高一数学指数对数综合
高一数学指数函数对数函数知识点
高一数学指数函数对数函数知识点导语:在高中数学中,指数函数与对数函数是一个非常重要的数学概念和知识点。
它们在不同领域的应用非常广泛,比如金融、科学等。
本文将深入探讨高一数学中的指数函数和对数函数的基本概念、性质以及它们之间的关系。
一、指数函数的基本概念与性质1. 指数函数的定义指数函数是以常数e(自然对数的底)为底的函数,表示为f(x) = a^x,其中a > 0且a ≠ 1,x为实数。
举例来说,函数f(x) = 2^x就是一个指数函数,其中以2为底。
2. 指数函数的性质①指数函数的定义域为实数集, 即所有实数x。
②指数函数的值域为正数集, 即所有大于0的实数。
③指数函数是递增函数,即当x1 < x2时,a^x1 < a^x2。
④当a > 1时,指数函数的图像是递增的;当0 < a < 1时,指数函数的图像是递减的。
二、对数函数的基本概念与性质1. 对数函数的定义对数函数是指数函数的反函数。
以常数e为底的对数函数称为自然对数函数,记作ln(x)。
举例来说,函数g(x) = log2(x)就是一个以2为底的对数函数。
2. 对数函数的性质①对数函数的定义域为正数集,即只有正实数才有对数。
②对数函数的值域为实数集。
③对数函数是递增函数,即当x1 < x2时,log(x1) < log(x2)。
④对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x。
三、指数函数与对数函数之间的关系注意:以下的例子仅为了便于理解,具体数值仅供参考。
1. 自然对数与指数函数的关系e^x = a 可以转化为 ln(a) = x。
例如,e^2 = 7.39 可以转化为 ln(7.39) = 2。
2. 对数函数的性质与指数函数的性质对数函数的一些基本性质与指数函数的一些基本性质是相互关联的,如:① loga(xy) = loga(x) + loga(y)② loga(x/y) = loga(x) - loga(y)③ loga(x^y) = y * loga(x)④ loga(b) = logc(b) / logc(a)3. 指数函数与对数函数的实际应用指数函数与对数函数在实际中有着广泛的应用,主要体现在以下几个方面:①金融领域:在复利计算、投资分析等方面,指数函数与对数函数被广泛应用。
高一数学对数函数知识点总结
1.对数(1)对数的定义:如果ab=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:ab=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①loga(MN)=logaM+logaN.②loga(M/N)=logaM-logaN.③logaMn=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN=(logab/logaN)(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的`定义函数y=loga某(a>0,a≠1)叫做对数函数,其中某是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数那么要大于0且不为1对数函数的底数为什么要大于0且不为1呢在一个普通对数式里 a<0,或=1 的时候是会有相应b的值的。
但是,根据对数定义: logaa=1;如果a=1或=0那么logaa就可以等于一切实数(比方log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比方,log(-2) 4^(-2) 就不等于(-2)某log(-2) 4;一个等于1/16,另一个等于-1/16(2)对数函数的性质:①定义域:(0,+∞).②值域:R.③过点(1,0),即当某=1时,y=0.④当a>1时,在(0,+∞)上是增函数;当0。
高一指数与对数知识点总结
高一指数与对数知识点总结引言:高中数学作为普通高中课程的一部分,是培养学生逻辑思维和分析能力的重要学科之一。
在高一数学学习的基础上,指数与对数是一项重要的数学知识点。
本文将对高一指数与对数的知识进行总结,并对其应用领域进行简要介绍。
一、指数的基本概念和运算法则指数是数学中的一种表示形式,用来表示某个数连乘的次数。
指数由底数和指数数两个部分组成,有以下几个基本概念:1. 底数:指数运算的基础数,可以是实数或者是正实数。
2. 指数:表示底数连乘的次数,一般为整数,也可以是零或负数。
在运算法则方面,指数运算有以下几种基本规律:1. 同底数相乘:指数相加。
2. 同底数相除:指数相减。
3. 基数相同,指数相同:结果相同。
二、对数的基本概念和运算法则对数是指数运算的逆运算,用来解决指数运算中的问题。
对数由底数、真数和对数三个部分组成,有以下几个基本概念:1. 底数:对数运算中的基础数,必须是正实数且不等于1。
2. 真数:对数运算的结果,必须是正实数。
3. 对数:表示底数为多少时,真数得到的结果。
在运算法则方面,对数运算有以下几个基本规律:1. 对数的乘法法则:两个对数相加,等于它们对应的真数相乘。
2. 对数的除法法则:两个对数相减,等于它们对应的真数相除。
3. 对数的幂运算法则:一个对数乘以指数,等于它们对应的真数的原指数幂运算。
三、指数与对数的应用领域指数与对数在实际应用中有广泛的应用,以下是其中的几个领域:1. 科学计数法:指数与对数可以用来表示非常大或非常小的数值,常用于物理、化学等科学领域。
2. 经济学:指数与对数可以用来计算物价指数、通胀率等经济指标,对于了解经济发展具有重要意义。
3. 生物学:指数与对数在生物学研究中可以用来表示生物系数、遗传概率等,有助于深入了解生物现象。
4. 金融学:指数与对数在金融学中可以用来计算股票指数、利率复利等,对于投资和金融决策具有重要参考价值。
结论:指数与对数是高一数学中的重要知识点,掌握指数与对数的基本概念和运算法则对于学习后续数学知识和应用领域具有重要意义。
高一对数和指数知识点归纳
高一对数和指数知识点归纳在初中阶段,我们已经接触了对数和指数的概念,而在高中的数学学习中,对数和指数的知识会更加深入和丰富。
本文将对高一阶段的对数和指数知识点进行归纳,帮助同学们更好地理解和掌握这一部分知识。
一、对数的基本概念与性质对数是指数的逆运算,它可以帮助我们解决指数运算中的一些问题。
数学中常用的对数有自然对数和常用对数两种。
1.1 自然对数自然对数是以常数e(约等于2.71828)为底的对数。
表示为ln(x),其中x为被求对数的数。
自然对数具有以下性质:- ln(1) = 0,ln(e) = 1- ln(xy) = ln(x) + ln(y)- ln(x/y) = ln(x) - ln(y)- ln(x^n) = nln(x)1.2 常用对数常用对数是以10为底的对数。
表示为log(x),其中x为被求对数的数。
常用对数的一些性质包括:- log(1) = 0,log(10) = 1- log(xy) = log(x) + log(y)- log(x/y) = log(x) - log(y)- log(x^n) = nlog(x)二、指数函数与对数函数指数函数是以指数形式进行定义的函数,形如y = a^x,其中a 为底数,x为指数。
指数函数有如下性质:- 当a>1时,函数图像为递增的指数函数;当0<a<1时,函数图像为递减的指数函数。
- 特殊指数函数e^x被称为自然指数函数,其中e为自然对数的底数。
对数函数是指数函数的逆函数,记为y = logₐx,其中a为底数,x为真数。
对数函数的性质包括:- 当a>1时,函数图像为递增的对数函数;当0<a<1时,函数图像为递减的对数函数。
三、对数和指数的运算在高一阶段,我们需要掌握对数和指数运算的一些规律。
3.1 指数幂运算法则- a^m * a^n = a^(m+n)- (a^m)^n = a^(mn)- (ab)^m = a^m * b^m- (a/b)^m = a^m / b^m- (a^m)^n = a^(mn)3.2 对数幂运算法则- logₐ(xy) = logₐx + logₐy- logₐ(x/y) = logₐx - logₐy- logₐ(x^r) = rlogₐx四、快速计算方法在实际运算中,为了简化计算,我们可以借助对数和指数的性质来进行快速计算。
数学高一指数对数知识点
数学高一指数对数知识点数学是一门抽象而又实用的学科,其中的指数对数知识点在高一阶段有着重要的地位。
本文将重点介绍高一学生应该掌握的指数对数知识点,以帮助同学们更好地理解和应用这一部分内容。
一、指数与对数的基本概念1. 指数的概念在数学中,指数是乘方运算的一种表示方式。
指数可以看作是乘方的幂,用于表示一个数被乘以自身的次数。
例如,2³表示2乘以自身3次,即2的立方。
2. 常见的指数规律指数运算中存在着一些常见的规律,需要学生掌握和灵活运用。
例如,指数相乘的结果等于底数不变,指数相加的结果。
这一规律可以表达为a^m * a^n = a^(m+n)。
3. 对数的概念对数是指数的逆运算。
如果a^x = b,那么称x为以a为底b的对数,记作log_a(b) = x。
对数函数是一个非常重要的数学函数,在实际问题中有着广泛的应用。
二、指数与对数的运算法则1. 指数的运算法则高一阶段,学生需要熟练掌握指数运算法则,包括指数相同、底数相同等情况下的运算规律。
例如,(a^m)^n = a^(m*n),a^(-m) = 1 / a^m等。
这些规律有助于简化复杂的指数运算。
2. 对数的运算法则类似指数,对数也有一些常见的运算法则。
例如,log_a(m * n) = log_a(m) + log_a(n),log_a(m^n) = n * log_a(m)等。
熟练掌握这些法则可以简化对数运算的复杂性。
三、指数与对数方程1. 指数方程指数方程是以指数形式给出的方程,解决指数方程需要运用指数的运算法则和性质。
例如,2^x = 16,可以通过观察得到x = 4为满足方程的解。
2. 对数方程对数方程是以对数形式给出的方程,解决对数方程需要熟悉对数的运算法则和性质。
例如,log_2(x) = 3,可以通过将方程重新转化为指数形式得到x = 2^3 = 8。
四、指数与对数函数1. 指数函数指数函数是以指数形式表示的函数,其中底数为常数,指数为自变量。
高中数学 第四章 对数运算和对数函数 4.3 对数函数 4.3.3 指数函数与对数函数的综合应用一课
第四章对数运算与对数函数§3对数函数课时3指数函数与对数函数的综合应用知识点1 利用指数、对数函数的性质比较大小1.☉%**9316%☉(2020·某某建平中学高一期中考试)若0<m <n ,则下列结论正确的是()。
A.2m>2nB.(12)m <(12)nC.lo g 12m >lo g 12n D.log 2m >log 2n答案:C解析:因为y =2x与y =log 2x 在(0,+∞)上均为增函数,又0<m <n ,所以2m<2n,log 2m <log 2n ,所以A,D 错误;因为y =(12)x与y =lo g 12x 在(0,+∞)上均为减函数,又0<m <n ,所以(12)m >(12)n,lo g 12m >lo g 12n ,所以B 错误,C 正确,故选C 。
2.☉%*797#3##%☉(2020·某某一中月考)若a =log 37,b =21.3,c =0.81.1,则()。
A.b <a <c B.c <a <b C.c <b <a D.a <c <b 答案:B解析:由函数y =log 3x 的单调性,可知a =log 37∈(1,2)。
由函数y =2x 的单调性,可知b =21.3>2。
由函数y =x 1.1的单调性,可知c =0.81.1∈(0,1),所以c <a <b ,故选B 。
3.☉%¥*98*96%☉(2020·某某七中月考)设a =lo g 129,b =log 32,c =log 57,则()。
A.a <b <cB.a <c <bC.b <c <aD.c <a <b 答案:A解析:因为a =lo g 129<lo g 121=0;函数y =log 3x 在(0,+∞)上单调递增,所以log 31<log 32<log 33,即0<log 32<1;c =log 57>log 55=1。
串讲04 指数与对数 高一数学上学期期末考点(苏教版2019)
所以
2
= 108 ,
因此喷气式飞机起飞时声音强度约为一般说话时声音强
度的108 倍.
典型例题
题型6:指数幂、对数综合运算及应用
【例6】(2023·辽宁·高一凤城市第一中学校联考阶段练习)(1) 4 (−4)2 − ( 3 − 2)0 +
1
(2)2 lg25 + lg2 − 3log3 5 + log 5 9 ⋅ log 3 5.
两边平方得2 + 2 + −2 = 49,
∴ 2 + −2 = 47.
1
2
−
= 3,求下列各式的值:(1) + −1;(2)2 + −2 .
典型例题
题型1:根式的化简与求值
【对点训练2】(2023·湖南衡阳·高一湘阴县第一中学校联考期中)计算.
2
1
1
1
1
5
(1) 63 2 −2 3 ÷ −26 6 ,( > 0, > 0);
0
3.指数幂的运算性质
r)s=___;(ab)
r=_____(a>0,b>0,r,s∈R).
ar+s
ars
a rb r
aras=_____;(a
知识串讲
4.对数的概念
x=logaN
一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作_________,其中___叫做对数
a
的底数,___叫做真数.
对在PCR扩增进程中成指数级增加的靶标DNA实时检测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量 与扩增次数满足:
lg = lg 1 + + lg0 ,其中为扩增效率,0 为DNA的初始数量.已知某被测标本DNA扩增5次后,数量变为原来的10倍,那么该标本的
高一对数知识点高中总结
高一对数知识点高中总结对数是数学中的一个重要概念,它在高中数学中扮演着重要角色。
在高一阶段,我们学习了许多关于对数的知识点,通过总结和归纳,可以更好地理解和应用这些知识。
本文将对高一阶段的对数知识点进行整理和总结。
一、对数的定义和性质对数的定义是:如果一个正数a不等于1,且b大于0,那么称符号logₐb为以a为底b的对数,记作logₐb=c。
对数具有以下性质:1. logₐ1=0,因为a的0次方等于1。
2. logₐa=1,因为a的1次方等于a。
3. logₐ(㏑ₐb+㏑ₐc)=logₐb+c,对数的乘法公式。
4. logₐ(b/c)=logₐb-logₐc,对数的除法公式。
二、换底公式和常用对数对数的底数可以是任意正数,但常用的对数底数是10和e(自然对数)。
1. 换底公式:如果知道了一个数的对数以及底数,可以通过换底公式将其转化为另一个底数的对数。
换底公式为:logₐb=㏑b/㏑a。
2. 常用对数:以10为底的对数称为常用对数,常用对数的符号是㏑,常用对数表是我们常用的工具之一。
三、对数方程和对数不等式对数方程和对数不等式是对数的应用之一,要解决对数方程和对数不等式,需要利用对数的性质和换底公式,通过变量的替换和代数运算来求解。
1. 对数方程:是形如logₐx=b的方程,其中a、b为已知常数,x为未知数。
求解对数方程时,可以通过对数的性质和换底公式进行变换,最终得出x的值。
2. 对数不等式:是形如㏑ₐx>b的不等式,其中a、b为已知常数,x为未知数。
求解对数不等式时,需要注意不等式的取值范围,并通过对数的性质和换底公式进行变换,找到x的取值范围。
四、指数函数与对数函数的图像和性质在高一阶段,我们学习了指数函数和对数函数的图像和性质,这对我们理解对数与指数的关系、解决相关问题非常有帮助。
1. 指数函数的图像和性质:指数函数y=a^x的图像呈现出递增或递减的特点,且过原点。
指数函数具有指数遇加法、指数遇乘法和指数函数的值域等性质。
人教版高中数学必修第一册第4章指数函数与对数函数综合检测基础卷(含详细解析)
第4章指数函数与对数函数(原卷版)本卷满分150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知75x =,则x 的值为ABC .D .2.函数f (x )=2x 与g (x )=-2-x 的图象关于A .x 轴对称B .y 轴对称C .原点对称D .直线y =x 对称3.已知32log log (0)x =,那么x =A .1B .2C .3D .44.设0m >,下列计算中正确的是A .330m m -=B .4334m m m ÷=C .2323m m m ⋅=D .251542()m m--=5.设a ,1b >,且满足1log 2>a b ,则A .a b <B .a b >C .2a b <D .2a b >6.若lg 2,lg 3a b ==,则12log 5=A .12a a b -+B .2a b a b++C .12a a b-+D .2a b a b++7.如果0a b >>,那么下列不等式一定成立的是A .22log log a b<B .1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .11a b<D .22a b <8.已知函数21,2()5,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若关于x 的方程()0f x m -=恰有两个不同的实数解,则实数m 的取值范围是A .(0,1)B .[1,3)C .(1,3){0}⋃D .[1,3){0}⋃二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.设0a >,则下列运算中正确的是A .4334a a a ⋅=B .5233a a a÷=C .55330a a-⋅=D .5335a a ⎛⎫= ⎪⎝⎭10.若10a =4,10b =25,则A .a +b =2B .b ﹣a =1C .ab >8lg 22D .b ﹣a >lg611.在同一坐标系中,()f x kx b =+与()log b g x x =的图象如图,则下列关系不正确的是A .0k <,01b <<B .0k >,1b >C .()100f x x ⎛⎫>> ⎪⎝⎭,()()00g x x >>D .1x >时,()()0f xg x ->12.已知函数()f x 是定义在R 上的减函数,实数a ,b ,()c a b c <<满足()()()0f a f b f c <,若0x 是函数()f x 的一个零点,则下列结论中可能成立的是A .0x a <B .0a x b <<C .0b x c<<D .0x c>三、填空题:本题共4小题,每小题5分,共20分.13112220.160.363-⎛⎫-+⨯= ⎪⎝⎭____________.14.已知函数()2120log 0x x f x x x ⎧⎪=⎨>⎪⎩,, ,则()()2f f -=____________.15.已知1log ,log 32aa m n ==,求2m n a +的值____________.16.函数()2()445f x xx =--的单调递减区间为____________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)120.5037(27)0.1(2)39π--++-;(2)2115113366221()(3)()3a b a b a b ⋅-÷.18.(12分)计算求值:(1)()11.530.0014-+(2)(42log 923lg 2lg 250082log 9log 4⨯+⨯++⋅.19.(12分)已知函数()154262xx f x +=-⋅-,其中[]0,3x ∈.(1)求()f x 的最大值和最小值;(2)若实数a 满足()0f x a +≥恒成立,求实数a 的取值范围.20.(12分)已知函数()log (1)log (1)a a f x x x =+--,其中0a >且1a ≠.(1)判断()f x 的奇偶性,并说明理由;(2)若3()25f =,求使()0f x >成立的x 的集合.21.(12分)每年3月3日是国际爱耳日,2020年的主题是“保护听力,终生受益”.声强级是表示声强度相对大小,其值为y (单位dB ),定义0lgIy I =10,其中I 为声场中某点的声强度,其单位为/W m 2(瓦/平方米)12010I -=/W m 2为基准值.(1)如果一辆小轿车内声音是50dB ,求相应的声强度;(2)如果飞机起飞时的声音是120dB ,两人正常交谈的声音是60dB ,那么前者的声强度是后者的声强度的多少倍?22.(12分)已知函数()12(log 94343)x x f x +=-⨯+,函数()222log 7g x x mx =-+.(1)求不等式()4f x ≤的解集;(2)若[][]121,2,1,2x x ∀∈∃∈,使()()12f x g x ≥,求实数m 的取值范围.第4章指数函数与对数函数(解析版)本卷满分150分,考试时间120分钟。
高一最难的数学知识点指数对数
高一最难的数学知识点指数对数在高中数学中,指数和对数是其中最具挑战性的知识点之一。
对于大部分高一学生来说,掌握这两个概念可能需要一些时间和努力。
本文将介绍高一最难的数学知识点之一——指数和对数,并通过例题和解析,帮助读者更好地理解和应用这些概念。
一、指数指数是数学中重要且常见的概念之一。
在数学中,指数表示一个数的乘积中,相同因子的重复次数。
指数的表示通常采用上标形式,如2³表示2的三次方。
在学习指数时,我们需要了解指数运算的基本规则。
其中包括乘法法则、除法法则和幂运算法则等。
1. 乘法法则乘法法则指出,两个具有相同底数的指数相乘,等于底数不变,指数相加。
例如,aⁿ * aᵐ = a^(n+m)。
通过使用乘法法则,我们可以简化复杂的指数运算,并进行快速计算。
2. 除法法则除法法则是乘法法则的逆运算。
两个具有相同底数的指数相除,等于底数不变,指数相减。
例如,aⁿ / aᵐ = a^(n-m)。
掌握除法法则对于解决涉及指数的复杂问题非常重要。
3. 幂运算法则幂运算法则规定,一个数的指数上再次有指数,等于底数不变,指数相乘。
即(aⁿ)ᵐ = a^(n*m)。
理解幂运算法则有助于我们处理复合指数和简化指数表达式。
二、对数对数是指数的逆运算。
在数学中,对数表示一个数以某个底数为指数时的结果。
对数有时候也被称为幂运算的反函数。
对数的表示通常采用log的形式,如logₐb表示以底数a为指数时,结果为b的对数。
掌握对数的规则和性质是理解和解决对数问题的关键。
以下是一些基本的对数性质。
1. 对数的乘法法则对数的乘法法则指出,两个数相乘后取对数,等于将两个数分别取对数再相加。
即logₐ(m*n) = logₐm + logₐn。
这个性质可以用于简化复杂的对数运算。
2. 对数的除法法则对数的除法法则是乘法法则的逆运算。
两个数相除后取对数,等于将两个数分别取对数再相减。
即logₐ(m/n) = logₐm - logₐn。
高一数学必修一难点微专题——指数型与对数型函数综合问题(学生版)
微专题5:指数型与对数型函数综合问题1.常见的几类指数型函数模型:假设a >0且a ≠1.(1).f (x )=pa 2x +qa x +r ,p ≠0(2).f (x )=a x +a −x(3).f (x )=a x −a −x(4).f (x )=11+a x −12(5).f (x )=1a x −1+12(6).f (x )=a x +1a x −12.常见的几类对数型函数模型:假设a >0且a ≠1.(1)f (x )=p log 2ax +q log a x +r ,p ≠0(2)f (x )=log a 1−x 1+x ,g (x )=log a 1+x 1−x ,(a >0,a ≠1)都是奇函数.(3)f (x )=log a (bx +1+b 2x 2),(a >0,a ≠1)是奇函数.(4)f (x )=log a (a bx +1)−b 2x (a >0且a ≠1)是偶函数.二.典型例题分析1已知奇函数f x =2x +a2x ,x ∈(-1,1).(1)求实数a 的值;(2)判断f x 在(-1,1)上的单调性并进行证明;(3)若函数f x 满足f (1-m )+f (1-2m )<0,求实数m 的取值范围.2已知定义域为R 的函数f x =-2x +b2x +1+a 是奇函数.(1)求实数a ,b 的取值范围;(2)若对任意t ∈1,3 ,不等式f t 2-2kt +f 2t 2-1 <0恒成立,求实数k 的取值范围.3设a ∈R ,函数f (x )=2x +a2x -a .(1)已知a =1,求证:函数f (x )为定义域上的奇函数;(2)已知a <0.(i )判断并证明函数f (x )的单调性;(ii )函数f (x )在区间[m ,n ](m <n )上的值域是k 2m ,k2n (k ∈R ),求k a 的取值范围.4已知函数f x =log 4x 2-a log 4x +3,其中a 为常数.(1)当a =2时,求函数f x 的值域;(2)若对∀x ∈414,44 ,1≤f x ≤27恒成立,求实数a 的取值范围.5已知函数f (x )=log 9(9x +1)+kx 是偶函数.(1).并求实数k 的值;(2).若方程f (x )=12x +b 有实数根,求b 的取值范围;(3).设h(x)=log9a⋅3x−43a,若函数f(x)与h(x)的图象有且仅有一个公共点,求实数a的取值范围.。
高一数学指数函数和对数函数试题答案及解析
高一数学指数函数和对数函数试题答案及解析1.已知求的值.【答案】2【解析】解析:由可得x+x-1=7∴=……=18,故原式=2【考点】本题主要考查有理指数幂的运算。
点评:有理指数幂的运算,注意运用乘法公式,简化运算过程。
2.已知在上有,则是()A.在上是增加的B.在上是减少的C.在上是增加的D.在上是减少的【答案】C【解析】因为在上有,所以。
又在是减函数,所以是在上是增加的,故选C。
【考点】本题主要考查指数函数对数函数的性质,复合函数的单调性。
点评:注意讨论对数的底数取值情况。
3.函数的定义域是。
【答案】【解析】由解得,故答案为【考点】本题主要考查对数函数的性质。
点评:简单题,注意利用对数的底数大于0且不等于1。
4.已知函数,(1)求的定义域;(2)判断的奇偶性。
【答案】(1);(2)为非奇非偶函数.【解析】(1)∵,∴,又由得,∴的定义域为。
(2)∵的定义域不关于原点对称,∴为非奇非偶函数。
【考点】本题主要考查对数函数的图象和性质,复合函数,函数的奇偶性。
点评:判断函数的奇偶性,其必要条件是定义域关于原点对称。
5.在下列图象中,二次函数y=ax2+bx+c与函数y=()x的图象可能是()【答案】A【解析】首先由图可知,c=0.根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴-<0,可排除B与D选项C,a-b>0,a<0,∴>1,则指数函数单调递增,故C 不正确故选:A【考点】本题主要考查二次函数、指数函数的图象和性质。
点评:确定同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b 的正负情况是求解的关键。
6.函数在上的最大值与最小值的和为3,则.【答案】2;【解析】因为,指数函数是单调函数,所以函数在上的最大值与最小值在区间[0,1]端点处取到,=3,a=2.【考点】本题主要考查指数函数的图象和性质,指数不等式解法。
点评:指数函数是重要函数之一,其图象和性质要牢记。
高一数学必修一第四章指数函数与对数函数
高一数学必修一第四章指数函数与对数函数指数函数和对数函数是高中数学中重要的两个函数,也是高一数学必修一中第四章需要掌握的重点内容。
在本章中,我们将深入了解指数函数和对数函数之间的关系,以及它们在日常生活中的广泛运用。
首先,让我们来回顾一下指数函数的定义,指数函数是以一个特定的基数为底的函数,它可以表示当x变化时会随之改变的一种量的数学表示。
指数函数的形式为 y = ax,这里的a是基数,当a = 1时,指数函数称为底数为1的单调函数。
指数函数在实际应用中有广泛的用途,例如在我们日常生活中,我们会碰到“一年涨三分”,“一年贴现百分之十”等概念,都属于指数函数的范畴。
接着,我们再来讨论一下对数函数,它的定义是以指数函数的反函数,它的形式为 y = logax,其中a又称为对数的底数。
在日常生活中,我们会经常碰到对数函数的应用,例如我们可以使用它来计算发动机的功率,照明强度,声音等等。
另外,指数函数和对数函数之间也有着重要的联系,它们之间具有逆函数关系,即y = axy = logax两个函数可以相互替换,也就是说当a是一个正数时,其两个函数的函数图形是可以经过对称轴翻转后对号入座的。
除此之外,我们还可以运用指数函数和对数函数中的经典公式来解决实际问题,例如以水的分解为例,水的分解可以用以下的指数函数公式来表示:
n = a1 + a2,其中a1代表水的分解率,a2是水的生成率。
当
a1等于2时,这个公式就可以转换为一个对数函数的形式:n = log2a2。
总之,指数函数和对数函数在实际应用中都是极为重要的,它们之间也存在着紧密的联系,它们被广泛地运用在人们日常生活中,而且也可以利用它们来解决实际问题。
2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)
人教版高一数学必修一第4单元指数函数与对数函数(讲解和习题)基础知识讲解一.指数函数的定义、解析式、定义域和值域【基础知识】1、指数函数的定义:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞).2、指数函数的解析式:y=a x(a>0,且a≠1)【技巧方法】①因为a>0,x是任意一个实数时,a x是一个确定的实数,所以函数的定义域为实数集R.①规定底数a大于零且不等于1的理由:如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义;如果a<0,比如y=(﹣4)x,这时对于x=,x=在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.二.指数函数的图象与性质【基础知识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y =a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R 上是增函数在R 上是减函数2、底数与指数函数关系①在同一坐标系内分别作函数的图象,易看出:当a >l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当0<a <l 时,底数越小,函数图象在第一象限越靠近x 轴. ①底数对函数值的影响如图.①当a >0,且a ≠l 时,函数y =a x 与函数y =的图象关于y 轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.三.二次函数的性质与图象【二次函数】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【二次函数的性质】二次函数是一个很重要的知识点,不管在前面的选择题填空题还是解析几何里面,或是代数综合体都有可能出题,其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.这里面略谈一下他的一些性质.①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式①=b2﹣4ac,当①=0时,函数与x轴只有一个交点;①>0时,与x轴有两个交点;当①<0时无交点.①根与系数的关系.若①≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;①二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.①平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;四.指数型复合函数的性质及应用【基础知识】指数型复合函数性质及应用:指数型复合函数的两个基本类型:y=f(a x)与y=a f(x)复合函数的单调性,根据“同增异减”的原则处理U=g(x)y=a u y=a g(x)增增增减减增增减减减增减.五.指数函数的单调性与特殊点【基础知识】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0<a<1的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x如果a>1,则函数单调递增;(2)如果0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X.因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小.反之亦然,因此可得“异减”.六.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.七.指数式与对数式的互化【基础知识】a b=N①log aN=b;指数方程和对数方程主要有以下几种类型:(1)a f(x)=b①f(x)=log a b;log a f(x)=b①f(x)=a b(定义法)(2)a f(x)=a g(x)①f(x)=g(x);log a f(x)=log a g(x)①f(x)=g(x)>0(同底法)(3)a f(x)=b g(x)①f(x)log m a=g(x)log m b;(两边取对数法)(4)log a f(x)=log b g(x)①log a f(x)=;(换底法)(5)A log x+B log a x+C=0(A(a x)2+Ba x+C=0)(设t=log a x或t=a x)(换元法)八.对数的运算性质【基础知识】对数的性质:①=N;①log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.九.换底公式的应用【基础知识】换底公式及换底性质:(1)log a N=(a>0,a≠1,m>0,m≠1,N>0).(2)log a b=,(3)log a b•log b c=log a c,十.对数函数的定义域【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.十一.对数函数的值域与最值【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定点:函数图象恒过定点(1,0)十二.对数值大小的比较【基础知识】1、若两对数的底数相同,真数不同,则利用对数函数的单调性来比较.2、若两对数的底数和真数均不相同,通常引入中间变量(1,﹣1,0)进行比较3、若两对数的底数不同,真数也不同,则利用函数图象或利用换底公式化为同底的再进行比较.(画图的方法:在第一象限内,函数图象的底数由左到右逐渐增大)十三.对数函数的单调性与特殊点【基础知识】对数函数的单调性和特殊点:1、对数函数的单调性当a>1时,y=log a x在(0,+∞)上为增函数当0<a <1时,y =log a x 在(0,+∞)上为减函数 2、特殊点对数函数恒过点(1,0)十四.对数函数图象与性质的综合应用 【基础知识】1、对数函数的图象与性质:a >10<a <1图象定义域 (0,+∞)值域 R 定点 过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x >1时,y >0;当0<x <1,y <0当x >1时,y <0;当0<x <1时,y >02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【技巧方法】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十五.指数函数与对数函数的关系【基础知识】指数函数和对数函数的关系:(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.(3)指数函数与对数函数的联系与区别:十六.反函数【基础知识】【定义】一般地,设函数y=f(x)(x①A)的值域是C,根据这个函数中x,y的关系,用y把x表示出,得到x=g(y).若对于y在中的任何一个值,通过x=g(y),x在A中都有唯一的值和它对应,那么,x=g(y)就表示y是自变量,x是因变量是y的函数,这样的函数y=g(x)(y①C)叫做函数y=f(x)(x①A)的反函数,记作y=f(﹣1)(x)反函数y=f (﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了角色(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C(其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数;(6)一段连续的函数的单调性在对应区间内具有一致性;(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;(8)反函数是相互的且具有唯一性;(9)定义域、值域相反对应法则互逆(三反);(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).十七.对数函数图象与性质的综合应用【基础知识】1、对数函数的图象与性质:a>10<a<1图象定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【解题方法点拨】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十八.函数的零点【基础知识】一般地,对于函数y=f(x)(x①R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x①D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.十九.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.【技巧方法】(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.二十.函数的零点与方程根的关系【基础知识】函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.二十一. 二分法【基础知识】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f(b)>0,那么当x1=时,若f(x1)=0,这说x1为零点;若不为0,假设大于0,那么继续在[x1,b]区间取中点验证它的函数值为0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.习题演练一.选择题(共12小题)1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞⋃+∞2.下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )2=21m - C .m 2+m 2=2m 2D .(m +n )2=m 2+n 23.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A . B .C .D .4.设2,8()(8),8x x f x f x x ⎧≤=⎨->⎩,则(17)f =( )A .2B .4C .8D .165.函数13x y a +=-(0a >,且1a ≠)的图象一定经过的点是( ) A .()0,2-B .()1,3--C .()0,3-D .()1,2--6.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+7.已知函数1()ln 1f x x x =--,则()y f x =的图象大致为( ).A .B .C .D .8.已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>9.函数()2xf 的定义域为[1,1]-,则()2log y f x =的定义域为( )A .[1,1]-B.C .1,22⎡⎤⎢⎥⎣⎦D .[1,4]10.设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减11.已知函数()ln 1,01,0xx x f x e x ⎧+>=⎨+≤⎩,()22g x x x =--,若方程()()0f g x a -=有4个不相等的实根,则实数a 的取值范围是( ) A .(),1-∞B .(]0,1C .(]1,2D .[)2,+∞12.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭二.填空题(共6小题)13.计算:13021lg8lg 25327e -⎛⎫-++= ⎪⎝⎭__________.14.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 15.已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________.16.若关于x 的方程11224a x x =-++-的解集为空集,求实数a 的取值范围______. 17.已知函数223,3()818,3x x f x x x x -⎧<=⎨-+≥⎩,则函数()()2g x f x =-的零点个数为_________.18.已知定义在R 上的函数()f x 满1(2)()f x f x +=,当[0,2)x ∈时,()x f x x e =+,则(2019)f =_______.三.解析题(共6小题)19.已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为-4,求a 的值.20.已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f . (1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.22.已知实数0a >,定义域为R 的函数()x x e af x a e=+是偶函数,其中e 为自然对数的底数.(①)求实数a 值;(①)判断该函数()f x 在(0,)+∞上的单调性并用定义证明;(①)是否存在实数m ,使得对任意的t R ∈,不等式(2)(2)f t f t m -<-恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.23.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >. (1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x xf -<.24.甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P (元)与时间t (天)的函数关系如图所示(1),该商品日销售量Q (件)与时间t (天)的函数关系如图(2)所示.(1)(2)(1)写出图(1)表示的销售价格与时间的函数关系式()P f t =,写出图(2)表示的日销售量与时间的函数关系式()Q g t =及日销售金额M (元)与时间的函数关系式()M h t =. (2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N (元)与时间t (天)之间的函数关系式为22102750N t t =--+,试比较4月份每天两商店销售金额的大小关系。
2023北京重点校高一(上)期末数学汇编:指数函数与对数函数章节综合
2023北京重点校高一(上)期末数学汇编指数函数与对数函数章节综合一、单选题1.(2023秋·北京东城·高一统考期末)已知函数()|lg(1)|f x x =+,对a ,b 满足1a b -<<且()()f a f b =,则下面结论一定正确的是()A .0a b +=B .1ab =C .0ab a b --=D .0ab a b ++=2.(2023秋·北京东城·高一统考期末)下列函数中,在区间(0,)+∞上单调递减的是()A.y =B .ln y x=C .12xy ⎛⎫= ⎪⎝⎭D .3y x =3.(2023秋·北京东城·高一统考期末)记地球与太阳的平均距离为R ,地球公转周期为T ,万有引力常量为G ,根据万有引力定律和牛顿运动定律知:太阳的质量2324π(kg)R M GT =.已知32lg 20.3,lg π0.5,lg 28.7R GT ≈≈≈,由上面的数据可以计算出太阳的质量约为()A .30210kg⨯B .292g10k ⨯C .30310kg⨯D .29310kg⨯4.(2023秋·北京西城·高一北京八中校考期末)下列函数在其定义域内是增函数的是()A .2xy =B .2log y x=-C .1y x=-D .23y x =5.(2023秋·北京西城·高一统考期末)设2log 3a =,则122a +=()A .8B .11C .12D .186.(2023秋·北京西城·高一统考期末)近年来,踩踏事件时有发生,给人们的生命财产安全造成了巨大损失.在人员密集区域,人员疏散是控制事故的关键,而能见度x (单位:米)是影响疏散的重要因素.在特定条件下,疏散的影响程度k 与能见度x 满足函数关系:0.2,0.11.4,0.1101,10bx k ax x x <⎧⎪=+≤≤⎨⎪>⎩(,a b 是常数).如图记录了两次实验的数据,根据上述函数模型和实验数据,b 的值是(参考数据:lg30.48≈)()A .0.24-B .0.48-C .0.24D .0.487.(2023秋·北京西城·高一统考期末)若a b >,则下列不等式一定成立的是()A .11a b<B .22a b >C .e e a b--<D .ln ln a b>8.(2023秋·北京西城·高一北京八中校考期末)若函数1()x f x a -=的图象经过点(4,2),则函数g (x )=log a 11x +的图象是()A .B .C .D .9.(2023秋·北京西城·高一北京八中校考期末)已知函数()12xf x =,()221f x x =+,()()1log 1a g x x a =>,()()20g x kx k =>,则下列结论正确的是()A .函数()1f x 和()2f x 的图象有且只有一个公共点B .0x ∃∈R ,当0x x >时,恒有()()12g x g x >C .当2a =时,()00,x ∃∈+∞,()()1010f x g x <D .当1a k=时,方程()()12g x g x =有解10.(2023秋·北京西城·高一北京八中校考期末)已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c<a<b D .b<c<a11.(2023秋·北京朝阳·高一统考期末)定义在R 上的偶函数()y f x =满足(1)()f x f x -=-,且在[0,1]上单调递增,2023,(2022)2a f b f c f ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系是()A .a b c >>B .a c b >>C .b c a>>D .c b a>>12.(2023秋·北京朝阳·高一统考期末)某厂以x 千克/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得利润210031x x ⎛⎫+- ⎪⎝⎭元,要使生产100千克该产品获得的利润最大,该厂应选取的生产速度是()A .2千克/小时B .3千克/小时C .4千克/小时D .6千克/小时13.(2023秋·北京海淀·高一统考期末)已知0.10.644,2,log 0.6a b c ===,则,,a b c 的大小关系为()A .c<a<bB .c b a<<C .a b c <<D .b a c<<二、填空题14.(2023秋·北京东城·高一统考期末)221log 42-⎛⎫+= ⎪⎝⎭__________.15.(2023秋·北京东城·高一统考期末)函数()()ln 12f x x =-的定义域是__________.16.(2023秋·北京西城·高一统考期末)写出一个同时满足下列两个条件的函数()f x =_____________.①对12,(0,)x x ∀∈+∞,有()()()1212f x x f x f x =+;②当(4,)x ∈+∞时,()1f x >恒成立.17.(2023秋·北京西城·高一统考期末)函数2()log (1)f x x =-+的定义域是_____________.18.(2023秋·北京西城·高一北京八中校考期末)40.252lg83lg5⨯++=________.19.(2023秋·北京西城·高一北京八中校考期末)已知函数()()12,1,,1x a x x f x a x -⎧-≤=⎨>⎩(0a >且1a ≠).给出下列四个结论:①存在实数a ,使得()f x 有最小值;②对任意实数a (0a >且1a ≠),()f x 都不是R 上的减函数;③存在实数a ,使得()f x 的值域为R ;④若3a >,则存在()00,x ∞∈+,使得()()00f x f x =-.其中所有正确结论的序号是___________.20.(2023秋·北京西城·高一北京八中校考期末)函数()()0.5log 1f x x =-的定义域是___________.21.(2023秋·北京西城·高一北京八中校考期末)已知函数()21,23,21x x f x x x ⎧-≤⎪=⎨>⎪-⎩,若方程()f x a =有三个不同的实数根,则实数a 的取值范围是___________.22.(2023秋·北京朝阳·高一统考期末)已知下列五个函数:21,,ln ,,e x y x y y x y x y x=====,从中选出两个函数分别记为()f x 和()g x ,若()()()F x f x g x =+的图象如图所示,则()F x =______________.三、解答题23.(2023秋·北京东城·高一统考期末)已知函数()22(0)x x f x a a -=+⋅≠.(1)若()f x 为偶函数,求a 的值;(2)从以下三个条件中选择两个作为已知条件,记所有满足条件a 的值构成集合A ,若A ≠∅,求A .条件①:()f x 是增函数;条件②:对于,()0x f x ∀∈>R 恒成立;条件③:0[1,1]x ∃∈-,使得()04f x ≤.24.(2023秋·北京东城·高一统考期末)函数()f x 的定义域为(0,)+∞,若对任意的,(0,)s t ∈+∞,均有()()()f s t f s f t +>+.(1)若(1)0f >,证明:(2)0f >;(2)若对(0,),()0x f x ∀∈+∞>,证明:()f x 在(0,)+∞上为增函数;(3)若(1)0f =,直接写出一个满足已知条件的()f x 的解析式.25.(2023秋·北京西城·高一统考期末)某商贸公司售卖某种水果.经市场调研可知:在未来20天内,这种水果每箱的销售利润r (单位:元)与时间t (120,t t ≤≤∈N ,单位:天)之间的函数关系式为1104r t =+,且日销售量p (单位:箱)与时间t 之间的函数关系式为1202p t =-.(1)求第几天的日销售利润最大?最大值是多少?(2)在未来的这20天中,在保证每天不赔本的情况下,公司决定每销售1箱该水果就捐赠()m m *∈N 元给“精准扶贫”对象,为保证销售积极性,要求捐赠之后每天的利润随时间t 的增大而增大,求m 的取值范围.26.(2023秋·北京西城·高一统考期末)函数()|1lg |f x x c =--,其中c ∈R .(1)若0c =,求()f x 的零点;(2)若函数()f x 有两个零点()1212,x x x x <,求124x x +的取值范围.27.(2023秋·北京西城·高一北京八中校考期末)已知函数()21log 1x f x x -=+.(1)若()1f a =,求a 的值;(2)判断函数()f x 的奇偶性,并证明你的结论;(3)若()f x m ≥对于[)3,x ∈+∞恒成立,求实数m 的范围.28.(2023秋·北京海淀·高一统考期末)已知0a >且1a ≠,函数()x x x xa a f xb a a ---=++在R 上是单调减函数,且满足下列三个条件中的两个.①函数()f x 为奇函数;②()315f =-;③()315f -=-.(1)从中选择的两个条件的序号为_____,依所选择的条件求得b =____,=a ____;(2)利用单调性定义证明函数()2g t t t=-在()0,∞+上单调递减;(3)在(1)的情况下,若方程()4xf x m =+在[]0,1上有且只有一个实根,求实数m 的取值范围.四、双空题29.(2023秋·北京西城·高一统考期末)已知函数()2,0,0x a x f x ax x ⎧+≥=⎨<⎩,若4a =-,则()0f x >的解集为___________;若x ∀∈R ,()0f x >,则a 的取值范围为_____________.30.(2023秋·北京海淀·高一统考期末)已知()221,0,0x x f x x ax x ⎧-<=⎨-≥⎩,当2a =时,()f x 的单调减区间为__________;若()f x 存在最小值,则实数a 的取值范围是__________.参考答案1.D【分析】由对数函数的运算性质可知()()lg 1lg 1a b -+=+移项化简即可得.【详解】因为函数()|lg(1)|f x x =+,对a ,b 满足1a b -<<且()()f a f b =,所以()()lg 1lg 1a b -+=+,则()()lg 1lg 10a b +++=所以()()lg 110a b ⎡⎤++=⎣⎦,即()()111a b ++=,解得0ab a b ++=故选:D 2.C【分析】根据指数函数,对数函数,幂函数的单调性即可得到答案.【详解】根据幂函数图像与性质可知,对A 选项y =(0,)+∞单调递增,故A 错误,对D 选项3y x =在(0,)+∞单调性递增,故D 错误,根据指数函数图像与性质可知12xy ⎛⎫= ⎪⎝⎭在(0,)+∞单调递减,故C 正确,根据对数函数图像与性质可知ln y x =在(0,)+∞单调性递增.故选:C.3.A【分析】利用对数运算性质计算即可.【详解】因为32lg 20.3,lg π0.5,lg 28.7R GT ≈≈≈,所以由2324πR M GT=得:2332224πlg lg lg 4l lg πg R R M GT GT ⎭+⎛⎫==+ ⎪⎝322lg 22lg π20.320.528.730.3lg R GT =≈+⨯+=++⨯,即30.3300.30.330lg 30.310101010M M +≈⇒≈==⨯,又0.3lg 20.3102≈⇒≈,所以30210kg M ≈⨯.故选:A.4.A【分析】根据指数函数、对数函数、幂函数的单调性依次判断即可.【详解】选项A :2x y =在定义域(,)-∞+∞上是增函数,正确;选项B :2log y x =在定义域(0,)+∞上是增函数,所以2log y x =-在定义域(0,)+∞上是减函数,错误;选项C :1y x =-的定义域为(,0)(0,)-∞+∞ ,1y x=-在(,0)-∞和(0,)+∞上是增函数,当120x x <<时,1211x x ->-,C 错误;选项D :23y x =的定义域为(,)-∞+∞,因为203>,由幂函数的性质可得23y x =在(0,)+∞上单调递增,又因为23y x =是偶函数,由对称性可得23y x =在(,0)-∞单调递减,D 错误;故选:A 5.D【分析】计算22log 9a =,122222a a +=⨯,代入计算即可.【详解】2log 3a =,则2222log 3log 9a ==,22log 91228a a+=⨯=⨯=⨯=,故选:D.6.A【分析】分别代入两点坐标得0.1 1.2b a ⋅=-,100.4b a ⋅=-,两式相比得结合对数运算得lg32b =-,解出b 值即可.【详解】当0.1x =时,0.1 1.40.20.1 1.2b b a a ⋅+=⇒⋅=-①,当10x =时,10 1.41100.4b b a a ⋅+=⇒⋅=-②,①比②得0.113310100bb b ⎛⎫=⇒⇒ ⎪⎝⎭,()22103103bb --∴=⇒=,lg30.48lg320.2422b b ∴=-⇒=-≈-=-故选:A.7.C【分析】利用特殊值判断AB ,由不等式的性质及指数函数的单调性判断C ,由特殊值及对数的意义判断D.【详解】当1,1a b ==-时,11a b>,故A 错误;当1,1a b ==-时,22a b =,故B 错误;由a b a b >⇒-<-,因为e x y =为增函数,所以e e a b --<,故C 正确;当1,1a b ==-时,ln b 无意义,故ln ln a b >不成立,故D 错误.故选:C 8.D【分析】根据函数1()x f x a -=的图象经过点(4,2)可求出a 的值,把a 的值代入函数()g x 的解析式,从而根据函数()g x 的定义域及单调性排除选项.【详解】由题意可知f (4)=2,即a 3=2,所以a.所以)1()11g x x x ==-++,因为函数()g x 的定义域为()1,-+∞,且函数()g x 在定义域内单调递减,所以排除选项A ,B ,C.故选:D.9.D【分析】对于A ,易知两个函数都过()0,1,结合特值和图象可得函数()1f x 和()2f x 的图像有两个公共点;对于B ,由函数的增长速度可判断;对于C ,当2a =时,作图可知x ∀∈R ,有()()11f x g x >恒成立;对于D ,当1a k =时,易知两个函数都过点1,1k ⎛⎫ ⎪⎝⎭,即方程()()12g x g x =有解;【详解】对于A ,指数函数()12xf x =与一次函数()221f x x =+都过()0,1,且()()121213f f =<=,()()123837f f =>=,故还会出现一个交点,如图所示,所以函数()1f x 和()2f x 的图像有两个公共点,故A 错误;对于B ,()()1log 1a g x x a =>,()()200g x kx k =>=均单调递增,由对数函数的性质可得对数函数的增长速度越来越慢,逐渐趋近0,一次函数的增长速度固定,所以不存在0x ∈R ,当0x x >时,恒有()()12g x g x >,故B 错误;对于C ,当2a =时,指数函数()12xf x =与对数函数()21log g x x =互为反函数,两函数图像关于直线y x =对称,如图所示,由图可知,x ∀∈R ,有()()11f x g x >恒成立,故C 错误;对于D ,当1a k =时,()11log k g x x =,()()20g x kx k =>,由1a >知,11k >,且两个函数都过点1,1k ⎛⎫ ⎪⎝⎭,即方程()()12g x g x =有解,故D 正确;故选:D【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解10.B【分析】运用中间量0比较,a c ,运用中间量1比较,b c【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.11.A【分析】由(1)()f x f x -=-得(2)()f x f x -=,则()f x 的周期为2,结合函数的奇偶性,即可化简a ,b ,c ,最后根据单调性比较大小.【详解】由(1)()f x f x -=-得(2)(1)()f x f x f x -=--=,∴()f x 的周期为2,又()f x 为偶函数,则202311110122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,(2022)(0)c f f ==,∵102<<=,()f x 在[0,1]上单调递增,∴c b a <<.故选:A 12.C【分析】生产100千克该产品获得的利润为()100210031f x x x x ⎛⎫=⋅+- ⎪⎝⎭,令1t x =,由换元法求二次函数最大值即可.【详解】由题意得,生产100千克该产品获得的利润为()2210021211100311000031000023f x x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=⋅+-=+-=-++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,110x ≤≤,令1t x =,1110t ≤≤,则()()22251000023200010641f t t t t ⎡⎤⎛⎫=-++=--⎢⎥ ⎪⎝⎢⎣-⎭⎥⎦,故当14t =时,()f t 最大,此时4x =.故选:C 13.A【分析】化简a ,通过讨论函数()2xf x =和()4log g x x =的单调性和取值范围即可得出,,a b c 的大小关系.【详解】解:由题意,0.10.242a ==,在()2xf x =中,函数单调递增,且()0f x >,∴0.20.6022b a <<==,在()4log g x x =中,函数单调递增,且当01x <<时,()0g x <,∴4log 0.60c =<,∴c<a<b ,故选:A.14.6【分析】根据给定条件,利用指数运算、对数运算计算作答.【详解】222221()log 42log 24262-+=+=+=.故答案为:615.1,2⎛⎫-∞ ⎪⎝⎭【分析】根据对数真数大于零可构造不等式求得结果.【详解】由120x ->得:12x <,()f x \的定义域为1,2⎛⎫-∞ ⎪⎝⎭.故答案为:1,2⎛⎫-∞ ⎪⎝⎭.16.2l og x (答案不唯一)【分析】由()f x 满足的两个条件可以联想到对数函数,再根据对数函数的性质时行判断即可得答案.【详解】解:因为由()f x 满足的两个条件可以联想到对数函数,当2()log f x x =时,对12,(0,)x x ∀∈+∞,()12212212212log ()log log ()()f x x x x x x f x f x ==+=+,满足条件①;当(4,)x ∈+∞时,2()log 421f x >=>,满足条件②.故答案为:2l og x (答案不唯一)17.[0,1)【分析】根据对数型函数的定义域,结合二次根式的性质进行求解即可.【详解】由题意可知:10010x x x ->⎧⇒≤<⎨≥⎩,所以该函数的定义域为[0,1),故答案为:[0,1)18.7【分析】利用指数运算及对数运算法则进行计算.【详解】()40.252lg83lg50.25163lg 2lg5437⨯++=⨯++=+=故答案为:719.①②④【分析】通过举反例判断①.,利用分段函数的单调性判断②③,求出()2y a x =-关于y 轴的对称函数为()2y a x =-,利用()2y a x =-与y 1x a -=的图像在()1,∞+上有交点判断④.【详解】当2a =时,()10,1,2,1x x f x x -≤⎧=⎨>⎩当1x >时,121x ->,所以()f x 有最小值0,①正确;若()f x 是R 上的减函数,则112020101211a a a a a a a --<>⎧⎧⎪⎪<<⇒<<⎨⎨⎪⎪-≥=≤⎩⎩,无解,所以②正确;当01a <<时,1x y a -=单减,且当1x >时,值域为()0,1,而此时()2y a x =-单增,最大值为2a -,所以函数()f x 值域不为R ;当12a <<时,()2y a x =-单增,1x y a -=单增,若()f x 的值域为R ,则1121a a --≥=,所以1a ≤,与12a <<矛盾;所以不存在实数a ,使得()f x 的值域为R ;由①可知,当2a =时,函数()f x 值域不为R ;当2a >时,()2y a x =-单减,最小值为2a -,1x y a -=单增,且11x a ->,所以函数()f x 值域不为R ,综上③错误;又()2y a x =-关于y 轴的对称函数为()2y a x =-,若3a >,则11211a a -->==,但指数函数1x y a -=的增长速度快于函数()2y a x =-的增长速度,所以必存在()01,x ∞∈+,使得()0102x a x a --=,即()()00f x f x =-成立,所以④正确.故答案为:①②④20.()1,+∞【分析】根据对数函数定义求对数函数的定义域.【详解】解:要使函数()()0.5log 1f x x =-有意义就要10x ->,即1x >,所以函数()()0.5log 1f x x =-的定义域是()1,+∞.故答案为:()1,+∞21.(0,1)【解析】转化条件为直线y a =与函数()y f x =的图象有3个交点,数形结合即可得解.【详解】方程()f x a =有三个不同的实数根,所以直线y a =与函数()y f x =的图象有3个交点,在直角坐标系中作出()f x 的图象,如图,若要使直线y a =与函数()y f x =的图象有3个交点,数形结合可得,(0,1)a ∈.故答案为:(0,1).22.1e x x+【分析】观察图象确定函数()F x 的定义域和奇偶性和特殊点,由此确定()F x 的解析式.【详解】由已知()()()F x f x g x =+,()()21,,,,ln ,e x f x g x y x y y x y x y x ⎧⎫∈=====⎨⎬⎩⎭,观察图象可得()F x 的定义域为()(),00,∞-+∞U ,所以()f x 或()g x 中必有一个函数为1y x=,且另一个函数不可能为ln y x =,又()F x 的图象不关于原点对称,所以1()F x x x ≠+,所以21()F x x x =+或1()e x F x x=+,若21()F x x x =+,则1(1)101F -=+=-与函数()F x 图象矛盾,所以1()e x F x x =+,故答案为:1e x x+.23.(1)1a =;(2)选①②,不存在A ;选①③,(,0)A =-∞;选②③,(0,4]A =.【分析】(1)由偶函数的定义求解;(2)选①②,0a <时,由复合函数单调性得()f x 是增函数,0a >时,由单调性的定义得函数的单调性,然后在0a <时,由()0f x =有解,说明不满足②a 不存在;选①③,同选①②,由单调性得0a <,然后则函数的最大值不大于4得a 的范围,综合后得结论;选②③,先确定()0f x >恒成立时a 的范围,再换元确定新函数的单调性得最大值的可能值,从而可得参数范围.【详解】(1)()f x 是偶函数,则()()2222x x x x f x a f x a ---=+⋅==+⋅,(1)(220x x a ---=)恒成立,∴10a -=,即1a =;(2)若选①②,()22xxaf x =+(0a ≠),若0a <,则()f x 是增函数,由202xxa+=得4log ()x a =-,因此()0f x >不恒成立,不合题意,若0a >,设2x t =,则0t >,()()af xg t t t==+0>恒成立,设120t t <<,则121212121212()()()()t t t t a a a g t g t t t t t t t ---=+--=,120t t -<,当120t t <<120t t a -<,12()()0g t g t ->,12()()g t g t >,()g t是减函数,12t t <<时,120t t a ->,12()()0g t g t -<,12()()g t g t <,()g t 是增函数,又2x t =是增函数,因此()f x 在定义域内不是增函数,不合题意.故不存在a 满足题意;若选①③,若0a <,则()22xxaf x =+是增函数,若0a >,设2x t =,则0t >,()()af xg t t t ==+0>恒成立,设120t t <<,则121212121212()()()()t t t t a a a g t g t t t t t t t ---=+--=,120t t -<,当120t t <<120t t a -<,12()()0g t g t ->,12()()g t g t >,()g t是减函数,12t t <<时,120t t a ->,12()()0g t g t -<,12()()g t g t <,()g t 是增函数,又2x t =是增函数,因此()f x 在定义域内不是增函数,不合题意.故不存在a 满足题意;要满足①,则0a <,所以[1,1]x ∈-时,min 1()(1)22f x f a =-=+,由1242a +≤得74a ≤,综上,a<0;所以(,0)A =-∞.若选②③,若0a <,则由4()20log ()2xxaf x x a =+=⇔=-,()0f x >不恒成立,只有0a >时,()202xx af x =+>恒成立,设2x t =,则0t >,又0a >时,[1,1]x ∈-⇒12[,2]2xt =∈,()()a f x g t t t ==+,()()af xg t t t==+0>恒成立,设120t t <<,则121212121212()()()()t t t t a a a g t g t t t t t t t ---=+--=,120t t -<,当120t t <<120t t a -<,12()()0g t g t ->,12()()g t g t >,()g t 是减函数,12t t <<时,120t t a ->,12()()0g t g t -<,12()()g t g t <,()g t 是增函数,12≤即14a ≤时,()min 11()2422g x g a ==+≤,所以104a <≤;2≥即4a ≥时,()min (2)242ag x g ==+≤,所以4a =;若122<<,即144a <<时,()min 4g x g ==≤,所以144a <<;综上04a <≤,所以(0,4]A =.24.(1)证明过程见解析(2)证明过程见解析(3)()e e xf x =-,()0,x ∈+∞(答案不唯一)【分析】(1)赋值法得到()(2)210f f >>;(2)赋值法,令()2120,,s x t x x =∈+∞=-,且12x x >,从而得到1212()()()0f x f x f x x ->->,证明出函数的单调性;(3)从任意的,(0,)s t ∈+∞,均有()()()f s t f s f t +>+,可得到函数增长速度越来越快,故下凸函数符合要求,构造出符合要求的函数,并进行证明【详解】(1)令1s t ==,则()(2)(1)(1)21f f f +=,因为(1)0f >,所以()(2)210f f >>;(2)令()2120,,s x t x x =∈+∞=-,且12x x >,则()120,t x x =-∈+∞,所以212212()()()f x x x f x f x x +->+-,故1212()()()f x f x f x x ->-,因为对(0,),()0x f x ∀∈+∞>,所以()120f x x ->,故1212()()()0f x f x f x x ->->,即12()()f x f x >,()f x 在(0,)+∞上为增函数;(3)构造()e e xf x =-,()0,x ∈+∞,满足()10f =,且满足对任意的,(0,)s t ∈+∞,()()()f s t f s f t +>+,理由如下:()()e e e e e e e e e e e 1e 1e 1()()()s t s t s t s t s t f s t f s f t +++--===--+-+--+--+-,因为,(0,)s t ∈+∞,故e 10,e 10s t ->->,()()0()()()e 1e 1e 1s tf s t f s f t --++--->=,故对任意的,(0,)s t ∈+∞,()()()f s t f s f t +>+.25.(1)第10天的销售利润最大,最大值是1250元.(2)510m ≤≤,且*N m ∈.【分析】(1)通过计算得21()(10)12502f t rp t ==--+,根据二次函数最值即可得到答案;(2)计算21()(102)12001202g t t m t m =-+++-,根据题意得到不等式10219.5m +>,且1104m t +≤对于120,N t t *∈≤≤均成立以及N m *∈,最后取交集即可.【详解】(1)设第t 日的销售利润为()f t ,则1()(10)(1202)4f t rp t t ==+-211012002t t =-++21(10)12502t =--+.120,t t ≤≤∈N ,当10t =时,max ()1250f t =.所以第10天的销售利润最大,最大值是1250元.(2)设捐赠之后第t 日的销售利润为()g t ,则1()(10)(1202)4g t t m t =+--21(102)12001202t m t m =-+++-.依题意,m 应满足以下条件:①N m *∈;②192010219.52m ++>=,即 4.75m >;③1104m t +≤对于120,N t t ∈≤≤均成立,即10.25m ≤.综上510m ≤≤,且*N m ∈.26.(1)10x =(2)[)40+¥,【分析】(1)令()0f x =,即可求解零点,(2)令()|1lg |=0f x x c =--得111210,10c c x x -++==,进而结合基本不等式即可求解.【详解】(1)当0c =时,()|1lg |f x x =-,令()0f x =,则lg 1x =,故10x =,所以()f x 的零点为10x =.(2)令()|1lg |=0f x x c =--,则|1lg |x c -=,()0c >,故1lg x c -=±,由于12x x <,所以111210,10c c x x -++==,因此1112441010=40101010c c c c x x -++-+=⨯+⨯+⨯,由于100,100c c ->>,由基本不等式可得124=40101010c c x x -+⨯+⨯≥,当且仅当4010=1010c c -⨯⨯,即lg 2c =时取等号,故12440x x +≥,所以124x x +的取值范围为[)40+¥,27.(1)3-(2)奇函数,证明见解析(3)(],1-∞-【分析】(1)代入x a =,得到21log 11a a -=+,利用对数的运算即可求解;(2)先判断奇偶性,然后分析定义域并计算()(),f x f x -的数量关系,由此完成证明;(3)将已知转化为()min m f x ⎡⎤≤⎣⎦,求出()f x 在[)3,+∞的最小值,即可得解.【详解】(1)()1f a = ,21log 11a a -∴=+,即121a a -=+,解得3a =-,所以a 的值为3-(2)()f x 为奇函数,证明如下:由10110x x x -⎧>⎪+⎨⎪+≠⎩,解得:1x >或1x <-,所以定义域为()(),11,-∞-⋃+∞关于原点对称,又()()122221111log log log log 1111x x x x f x f x x x x x ---+--⎛⎫-====-=- ⎪-+-++⎝⎭,所以()f x 为奇函数;(3)因为()2221122log log log 1111x x f x x x x -+-⎛⎫===- ⎪+++⎝⎭,又外部函数2log y u =为增函数,内部函数211y x =-+在[)3,+∞上为增函数,由复合函数的单调性知函数()f x 在[)3,+∞上为增函数,所以()()2min 3113log log 1312f x f -====-+,又()f x m ≥对于[)3,x ∈+∞恒成立,所以()min m f x ⎡⎤≤⎣⎦,所以1m ≤-,所以实数m 的范围是(],1-∞-28.(1)①②;0;12(2)证明见解析(3)23,15⎡⎤--⎢⎥⎣⎦【分析】(1)通过分析可知一定满足①②,从而列出方程组,求出0b =,12a =;(2)定义法判断函数的单调性步骤:取值,作差,变形,判号;(3)参变分离得到()24141xx m =-++,[]0,1x ∈,换元后转化为2m t t=-在[]2,5上有唯一解,结合(2)中函数单调性,求出()2g t t t=-的值域,从而得到m 的取值范围.【详解】(1)因为函数()x xx xa a f xb a a ---=++在R 上是单调减函数,故②()315f =-;③()315f -=-不会同时成立,两者选一个,故函数一定满足①函数()f x 为奇函数,由于函数定义域为R ,所以有()00f =,则()10f <,()10f ->,故一定满足②,选择①②;()()0x x x xx x x xa a a a f x f xb b a a a a -------+=+++=++,()11315a a fb a a ---=+=-+,解得:0b =,12a =;(2)任取()12,0,x x ∈+∞,且12x x <,则()()()21211221122221g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=---=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,由于120x x <<,所以121220,10x x x x -+><,所以()()210g x g x -<,即()()21g x g x <,所以函数()2g t t t=-在()0,∞+上单调递减.(3)由(1)可得()1414xxf x =-+,所以方程为14414x x x m -=++,即()1424411441x xx x xm =-=-+++,令41=+x t ,由于[]0,1x ∈,所以[]2,5t ∈,则问题转化为2m t t=-在[]2,5上有唯一解.由(2)知,函数()2g t t t=-在[]2,5上单调递减,所以()()min max 2232()55,()221552g t g g t g ==-=-==-=-,所以,实数m 的取值范围是23,15⎡⎤--⎢⎥⎣⎦.29.{|0x x <或}2x >;10a -<<.【分析】代入4a =-,分0x ≥和0x <两种情况,分别求解()0f x >,最后取并集即可得出()0f x >的解集;原题等价于“当0x ≥时,20x a +>恒成立”以及“当0x <时,0ax >恒成立”同时满足,分别求出a 的取值范围,最后取公共部分即可得到.【详解】当4a =-时,()24,04,0x x f x x x ⎧-≥=⎨-<⎩.当0x ≥时,由()0f x >可得240x ->,解得2x >;当0x <时,由()0f x >可得40x ->,解得0x <.综上所述,()0f x >的解集为{|0x x <或}2x >.“若x ∀∈R ,()0f x >”等价于“当0x ≥时,20x a +>恒成立”以及“当0x <时,0ax >恒成立”同时满足.当0x ≥时,20x a +>恒成立,因为当0x ≥时,2x y a =+单调递增,所以应满足0210a a +=+>,即1a >-;当0x <时,0ax >恒成立,则a<0.则由“当0x ≥时,20x a +>恒成立”以及“当0x <时,0ax >恒成立”同时满足可得,10a -<<.故答案为:{|0x x <或}2x >;10a -<<.30.()0,1[)2,+∞【分析】空一:分开求解单调性;空二:分02a ≤和02a>两种情况讨论.【详解】当2a =时,()221,02,0x x f x x x x ⎧-<=⎨-≥⎩当0x <时函数()21xf x =-单调递增,当0x ≥时函数()()22211f x x x x =---=,所以函数()f x 在()0,1上单调递减,在()1,+∞单调递增,所以函数()f x 的单调减区间为()0,1因为函数()2221,021,0,0,024x xx x f x a a x ax x x x ⎧<⎧-<⎪==⎨⎨⎛⎫-≥--≥⎩⎪ ⎪⎝⎭⎩002aa ≤⇒≤并且()00f =,所以函数()f x 在R 上单调递增,没有最小值;002a a >⇒>,要想函数()f x 有最小值则满足214a-≤-即2a ≥故答案为:()0,1,[)2,+∞。
新教材2024年秋高中数学章末综合测评4指数函数与对数函数新人教A版必修第一册
章末综合测评(四) 指数函数与对数函数(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a<,则化简的结果是( )A.B.-C.D.-2.函数y=·ln (2-x)的定义域为( )A.(1,2) B.[1,2)C.(1,2] D.[1,2]3.函数f(x)=的零点个数为( )A.0 B.1C.2 D.34.(2024·河南信阳高一期末)若4m=3,则log312=( )A. B. C. D.5.函数y=log2(2x+1)的值域是( )A.[1,+∞)B.(0,1)C.(-∞,0) D.(0,+∞)6.(2024·四川泸州高一期末)在α型病毒病情初始阶段,可以用指数函数模型I(t)=e rt 描述累计感染病例数I(t)随时间t(单位:天)的改变规律.指数增长率r与R0、T近似满意R0=1+rT,其中R0为病毒基本再生数,T为两代间传染所需的平均时间,有学者基于已有数据估计出R0=3.22,T=10.据此,在α型病毒病情初始阶段,累计感染病例数增加至I(0)的4倍,至少须要(参考数据:ln 2≈0.69)()A.6天B.7天C.8天D.9天7.设a,b,c均为正数,且2a=,=b=log2c,则( )A.a<b<c B.c<b<aC.c<a<b D.b<a<c8.若函数f(x)=(k-1)a x-a-x(a>0且a≠1)在R上既是奇函数,又是减函数,则g(x)=log a|x +k|的大致图象是( )A BC D二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.(2024·河南南阳高一期中)已知函数f(x)=a x+1+2(a>0且a≠1)的图象过定点(a-3,3),则( )A.a=3B.f(1)=6C.f(x)为R上的增函数D.f(x)>10的解集为(2,+∞)10.(2024·江苏淮安高一期中)已知正实数a,b满意b a=4,且a+log2b=3,则a+b的值可以为( )A.2 B.3 C.4 D.511.若f(x)=lg (|x-2|+1),则下列命题正确的是( )A.f(x+2)是偶函数B.f(x)在区间(-∞,2)上是减函数,在(2,+∞)上是增函数C.f(x)没有最大值D.f(x)没有最小值12.已知正实数x,y满意log2x+y-,则下列结论肯定正确的是( ) A.B.x3<y3C.ln (y-x+1)>0 D.2x-y<三、填空题:本题共4小题,每小题5分,共20分.13.若f(x)=为R上的奇函数,则实数a的值为________.14.已知函数f(x)=a x-1+1(a>0,a≠1)的图象恒过点A,试写出一个满意下列条件的对数型函数g(x)的解析式________.①图象恒过点A;②是偶函数;③在(0,+∞) 上单调递减.15.(2024·江苏南京高一期末)闻名数学家、物理学家牛顿曾提出:物体在空气中冷却,假如物体的初始温度为θ1℃,空气温度为θ0℃,则t分钟后物体的温度θ(单位:℃)满意:θ=θ0+(θ1-θ0)e-kt.若当空气温度为30℃时,某物体的温度从90℃下降到60℃用时14分钟.则再经过28分钟后,该物体的温度为________℃.16.已知幂函数y=f(x)的图象过点(8,m)和(9,3).(1)实数m的值为________;(2)若函数g(x)=a f(x)(a>0,a≠1)在区间[16,36]上的最大值等于最小值的两倍,则实数a 的值为________.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)(2024·湖北襄阳五中期中)(1)求(×)6+×+lg 500-lg 0.5的值;(2)设2x=3y=72,求的值.18.(本小题满分12分)已知指数函数f(x)=a x(a>0,且a≠1)过点(-2,9).(1)求函数f(x)的解析式;(2)若f(2m-1)-f(m+3)<0,求实数m的取值范围.19.(本小题满分12分)已知指数函数f(x)=a x(a>0,且a≠1)过点(m,n);在+2x+4的顶点坐标为(m,n),③函数y=log b x+3(b>0,且b≠1)过定点(m,n)这三个条件中任选一个,回答下列问题.(1)求f(x)的解析式,推断并证明g(x)=f(x)+的奇偶性;(2)解不等式:log a(1+x)<log a(2-x).20.(本小题满分12分)设函数f(x)=log2(a x-b x),且f(1)=1,f(2)=log212.(1)求a,b的值;(2)求函数f(x)的零点;(3)设g(x)=a x-b x,求g(x)在[0,4]上的值域.21.(本小题满分12分)(2024·山东德州市第一中学期末)某医药公司研发的一种新药,假如成年人按规定的剂量服用,由监测数据可知,服用后6小时内每毫升血液中含药量y(单位:微克)与时间t(单位:时)之间的关系满意如图所示的曲线,当t∈[0,1.5)时,曲线是二次函数图象的一部分,当t∈[1.5,6]时,曲线是函数y=log a(t+2.5)+5(a>0,a≠1)图象的一部分,依据进一步测定,每毫升血液中含药量不少于2微克时,治疗有效.(1)试求服药后6小时内每毫升血液中含药量y与时间t之间的函数关系式;(2)问服药多久后起先有治疗效果?治疗效果能持续多少小时?(精确到0.1)(参考数据≈1.414)22.(本小题满分12分)若在定义域内存在实数x0,使f(x0+1)=f(x0)+f(1)成立,则称函数有“漂移点”x0.(1)请推断函数f(x)=是否有漂移点?并说明理由;(2)求证:函数f(x)=x2+3x在(0,1)上存在漂移点;(3)若函数f(x)=lg在(0,+∞)上有漂移点,求实数a的取值范围.章末综合测评(四)1.C2.B3.B4.A5.D6.B7.A8.B9.BCD[由题意可得a a-2+2=3恒成立,故a=2,A错误;依据题意,得a=2,∴f (x)=2x+1+2,∴f (1)=22+2=6,故B正确;∵f (x)=2x+1+2,∴f (x)为R上的增函数,C正确;f (x)=2x+1+2>10,解得x>2,D正确.故选BCD.]10.CD[因为b a=4,所以log b4=a,故a+log2b=log b4+log2b=2log b2+log2b=3,设log2b=x,则log b2=故x=3,解得x=1或2,当x=1时,log2b=1,故b=2,a=log24=2,故a+b=4;当x=2时,log2b=2,故b=4,a=log44=1,故a+b=5.故选CD.]11.ABC[f (x)=lg (|x-2|+1),所以f (x+2)=lg (|x|+1)为偶函数,故A正确.画出函数的图象,如图所示,所以函数在(-∞,2)上为减函数,在(2,+∞)上为增函数,且存在最小值,没有最大值,故ABC正确.故选ABC.]12.BC[∵正实数x,y满意log2x+log<∴log2x-<log2y-.易知f (x)=log2x-(0,+∞)上为增函数,故x<y,∴>x3<y3,故A错误、B正确;∴y-x>0,y-x+1>1,ln (y-x+1)>0,故C正确;2x-y<20=1,故D不肯定正确.故选BC.] 13.[因为f (x)=R上的奇函数,所以f (0)=0,即=0,所以a =.经检验,a=.]14.g(x)=+2(答案不唯一) [函数f (x)=a x-1+1中,令x-1=0,解得x=1,f (1)=a0+1=2,所以f (x)的图象恒过点A(1,2).取g(x)=2,则g(1)=2,满意条件①;g(x)=g(-x),定义域为(-∞,0)∪(0,+∞),则g(x)是偶函数,满意条件②;易知g(x)在(0,+∞)内单调递减,满意条件③.]15.37.5 [由题知θ0=30,θ1=90,θ=60,所以,60=30+(90-30)e-14k,可得e-14k=再经过28分钟后,该物体的温度为θ=30+(90-30)e-42k=30+(90-30)(e-14k)3=37.5.]16.(1)2(2)或[(1)设f (x)=xα,依题意可得9α=3,∴α=,f (x)=,∴m=f (8)==2.(2)g(x)=a,∵x∈[16,36],∴∈[4,6],当0<a<1时,g(x)max=a4,g(x)min=a6,由题意得a4=2a6,解得a=;当a>1时,g(x)max=a6,g(x)min=a4,由题意得a6=2a4,解得a=.综上,所求实数a的值为或.]17.解:(1) (×)6+×+lg 500-lg 0.5=23×32+3×4+lg =72+12+3=87.(2)依题意有x=log272,y=log372,=log722,=log723,所以+=3log722+2log723=log72(8×9)=1.18.解:(1)将点(-2,9)代入f (x)=a x(a>0,a≠1)中得a-2=9,解得a=∴f (x)=.(2)∵f (2m-1)-f (m+3)<0,∴f (2m-1)<f (m+3).∵f (x)=∴2m-1>m+3,解得m>4,∴实数m的取值范围为(4,+∞).19.解:(1)由①可知,+=0,即解得由②可知函数y=x2-2x+4=(x-1)2+3的顶点坐标为(1,3),则由③可知,函数y=log b x +3(b>0,且b≠1)过定点(1,3),则综上,三个条件中任选一个,均有即f (x)=a x过(1,3),即a=3,f (x)=3x.g(x)为偶函数.证明如下:g(x)=f (x)+=3x+3-x,x∈R,g(-x)=f (-x)+=3x+3-x=g(x),∴g(x)为偶函数.(2)log a(1+x)<log a(2-x),即log3(1+x)<log3(2-x),可化为2-x>1+x>0,∴-1<x<.即不等式log a(1+x)<log a(2-x)的解集为.20.解:(1)由已知得得解得a=4,b=2.(2)由(1)知f (x)=log2(4x-2x),令f (x)=0得4x-2x=1,即(2x)2-2x-1=0,解得2x=,又2x>0,∴2x=,解得x=log2.(3)由(1)知g(x)=4x-2x,令2x=t,则g(t)=t2-t=-,t∈[1,16],所以g(x)∈[0,240].21.解:(1)当0≤t<1.5时,由图象可设y=k(t-1)2+4,将点(0,0)的坐标代入函数表达式,解得k=-4,即当0≤t<1.5时,y=-4(t-1)2+4,当1.5≤t≤6时,将点(1.5,3)的坐标代入函数y=log a(t+2.5)+5中,解得a=.故y=(2)令-4(t-1)2+4≥2,解得1-≤t≤1+0.3≤t≤1.7,又0≤t<1.5,∴0.3≤t<1.5,故服药0.3小时之后起先有治疗效果,+5≥2,解得-2.5<t≤5.5,又1.5≤t≤6,故1.5≤t≤5.5,综上,0.3≤t≤5.5,所以服药后的治疗效果能持续5.2小时.22.解:(1)假设函数f (x)=“漂移点”x0,则2,x0+1=0,因为此方程无实根,与题设冲突,所以函数f (x)=.(2)证明:令h(x)=f (x+1)-f (x)-f (1)=(x+1)2+3x+1-(x2+3x)-4=2×3x+2x-3,所以h(0)=-1,h(1)=5.所以h(0)h(1)<0.又h(x)的图象在(0,1)上连续,所以h(x)=0在(0,1)上至少有一个实根x0,即函数f (x)=x2+3x在(0,1)上存在漂移点.(3)若f (x)=lg (0,+∞)上有漂移点x0,所以lg =lg lg a成立,即a,a>0,整理得a=由x0>0,0<<1,则0<a<1.则实数a的取值范围是{a|0<a<1}.。
函数专题:指数型与对数型复合函数的单调性与值域-【题型分类归纳】高一数学上学期同步讲与练(解析版)
函数专题:指数型与对数型复合函数的单调性与值域一、复合函数的概念如果函数()=y f t 的定义域为A ,函数()=t g x 的定义域为D ,值域为C , 则当⊆C A 时,函数()()=y f g x 为()f t 与()g x 在D 上的复合函数, 其中()=t g x 叫做内层函数,()=y f t 叫做外层函数 二、复合函数的单调性1、复合函数单调性的规律:“同增异减”若内外两层函数的单调性相同,则它们的复合函数为增函数; 若内外两层函数的单调性相反,则它们的复合函数为减函数 2、具体判断步骤(1)求出原函数的定义域;(2)将复合函数分解为内层函数和外层函数; (3)分析内层函数和外层函数的单调性; (4)利用复合函数法“同增异减”可得出结论. 三、指数型复合函数值域的求法1、形如()=x y f a (0>a ,且1≠a )的函数求值域借助换元法:令=x a t ,将求原函数的值域转化为求()f t 的值域, 但要注意“新元t ”的范围2、形如()=f x y a (0>a ,且1≠a )的函数求值域 借助换元法:令()=f x μ,先求出()=f x μ的值域, 再利用=y a μ的单调性求出()=f x y a 的值域。
四、对数型复合函数值域的求法1、形如(log )=a y f x (0>a ,且1≠a )的函数求值域 借助换元法:令log =a x t ,先求出log =a x t 的值域M , 再利用()=y f t 在M 上的单调性,再求出()=y f t 的值域。
2、形如()log =a y f x (0>a ,且1≠a )的函数的值域 借助换元法:令()=f x μ,先求出()=f x μ的值域, 再利用log =a y μ的单调性求出()log =a y f x 的值域。
题型一 复合函数的单调性判断【例1】(多选)函数2(65)1()()2x x f x -+-=在下列哪些区间内单调递减( )A .(3),-∞B .(3,5)C .(1,3)D .(2,3) 【答案】ACD【解析】由题意,函数1()2xy =在R 上单调递减,又由函数265y x x =-+-在(3),-∞上单调递增,在(3,)+∞上单调递减, 由复合函数的单调性可知,函数()f x 在(3),-∞上单调递减, 结合选项,可得选项ACD 符合题意. 故选:ACD.【变式1-1】求函数21181722xxy ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭的单调区间___________.【答案】增区间为[2,)-+∞,减区间为(,2)-∞-【解析】设t =12x⎛⎫⎪⎝⎭>0,又22817(4)1y t t t =-+=-+在(0,4]上单调递减,在(4,)+∞上单调递增.令12x⎛⎫ ⎪⎝⎭≤4,得x ≥-2,令12x⎛⎫⎪⎝⎭>4,得x <-2. 而函数t =12x⎛⎫⎪⎝⎭在R 上单调递减,所以函数21181722x xy ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭的增区间为[2,)-+∞,减区间为(,2)-∞-.故答案为:增区间为[2,)-+∞,减区间为(,2)-∞-【变式1-2】函数()()212log 32f x x x =-+-的单调递减区间为( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎛⎫⎪⎝⎭ C .3,22⎛⎫ ⎪⎝⎭D .3,2⎛⎫+∞ ⎪⎝⎭【答案】B【解析】由2320x x -+->得:12x <<,即()f x 定义域为()1,2;令232t x x =-+-,则t 在31,2⎛⎫⎪⎝⎭上单调递增,在3,22⎛⎫ ⎪⎝⎭上单调递减; 又12log y t=在()0,∞+上单调递减,()()212log 32f x x x ∴=-+-的单调递减区间为31,2⎛⎫ ⎪⎝⎭.故选:B.【变式1-3】函数()()2ln 4f x x =-的单调增区间是______.【答案】(2,0]-【解析】由240x ->,得22x -<<,所以函数的定义域为(2,2)-, 令24t x =-,则ln y t =,因为24t x =-在(2,0]-上递增,在[0,2)上递减,而ln y t =在(0,)+∞上为增函数, 所以()f x 在(2,0]-上递增,在[0,2)上递减, 故答案为:(2,0]-题型二 根据复合函数的单调性求参数【例2】若函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,则a 的取值范围( )A .4a ≤-B .2a ≤-C .2a ≥-D .4a ≥- 【答案】C【解析】依题意函数()215x axf x +⎛⎫= ⎪⎝⎭在[]1,2单调递减,15xy =在R 上递减, 2y x ax =+的开口向上,对称轴为2ax =-,根据复合函数单调性同增异减可知,122a a -≤⇒≥-.故选:C【变式2-1】若函数22113x mx y +-⎛⎫= ⎪⎝⎭在区间[]1,1-上为增函数,则实数m 的取值范围为______.【答案】1m ≤-【解析】由复合函数的同增异减性质可得,221y x mx =+-在[1,1]-上严格单调递减,二次函数开口向上,对称轴为x m =- 所以1m -≥,即1m ≤- 故答案为:1m ≤-【变式2-2】已知f (x )=()212log 3x ax a -+在区间[2,+∞)上为减函数,则实数a 的取值范围是________. 【答案】](4,4-【解析】二次函数23=-+y x ax a 的对称轴为2=a x , 由已知,应有22≤a,且满足当x ≥2时y =x 2-ax +3a >0, 即224230⎧≤⎪⎨⎪-+>⎩a a a ,解得44-<≤a .故答案为:](4,4-【变式2-3】若函数()f x =312⎛⎫⎪⎝⎭,单调递减,则a 的取值范围是( ) A .32⎡⎫+∞⎪⎢⎣⎭,B .32⎛⎫+∞ ⎪⎝⎭, C .3724⎡⎤⎢⎥⎣⎦, D .3724⎛⎫ ⎪⎝⎭, 【答案】C【解析】因为()f x =312⎛⎫⎪⎝⎭,单调递减, 所以,函数()212log 22y x ax =-+-在312⎛⎫⎪⎝⎭,单调递减,且函数值非负, 所以函数222t x ax =-+-在312⎛⎫ ⎪⎝⎭,是单调递增且01t <≤, 故2232332121220a a a ⎧≥⎪⎪⎪⎛⎫-+-≤⎨ ⎪⎝⎭⎪⎪-+-≥⎪⎩,解得3724a ≤≤,故选:C【变式2-4】已知()()2log 3(0a f x x ax a =-+>且1)a ≠,对任意12,(,]2a x x ∈-∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,则a 的取值范围是__________.【答案】(【解析】因为对任意12,(,]2a x x ∈-∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,所以()f x 在(,]2a-∞上单调递减,因为23y x ax =-+在(,]2a-∞上单调递减,由复合函数的单调性知1a >,又由对数函数的定义域知,当(,]2a x ∈-∞时,230x ax -+>恒成立,可得2()3022a a a -⨯+>,解得a -<<综上可得;1a <<a 的取值范围为(.【变式2-5】已知函数()log a f x x =,记()()()()21g x f x f x f ⎡⎤=⋅+-⎣⎦,若()g x 在区间1,22⎡⎤⎢⎥⎣⎦上是增函数,则实数a 的取值范围是( )A .10,2⎛⎤⎥⎝⎦ B .1,12⎡⎤⎢⎥⎣⎦C .()()0,11,2UD .[)2,+∞【答案】A【解析】()()()()()21log log log 21a a a g x f x f x f x x ⎡⎤=⋅+-=+⎣-⎦, 则()()22lg lg lg 21lg lg lg 2lg lg lg lg lg 1x x g x x a x a a a a ⎛⎫-⎡⎤=+=-- ⎪⎣⎦⎝⎭, 令lg t x =,由1,22x ⎡∈⎤⎢⎥⎣⎦,所以[]lg 2,lg 2t ∈-,令()()221lg lg 2lg M t t a t a⎡⎤=--⎣⎦, 因为()g x 在区间1,22⎡⎤⎢⎥⎣⎦上是增函数, 所以()M t 在[]lg 2,lg 2t ∈-也是增函数, 所以lg lg 21lg 2lg lg 2lg 22a a -≤-⇒≤-=, 则102a <≤,即10,2a ⎛⎤∈ ⎥⎝⎦故选:A.题型三 复合函数的值域求解【例3】函数()2212x xf x -+⎛⎫= ⎪⎝⎭的值域为( )A .1,2⎛⎤-∞ ⎥⎝⎦ B .10,2⎛⎤⎥⎝⎦ C .1,2⎡⎫+∞⎪⎢⎣⎭ D .[)2,+∞【答案】C【解析】令22t x x =-+,则2(1)11t x =--+≤,因为1()2ty =在R 上单调递减,所以12y ≥,故函数()2212x xf x -+⎛⎫= ⎪⎝⎭的值域为1,2⎡⎫+∞⎪⎢⎣⎭,故选:C【变式3-1】函数113()934x xf x --⎛⎫=++ ⎪⎝⎭在[1,)-+∞上的值域为___________.【答案】375,44⎛⎤⎥⎝⎦【解析】2113113()9334334x x xx f x --⎛⎫⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎝⎭∵[1,)x ∈-+∞则令(],3130xt ⎛⎫⎪⎭∈= ⎝,2334y t t =++在(]0,3递增∴375,44y ⎛⎤∈ ⎥⎝⎦【变式3-2】已知函数2()421x x f x +=--,[0,2]x ∈则其值域为___________. 【答案】[]5,1--【解析】令2x t =,∵[0,2]x ∈,∴14t ≤≤,∴22()41(2)5f t t t t =--=--, 又()y f t =关于2t =对称,2t ∴=即1x =时,函数取得最小值,即min ()5f x =-,4t =即2x =时,函数取得最大值,即max ()1f x =-, ()[5f x ∴∈-,1]-.【变式3-3】已知函数()()()44log 1log 3f x x x =++-,求()f x 的单调区间及最大值. 【答案】单调递增区间为()1,1-,单调递减区间为()1,3;()max 1=f x【解析】由1030x x +>⎧⎨->⎩得:13x -<<,()f x ∴的定义域为()1,3-;()()()()()224444log 1log 3log 23log 14f x x x x x x ⎡⎤=++-=-++=--+⎣⎦, 令()()214t x x =--+,则()t x 在()1,1-上单调递增,在()1,3上单调递减,又4log y t =在定义域内单调递增,由复合函数单调性可知:()f x 的单调递增区间为()1,1-,单调递减区间为()1,3; 由单调性可知:()()4max 1log 41f x f ===.【变式3-4】已知()222()log 2log 4,[2,4]f x x x x =-+∈.(1)设2log ,[2,4]t x x =∈,求t 的最大值与最小值;(2)求()f x 的值域.【答案】(1)2t =最大,1t =最小;(2)[3,4].【解析】(1)因为函数2log t x =在区间[2,4]上是单调递增的,所以当4x =时,2log 42t ==最大, 当2x =时,2log 21t ==最小.(2)令2log t x =,则()()()222413f x g t t t t ==-+=-+,由(1)得[]1,2t ∈,因为函数()g t 在[]1,2上是单调增函数,所以当1t =,即2x =时,()min 3f x =;当2t =,即4x =时,()max 4f x =, 故()f x 的值域为[]3,4.【变式3-5】已知函数()2421x xf x a =⋅-⋅+,求函数()f x 在[]0,1上的最小值.【答案】()2min3,41,48892,8a a a f x a a a -≤⎧⎪⎪=-<≤⎨⎪-≥⎪⎩【解析】设2x t =,由[0,1]x ∈得[1,2]t ∈,2()()21f x g t t at ==-+,222()212()148a a g t t at t =-+=-+-,当14a ≤,即4a ≤时,min ()(1)3g t g a ==-, 当124a <≤,即48a <≤时,2min ()()148a a g t g ==-, 当,即8a >时,min ()(2)92g t g a ==-, 综上()2min3,41,48892,8a a a f x a a a -≤⎧⎪⎪=-<≤⎨⎪-≥⎪⎩.【变式3-6】已知函数()1423x x f x a +=⋅--,若0a >,求()f x 在区间[]1,2上的最大值()g a .【答案】()147,0311611,3a a g a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩.【解析】令[]22,4x t =∈,即求()223h t at t =--在区间[]2,4上的最大值.当0a >时,二次函数()223h t at t =--的图象开口向上,对称轴为直线1t a=.①当12a ≤时,即当12a ≥时,函数()h t 在区间[]2,4上单调递增,则()()41611g a h a ==-; ②当123a<≤时,即当1132a ≤<时,函数()h t 在区间12,a ⎡⎫⎪⎢⎣⎭上单调递减,在区间1,4a ⎛⎤ ⎥⎝⎦上单调递增,因为()247h a =-,()41611h a =-,()()421240h h a -=-≥, 则()()41611g a h a ==-; ③当134a<<时,即当1143a <<时,函数()h t 在区间12,a ⎡⎫⎪⎢⎣⎭上单调递减,在区间1,4a ⎛⎤ ⎥⎝⎦上单调递增,此时,()()42h h <,则()()247g a h a ==-;④当14a ≥时,即当104a <≤时,函数()h t 在区间[]2,4上单调递减, 所以,()()247g a h a ==-.综上所述,()147,0311611,3a a g a a a ⎧-<<⎪⎪=⎨⎪-≥⎪⎩.题型四 根据复合函数的值域求解【例4】若函数()22312ax x f x -+⎛⎫= ⎪⎝⎭的最大值是2,则=a ( )A .14B .14-C .12 D .12- 【答案】A【解析】由1()2uy =在定义域上递减,要使()f x 有最大值,则223u ax x =-+在定义域上先减后增, 当max ()2f x =,则223u ax x =-+的最小值为1-,所以0131a a>⎧⎪⎨-=-⎪⎩,可得14a =.故选:A【变式4-1】已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤ ⎥⎝⎦,若不等式()()log 4log 2x a xa t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( )A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2【答案】A【解析】由题意,函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤ ⎥⎝⎦,可得函数y 的最大值为116, 当0a =时,函数2414x y -+⎛⎫= ⎪⎝⎭显然不存在最大值;当0a >时,函数22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递增,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递减, 当1x a =时,函数y 有最大值,即12411416a a -+⎛⎫=⎪⎝⎭,解得12a =; 当0a <时,22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a⎛⎫∈-∞ ⎪⎝⎭上单调递减,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递增,此时函数y 无最大值,所以()()1122log 4log 2x xt t ⋅<-在[]1,2x ∈上恒成立, 即402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立, 由40x t ⋅>在[]1,2x ∈上恒成立,可得0t >;由20x t ->在[]1,2x ∈上恒成立,即2x t <在[]1,2上恒成立,可得2t <;由42x x t t ⋅>-在[]1,2x ∈上恒成立,即2114122x x x xt >=++在[]1,2上恒成立,令()122xxf x =+,可得函数()f x 在[]1,2上单调递增,所以()()min512f x f ==,即25t >, 综上可得225t <<,即实数t 的取值范围是2,25⎛⎫⎪⎝⎭.故选:A.【变式4-2】已知函数()()2log 41x f x ax =++是偶函数,函数()()22222f x x x g x m -=++⋅的最小值为3-,则实数m 的值为( )A .3B .52-C .2-D .43【答案】B【解析】因为函数()()2log 41x f x ax =++是偶函数,所以()()f x f x -=,即()()22log 41log 41x x ax ax -+-=++,所以()()222log 41log 410x x ax -++-+=, 其中()()()()()22222241441441log 41log 41log log log log 424141414x x x x x x x x x x x x x ---+⋅+⋅++-+=====+++⋅, 所以220ax x +=,解得1a =-,所以()()2log 41x f x x =+-,所以()()2log 414122222x x x f x x x x +--+===+, 故函数()()222222x x x x g x m --=+++的最小值为3-.令22x x t -+=,则2t ≥,故函数()()222222x x x x g x m --=+++的最小值为3-等价于()()222h t t mt t =+-≥的最小值为3-, 等价于()2? 22223m h m ⎧-≤⎪⎨⎪=+=-⎩或22? 22324m m m h ⎧->⎪⎪⎨⎛⎫⎪-=--=- ⎪⎪⎝⎭⎩, 解得52m =-.故A ,C ,D 错误.故选:B .【变式4-3】函数()22lg 34a f x ax x ⎛⎫=++ ⎪⎝⎭没有最小值, 则a 的取值范围是______. 【答案】22,33⎛⎤- ⎥⎝⎦【解析】令()2234a t x ax x =++,则外函数为()lg f t t =, 因为lg y t =在定义域上单调递增,要使函数()22lg 34a f x ax x ⎛⎫=++ ⎪⎝⎭没有最小值, 即()2234a t x ax x =++的值域能够取到0,且不恒小于等于0,当0a =时()23t x x =,符合题意,当0a <时()2234a t x ax x =++开口向下, 只需224034a a ⎛⎫∆=-⨯⨯> ⎪⎝⎭,解得2233-<<a ,即203a -<<; 当0a >时()2234a t x ax x =++开口向上, 只需224034a a ⎛⎫∆=-⨯⨯≥ ⎪⎝⎭,解得2233a -≤≤,即203a <≤; 综上可得2233a -<≤,即22,33a ⎛⎤∈- ⎥⎝⎦.【变式4-4】已知函数()()213log 25f x x mx =-+,若()f x 的值域为R ,求实数m 的取值范围.【答案】(),-∞⋃+∞ 【解析】由()f x 的值域为R ,可得225u x mx =-+能取()0,∞+内的一切值,故函数225u x mx =-+的图象与x 轴有公共点, 所以24200m -≥,解得m ≤m ≥故实数m 的取值范围为(),-∞⋃+∞.。
高一对数和指数知识点
高一对数和指数知识点在高一数学学习中,对数和指数是非常重要的知识点。
对数和指数概念的理解和运用对于解决实际问题和提高解题能力有着重要的作用。
本文将介绍高一对数和指数的基本概念、性质及其应用。
一、对数的基本概念与性质1. 对数的定义:对数是指数的逆运算。
设a为正数,b为正数且不等于1,a的对数以b为底表示为logb(a)=c,其中c为实数。
对数具有以下性质:- logb(b)=1,即b的对数以b为底等于1;- logb(1)=0,任何数的以b为底的对数都等于0;- logb(a∙c) = logb(a) + logb(c),对数的乘法法则,a、c为正数;- logb(a/c) = logb(a) - logb(c),对数的除法法则,a、c为正数;- logb(a^m) = m∙logb(a),对数的幂法则,a为正数,m为实数。
2. 常用底的对数:常用的底为10(以10为底的对数称为常用对数)和e(以e≈2.71828为底的对数称为自然对数)。
二、指数的基本概念与性质1. 指数的定义:指数是表示相同因数连乘的运算。
设a为正数,n为正整数,a的n次方运算记作a^n,即a^n = a∙a∙…∙a(n个a相乘)。
指数具有以下性质:- a^m∙a^n = a^(m+n),指数的乘法法则;- (a^m)^n = a^(m∙n),指数的幂法则;- (a∙b)^n = a^n∙b^n,指数的次序法则。
2. 指数函数与对数函数:指数函数y=a^x(a>0且a≠1)是以指数为自变量、底数为常数的函数,对数函数y=loga(x)是以对数为自变量、底数为常数的函数。
三、对数与指数的应用1. 对数的应用:对数在科学计算、数据处理、信号处理等领域有广泛应用。
例如在物理学中,声音的强度可以用分贝来表示,分贝的计算就需要用到对数知识。
在经济学中,利率和汇率的计算也常用到对数。
2. 指数的应用:指数在增长和衰减的问题中有重要应用。
高一数学指数方程和对数方程(学生版)
例3、解方程2log16x+logx16=3.
变式练习:(1) (2)
(3)
例4、解方程:
例5、解下列方程:
(1)
(2)
变式练习:解方程
例6、已知关于 的方程 有且只有一个实数解,求实数 的取值范围。
【点拨】此类对数方程形式简单,但综合性很强,往往要归纳为对一元二次方程根的讨论,解题时需注意如下三点:
设 ,则 是R上的减函数,因为 ,所以当 时,
;当 时, 。因为 ,所以不等式 的解集为
试利用上面的解法解不等式
(2)证明: 有且只有一个实数解
5、若 ,则 __________
6、方程 的解是____________________
7、方程 实数解的个数是()
A 3 B 2 C 1 D 0
8、关于 的方程 , 的根分别为 ,则 等于()
A 6 B 5 C 4 D 3
9、关于 的方程: 在区间 内有解,则实数 的取值范围是_____________________
10、关于 的方程 有实数解,求实数 的取值范围,并求出方程的解。
【课后练习】
1、方程 的解是___________
2、方程 的解是___________________
3、方程 的解是_________________
9、方程 的实数的个数是 ( )
A 0个 B 1个 C 2个 D 大于2个
10、解方程
11、已知 ,求 的值
12、已知关于 的方程 有一个实数根为2,求实数 的值和方程其余的根。
13、方程 的解是__________________
14、方程 的实数根的个数是_________________
第4章指数函数与对数函数(复习课件)高一数学(人教A版必修第一册)课件
y=ax为减函数,则0<a<1,y=loga(-x)为增函数,与C项中
y=loga(-x)的图象不符.
答案:B
典例
例3(2)若直线y=2a与函数y=|ax-1|+1(a>0,且a≠1)的图象
有两个公共点,则a的取值范围是
.
解析:当a>1时,通过平移变换和翻折变换可得如图(1)所示的图
往往是选择题,常借助于指数函数、对数函数的图象特
征来解决;二是判断方程的根的个数时,通常不具体解方
程,而是转化为判断指数函数、对数函数等图象的交点
个数问题.这就要求画指数函数、对数函数的图象时尽
量准确,特别是一些关键点要正确,比如,指数函数的图象
必过点(0,1),对数函数的图象必过点(1,0).
题型四 函数的零点与方程的根
4. 恒成立问题,采用分离参数,转化为求最值问题.
专题三
指数函数、对数函数图象的应用
典例
例3(1)已知a>0,且a≠1,函数y=ax与y=loga(-x)的图象可能是( )
解析:由y=loga(-x)的定义域为(-∞,0)知,图象应在y轴左
侧,可排除A,D选项.当a>1时,y=ax应为增函数,y=loga(-x)
f(3)=20,g(3)≈6.7,h(3)≈12.5.
由此可得h(x)更接近实际值,所以用h(x)模拟比较合理.
(2)因为h(x)=30|log2x-2|在x≥4时是增函数,h(16)=60,
所以整治后有16个月的污染度不超过60.
以有2m-3<1,解得m<2.故实数m的取值范围为(-∞,2).
解题技能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。