵图(一个重叠点)如果所填的数不是连续数,用拆数法,将总数拆成几个数相加的形式。
请你把 1、2、3、4、5、7 分别填入圆圈里,使每一个大椭圆上的四个数之和等于 13。
封闭型数阵图(多个重叠数)方法:有序的拆数(重复的数就是数阵图中的重叠数)数阵图,关键点是找出重叠数1、辐射型——连续的数:尝试法:头、尾、中间数;其余大手拉小手不连续的数:拆数法2、封闭型——拆数法【练习 1】在圆圈内填上适当的数,使每条线上的三个数之和都为 12。
你能做到吗?【练习 2】把 4~8 这 5 个数填入圆圈中(左下图),使两条直线上三个数之和等于 18。
【练习 3】将 1-7 这 7 个数填入右上图中,使每条线上的数之和都未 14。
【练习 4】请将 3、4、5、6、7、8、9 填入下面的圆圈里,并使每条直线上三个数字之和都相等。
(同一图片中不能出现相同的数;不同图片中数字可以重复使用。
)【练习 5】请你把 1、2、3、4、5、6 分别填入圆圈里,使每一个大椭圆上的四个数之和等于 14。
奥数中的数阵图,由易到难破解的方法(含做题小窍门)
奥数中的数阵图,由易到难破解的方法(含做题小窍门)问题1:把1~10这十个数分别填入十个空格里,图中已经填好了3个数,请你补充完整,使“六一”中每条线上数的和都是12。
问题1教学图分析:做数学题,除非特别的简单的,其他的都不能一看完题,立马就开始做。
因为是一读完题,你就能立即理解它的意思。
磨刀不误砍柴工,首先要理解题意,然后是观察,思考从哪个条件入手更好。
有时候,冒冒然的做,题目理解错了,或者做到一半发现做不下去了,反而会浪费时间。
做数学题有时候,还会出现这种情况:每个字都认识,意思也知道,就是不知道怎么做。
那我告诉你一个小窍门:哪里条件多看哪里,或者哪里未知的少看哪里。
问题1题目的要求非常简单,就是每条线上数的和都是12。
有三条线上都是已知一个数字,它们已知数字的个数是一样的,无法入手。
但是数字8和数字2这里只剩一个空格了,符合未知的少这一项,所以从数字8和数字2这里入手。
问题1讲解图1数字8旁边应该填12-8=4,数字2旁边应该填12-2=10。
1~10这十个数还剩1、3、57、9没填,它们要填在剩下的三条横线上。
问题1讲解图2每条线上数的和都是12,三条线就是36,可是1+3+5+7+9=25,怎么还差11呢?因为有一条线上还有一个已知数6,所以应该是1+3+5+7+9+6=31,为什么还差5呢?观察上图被圈住的那一格,在算每条线上数的和时,它是不是算了两次?所以缺的数就是圈中的数,你明白了吗?这是数阵图题型中,很重要的一个思路:如果给了每条线的和,所有线的和减去要填的数,差就是重复数的和。
如果只有一个数重复,差就等于这个数。
所以上图黑圈中的数是5,后面就很简单啦!用减法就可以算出其他数,黑圈上面一格数字是12-5=7,黑圈右边一格数字是12-6-5=1。
还剩下数字3和9,就填在“六”右边那一点上,顺序无所谓,怎么填都对。
问题2:把1~6这六个数,分别填入圈内,使每条线上3个数的和相等,其中1~3已填。
二年级奥数:数阵图
二年级奥数:数阵图渣渣兔摆棋子,它想让每行每列的三个数相加都等于 15.现在摆了 4 个,剩下的应该摆哪几个数呢?数阵图——把数按照一定的规律要求排起来方法:找准要求和填数的突破口庆祝渣渣兔的生日,微微老师给它做了一个蛋糕.现在往蛋糕上插上数字蜡烛,希望每条线上的三个数相加和都等于 12.你来帮帮我!辐射型数阵图关键点:重叠数如果所填的数是连续数,可以尝试重叠数为最大的、最小的、中间数其余的:大手拉小手请把 1、2、3、4、5、6、7 这七个数分别填入圆圈里,使每条直线上的三个数相加的和都是 12.请把 1~9 这九个数字分别填入圆圈内,使每条横线、竖线、斜线上的三个数相加的和都是12.请你把 1、2、3、5、7、9、11 这 7 个数分别填入圆圈里,使每条直线上的三个数相加的和都是 14.辐射型数阵图(一个重叠点)如果所填的数不是连续数,用拆数法,将总数拆成几个数相加的形式.请你把 1、2、3、4、5、7 分别填入圆圈里,使每一个大椭圆上的四个数之和等于 13.封闭型数阵图(多个重叠数)方法:有序的拆数(重复的数就是数阵图中的重叠数)数阵图,关键点是找出重叠数1、辐射型——连续的数:尝试法:头、尾、中间数;其余大手拉小手不连续的数:拆数法2、封闭型——拆数法【练习 1】在圆圈内填上适当的数,使每条线上的三个数之和都为 12.你能做到吗?【练习 2】把 4~8 这 5 个数填入圆圈中(左下图),使两条直线上三个数之和等于 18.【练习 3】将 1-7 这 7 个数填入右上图中,使每条线上的数之和都未 14.【练习 4】请将 3、4、5、6、7、8、9 填入下面的圆圈里,并使每条直线上三个数字之和都相等.(同一图片中不能出现相同的数;不同图片中数字可以重复使用.)【练习 5】请你把 1、2、3、4、5、6 分别填入圆圈里,使每一个大椭圆上的四个数之和等于 14.。
奥数知识点 简单数阵图
简单数阵图一、辐射型数阵图从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和。
先求重叠数。
数总和+中心数×重复次数=公共的和×线数重叠部分=线总和-数总和/线总和=公共的和×线数数和:指所有要填的数字加起来的和中心数:指中间那数字,即重复计算那数字(重叠数)重复次数:中心数多算的次数,一般比线数少1公共的和:指每条直线上几个数的和线数:指算公共和的线条数例1、把1-5这五个数分别填在左下图中的方格中,使得横行三数与竖列三数之和都等于9。
例2、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以:总和数=(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
例3、把1~5这五个数填入右图中的○里,使例4、将1~7这七个自然数填入左下图的每条直线上的三个数之和相等七个○内,使得每条边上的三个数之和都等于10。
分析与解:例1是知道每条直线上的三数之和,不知道重叠数;例2是知道重叠数,不知道两条直线上的三个数之和;本例是这两样什么都不知道。
但由例1、例2的分析知道,(1+2+3+4+5)+重叠数=每条直线三数之和×2,每条直线上三数之和=(15+重叠数)÷2。
1.12小学必学奥数 数阵图综合
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?例题精讲知识点拨教学目标5-1-3-1.数阵图)【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。
CBA【例 4】 将1至6这六个数字填入图中的六个圆圈中(每个数字只能使用一次),使每条边上的数字和相等.那么,每条边上的数字和是 .789fedcba 789【例 5】 将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A 和B 两个圆圈中所填的数之差(大数减小数)是______.BA【例 6】 如图所示,圆圈中分别填人0到9这10个数,且每个正方形顶点上的四个数之和都是18,则中间两个数A 与B 的和是________。
BA【例 7】 把2~11这10个数填到右图的10个方格中,每格内填一个数,要求图中3个22 的正方形中的4个数之和相等.那么,这个和数的最小值是多少?111098765432【例 8】 下图中有五个正方形和12个圆圈,将1~12填入圆圈中,使得每个正方形四角上圆圈中的数字之和都相等.那么这个和是多少?861102912311457【例 9】 如图,大、中、小三个正方形组成了8个三角形,现在把2、4、6、8四个数分别填在大正方形的四个顶点;再把2、4、6、8分别填在中正方形的四个顶点上;最后把2、4、6、8分别填在小正方形的四个顶点上.⑴能不能使8个三角形顶点上数字之和都相等?⑵能不能使8个三角形顶点上数字之和各不相同?如果能,请画图填上满足要求的数;如果不能,请说明理由.246824688642【例 10】 将1~16分别填入下图(1)中圆圈内,要求每个扇形上四个数之和及中间正方形的四个数之和都为34,图中已填好八个数,请将其余的数填完.【例 11】一个3 3的方格表中,除中间一格无棋子外,其余梅格都有4枚一样的棋子,这样每边三个格子中都有12枚棋子,去掉4枚棋子,请你适当调整一下,使每边三格中任有12枚棋子,并且4个角上的棋子数仍然相等(画图表示)。
二年级奥数数阵图
数阵图之阳早格格创做1.使用数字讲题中,共一个数字没有克没有及沉复出现.(1)挖数,使横止、横止的三个数(2)挖数,使每条线上的三个数相加皆得11. 之战皆得15.2.正在每个圆格中挖进适合的数,使每一横止、横止的战以及二斜止的三个数之战皆是18.正在空格中挖进适合的数,使横止战横止或者每条对于角线上的三个数相加皆等于15.3.把3,4,5,6,7那五个数分别挖进底下的空格里,使横止、横止的三个数之战皆等于14.拓展训练(1)把2,3,4,5,6那五个数分别挖进圆圈中,使每条线上三个数相加的战皆等于12.(2)把1,2,3,4,5,6分别挖进○里,使每一个大椭圆上的四个数之战等于13.例4.把1,3,5,7,9,11,13那七个数分别挖进○里,使每条曲线上的三个数相加的战皆为17.简朴数阵图例1、把1—5 那五个数分别挖正在左下图中的圆格中,使得横止三数之战取横列三数之战皆等于9.例2、把1—7那七个数分别挖进图中的各○内,使每条线段上三个○内数的战等于10.例3、正在下图圆圈内分别挖进数字1~9,使二条曲线上五个数的战相等,战是几?例4、把1~6那六个数分别挖正在下图中三角形三条边的六个○内,使每条边上三个○内数的战等于9.例5、将2—9那八个数分别挖进左图的○里,使每条边上的三个数之战皆等于18.例6、将1、2、3、4、5、6、7、8、9九个数字分别挖进图中的小圆圈中,使三角形每边上四个数的战是17.1、把2—6 那五个数分别挖正在左下图中的圆格中,使得横止三数之战取横列三数之战皆等于13.2、正在图中挖进2—9,使每边3个数的战等于15.3、将数字1—9分别挖正在图中的○内使每条线上五个○内数的战等于27.4、把1、4、7、10、13、16、19七个数挖进图中7朵花里,使每条线上三个数的战等于30.。
小学数学 《数阵图》练习题(含答案)
小学数学《数阵图》练习题(含答案)数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.(一)封闭型数阵问题【例1】(★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?【例2】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?24273028262218 1720x【例3】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?【例4】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形的3个顶点上的数之和相等?【例5】(★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有10个奇数,去掉9和15还剩八个奇数,将这八个奇数填入右图的八个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.3(二)辐射型数阵【例6】(★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.【例7】 (★★★)把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法.请写出所有可能的填法.【例8】 (★★★)左图中有三个正三角形,将1~9填入它们顶点处的九个○中,要求每个正三角形顶点的三数之和都相等,并且通过四个○的每条直线上的四数之和也相等.【例9】 (★★★)在下图的七个圆圈内各填上一个数,要求每条线上的三个数中,当中的数是两边两个数的平均数,现在已填好两个数,求x 是多少?(三)其它类型的数阵图【例10】 (★★★)在下图中的10个○内填入0~9这10个数字,使得按顺时针循环式成立:【例11】 (★★★★)将1~8这八个自然数填入左下图的空格内,使四边形组成的四个等式都成立:【例12】 (★★★★)下图包括6个加法算式,要在圆圈里填上不同的自然数,使6个算式都成立.那么最右边的圆圈中的数最少是多少?+=====----===×÷+=-+=+=1.请分别将1,2,4,6这4个数填在下图的各空白区域内,使得每个圆圈里4个数的和都等于15.2.把1~5这五个数填入下图中的○里,使每条直线上的三个数之和相等.3.把1至6分别填入下图的各方格中,使得横行3个数的和与竖列4个数的和相等.4.将1~7七个数字填入左下图的七个○内,使每个圆周和每条直线上的三个数之和都相等.5.将1~8八个数分别填入右上图的八个○内,使得图中的六个等式都成立.△代表几?37 5=== =+++++(一)封闭型数阵问题【例13】 (★★★)小青蛙不小心爬到一个正方形数阵图中,必须把1,2,3,4,5,6,7,8八个数字填入下图中的○内,使正方形每条边上三个数的和都等于13才能通过这个数阵图,你能帮它吗?75623841或84362571分析:因为每边上的和为13,那么四条边上的数字之和为13×4=52,而1+2+…+7+8=36,所以四个角上的四个数之和等于52-36=16.在1~8中选四个数,四数之和等于16,且其中相邻两个的和与任意三个的和不等于13的只有:16=1+2+6+7=1+2+5+8=1+4+5+6.经试验,只有右上图的两种填法.亮点设计:(1)求数阵问题的关键是找到关键数,也就是重复数,教会学生学会找关键数的方法是最重要的.(2)设计问题:正方形每条边之和是13,13×4=52,但是所有数的和是:1+2+…+7+8=36,为什么会出现结果不同的问题呢?仔细观察这个数阵,四条边上所有数相加的过程中四个角上的数都被重复加了一次,也就是四个角上的数是重复数,52-36=16即为这四个重复数的和. (3)强调分组法与试验法:知道了四个数的和之后,下一步就要先确定这四个数,采用分组法和试验法.分组法是将这个和根据要求拆成四个数,例如本题中要求其中相邻两个的和与任意三个的和不等于13,根据要求将16分成4个数的和:16=1+2+6+7=1+2+5+8=1+4+5+6,但是未必每一组都是合适的,这就需要采用试验法,将它们一一进行试验.(4)小结:对于封闭型的数阵,重复数基本上都是两条线相交的点,这在后面的例题中有大量体现.[前铺]将1~6六个自然数分别填入下图的○内,使三角形每边上的三数之和都等于11.614532分析:因为每边上的和为11,那么三条边上的数字之和为11×3=33,而1+2+…+5+6=21,所以三个角的三个数之和等于33-21=12,在1~6中选3个和为12的数,且其中任意两个的和不等于11,这样的组合有:12=2+4+6=3+4+5,经试验,填法见右上图.[拓展]将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k ,请指出k 的取值范围.654321654321654321654321k=9 k=10 k=11 k=12分析:设三角形三个顶点的数字之和为s.因为每个顶点属于两条边公有,所以把三条边的数字和加起来,等于将1至6加一遍,同时将三个顶点数字多加一遍.于是有(1+2+3+4+5+6)+s=3k,化简后为s+21=3k.由于s是三个数之和,故最小为1+2+3=6,最大为4+5+6=15,由此求出9≤k≤12.s和k有四组取值:通过试验,每组取值都对应一种填数方法(见右上图).【例14】(★★★)小乌龟被困在五个圆里面(如下图),五圆相连,每个位置的数字都是按一定规律填写的,它必须找出规律,并求出x所代表的数才能脱困,你知道该怎么办吗?242730282622181720x分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的和的一半.比如:(26+18)÷2=22.(30+26)÷2=28.(24+30)÷2=27.所以x+18=17×2,x=16.经检验,16和24相加除以2,也恰好等于20.[拓展]找规律求xx24123082616186452分析:经观察,图中所填数的规律为两个圆相交部分的数等于与它相邻两部分里的数的差的2倍.比如:(26-18)×2=16.(30-26)×2=8.(30-24)×2=12.因为52÷2=26>24,所以x=26+24=50.经检验,(50--18)×2=64.【例15】(★★★)1~9分别填入小三角形内(每个小三角形内只填一个数),要求靠近大三角形三条边的每五个数相加和相等.想一想,怎样填这些数才能使五个数的和尽可能大一些?分析:1+2+3+4+5+6+7+8+9=45,用s表示靠近大三角形三条边的五个数的和.因为有三个小三角形所填的数在求和时只用了一次(用a,b,c来表示这三个数),其余均用了两次.于是,45×2-(a+b+c)=3 s.要使s尽可能大,只要a+b+c尽可能小.所以a+b+c=1+2+3=6,于是90-6=3 s,s=28.剩下的六个数分成三组,并且每组中两数的和是三个连续自然数,那么:4+8=12;6+7=13;5 +9=14.经过调配可得到几十种填法,右上图是填法之一.[拓展一]如图是奥林匹克的五环标志,其中a,b,c,d,e,f,g,h,i处分别填入整数1至9,如果每一个圆环内所填的各数之和都相等,那么这个相等的和最大是多少,最小是多少?ihgfedcba分析:计算五个圈内各数之和的和,其中b,d,f,h被计算了两遍,所以这个和是1+2+3+4+5+6+7+8+9+b+d+f+h,而这个和一定能被5整除,所以b,d,f,h中填入大数时能使这个和取得最大值,最大是6、7、8、9,各圆圈内的和也取得15,由于15=6+9=7+8,所以满足条件的所有数无法配成15,当和为14时可以找出满足条件的填法,所以和最大为14,当b,d,f,h取1、2、3、4时这个和取得最小值,各圆圈内的和也取得最小值11.[拓展二]有10个连续的自然数,9是其中第三大的数.现在把这10个数填到下图的10个方格中,每格内填一个数,要求图中3个2×2的正方形中的4个数之和相等.那么,这个和数的最小值是多少?分析:9是其中第三大的数,所以这10个连续自然数是2、3、4、5……9、10、11,计算三个正方形中的和的和,这个和能被3整除,其中a和b被重复计算了两次,所以2+3+……11+a+b=65+a+b=3s,当a+b=1,4,7……时,65+a+b可以被3整除,因为要取最小值,所以a+b的值越小越好,但是不可能取1与4,所以,a+b=7时,这个和取得最小值,每个正方形中的和也取得最小值(65+7)÷3=24.【例16】(★★★)能否将数0,1,2,…,9分别填人下图的各个圆圈内,使得各阴影三角形5619372481528763049分析:0+…+9=45,45-中心数=3个阴影三角形的3个顶点上的数字之和,所以中心数必须是3的倍数,只能是0,3,6,9.枚举法实验,中心数只能是3,6,答案如右上图.[拓展一]将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值.分析:先确定中间5个重复数,它们的和为(20+16+12+13+10)-(1+2+…+10)=16,所以中间5个重复数只能是1,2,3,4,6的组合.又因为有1个和为20,相应三角形上的三个数只能是4,6,10,逐一试验,答案如右上图.[拓展二]图中有大、中、小3个正方形,组成了8个三角形.现在先把1,2,3,4分别填在大正方形的4个顶点上,再把1,2,3,4分别填在中正方形的4个顶点上,最后把1,2,3,4分别填在小正方形的4个顶点上.(1)能否使8个三角形顶点上数字之和都相等?如果能,请给出填数方法;如果不能,请说明理由. (2)能否使8个三角形顶点上数字之和各不相同?如果能,给出填数方法;如果不能,请说明理由.344341222311分析:(1)不能,如果能,则8个三角形顶点和的总和应该是8的倍数,但是这个总和有三组1、2、3、4组成,其中一组数被重复计算三次,一组数被重复计算两次,一组数仅被计算一次,因此该总和的值为6×(1+2+3+4)=60,不是8的倍数,产生矛盾,因此没有任何填法使8个三角形顶点上数字之和都相等. (2)能,见右上图.【例17】 (★★★),小熊和妈妈去外婆家要过一条河,必须要按照下面的要求填数才可以顺利通过,要求如下:20以内共有个○中(其中3已经填好),使得图中用箭头连接起来的四个数之和都相等.分析:3组数都包括左右两端的数,所以每组数的中间两数之和必然相等.现在还有1、5、7、11、13、17、19七个数供选择,两两之和相等的有1+19=7+13,只有两组,淘汰这一组;还有1+17=5+13+7+11,于是得到右上图的填法.(二)辐射型数阵【例18】 (★★★)将1~7这七个数字,分别填人图中各个○内,使每条线段上的三个○内数的和相等.635412762534175243716(1) (2) (3)分析:设中心○内填a ,由于三条线上的数字和相加应是3的倍数,其中a 一共加了3次,所以1+2+3+4+5+6+7+2a=28+2a 一定是3的倍数.而28÷3—9余1,那么2a ÷3的余数应该是2,因此,a=1,4或7.(1)当a=1时,28+2=30,30÷3=10,10-1=9,除中心外,其他两数的和应是9,只要把2,3,4,5,6,7六个数按“和”是9分成三组填入相应的○内就可以了.填法如图(1) (2)当a=4时,28+8=36,36÷3=12.填法如图(2)(3)当a=7时,28+14=42,42÷3=14.填法如图(3).亮点设计:(1)建议教师首先让学生进行试做,并让学生尝试多种填法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题五简单数阵图
一、辐射型数阵图
从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和
数和+中心数×重复次数=公共的和×线数
数和:指所有要填的数字加起来的和
中心数:指中间那数字,即重复计算那数字
重复次数:中心数多算的次数,一般比线数少1
公共的和:指每条直线上几个数的和
线数:指算公共和的线条数
例1、把1—5 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
例2、把1—7这七个数分别填入图中的各○内,使每条线段上三个○内数的和等于10。
例3、在下图圆圈内分别填入数字1~9,使两条直线上五个数的和相等,和是多少?
二、封闭型数阵图
多边形的每条边放同样多的数,使它们的和都等于一个不变的数。
突破关键:确定顶点上的数字,公共的和
数和+重叠数的和=公共的和×边数
数和、公共的和跟辐射型数阵图一样的意思
重叠数的和:指数阵图顶角重复算的数全加起来的和
边数:指封闭图形的边数
例4、把1~6这六个数分别填在下图中三角形三条边的六个○内,使每条边上三个○内数的和等于9。
例5、将2—9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18。
例6、将1、2、3、4、5、6、7、8、9九个数字分别填入图中的小圆圈中,使三角形每边上四个数的和是17。
练习五
1、把2—6 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于13。
2、在图中填入2—9,使每边3个数的和等于15。
3、将数字1—9分别填在图中的○内使每条线上五个○内数的和等于27。
4、把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条线上三个数的和等于30。
数阵图
例3:在下列数阵图中填空,使三边上3个○内数的和为12
例4:在下列数阵图中填空,使每条线上三个○内的数和等于13例5:把10、20、30、40、50这五个数填○内,使每条线段上的三个相邻数的和相等
例6:把1、2、3、4、5、6、7这七个数填在数阵图中,使每条线上的3个数的和相等
例4、把1~6这六个数分别填在下图中三角形三条边的六个○内,使每条边上三个○内数的和等于9。
例5、将2—9这八个数分别填入右图的○里,使每条边上的三个数之和都等于18。
例6、将1、2、3、4、5、6、7、8、9九个数字分别填入图中的小圆圈中,使三角形每边上四个数的和是17。
练习五
1、把2—6 这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于13。
2、在图中填入2—9,使每边3个数的和等于15。
3、将数字1—9分别填在图中的○内使每条线上五个○内数的和等于27。
4、把1、4、7、10、13、16、19七个数填入图中7朵花里,使每条线上三个数的和等于30。