高中数学-指数函数对数函数知识点

合集下载

对数函数和指数函数的区别和知识点

对数函数和指数函数的区别和知识点

对数函数和指数函数的区别和知识点对数函数和指数函数是两种重要的数学函数,它们在形式和性质上有很大的不同。

下面我们将从定义、图像、性质和应用四个方面来对比这两种函数。

一、定义1. 对数函数:对于正实数a(a>0)和自然数b(b>0),对数函数定义为log(a^b)=b。

也就是说,如果a的b次方等于c,那么log(a) c = b。

2. 指数函数:对于实数a(a≠0),指数函数定义为a^x。

也就是说,无论x 是什么实数,a的x次方都等于y。

二、图像1. 对数函数的图像:对数函数的图像在坐标系中是单调递增的。

当底数大于1时,图像位于第一象限和第二象限;当底数在0到1之间时,图像位于第二象限和第三象限。

2. 指数函数的图像:指数函数的图像也是单调递增的。

对于所有的实数a(a>0),图像都位于第一象限。

当a大于1时,图像在x轴上方递增;当0<a<1时,图像在x轴下方递增。

三、性质1. 对数函数的性质:对数函数是反函数,即如果log(a^b)=c,那么a^c=b。

此外,对数函数还有对数的换底公式,即log(a) b = c 可以转化为log(m) b = c/log(m) a。

2. 指数函数的性质:指数函数是幂运算的推广,具有连续性、周期性、奇偶性等性质。

指数函数也可以表示为exp(x),其中exp表示自然指数函数的底数,约等于2.71828。

四、应用1. 对数函数的应用:对数函数在科学、工程和经济学等领域有广泛的应用。

例如,在物理学中,声学和光学中的分贝和折射率可以通过对数函数计算;在金融学中,复利和折旧可以通过对数函数计算;在信息论中,对数函数用于描述信号强度和噪声的关系。

2. 指数函数的应用:指数函数在自然科学、社会科学和工程学等领域也有广泛的应用。

例如,在生物学中,细胞增长和繁殖可以用指数函数描述;在经济学中,复利和折现也可以用指数函数计算;在物理学中,放射性衰变和电路中的电压可以用指数函数描述。

指数对数函数基本知识点

指数对数函数基本知识点

指数对数函数基本知识点指数函数和对数函数是高中数学紧密相关的数学概念,对于理解和运用多种数学问题都是至关重要的。

下面将从定义、性质、图像和应用等几个方面进行详细介绍。

一、指数函数指数函数的定义是f(x)=a^x,其中a是一个正实数且a≠1,x是实数。

指数函数的特点包括:1.a^0=1,a^1=a。

2.指数函数的定义域是整个实数集。

3.当a>1时,指数函数是严格递增的;当0<a<1时,指数函数是严格递减的。

4.指数函数的图像可以分成两种情况:当a>1时,图像在x轴的右侧逐渐向上增长;当0<a<1时,图像在x轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。

二、对数函数对数函数的定义是f(x)=log_a(x),其中a是一个正实数且a≠1,x是正实数。

对数函数的特点包括:1. log_a(1)=0,log_a(a)=12.对数函数的定义域是正实数集。

3.当a>1时,对数函数是严格递增的;当0<a<1时,对数函数是严格递减的。

4.对数函数的图像可以分成两种情况:当a>1时,图像在y轴的右侧逐渐向上增长;当0<a<1时,图像在y轴的右侧逐渐向下降低;当a=1时,图像是一条水平直线。

三、指数函数和对数函数的性质1. 反函数性质:指数函数和对数函数互为反函数,即a^log_a(x)=x,log_a(a^x)=x。

2. 对数与指数的互化性质:log_a(x)=y等价于 a^y=x。

3.对于任意的正实数a,b和任意实数x,有如下几个基本性质:-a^x*a^y=a^(x+y)- (a^x)^y = a^(xy)- (ab)^x = a^x * b^x-a^(-x)=1/(a^x)-(a/b)^x=a^x/b^x- log_a(xy) = log_a(x) + log_a(y)- log_a(x^y) = y * log_a(x)- log_a(1/x) = -log_a(x)- log_a(x/y) = log_a(x) - log_a(y)四、指数和对数函数的图像指数函数和对数函数的图像可以通过制作表格来得到,然后连接各个点形成曲线图。

高一数学指数函数对数函数知识点

高一数学指数函数对数函数知识点

高一数学指数函数对数函数知识点导语:在高中数学中,指数函数与对数函数是一个非常重要的数学概念和知识点。

它们在不同领域的应用非常广泛,比如金融、科学等。

本文将深入探讨高一数学中的指数函数和对数函数的基本概念、性质以及它们之间的关系。

一、指数函数的基本概念与性质1. 指数函数的定义指数函数是以常数e(自然对数的底)为底的函数,表示为f(x) = a^x,其中a > 0且a ≠ 1,x为实数。

举例来说,函数f(x) = 2^x就是一个指数函数,其中以2为底。

2. 指数函数的性质①指数函数的定义域为实数集, 即所有实数x。

②指数函数的值域为正数集, 即所有大于0的实数。

③指数函数是递增函数,即当x1 < x2时,a^x1 < a^x2。

④当a > 1时,指数函数的图像是递增的;当0 < a < 1时,指数函数的图像是递减的。

二、对数函数的基本概念与性质1. 对数函数的定义对数函数是指数函数的反函数。

以常数e为底的对数函数称为自然对数函数,记作ln(x)。

举例来说,函数g(x) = log2(x)就是一个以2为底的对数函数。

2. 对数函数的性质①对数函数的定义域为正数集,即只有正实数才有对数。

②对数函数的值域为实数集。

③对数函数是递增函数,即当x1 < x2时,log(x1) < log(x2)。

④对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x。

三、指数函数与对数函数之间的关系注意:以下的例子仅为了便于理解,具体数值仅供参考。

1. 自然对数与指数函数的关系e^x = a 可以转化为 ln(a) = x。

例如,e^2 = 7.39 可以转化为 ln(7.39) = 2。

2. 对数函数的性质与指数函数的性质对数函数的一些基本性质与指数函数的一些基本性质是相互关联的,如:① loga(xy) = loga(x) + loga(y)② loga(x/y) = loga(x) - loga(y)③ loga(x^y) = y * loga(x)④ loga(b) = logc(b) / logc(a)3. 指数函数与对数函数的实际应用指数函数与对数函数在实际中有着广泛的应用,主要体现在以下几个方面:①金融领域:在复利计算、投资分析等方面,指数函数与对数函数被广泛应用。

高一对数指数函数知识点

高一对数指数函数知识点

高一对数指数函数知识点在高中数学中,对数和指数函数是重要的数学概念。

它们在各个科学领域中都有广泛的应用。

本文将探讨高一阶段涉及的对数和指数函数的知识点。

一、指数函数指数函数是一种形如f(x) = a^x(a为常数)的函数。

其中,a称为底数。

1.指数函数的性质- 当a>1时,指数函数在整个定义域上是递增的;当0<a<1时,指数函数在整个定义域上是递减的。

- 指数函数在x轴上的图像必过点(0,1)。

2.指数函数的图像与性质- 当底数a<1时,指数函数的图像逐渐接近x轴,但永远不会触及。

- 当底数a=1时,指数函数的图像是一条水平线y=1。

- 当底数a>1时,指数函数的图像在x<0时位于y轴下方,经过点(0,1),在x>0时逐渐远离x轴。

二、对数函数对数函数是指形如f(x) = loga(x)(a为正实数且a≠1)的函数。

1.对数函数与指数函数之间的关系对数函数与指数函数是互逆的。

即,如果y = f(x)是指数函数,那么x = f^(-1)(y) = loga(y)是对数函数。

2.对数函数的性质- 当0<a<1时,对数函数在整个定义域上是递减的;当a>1时,对数函数在整个定义域上是递增的。

- 对数函数在y轴上的图像必过点(1,0)。

3.对数函数的图像与性质- 当底数a>1时,对数函数的图像从负无穷趋近于y轴,经过点(1,0),在x>1时逐渐远离y轴。

- 当底数0<a<1时,对数函数的图像在x>0时位于y轴上方,在x<1时逐渐向y轴靠近。

三、指数方程与对数方程指数方程和对数方程是数学问题中常见的类型。

在解决这些问题时,需要应用指数函数和对数函数的性质。

1.指数方程指数方程是指形如a^x = b(a、b为常数)的方程。

解这种方程时,可将两边同时取以底数为a的对数,然后运用对数函数的性质。

举个例子,解方程2^x = 8:取以底数为2的对数,得到x = log2(8) = 3。

高中人教A版必修一指数函数与对数函数知识点总结

高中人教A版必修一指数函数与对数函数知识点总结

高中人教A版必修一指数函数与对数函数知识点总结指数函数和对数函数是高中数学中的重要概念,它们经常出现在各种高考试题中。

下面对高中人教A版必修一中的指数函数和对数函数的知识点进行总结:一、指数函数的定义和性质:1.指数函数的定义:设a是一个正数且不等于1,x是任意实数,则形如y=a^x的函数称为指数函数。

2.指数函数的性质:(1)当a>1时,指数函数y=a^x是递增函数。

(2)当0<a<1时,指数函数y=a^x是递减函数。

(3)当a>0且不等于1时,指数函数y=a^x的图象经过点(0,1)。

(4)当a>1时,指数函数y=a^x的图象在y轴的右半部分无上界,且在x轴的左半部分无下界;当0<a<1时,指数函数y=a^x的图象在y轴的右半部分无下界,且在x轴的左半部分无上界。

(5)指数函数y=a^x的图象经过点(1,a)。

二、对数函数的定义和性质:1. 对数函数的定义:设a是一个大于0且不等于1的实数,b是一个正数,则形如y=log_a^b的函数称为对数函数。

2.对数函数的性质:(1) 对数函数y=log_a^b的定义域是(0,+∞),值域是(-∞,+∞)。

(2) 当0<a<1时,对数函数y=log_a^b是递增函数。

(3) 当a>1时,对数函数y=log_a^b是递减函数。

(4) 对数函数y=log_a^b的图象经过点(a,1)。

(5) 对数函数y=log_a^b是指数函数y=a^x的反函数,即y=log_a^b等价于b=a^y。

三、指数方程和对数方程:1.指数方程:形如a^x=b的等式称为指数方程。

(1)指数方程的解法:当指数方程左右两边的底数相等时,可取对数得到对数方程,再解对数方程得到解;当指数方程左右两边的指数相等时,可取对数得到对数方程,再解对数方程得到解。

2. 对数方程:形如log_a^b=c的等式称为对数方程。

(1)对数方程的解法:根据对数的定义,可将对数方程化为指数方程,再解指数方程得到解。

高中数学指数与对数知识点总结

高中数学指数与对数知识点总结

高中数学指数与对数知识点总结数学是一门基础性学科,对于学生的综合素质提升至关重要。

在高中数学中,指数与对数是数学中的重要知识点之一,它们在代数和函数的研究中占据着重要的地位。

本文将对高中数学中的指数与对数知识点进行总结。

一、指数的基本概念与运算规则1. 指数的定义:指数是指一个数在幂运算中的次数,通常由上标表示。

2. 指数的性质:指数具有唯一性、指数相乘等规律。

3. 同底数幂的运算规则:幂的乘法规则、幂的除法规则、幂的乘方规则等。

4. 零指数与负指数的概念及运算。

二、指数函数与对数函数1. 指数函数:指数函数是以指数为自变量的函数,具体形式为f(x)= a^x,其中a为正实数且不等于1。

指数函数的图像特点与性质。

2. 以e为底的指数函数:自然指数函数是以e(自然对数的底数)为底的指数函数,形式为f(x) = e^x。

自然指数函数的图像特点与性质。

3. 对数函数:对数函数是指以某个正实数为底数,将一个正实数映射为指数的函数。

常见的对数函数有以10为底的常用对数函数与以e为底的自然对数函数。

4. 对数函数的性质与运算规律:对数函数的定义域、值域、单调性等特点。

5. 对数函数与指数函数的互为反函数关系:指数函数与对数函数具有互为反函数的关系,即f(g(x)) = g(f(x)) = x。

三、指数方程与对数方程1. 指数方程的解法:对数的换底公式、指数方程的对数定义法等。

2. 对数方程的解法:等式两边取对数、对数的性质及运算等。

四、指数与对数的应用1. 科学计数法:科学计数法是一种有效地表示和操作科学数据的方法,能够简化大数和小数的计算。

2. 百分比与利息:百分数的概念与运用、百分比的利息、连续复利等。

3. 指数增长与衰减:指数增长与衰减模型的应用,如人口增长、细菌培养等。

4. 对数在实际问题中的应用:音量、酸碱的酸度、声音的强度等。

五、指数与对数的综合运用1. 指数对数方程的综合运用:结合指数方程和对数方程来解决实际问题。

高中数学必修一指数函数对数函数知识点

高中数学必修一指数函数对数函数知识点

高中数学必修一指数函数对数函数知识点高中数学必修一中,指数函数和对数函数是重要的知识点。

指数函数是一种以指数为自变量的函数,形式为y = a^x,其中a为底数,x为指数。

而对数函数是指数函数的逆运算,形式为y = loga(x),其中a为底数,x为真数。

以下是关于指数函数和对数函数的具体知识点。

一、指数函数的图像和性质1.指数函数的基本形式:-y=a^x,其中a>0且a≠12.指数函数的基本性质:-当0<a<1时,指数函数呈现递减的图像;-当a>1时,指数函数呈现递增的图像;-当a=1时,指数函数为常数函数y=1二、对数函数的图像和性质1.对数函数的基本形式:- y = loga(x),其中a > 0且a≠12.对数函数的基本性质:- 对数函数与指数函数互为反函数,即loga(a^x) = x,a^loga(x) = x;-对数函数的图像关于直线y=x对称;-对数函数的定义域为正实数集,值域为实数集。

三、指数函数和对数函数的运算性质1.指数函数的运算性质:-a^x*a^y=a^(x+y);- (a^x)^y = a^(xy);- (ab)^x = a^x * b^x;-a^0=1,其中a≠0。

2.对数函数的运算性质:- loga(xy) = loga(x) + loga(y);- loga(x^y) = y * loga(x);- loga(x/y) = loga(x) - loga(y);- loga(1) = 0,其中a≠0。

四、指数函数和对数函数的应用1.指数函数在生活中的应用:-经济增长模型中的应用;-指数衰减与物质的半衰期计算;-大自然中的指数增长现象。

2.对数函数在生活中的应用:-pH值的计算;-放大器的功率增益计算;-数字音乐的音量计算。

综上所述,指数函数和对数函数是高中数学必修一中的重要知识点。

掌握了指数函数和对数函数的基本形式、性质以及运算规律,能够理解其图像特征和在实际问题中的应用。

指数函数与对数函数知识点

指数函数与对数函数知识点

指数函数与对数函数1、n 次方根与分数指数幂、指数幂运算性质(1)若nx a =,则))n x n =⎪⎩为奇数为偶数;()()a n a n ⎧⎪⎨⎪⎩为奇数为偶数;(3)n a =;(4)*0,,,1)m na a m n N n =>∈>且;(5)*0,,1)mn a a m n N n -=>∈>,且;(6)0的正分数指数幂为0,0的负分数指数幂没有意义.(7)()0,,r s r s a a a a r s R +⋅=>∈;(8)()()0,,r s rs a a a r s R =>∈;(9)()()0,0,,r r r ab a b a b r s R =⋅>>∈.2、对数、对数运算性质(1)()log 0,1x a a N x N a a =⇔=>≠;(2)()log 100,1a a a =>≠;(3)()log 10,1a a a a =>≠;(4);()log0,1a N a N a a =>≠;(5)()log 0,1m a a m a a =>≠;(6)()log ()log log 0,1,0,0a a a MN M N a a =+>≠M >N >; (7)()log log log 0,1,0,0a a a M M N a a N=->≠M >N >; (8)()log log 0,1,0n a a M n M a a =⋅>≠M >; (9)换底公式()log log 0,1,0,0,1log c a c b b a a b c c a =>≠>>≠; (10)()log log 0,1,,*m n a a n b b a a n m N m=>≠∈;(11)()1log log 0,1,0,a a M a a M n R n=>≠>∈; (12)()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠.3、指数函数)1,0(≠>=a a a y x 且及其性质:①定义域为(),-∞+∞; ②值域为()0,+∞;③过定点()0,1;④单调性:当1a >时,函数()f x 在R 上是增函数;当01a <<时,函数()f x 在R 上是减函数; ⑤在y 轴右侧,指数函数的图象“底大图高”.4、对数函数)1,0(log ≠>=a a x y a 且及其性质:①定义域为()0,+∞;②值域为(),-∞+∞;③过定点()1,0;④单调性:当1a >时,函数()f x 在()0,+∞上是增函数;当01a <<时,函数()f x 在()0,+∞上是减函数;⑤在直线1=x 的右侧,对数函数的图象“底大图低”.5指数函数x a y =与对数函数)1,0(log ≠>=a a x y a 且互为反函数,它们的图象关于直线x y =对称.6不同函数增长的差异:线性函数模型)0(>+=k b kx y 的增长特点是直线上升,其增长速度不变;指数函数模型)1(>=a a y x 的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸”状态;对数函数模型)1(log >=a x y a 的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长速度平缓;幂函数模型)0(>=n x y n 的增长速度介于指数函数和对数函数之间.7函数的零点:在函数)(x f y =的定义域内,使得0)(=x f 的实数x 叫做函数的零点.8零点存在性定理:如果函数()f x 在区间[],a b 上的图象是连续不断的一条曲线,且有()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内至少有一个零点,即存在(),c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的根.9二分法:对于区间],[b a 上图象连续不断且()()0f a f b ⋅<的函数)(x f y =,通过不断把它的零点所在区间一分为二,使得区间的两个端点逐步逼近零点,进而得到零点近似值的方法.10给定精确度ε,用二分法求函数)(x f y =零点0x 近似值的步骤:⑴确定零点0x 的初始区间[],a b ,验证()()0f a f b ⋅<;⑵求区间[],a b 的中点c ;⑶计算)(c f ,并进一步确定零点所在的区间;①若0)(=c f ,则c 就是函数的零点;②若0)()(<c f a f (此时),(0c a x ∈),则令c b =;③若0)()(<b f c f (此时),(0b c x ∈),则令c a =;⑷判断是否达到精确度ε:若a b ε-<,则得到零点的近似值a (或b );否则重复上面的⑵至⑷.。

指数函数与对数函数例题和知识点总结

指数函数与对数函数例题和知识点总结

指数函数与对数函数例题和知识点总结一、指数函数的定义与性质指数函数的一般形式为$y = a^x$($a > 0$且$a ≠ 1$)。

其中,底数$a$决定了函数的性质。

当$a > 1$时,函数单调递增;当$0 < a < 1$时,函数单调递减。

指数函数的定义域为$R$,值域为$(0, +\infty)$。

例如,函数$y = 2^x$是一个底数为$2$(大于$1$)的指数函数,它在$R$上单调递增。

二、对数函数的定义与性质对数函数是指数函数的反函数,一般形式为$y =\log_a x$($a > 0$且$a ≠ 1$)。

其中,对数的底数$a$同样决定了函数的性质。

当$a > 1$时,函数在$(0, +\infty)$上单调递增;当$0 < a <1$时,函数在$(0, +\infty)$上单调递减。

对数函数的定义域为$(0, +\infty)$,值域为$R$。

例如,函数$y =\log_2 x$是一个底数为$2$(大于$1$)的对数函数,它在$(0, +\infty)$上单调递增。

三、指数函数与对数函数的图象指数函数$y = a^x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(0, 1)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(0, 1)$,从左到右逐渐下降。

对数函数$y =\log_a x$($a > 0$且$a ≠ 1$)的图象特点:当$a > 1$时,图象过点$(1, 0)$,从左到右逐渐上升;当$0 < a < 1$时,图象过点$(1, 0)$,从左到右逐渐下降。

四、指数运算与对数运算的性质指数运算性质:1、$a^m \times a^n = a^{m + n}$2、$\frac{a^m}{a^n} = a^{m n}$3、$(a^m)^n = a^{mn}$4、$a^0 = 1$($a ≠ 0$)对数运算性质:1、$\log_a (MN) =\log_a M +\log_a N$2、$\log_a \frac{M}{N} =\log_a M \log_a N$3、$\log_a M^n = n \log_a M$4、$\log_a a = 1$5、$\log_a 1 = 0$五、例题分析例 1:比较大小比较$2^{03}$和$03^2$的大小。

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结一、指数函数:1.基本概念:指数函数是形如y=a^x(a>0,且a≠1)的函数,其中a称为底数,x 称为指数,a^x称为底数a的x次幂。

2.基本性质:(1)a^0=1,任何数的0次幂等于1;(2)a^x*a^y=a^(x+y),相同底数的指数幂相乘,底数不变,指数相加;(3)a^x÷a^y=a^(x-y),相同底数的指数幂相除,底数不变,指数相减;(4)(a^x)^y=a^(x*y),指数幂的乘积再乘方,指数相乘;(5)a^(-x)=1/(a^x),任何数的负指数满足倒数规律。

3.常见指数函数:(1)指数函数y=2^x:以2为底的指数函数,可以用来描述2的x 次幂关系,是一种常见的指数型增长函数,图像逐渐向上凸起。

二、对数函数:1.基本概念:对数函数是指y=loga(x),其中a>0,且a≠1,a称为底数,x称为真数,y称为以a为底x的对数。

2.基本性质:(1)loga(1)=0,底数为任何正数时,1的对数都是0;(2)loga(a)=1,底数为任何正数时,底数的对数都是1;(3)loga (x*y) = loga(x) + loga(y),对数相乘,真数取乘积,对数相加;(4)loga (x/y) = loga(x) - loga(y),对数相除,真数取商,对数相减;(5)loga(x^k) = k * loga(x),对数乘方,真数取底数的k次方,对数乘以指数。

3.常见对数函数:(1)常用对数函数:y=log10(x),其中底数为10,对数函数可以简写为y=log(x)。

常用对数函数是以10为底的对数函数,输入一个正实数x,输出满足10^y=x的y值。

(2)自然对数函数:y=ln(x),其中底数为e。

自然对数函数是以e 为底的对数函数,输入一个正实数x,输出满足e^y=x的y值。

三、指数函数与对数函数的关系:四、指数函数与对数函数的应用:1.科学中的指数增长:指数函数常常用于描述原子衰变、细胞分裂和放射性物质的衰变等过程。

指数对数函数基本知识点

指数对数函数基本知识点

指数对数函数基本知识点指数和对数函数是数学中常见的函数类型,应用广泛于科学、工程和金融等领域。

本文将介绍指数函数和对数函数的基本知识点,包括定义、性质和应用等方面。

一、指数函数(Exponential Function)指数函数是以常数e为底数的函数,它的定义如下:f(x)=a^x其中a是常数,称为底数;x是变量,称为指数;f(x)是函数的值。

1.常数e:e=1+1/1!+1/2!+1/3!+…2.指数函数的性质:(1)当x为整数时,指数函数的取值和底数a的幂运算相同;(2)当x为分数时,指数函数的取值是底数a的分数次幂;(3)当x为0时,指数函数的值为1;(4)当x趋近于负无穷时,指数函数的值趋近于0;(5)当x趋近于正无穷时,指数函数的值趋近于正无穷。

3.应用:指数函数在自然科学和金融领域有广泛的应用。

在自然科学中,指数函数可以描述各种自然过程的增长或衰减。

在金融领域中,指数函数可以用来进行复利计算。

二、对数函数(Logarithmic Function)对数函数是指数函数的逆运算,它的定义如下:f(x) = log_a(x)其中a是底数;x是函数的值;f(x)是变量。

1.对数的定义:对数函数中的底数a必须大于0且不等于1,对数函数的定义可以有以下两种形式:(1) 若a>1,则f(x) = log_a(x) 表示x=a^f(x);(2)若0a&0。

3.对数函数的性质:(1) f(x) = log_a(1) = 0;(2) f(x) = log_a(a) = 1;(3)若x1>x2,则f(x1)>f(x2);(4) log_a(x * y) = log_a(x) + log_a(y);(5) log_a(x / y) = log_a(x) - log_a(y);(6) log_a(x^k) = k * log_a(x);(7) 若x > 1,则log_a(x) > 0;若0 < x < 1,则log_a(x) < 0;(8)当x趋近于正无穷时,对数函数的值趋近于无穷。

(完整版)指数函数与对数函数知识点总结

(完整版)指数函数与对数函数知识点总结
指数函数与对数函数知识点总结
(一)指数与指数幂的运算
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ *.
当 是奇数时, ,当 是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
3.实数指数幂的运算性质
(1) · ;
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为R.
(2) =__________
4、设 ,求 的值__________。
5、若 ,则 等于。
6、已知函数 在 上为增函数,则 的取值范围是。
7、设函数 ,若 ,则
8、函数 且 恒过定点。
9、已知函数 在 上的最大值比最小值多 ,求实数 的值。
幂函数(第15份)
1、下列函数中,是幂函数的是( )
A、 B、 C、 D、
(3) =__________
(4) =__________
(5) =__________
(6) =__________
(7) =__________
(8) =__________
2、已知 ,试用 表示下列各对数。
(1) =__________(2) =__________
3、(1)求 的值__________;
f(1.5625)=0.003
f(1.5562)=-0.029
f(1.5500)=-0.060
据此数据,可得方程 的一个近似解(精确到0.01)为
(1) (2) (3)
5、函数 在区间[ ,2]上的最大值为,最小值为。
函数 在区间[ ,2]上的最大值为,最小值为。

高中数学-指数函数对数函数知识点

高中数学-指数函数对数函数知识点

高中数学-指数函数对数函数知识点指数函数、对数函数知识点知识点内容:1.整数和有理指数幂的运算:当a≠0时,aⁿ×aᵐ=aⁿ⁺ᵐ;aⁿ÷aᵐ=aⁿ⁻ᵐ;(aⁿ)ᵐ=aⁿᵐ2.指数函数y=aᵐ⁄ⁿ(a>0.m,n∈N*,且n>1)的性质:①解析式:y=aᵐ⁄ⁿ(a>0.且a≠1)②图象:过点(0,1),在a>1时,在R上是增函数,在0<a<1时,在R上是减函数③单调性:在定义域R上当a>1时,在R上是增函数当0<a<1时,在R上是减函数④极值:在R上无极值(最大、最小值)⑤奇偶性:非奇非偶函数典型题:1.把0.9017x=0.5化为对数式为log0.9017(0.5)=x2.把lgx=0.35化为指数式为x=10⁰.³⁵3.计算:2×6⁴³=6⁴⁴⁹4.求解:(2+1)⁻¹+(2-1)⁻²sin45°=0.5915.指数函数y=aᵐ⁄ⁿ(a>0.m,n∈N*,且n>1)的图象过点(3,π),求f(0)、f(1)、f(-3)的值f(0)=a⁰⁄ⁿ=1f(1)=aᵐ⁄ⁿ=a³⁄ⁿf(-3)=a⁻⁹⁄ⁿ6.求下列函数的定义域:① y=2-x²,定义域为R② y=1⁄(4x-5)-2,定义域为R-{5⁄4}7.比较下列各组数的大小:① 1.2<2.5<1.2+0.5,0.4-0.1<0.4-0.2② 0.3=0.4=0.4=0.3,<2112③ (2³)²<(3²)³<(2²)³8.求函数y=(x²-6x+17)⁄2的最大值,最大值为159.函数y=(a-2)x在(-∞,+∞)上是减函数,则a的取值范围为a>310.函数y=(a²-1)x在(-∞,+∞)上是减函数,则a的取值范围为|a|>1x其中a为底数,x为真数,y为对数。

高中数学知识点总结指数函数与对数函数的性质

高中数学知识点总结指数函数与对数函数的性质

高中数学知识点总结指数函数与对数函数的性质指数函数与对数函数是高中数学中的重要知识点。

它们在数学和实际问题中广泛应用,并具有独特的性质。

本文将总结指数函数与对数函数的性质,帮助读者更好地理解和应用这两个函数。

一、指数函数的性质指数函数是以底数为常数的指数幂构成的函数。

常见的指数函数形式为f(x) = a^x,其中a为底数。

1. 底数为正数且不等于1时,指数函数的特点如下:a) 当0<a<1时,函数图像在x轴正半轴上递减,并在x轴负半轴上趋近于0。

b) 当a>1时,函数图像在整个定义域上递增,并在x轴负半轴上趋近于0。

c) 当a=1时,函数图像恒为1。

2. 底数a的性质分析:a) 当a>1时,指数函数随着自变量x的增大而增大。

b) 当0<a<1时,指数函数随着自变量x的增大而减小。

c) 当a=1时,指数函数为常数函数f(x) = 1,不随x变化。

二、对数函数的性质对数函数是指以某一常数为底数,对应的指数是自变量的函数。

常见的对数函数形式为f(x) = loga(x),其中a为底数,x为函数的取值范围。

1. 底数为正数且不等于1时,对数函数的特点如下:a) 当0<a<1时,函数图像在定义域内递减。

b) 当a>1时,函数图像在定义域内递增。

2. 底数a的性质分析:a) 当a>1时,对数函数随着自变量x的增大而增大。

b) 当0<a<1时,对数函数随着自变量x的增大而减小。

c) 当a=1时,对数函数为常数函数f(x) = 0,不随x变化。

d) 底数a必须大于0且不等于1,否则对数函数无定义。

三、指数函数与对数函数的关系指数函数和对数函数是互为反函数的关系。

对于同一个底数a和同一个特定正实数x,指数函数和对数函数的关系如下:a) 指数函数f(x) = a^x与对数函数g(x) = loga(x)互为反函数,即f(g(x)) = x,g(f(x)) = x。

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结一、指数函数(一)指数函数的定义一般地,函数\(y = a^x\)(\(a > 0\)且\(a \neq 1\))叫做指数函数,其中\(x\)是自变量,函数的定义域是\(R\)。

(二)指数函数的图象与性质1、当\(a > 1\)时,指数函数的图象是上升的,函数在\(R\)上单调递增。

图象过定点\((0, 1)\),即当\(x = 0\)时,\(y = 1\)。

当\(x > 0\)时,\(y > 1\);当\(x < 0\)时,\(0 < y <1\)。

2、当\(0 < a < 1\)时,指数函数的图象是下降的,函数在\(R\)上单调递减。

图象过定点\((0, 1)\)。

当\(x > 0\)时,\(0 < y < 1\);当\(x < 0\)时,\(y >1\)。

(三)指数运算的基本法则1、\(a^m \times a^n = a^{m + n}\)2、\(\frac{a^m}{a^n} = a^{m n}\)(\(a \neq 0\))3、\((a^m)^n = a^{mn}\)4、\(a^0 = 1\)(\(a \neq 0\))5、\(a^{n} =\frac{1}{a^n}\)(\(a \neq 0\))(四)指数函数的应用1、指数函数在经济领域中的应用,比如计算利息、复利等。

2、在生物学中,指数函数可以用来描述细胞的分裂、细菌的繁殖等增长过程。

3、在物理学中,指数衰减的现象可以用指数函数来描述,比如放射性物质的衰变。

二、对数函数(一)对数函数的定义一般地,如果\(a^x = N\)(\(a > 0\)且\(a \neq 1\)),那么数\(x\)叫做以\(a\)为底\(N\)的对数,记作\(x =\log_aN\),其中\(a\)叫做对数的底数,\(N\)叫做真数。

函数\(y =\log_a x\)(\(a > 0\)且\(a \neq 1\))叫做对数函数,其中\(x\)是自变量,函数的定义域是\((0, +\infty)\)。

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结
指数函数知识点:
定义:对于任意实数x和正数a(a≠1),函数y=a^x称为指数函数。

性质:指数函数的图象总是通过点(0,1)。

指数函数在其定义域内是单调的。

当a>1时,函数是增函数;当0<a<1时,函数是减函数。

指数函数的值域是(0, +∞)。

指数函数的导数:如果y=a^x,则
y'=a^x * lna(a>0,a≠1)。

对数函数知识点:
定义:如果a^x=N(a>0,a≠1),则称x为以a为底N的对数,记作x=log_aN。

性质:对数的定义域是正数集,值域是实数集。

以a 为底的对数,a>0且a≠1。

对数的换底公式:log_bN = log_aN /
log_aA。

对数的运算性质:log_a(MN) = log_aM + log_aN;
log_a(M/N) = log_aM - log_aN;log_aM^n = n * log_aM。

对数函数的导数:如果y=log_ax,则y'=1/(x * lna)(a>0,a≠1)。

指数函数与对数函数之间的关系:
指数函数和对数函数是互为反函数的关系,即如果y=a^x,则
x=log_ay。

指数函数与对数函数之间可以通过换底公式相互转换。

这些是指数函数与对数函数的一些基本知识点,掌握这些知识点对于理解它们在数学中的应用非常有帮助。

指数函数和对数函数复习(有详细知识点和习题详解)

指数函数和对数函数复习(有详细知识点和习题详解)

指数函数和对数函数复习(有详细知识点和习题详解)一、指数的性质一)整数指数幂整数指数幂的概念是指:a的n次方等于a乘以a的n-1次方,其中a不等于0,n为正整数。

另外,a的-n次方等于1除以a的n次方,其中a不等于0,n为正整数。

整数指数幂的运算性质包括:(1)a的m次方乘以a的n次方等于a的m+n次方;(2)a的n次方的m次方等于a的mn次方;(3)a乘以b的n次方等于a的n次方乘以b的n次方。

其中,a除以a的n次方等于a的n-1次方,a的m-n次方等于a的m除以a的n次方,an次方根的概念是指,如果一个数的n次方等于a,那么这个数叫做a的n次方根,记作x=√a。

例如,27的3次方根等于3,-27的3次方根等于-3,32的5次方根等于2,-32的5次方根等于-2.a的n次方根的性质包括:如果n是奇数,则a的n次方根等于a;如果n是偶数且a大于等于0,则a的正的n次方根等于a,a的负的n次方根等于负的a;如果n是偶数且a小于0,则a的n次方根没有意义,即负数没有偶次方根。

二)例题分析例1:求下列各式的值:(1)3的-8次方;(2)(-10)的2次方;(3)4的(3-π)次方;(4)(a-b)的2次方,其中a大于b。

例2:已知a小于b且n大于1,n为正整数,化简n[(a-b)/(a+b)]。

例3:计算:7+40+7-40.例4:求值:(59/24)+(59-45)/24 + 25×(5-2)/24.解:略。

二)分数指数幂1.分数指数幂当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式,例如:$5\sqrt[10]{a^5}=a^{\frac{1}{2}}$,$3\sqrt[12]{a^3}=a^{\frac{1}{4}}$。

当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式,例如:$\sqrt[4]{a^5}=a^{\frac{5}{4}}$。

规定:1)正数的正分数指数幂的意义是$a^{\frac{p}{q}}=\sqrt[q]{a^p}$。

高一对数和指数知识点

高一对数和指数知识点

高一对数和指数知识点在高一数学学习中,对数和指数是非常重要的知识点。

对数和指数概念的理解和运用对于解决实际问题和提高解题能力有着重要的作用。

本文将介绍高一对数和指数的基本概念、性质及其应用。

一、对数的基本概念与性质1. 对数的定义:对数是指数的逆运算。

设a为正数,b为正数且不等于1,a的对数以b为底表示为logb(a)=c,其中c为实数。

对数具有以下性质:- logb(b)=1,即b的对数以b为底等于1;- logb(1)=0,任何数的以b为底的对数都等于0;- logb(a∙c) = logb(a) + logb(c),对数的乘法法则,a、c为正数;- logb(a/c) = logb(a) - logb(c),对数的除法法则,a、c为正数;- logb(a^m) = m∙logb(a),对数的幂法则,a为正数,m为实数。

2. 常用底的对数:常用的底为10(以10为底的对数称为常用对数)和e(以e≈2.71828为底的对数称为自然对数)。

二、指数的基本概念与性质1. 指数的定义:指数是表示相同因数连乘的运算。

设a为正数,n为正整数,a的n次方运算记作a^n,即a^n = a∙a∙…∙a(n个a相乘)。

指数具有以下性质:- a^m∙a^n = a^(m+n),指数的乘法法则;- (a^m)^n = a^(m∙n),指数的幂法则;- (a∙b)^n = a^n∙b^n,指数的次序法则。

2. 指数函数与对数函数:指数函数y=a^x(a>0且a≠1)是以指数为自变量、底数为常数的函数,对数函数y=loga(x)是以对数为自变量、底数为常数的函数。

三、对数与指数的应用1. 对数的应用:对数在科学计算、数据处理、信号处理等领域有广泛应用。

例如在物理学中,声音的强度可以用分贝来表示,分贝的计算就需要用到对数知识。

在经济学中,利率和汇率的计算也常用到对数。

2. 指数的应用:指数在增长和衰减的问题中有重要应用。

高中数学指数函数与对数函数总结

高中数学指数函数与对数函数总结

指数函数与对数函数总结指数函数与对数函数总结一、 [知识要点]:1. 指数函数y =ax 与对数函数y =a log x 的比较:的比较:定义定义 图象图象 定义域 值域值域 性质性质奇偶性 单调性 过定点值的分布值的分布最值最值y =a x (a>0且a ≠1) 叫指数函数a>1 (-∞,+∞)∞)(0,+∞) 非奇 非偶 增函数(0,1)即a 0=1 x>0时y>1;0<x<1时 0<y<1 无最值无最值0<a<1 减函数x>0时0<y<1; 0<x<1时 y>1 y =a log (a>0且a ≠1) 叫对数函数a>1Oy x(0,+∞) (-∞,+∞)∞) 非奇非偶 增函数 (1,0) 即log a 1=0 x>1时y>0;0<x<1时 y<0 无最值无最值 0<a<1Oy x减函数x>1时y<0;0<x<1时 y>0 对称性函数y =ax 与y =a -x (a>0且a ≠1)关于y 轴对称;函数y =a x 与y =log a x 关于y =x 对称对称 函数y =log a x 与y =1log a x (a>0且a ≠1)关于x 轴对称轴对称 2. 记住常见指数函数的图形及相互关系以及常见对数函数的图形及相互关系及相互关系①②3. 几个注意点几个注意点(1)函数y =a x 与对数函数y =log a x (a>0,a ≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系;(2)比较几个数的大小是对数函数性质应用的常见题型。

数的大小是对数函数性质应用的常见题型。

在具体比较时,可以首在具体比较时,可以首先将它们与零比较,分出正负;正数通常可再与1比较分出大于1还是小于1,然后在各类中间两两相比较;(3)在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用。

指数对数函数基本知识点

指数对数函数基本知识点

指数对数函数基本知识点指数和对数函数是高中数学中的重要内容,它们在数学和实际问题中有着广泛的应用。

本文将介绍指数和对数函数的基本知识点,包括定义、性质、图像、应用等方面。

1.指数的定义:对于任意实数a和正整数n,指数a的n次方(记作a^n)表示将a连乘n次,其中a被称为底数,n被称为指数。

2.指数函数的定义:指数函数y=a^x表示底数为a的指数函数,其中a>0且a≠1,x为自变量,y为因变量。

3.指数函数的性质:(1)当a>1时,指数函数是递增函数;当0<a<1时,指数函数是递减函数。

(2)指数函数的定义域为全体实数,值域为正实数。

(3)指数函数的图像在x轴的右侧逐渐上升(或下降),但不会与x轴相交。

(4)指数函数的反函数是对数函数,即y=a^x的反函数为x=logₐy。

1. 对数的定义:对于任意正数a、正整数n和正实数x,logₐn=x表示底数为a的对数函数,其中a>0且a≠1,n为真数,x为对数。

2. 对数函数的定义:对数函数y=logₐx表示底数为a的对数函数,其中a>0且a≠1,x为自变量,y为因变量。

3.对数函数的性质:(1)对数函数的定义域为正实数,值域为全体实数。

(2)当0<a<1时,对数函数是递增函数;当a>1时,对数函数是递减函数。

(3)对数函数的图像在y轴的左侧逐渐上升(或下降),但不会与y轴相交。

(4)对数函数的反函数是指数函数,即y=logₐx的反函数为x=a^y。

三、指数和对数函数的图像1.指数函数的图像:(1)当a>1时,指数函数的图像在x轴的右侧逐渐上升,且通过点(0,1);(2)当0<a<1时,指数函数的图像在x轴的右侧逐渐下降,且通过点(0,1)。

2.对数函数的图像:(1)当a>1时,对数函数的图像在y轴的左侧逐渐上升,且通过点(1,0);(2)当0<a<1时,对数函数的图像在y轴的左侧逐渐下降,且通过点(1,0)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数、对数函数知识点
知识点内容典型题
整数和有理指数幂的运算
a 0=1(a≠0);a-n=
1
a n
(a≠0, n∈N*)
a
m
n=n a m(a>0 , m,n∈N*, 且n>1)
(a>0 , m,n∈N*, 且n>1)
当n∈N*时,(n a)n=a
当为奇数时,n a n=a
当为偶数时,n a n=│a│=
a (a≥0)
-a (a<0)
运算律:a m a n=a m + n
(a m)n=a m n
(ab)n=a n b n
1.计算: 2-1×6423=.
2. 224282=;
333363= .
3343427=;
393
36
= .
3.︒
-
-
+
+-45
sin
2
)1
2
(
)1
2
(0
1
4.
指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1)
2、图象:
3、函数y=a x(a>0,且a≠1)的性质:
①定义域:R ,即(-∞,+∞)
值域:R+ , 即(0,+∞)
②图象与y轴相交于点(0,1).
③单调性:在定义域R上
当a>1时,在R上是增函数
当0<a<1时,在R上是减函数
④极值:在R上无极值(最大、最小值)
当a>1时,图象向左与x轴无限接近;
当0<a<1时,图象向右与x轴无限接
近.
⑤奇偶性:非奇非偶函数.
5.指数函数y=a x(a>0且a≠1)的图象过
点(3,π) , 求f (0)、f (1)、f (-3)的值.
6.求下列函数的定义域:
①2
2x
y-
=;②
2
4
1
5-
=
-
x
y.
7.比较下列各组数的大小:
①1.22.5 1.22.51 , 0.4-0.10.4-0.2 ,
②0.30.40.40.3, 233322.
③(2
3
)-
1
2,(
2
3
)-
1
3,(
1
2
)-
1
2
8.求函数
17
6
2
2
1+
-





=
x
x
y的最大值.
9.函数x
a
y)2
(-
=在(-∞,+∞)上是减函数,
则a的取值范围( )
A.a<3
B.c
C.a>3
D.2<a<3
10.函数x
a
y)1
(2-
=在(-∞,+∞)上是减函
数,则a适合的条件是( )
A.|a|>1
B.|a|>2
C.a>2
D.1<|a|<2
知识点内容典型题
对数的概念
定义:设a>0且a≠1,若a的b
次幂为N,即a b=N,则b叫做以a
为底N的对数,记作log a N=b.
(a叫做底数,N叫做真数,式子
log
a
N叫做对数式.)
a b=N log a N=b(a>0且a≠1)
当a=10时,x
10
log简记为lg x,称
为常用对数;当a=e(e≈2.718…)时,
x e
log简记为ln x,称为自然对数.
11.把5.0
9017
.0=
x化为对数式为 .
12.把lg x=0.35化为指数式为 .
13.把ln x=2.1化为指数式为.
14.log3 x=-
2
1
,则x=.
15.已知:8a=9,2b=5,求log9125.
对数运算的法则
设a>0,b>0,a≠1,b≠1,M>0,N>0
①a b=N log a N=b
②负数和零没有对数;
③log a1=0,log a a=1
④N a
a log=N ,N
a N
a
=
log
⑤a
log(M·N)=a
log M+a
log N
⑥a
log
N
M
=a
log M-a
log N
⑦a
log n
M=n a
log M
⑨换底公式:b
log N=
b
N
a
a
log
log
换底公式的推论:
a
log b=
a b
log
1
( a
log b·b
log a=1 )
log
a
b =log
a n
b n
log
a m
b n=
n
m
log
a
b
16.
5
log
8
log
25
1
log
9
3
2

=.
17.若x=log a3,则
a3x-a-3x
a x-a-x
的值是.
18.计算2log49=.
19.计算下列各式:
①16
log
9
1
log
4
2
log
2
)
8
1
(
3
8
3
log
2
1
3
2
2⋅

+


②)
243
log
81
log
27
log
9
log
3
(log
6
9
32
16
8
4
2
)
32
(
log+
+
+
+

2.1
lg
1000
lg
8
lg
27
lg-
+
④⎪




+
+36
log
4
3
log
32
log
log4
2
1
2
2
20.已知lg(x-y)+lg(x+2y)=lg x+lg y+lg2

y
x
=.
21.已知:log1227=a,求log616的值.
22.已知p
=
3
log8,q
=
5
log3,则lg5=()
A.
5
3q
p+
B.
q
p
pq
+
+3
1
对数函数的概念及性质1.解析式:y=log a x(a>0,且a≠1)
2.图象:y=log a x与y=a x(a>0,a≠1)
互为反函数,故二者图象关于直线y=x
对称.(如下图)
3. y=log a x(a>0,且a≠1)性质:
①定义域:R+,即(0,+∞)
值域:R,即(-∞,+∞);
②过x轴上的定点(1,0);
③单调性:
a>1时,在(0,+∞)上是增函数;
0<a<1时,在(0,+∞)上是减函数
④极值:在(0,+∞)上无最大(小)值,
a>1,图象在左下方与y轴无限接近;
0<a<1,图象在左上方与y轴无限接近.
⑤奇偶性:非奇非偶.
23.函数y=lg x的定义域为.
24.函数y=log1
3
(x-1)的定义域是
25.求函数y=log 2 (x2-4x-5)的定义域.
26.对满足m>n的任意两个非零实数,下列
不等式恒成立的是()
A.m>n
B.lg(m2) >lg(n2)
C.m4>n4
D.(
1
2
)m<(
1
2
)n
27.比较各组数的大小:
①log1
2
0.2log1
2
0.21,
lg1.1 lg1.11
②7.06,67.0,6
log
7.0
从小到大为
③log89 log98 ,
④log25 log75
⑤log35 log64
28.已知f(x)的图象与g(x)=(14)x的图象关
于直线y=x对称,则f (x)=.
指数和对数不等式基本思路:
利用指数、对数函数的图象(实质是判断
利用函数的增减性),把原不等式转化为一元
一次(或二次)不等式(组).
①a f(x)>a g(x)(a>0,a≠1)型
若a>1,f(x)>g(x)
若0<a<1,f(x)<g(x)
②log a f(x)>log a g(x)(a>0,a≠1)型
若a>1,f(x)>g(x)
若0<a<1,f(x)<g(x)
29.解不等式:1
2
3.0++x
x>x
x5
22
3.0+
-
30.若3
log
2a
-
<0,则a的取值范围是.
31.若
3
2
log
a
<1,则a的取值范围是.
32.解不等式:log1
2
(x2-4x-5)<log1
2
(x2+1)
33.解不等式:log x(2x+1)>log x2
知识点内容典型题。

相关文档
最新文档