实验一平稳随机过程的数字特征

合集下载

平稳随机过程的概念

平稳随机过程的概念

所以随机相位周期过程是平稳的. 特别, 随机相位 正弦波是平稳的.
例3
考虑随机电报信号 x( t ) I
信号X ( t )由只
取 I或 I
o
I
t
的电流给出 .
这里 P{ X ( t ) I } P{ X ( t ) I } 1 / 2
而正负号在区间 ( t , t )内变化的次数N ( t , t )
2. 广义平稳过程
{ X ( t ), t T }, 如果对任意 定义1 给定二阶矩过程
t,t T :
E[ X ( t )] X
(常数)
E[ X ( t ) X ( t )] RX ( )
则称{ X ( t ), t T }为宽平稳过程, 或广义平稳过程 .
其中A是服从瑞利分布的随机 变量, 其概率密度为
a e f (a ) 2 0,
a2 2 2
, a0 a0
是在(0,2π )上服从均匀分布且与 A 相互独立的 随机变量, 是一常数,问X n ( t ) 是不是平稳过程?
解 因 E ( A)

a
2 2
即相关函数只与k l 有关,
所以它是宽平稳的随机序列.
如果 X1 , X 2 ,, X k ,是独立同分布的 , 则序列是
严平稳的.
例2 设s( t )是一周期为T的函数,是在(0, t )上服
从均匀分布的随机变量 , 称X (t ) s(t )为随机
相位周期过程. 试讨论它的平稳性 .
说明 (1) 严平稳过程只要二阶矩存在, 则它必定也 是宽平稳的. 反之不成立. (2) 宽平稳的正态过程必定也是严平稳的.

随机过程知识点汇总

随机过程知识点汇总

随机过程知识点汇总随机过程是指一组随机变量{X(t)},其中t属于某个集合T,每个随机变量X(t)都与一个时刻t相关联。

2.随机过程的分类随机过程可以分为离散时间随机过程和连续时间随机过程。

离散时间随机过程是指在离散的时间点上取值的随机过程,例如随机游走。

连续时间随机过程是指在连续的时间区间上取值的随机过程,例如XXX运动。

3.随机过程的数字特征随机过程的数字特征包括均值函数和自相关函数。

均值函数E[X(t)]描述了随机过程在不同时刻的平均取值。

自相关函数R(t1,t2)描述了随机过程在不同时刻的相关程度。

4.平稳随机过程平稳随机过程是指其均值函数和自相关函数都不随时间变化而变化的随机过程。

弱平稳随机过程的自相关函数只与时间差有关,而不依赖于具体的时间点。

强平稳随机过程的概率分布在时间上是不变的。

5.高斯随机过程高斯随机过程是指其任意有限个随机变量的线性组合都服从正态分布的随机过程。

高斯随机过程的均值函数和自相关函数可以唯一确定该过程。

6.马尔可夫随机过程马尔可夫随机过程是指其在给定当前状态下,未来状态的条件概率分布只依赖于当前状态,而与过去状态无关的随机过程。

马尔可夫性质可以用转移概率矩阵描述,并且可以用马尔可夫链来建模。

7.泊松过程泊松过程是指在一个时间段内随机事件发生的次数服从泊松分布的随机过程。

泊松过程的重要性质是独立增量和平稳增量。

8.随机过程的应用随机过程在金融学、信号处理、通信工程、控制理论等领域有广泛的应用。

例如,布朗运动被广泛应用于金融学中的期权定价,马尔可夫链被应用于自然语言处理中的语言模型。

t)|^2]协方差函数BZs,t)E[(ZsmZs))(ZtmZt))],其中Zs和Zt是Z在时刻s和t的取值。

复随机过程是由实部和虚部构成的随机过程,其均值和方差函数分别由实部和虚部的均值和方差函数计算得到。

协方差函数和相关函数也可以类似地计算得到。

复随机过程在通信系统中有广泛的应用,例如调制解调、信道编解码等。

平稳随机过程及其遍历性

平稳随机过程及其遍历性
从概率密度函数的角度讲,高阶平稳一定低阶平稳
6
f X (x1, x2 , t1, t2 ) f X (x1, x2 , )
随机过程X(t)的自相关函数,自协方差函数都是 平稳的。
都与时间无关
RX (t1, t2 ) x1x2 f X (x1, x2;t2 t1)dx1dx2
x1x2
➢ 二阶平稳(n=2) 严平稳随机过程的二维概率密度只与 t1, t2的 时间间隔有关,而与时间起点无关。 n 2, t t1, t2 t1时,二维概率密度:
fX (x1, x2 ,t1,t2 ) f X (x1, x2,t1 t,t2 t)
fX (x1, x2 , 0,t2 t1) f X (x1, x2, )
平稳随机过程及其遍历性
随机过程可分为平稳与非平稳两大类, 严格地说, 所 有信号都就是非平稳得, 但就是, 平稳信号得分析要容 易得多, 而且在电子系统中, 如果产生一个随机过程得 主要物理条件在时间得进程中不改变, 或变化极小, 可 以忽略, 则此信号可以认为就是平稳得、 如接收机得 噪声电压信号, 刚开机时由于元器件上温度得变化, 使 得噪声电压在开始时有一段暂态过程, 经过一段时间 后, 温度变化趋于稳定, 这时得噪声电压信号可以认为 就是平稳得。

X (很t) 小m,X 即使X (两t 者 )的 m相X 关程度较强,则 也不会
太大,所以K并X 不( )能准确表示关联程度的大小。为了消除
实际应用中,通过上式来判定过程得平稳性就是很不容易得,因此 在实际中往往不需要所有时间都平稳,只要观测得有限时间平稳 就行了。
3
f X (x1,, xn ,t1 t,,tn t) f X (x1,, xn ,t1,,tn )
(2) 特性 ➢ 一阶平稳(n=1) 严平稳随机过程得一维概率密度函数与时间无关 n 1, t t1 时,对于一维概率密度有: fX (x1, t1 t) f X (x1, t1) f X (x1, 0) f X (x1)

随机过程例题和知识点总结

随机过程例题和知识点总结

随机过程例题和知识点总结随机过程是研究随机现象随时间演变的数学学科,在通信、金融、物理等众多领域都有广泛应用。

下面我们通过一些例题来深入理解随机过程的相关知识点。

一、随机过程的基本概念随机过程可以看作是一族随机变量的集合,其中每个随机变量都对应着某个特定的时刻。

例如,考虑一个在时间段0, T内的股票价格变化过程,对于每个时刻 t∈0, T,都有一个对应的随机变量 X(t)表示股票的价格。

二、常见的随机过程类型1、泊松过程泊松过程常用于描述在一定时间内随机事件发生的次数。

例如,某电话交换台在单位时间内接到的呼叫次数就可以用泊松过程来建模。

例题:假设某电话交换台在上午 9 点到 10 点之间接到的呼叫次数是一个泊松过程,平均每分钟接到 2 次呼叫。

求在 9 点 10 分到 9 点 20 分这 10 分钟内接到至少 5 次呼叫的概率。

解:设 X(t) 表示在时间段 0, t 内接到的呼叫次数,且 X(t) 是一个强度为λ = 2 的泊松过程。

10 分钟内接到的呼叫次数 X(10) 服从参数为λt = 2×10 = 20 的泊松分布。

P(X(10) ≥ 5) = 1 P(X(10) < 5) = 1 P(X(10) = 0) + P(X(10) = 1) + P(X(10) = 2) + P(X(10) = 3) + P(X(10) = 4)通过泊松分布的概率质量函数可以计算出每个概率值,进而求得最终结果。

2、马尔可夫过程马尔可夫过程具有“无记忆性”,即未来的状态只与当前状态有关,而与过去的状态无关。

例题:一个状态空间为{0, 1, 2} 的马尔可夫链,其一步转移概率矩阵为 P = 05 03 02; 02 06 02; 01 03 06 ,初始状态为 0,求经过 3 步转移后处于状态 2 的概率。

解:通过计算 P³得到 3 步转移概率矩阵,然后取出第 0 行第 2 列的元素即为所求概率。

2.2 平稳随机过程

2.2 平稳随机过程
(2.2 - 1) 则称ξ(t) 是平稳随机过程。该定义说明,当取样点在时间轴 上作任意平移时,随机过程的所有有限维分布函数是不变的, 具体到它的一维分布, 则与时间t无关, 而二维分布只与时间间 隔τ有关,即有
2016/9/6 1
第2章
随机过程 f1(x1, t1)=f1(x1) (2.2 - 2)
2016/9/6
16
第2章
随机过程
根据上述关系式及自相关函数R(τ)的性质,不难推演功 率谱密度Pξ(ω)有如下性质: (1) Pξ(ω)≥0,非负性; (2.2 - 20) (2)Pξ (-ω)= Pξ(ω),偶函数。 (2.2 - 21)
因此, 可定义单边谱密度Pξ(ω)为
2 P ( ) P 1 ( ) 0
(2.2-15)
(2.2-16)
虽然式(2.2 - 15)给出了平稳随机过程ξ(t)的功率谱密度
Pξ(ω),但我们很难直接用它来计算功率谱。那么,如何方便
地求功率谱Pξ(ω)呢? 我们知道,确知的非周期功率信号的自 相关函数与其谱密度是一对傅氏变换关系。对于平稳随机过
程,也有类似的关系,即
j P ( ) R ( )e d
当均值为0时,有R(0)=σ2。
2016/9/6
10
第2章
随机过程
2.2.4平稳随机过程的功率谱密度
随机过程的频谱特性是用它的功率谱密度来表述的。我们
知道,随机过程中的任一实现是一个确定的功率型信号。而对 于任意的确定功率信号f(t),它的功率谱密度为
Pf ( ) lim
T
FT ( ) T
平稳随机过程在满足一定条件下有一个有趣而又非常有 用的特性, 称为“各态历经性”。这种平稳随机过程,它的 数字特征(均为统计平均)完全可由随机过程中的任一实现 的数字特征(均为时间平均)来替代。也就是说,假设x(t)是 平稳随机过程ξ(t)的任意一个实现,它的时间均值和时间相关 函数分别为

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

随机过程关于平稳过程中的各态历经性的综述

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述首先要介绍一下什么就是平稳过程,平稳过程就是一类统计特性不随时间推移而变化的过程。

在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。

有这样重要的一类随机过程,即所谓平稳随机过程,它的特点就是:过程的统计特性不随时间的推移而变化。

严格地说,如果对于任意的n(=1,2…),12,,t t t T ∈n …,与任意实数h,当12,,n t h t h t h T +++∈…,时,n 维随机变量(X(1t ),X(2t ),…,X(t n ))与 (X(1t h +),X(2t h +),…,X(n t h +))具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。

在实际工作中,确定随机过程的均值函数与相关函数就是很重要的。

而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。

但就是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,就是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。

定义 设X(t)就是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X(t)〉存在,即〈X(t)〉=1lim ()2T TT X t dt T -→∞⎰ 存在,而且〈X(t)〉=E{X(t)}=X μ依概率1相等。

即〈X(t)〉依概率1等于X μ= E {X(t)}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。

定义 设X(t)就是一均方连续平稳随机过程,且对于固定的τ,()Xt X t τ(+)也就是连续平稳随机过程,〈()X t X t τ(+)〉 代表()Xt X t τ(+)沿整个时间轴的平均值,即()X t X t τ(+)=1lim (+)()2TT T X t X t dt T τ-→∞⎰ 若〈()Xt X t τ(+)〉存在,称〈()X t X t τ(+)〉为X(τ)的时间相关函数。

概率论第三章 平稳随机过程

概率论第三章 平稳随机过程
则称X(t)为宽平稳过程(或称广义平稳过程)
严平稳过程只要均方值有界, 就是广义平稳的, 但反之则不一定。
当我们同时考虑两个平稳过程X(t)和Y(t)时,若它 们的互相关函数仅是单变量τ 的函数,即
RX Y (t1, t2 ) E[ X (t1 )Y (t2 )] RXY ( ), t2 t1,
则称X(t)和Y(t)宽平稳相依,或称这两个随机过程 是联合宽平稳的。
例3.1 设随机过程 X (t) a cos(0 t )
式中a,ω0为常数,Φ是在区间(0,2π)上均匀分 布的随机变量, 这种信号通常称为随相正弦波。求 证X(t)是宽平稳的。
二、各态历经(遍历)随机过程
在上面的讨论中,每当谈到随机过程时,就意味 着所涉及的是大量的样本函数的集合。要得到随机过 程的统计特性,就需要观察大量的样本函数。
ln
p( X
/
mX
)
K
N 1
exp
i0
(xi
mX
2
2 X
)2
均值估计
让对数似然函数取最大值
ln p( X / mX ) 0 m X
得到均值的最大似然估值
mˆ X
1 N
N 1
xi
i0
此式说明,可用N个观测值的算术平均作为均值mX的估值。
估计量的性质(工程)
1.有偏估计与无偏估计
由于估计量依赖于观测结果,因此估计量本身是 随机变量,于是它也存在其均值和方差。
定义1:取对应于ρX(τ)=0.05的那个时间为相关 时间τ
0
定义2:用图3.6中的矩形(高为ρX(0)=1,底为τ0的
矩形)面积等于阴影面(ρX(τ)积分的一半)来定义
τ0,即

随机过程——精选推荐

随机过程——精选推荐

随机过程《随机过程》论⽂平稳的随机过程学号:11404111姓名:郭冬冬班级:11级1班指导教师:王颖俐专业:数学与应⽤数学系别:数学系完成时间:2015年1⽉摘要:本⽂主要通过⾃⼰的调研,结合本学期所学的课程《随机过程》总结出⼀些随机过程在通信中的具体应⽤。

随着科学的发展,随机过程与通信系统的关系越来越紧密,并且应⽤场合越来越多,如何在通信系统中正确应⽤随机过程的知识也越来越重要,随机过程中的⼀些概念在通信系统中应⽤中都具有⼀定的物理意义,掌握其物理意义对于更好地理解随机过程有很⼤的帮助作⽤。

接着结合⾃⼰的研究⽅向,进⼀步列举了⼀些随机过程在通信系统中的具体应⽤。

有许在随机过程的分类有许多的体现。

按照随机过程的参数集和状态空间是连续还是离散可以分为四类:⼀是参数离散、状态离散的随机过程,或叫做离散随机过程。

如贝努⼒过程等;⼆是参数离散、状态连续的随机过程,或(连续)随机序列。

如DAC(数模变换)过程中对随机信号进⾏采样;三是参数连续、状态离散的随机过程。

如程控设备转接语⾳电话的次数,跳频设备在通信过程中改变频率的次数等;四是参数连续、状态连续的随机过程。

如扫频仪的扫频信号进⾏扫频,各类信号中的纹波电压等。

多随机过程的数字特征的应⽤,⽐如随机过程的数学期望、⽅差、⾃协⽅差与⾃相关函数、互协⽅差与互相关函数等,如测量两条光纤信道的质量⾼低,我们可以通过OTDR多次发送光信号,在接收端来检测其损耗值,通过求损耗值的数学期望来选择质量好的光纤信道;如测试两种稳压芯⽚的性能,我们会多次记录对同⼀电压的采样值,通过求其采样值的⽅差,我们就可以简单的做出判断,因为⽅差函数描述了采样电压在各个时刻对其均值的偏离程度。

关键词:随机过程,平稳过程1.平稳过程平稳随机过程是⼀类应⽤⾮常⼴泛的随机过程,它在研究中有着极其重要的意义。

定义:若⼀个随机过程X(t)发热任意有限维分布函数与时间的起点⽆关,即对于任意的正整数n和所有的实数△,有fn(x1,x2, …,xn;t1,t2,…,tn) =fn(x1,x2,…,xn;t1+△,t2+△,…,tn+△)则称该随机过程是在严格意义下的平稳随机过程,简称严平稳随机过程。

平稳随机过程(1)

平稳随机过程(1)
E{[ X (t) X (t )] 2 } 0 或者 E{X 2 (t ) X 2 (t) 2 X (t) X (t )} 0 由于{X (t),t T} 为平稳过程,所以在上式中有
E[ X 2 (t )] E[ X 2 (t)] RX (0) 即有, 2RX (0) 2RX ( ) 0 ,即 RX (0) | RX ( ) |
Fx (x1, x2 , , xn ;t1,t2 , ,tn ) Fx (x1, x2 , , xn ;t1 ,t2 , ,tn )
由定义可知,当取样点在时间上作任意平移后,随机过程的所有有限维分布函数或概率 密度函数是不变的。严格平稳随机过程的所有一维概率密度函数是与时间 t 无关的,即
f X (x, t) f X (x, t t) f X (x)
2、平稳随机过程的概念和定义
2.2宽平稳随机过程 同样,对于随机序列 X (n) ,如果满足 E[X (n)] mX RX (n1,n2 ) RX (n1 n2 ) RX (m) 其中, m n1 n2 ,则称, X (n) 为宽平稳随机序列。
【例 2】 设随机过程 X (t) um sin(w0t φ) ,其中 um 和 w0 均为常数, φ为在[0,2π]上均匀分布的随机变量,试证 X (t) 为平稳随机过程。
(3)
2 X
E[X 2 (t)] 为常数,(均方值)
(4)
2 X
D[X (t)]为常数,(方差)
(5) CX ( ) E[X (t) X ][ X (t ) X ] 为 的一元函数,(自协方差函数)
2、平稳随机过程的概念和定义
2.3平稳随机过程的数字特征
它们之间有以下关系
(1)
2 X
RX (0)
2、平稳随机过程的概念和定义

随机信号分析教案2014.2

随机信号分析教案2014.2

授课题目(教学章节或主题)平稳随机过程
1平稳随机过程的主要数字特征2 平稳随机过程的功率谱密度
授课方式理论课
1.教学目的与要求:1.掌握平稳随机噪声中数字特征的物理意义;
2.掌握自相关函数、方差、平均功率的计算方法;
3.掌握自相关函数、方差、均方值、功率谱密度在通信中的应用;
教学基本内容(包括重点、难点、时间分配):
重点:
1. 平稳随机过程的主要数字特征
(1)平稳随机过程的概念及其特点
通信信道中的高斯随机噪声属于平稳随机过程(有各态历经性),即平稳高斯噪声。

随机过程(随机噪声)是不同时刻随机变量的组合,或者说随机过程中每一时刻的取值都是随机变量。

如图.。

第3章 平稳随机过程-1

第3章 平稳随机过程-1



通 设X(t)为一随机过程,若满足:
信 学 院
E X (t) mX
RX (t1,t2 ) RX ( ),
t2 t1
E X 2 (t)
则称X(t)是宽平稳随机过程或广义平稳随机过程。
EX 2( t ) R ( 0 ) 表示随机过程平均功率有限。 X
宽(广义)平稳随机过程的定义是从统计平均的意义 上考察随机过程的平稳性。
学 1. 它们不仅都是时间的函数,而且相关函数及协方差函数还
院 取决于不同的时刻点。
2.
由mX(t ),
X
(
t
)

2 X
(
t
)
所对应的物理量都是瞬时平均值。
工程上和实际应用中,经常遇到一类广泛存在的所谓“平 稳”随机过程,或在研究相对稳定状态下的物理过程中,其 所涉及的随机量也都属于“平稳”随机过程。
宽平稳可避开概率密度函数的获取。
上 1. 设随机过程 海

X (t) acos(0t )

通 其中 (a, 0) 为常数, 是区间 (0,2 ) 上均匀分布的随机变量。 信
学 证明 X (t) 是宽平稳的。

解: E[X (t)]
2 0
a
cos(0t
)
1 2
d 0
RX
(t1,
t2 )
E[a cos(0t1
平稳过程,其中 T为过程的周期。即,R ( T ) R ( )
X
X
3
2016/10/10

记为

(4)RX ( 0 ) E [ X 2( t )]
P:平均功率
大 学 通 信
X( t ) 的平均功率为RX (0)。 X( t ) 往往能量无穷,而平均功率却是有限的。

随机过程关于平稳过程中的各态历经性的综述

随机过程关于平稳过程中的各态历经性的综述

关于平稳过程中的各态历经性的综述首先要介绍一下什么是平稳过程,平稳过程是一类统计特性不随时间推移而变化的过程。

在实际中,有相当多的随机过程,不仅它现在的状态,而且它过去的状态,都对未来状态的发生有着很强的影响。

有这样重要的一类随机过程,即所谓平稳随机过程,它的特点是:过程的统计特性不随时间的推移而变化。

严格地说,如果对于任意的n (=1,2…),12,,t t t T ∈n …,和任意实数h,当12,,n t h t h t h T+++∈…,时,n 维随机变量(X(1t ),X(2t ),…,X(t n ))和 (X (1t h +),X (2t h +),…,X (n t h +)) 具有相同的分布函数,则称随机过程{}X ∈(t ),t T 具有平稳性,并同时称此过程为平稳随机过程,或简称平稳过程。

在实际工作中,确定随机过程的均值函数和相关函数是很重要的。

而要确定随机过程的数字特征一般来说需要知道过程的一﹑二维分布,这在实际问题中往往不易办到,因为这时要求对一个过程进行大量重复的实验,以便得到很多的样本函数。

但是由于平稳过程的统计特性不随时间的推移而变化,就会提出这样一个问题:能否从一个时间范围内观察到的样本函数或一个样本函数在某些时刻的取值来提取过程的数字特征呢?所谓各态历经,是指可以从过程的一个样本函数中获得它的各种统计特性;具有这一特性的随机过程称为具有各态历经性的随机过程,只要有一个样本函数就可以表示出它的数字特征。

定义 设X (t )是均方连续平稳随机过程,如果它沿整个时间上的平均值即时间平均值〈X (t )〉存在,即〈X (t )〉=1lim()2T TT X t dtT-→∞⎰存在,而且〈X (t )〉=E {X (t )}=X μ依概率1相等。

即〈X (t )〉依概率1等于X μ= E {X (t )}, X μ代表随机过程的集平均(或称统计平均),则称该过程的均值具有各态历经性。

第三讲随机过程的数字特征和特征函数讲解

第三讲随机过程的数字特征和特征函数讲解

第三讲随机过程的数字特征和特征函数讲解在概率论和统计学中,随机过程是指一组随机变量的集合,这些随机变量依赖于一个参数(通常是时间)。

随机过程的数字特征和特征函数是描述随机过程的重要概念。

1.数字特征:随机过程的数字特征是对其统计特性的度量,通常用于描述随机过程的平均值、方差、协方差等。

随机过程的数字特征可以通过计算随机变量的数学期望、方差等得到。

2.特征函数:特征函数是随机过程的一种表示方式,它是对随机过程的全面描述。

特征函数是随机变量的复数值函数,它对于每个时间点都定义了一个复数值,用来表示该时间点的随机变量的概率分布。

特征函数可以通过随机变量的概率密度函数计算得到。

特征函数的性质:-对称性:如果随机过程的数字特征对称,那么它的特征函数也对称。

-唯一性:特征函数能够唯一地表示一个随机过程的概率分布。

-独立性:随机过程的特征函数在不同时间点上是相互独立的。

-连续性:特征函数是连续函数,可以通过连续函数逼近定理来证明。

特征函数的应用:-用于推导随机过程的数字特征:通过特征函数可以推导出随机过程的数字特征,例如平均值、方差。

-用于计算随机过程的概率分布:通过特征函数可以计算随机过程的概率分布,例如计算随机过程在其中一时间点的概率。

-用于分析和处理随机过程的相关问题:通过特征函数可以进行随机过程的变换、滤波等操作,从而实现对随机过程的分析和处理。

总之,随机过程的数字特征和特征函数是描述随机过程的重要工具,它们可以用来分析和处理随机过程相关的问题,推导随机过程的数字特征,并计算随机过程的概率分布。

随机过程复习题

随机过程复习题

随机过程复习题一、随机过程的数字特征及平稳性1、设随机过程Z (t ) =X sin t +Y cos t ,其中X 和Y 是相互独立的随机变量,它们都分别以2/3和1/3的概率取值-1和2,讨论Z(t)的平稳性。

2、设随机过程()Xt e t -=ξ (t >0),其中随机变量X 具有在区间(0,T )中的均匀分布。

试求随机过程ξ(t )的数学期望和自相关函数。

3、有随机过程{ξ(t ),-∞<t <∞}和{η(t ),-∞<t <∞},设ξ(t )=A sin(ω t +Θ),η(t )=B sin(ω t +Θ+φ), 其中A ,B ,ω,φ为实常数,Θ均匀分布于[0,2π],试求R ξη(s ,t )4、设有随机过程{ξ(t ),-∞<t <∞},ξ(t )=η cos t , 其中η为均匀分布于(0,1)间的随机变量,即()()112311212(a)=cos cos (b)C =cos cos 1212R t ,t t t t ,t t t ξξξξ试证:5、随机过程ξ(t )=sin(Ut ),其中U 是在[0,2π]上均匀分布的随机变量。

若t ∈T , 而T =[0,∞), 试分析ξ(t )的平稳性。

6、随机过程()()0=cos +t A t ξωθ;式中:A 、ω0是实常数;θ是具有均匀分布的随机变量:()2(0=20(f πθθπ⎧≤≤⎪⎨⎪⎩其他) 分析ξ(t )的平稳性。

7、随机过程ξ(t )=A cos(ωt +Φ ),-∞<t <+∞,其中A, ω,Φ 是相互统计独立的随机变量,E A =2, D A =4, ω 是在[-5, 5]上均匀分布的随机变量,Φ 是在[-π,π]上均匀分布的随机变量。

试分析ξ(t)的平稳性和各态历经性。

8、设(){}+∞<<∞-t t X ,的均值函数为m X (t ),协方差函数为C X (t ),而ϕ(t )是一个普通函数,令()()()t t X t Y ϕ+=,+∞<<∞-t ,试求(){}+∞<<∞-t t Y ,的均值函数和协方差函数。

平稳随机过程

平稳随机过程

例2:随机相位正弦波X(t)=acos(0t+Θ) ,a, 0为常
数,Θ是在(0,2)上服从均匀分布的随机变量,则
{X(t)}是平稳过程,并求其自相关函数.
解: 由假设,Θ的概率密度为
f
(
)
1 /
2
0
0 2
其它
于是,X(t)的均值函数为
E[X (t)]
E[a cos(0 t
)]
a
2
进而协方差,Cx()=E{[X(t)-x][X(t+)-x]}=Rx()-x2只 与有关;
=0时,x2=Cx(0)=Rx(0)-x2 为常数.
二、(弱)平稳过程
1. 定义
设{X(t),tT}是二阶矩过程,如果 (1) E[X(t)]=x(常数),tT; (2) 对任意的t,t+T, Rx()=E[X(t)X(t+)]只依赖于。 则称{X(t),tT}为宽平稳过程,简称为平稳过程.
RX
(
)
1 2
a2
cos 0
一般地,设s(t)是一周期函数,ΘU(0,T)称 {X(t)=s(t+Θ)}为随机相位周期过程,则其为平稳过程。
例3: 考虑随机电报信号,信号X(t)由只取 I 或-I的电流给出(图12-1画出了的一条样本曲地,当T为离散参数集时,若随机序列{Xn(t)}满 足E(Xn2)<+,以及
(1) E[Xn]=x(常数),nT; (2) Rx(m)=E[XnXn+m]只与m有关。 称{Xn}为宽平稳随机序列或宽平稳时间序列。
2.严平稳和宽平稳的关系
(1).严平稳过程不一定是宽平稳过程,因为严平稳的过 程不一定是二阶矩过程,但当严平稳过程是二阶矩过 程时,则它一定是宽平稳过程。

平稳随机过程及其数字特征

平稳随机过程及其数字特征

平稳随机过程及其数字特征平稳随机过程粗略的说——随机过程的统计特征不随时间的推移而变化。

一.严平稳随机过程1. 定义设有随机过程{ X(t) , t ∈T},若对于任意n 和任意t1<t2<…<tn ,(ti ∈T )时刻的n 个状态的n 维概率密度,不随时间平移Δt 而变化。

(Δt 为任意值)12121212(,,...,;,,...,)(,,...,;,,...,)X n n X n n f x x x t t t f x x x t t t t t t =+Δ+Δ+Δ则称该过程为严平稳随机过程(或狭义平稳过程)。

因此:严平稳过程的二维数字特征仅是(时间差τ)的函数综上所述:要按上述严平稳过程的定义来判断一个过程是否平稳?是很困难的。

a):一般在实用中,只要产生随机过程的主要物理条件,在时间进程中不变化。

则此过程就可以认为是平稳的。

例如:在电子管中由器件的颗粒效应引起的“散弹噪声”,由于产生此噪声的主要物理条件与时间无关,所以此噪声可以认为是平稳过程。

1212121212121212222(,)(,;)()(,)()()(,;)()()(0)(0)[()]X X X X XX X X X XX X X X R t t x x f x x dx dx R C t t x mx m f x x dx dx C R m C R m D X t τττττσ=⋅==−−==−=−==∫∫∫∫∞<)]([2t X E b):另一方面,对有些非平稳过程,可以根据需要,如果它在所观测的时间段内是平稳的,就可以视作这一时间段上的平稳过程来处理。

即在观测的有限时间段内,认为是平稳过程。

因此,工程中平稳过程的定义如下:二、宽平稳过程1、定义若二阶矩过程( )X(t) 满足: E[X(t)]=m x ←常数R x (t 1,t 2)=R x (τ) ←只与时间间隔(τ=t 2-t 1)有关则称过程X(t)为“宽平稳随机过程”(广义平稳过程)。

严平稳随机过程的特点

严平稳随机过程的特点

严平稳随机过程的特点严平稳随机过程是概率论中的重要概念,它具有以下几个特点。

严平稳随机过程具有平稳性。

平稳性是指在不同时间段内,该随机过程的统计特征保持不变。

具体而言,对于任意的时刻t,随机过程的均值和自协方差与时间t无关。

这意味着在不同时刻观测到的样本具有相同的概率分布。

例如,如果我们观测一个市场的股票价格,如果该随机过程是严平稳的,那么无论我们在哪个时间段内观察,平均股价和股价的波动性都会保持不变。

严平稳随机过程具有独立性。

独立性是指在不同时刻观测到的样本之间不存在相关性。

具体而言,对于任意的不同时刻t1和t2,随机过程在这两个时刻观测到的样本是相互独立的。

这意味着过去的观测结果对于未来的观测结果没有影响。

例如,如果我们观测一个骰子的投掷结果,如果该随机过程是严平稳的,那么每次投掷的结果都是相互独立的。

严平稳随机过程具有稳定性。

稳定性是指随机过程的概率分布在时间变化过程中保持不变。

具体而言,对于任意的时刻t,随机过程在该时刻的概率分布与初始时刻的概率分布相同。

这意味着随机过程的统计特征不会随时间的推移而发生改变。

例如,如果我们观测一个地区的每日降雨量,如果该随机过程是严平稳的,那么每一天的降雨量的概率分布将保持不变。

严平稳随机过程具有时间平移不变性。

时间平移不变性是指随机过程在不同时刻观测到的样本之间存在一种平移关系。

具体而言,对于任意的时刻t1和t2,随机过程在这两个时刻观测到的样本之间存在一种平移关系,即它们的统计特征相同。

这意味着随机过程的性质在时间上是平稳的。

例如,如果我们观测一个人每天的步数,如果该随机过程是严平稳的,那么每天的步数分布与过去每天的步数分布相同。

严平稳随机过程具有平稳性、独立性、稳定性和时间平移不变性等特点。

这些特点使得严平稳随机过程在概率论和统计学中有着重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 平稳随机过程的数字特征
一、实验目的
1、加深理解平稳随机过程数字特征的概念
2、掌握平稳随机序列期望、自相关序列的求解
3、分析平稳随机过程数字特征的特点
二、实验设备
计算机、Matlab 软件 三、实验内容和步骤
设随机电报信号X(n)(-∞<n<+∞)是只取+I 和-I 变化的电流信号,对于固定的n,,P{X(n)=+I}=P{X(n)=-I}=0.5,而正负号的变化是随机的,在[n,n+m]时间内正负号变化的次数记为M(n,n+m).设M(n,n+m)服从参数为λ.m 的泊松分布,其中λ=1/学号,用VC 、TC 或matlab 编程求解: 1.E(X(n))
2.RX(m).打印m=-N,…-1,0,1,…N;其中N=64时的自相关序列值,并绘出RX(m)的曲线.
3.相关系数序列rX(m)=KX(m)/ KX(0),并打印m=-N,…-1,0,1,…N;其中N=64时的自相关系数序列值,并绘出rX(m)的曲线.
四、实验原理
平稳随机过程数字特征求解的相关原理 RX(m)=I2e-2λ|m|; KX(m)= RX(m)-m2X
E(X(n))= I*P{X(n)=+I}+(-I )*P{X(n)=-I}=0
}1)()({})()({)]()([)(2222-=+-=+=+=m n X n X P I I m n X n X P I m n X n X E m R
当0>m 时, m
k k e
k m I m n X n X P λλ-∞
=∑==+022
)!2()(})()({
m
k k e
k m I m n X n X P λλ-∞
=+∑+==+0122
)!12()(})()({
m
e I m n X n X E m R λ22)]()([)(-=+=
五、实验要求
1、写出求期望和自相关序列的步骤;
2、分析自相关序列的特点;
3、打印相关序列和相关系数的图形;
4、附上程序和必要的注解。

六、实验过程
input('王斌欢迎您') I=input('输入I 的值');
a=0.5; %a 的值为P{X(n)=+I} b=0.5; %b 的值为P{X(n)=-I} EX=I*a+(-I)*b %EX 为期望的输出值 xuehao=21; %学号为21
k=1/xuehao;
Ex=I*0.5+(-I)*0.5; m=-64:1:64;
Rx=I*I*exp(-2*k*abs(m)); Cx=Rx-Ex*Ex;
Cx0=I*I*exp(-2*k*abs(0))-Ex*Ex; rx=Cx/Cx0;
figure(1);
subplot(211);stem(EX);title('期望') %输出图像 subplot(212);stem(m,Rx);title('自相关序列'); figure(2);
stem(m,rx);title('相关系数');
七、实验结果及分析
00.20.40.60.81 1.2 1.4 1.6 1.82
-1
-0.500.5
1期望
0100200300400自相关序列
00.10.20.30.40.50.60.70.80.91相关系数
自相关序列的特点分析:m>0时Rx(m)随着m 的增大而减小,m<0时Rx(m)随着
m的增大而增大。

在m=0的点,Rx(m)有最大值。

八、实验心得体会
通过本次实验初步了解了MATLAB软件,知道了基本数学运算和绘图功能,进一步理解了随机过程的数字特征的概念,掌握了平稳随机序列期望,自相关序列的求解,直观的看到了自相关序列曲线和相关系数曲线。

相关文档
最新文档